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(A, m) is a d-Z /27 graded associative algebra with odd scalar
product B, dimy A < oo .

H is an odd selfadjoint operator H : A — 1A, HY = H , such that
Id —[d,H] =P, dP =0, P> = P. B - the image of P.

Let I be a 3-valent ribbon graph with legs, then put:

® on every vertex v — the 3-tensors of the cyclic product on A
= ((HA)®3)\/
® on every interieur edge e = (ff’) — the two tensor
BY(H"ur, ver), Byi® € (IIA)*2,

® on every leg | € Leg(T') — element a; € T1B

® make the contraction

We( @ a)=( & m". | & Bi| & a

leLeg(T) ve Vert(T) ecEdge(T) leLeg(T)



The summation over 3-valent ribbon graphs with legs
(cont'd).

Wr( @ a ®m(®ﬁ)®a/>

lELeg(F) ve Vert(T) ec€Edge(T) IeLeg(T)
S — Z PO
{r}
® S € Sym(®52, Hom((T1B®/), k)#/1%)[[]]

Theorem (S.B.[2009a]) The sum
over 3-valent ribbon graphs S satisfy the
QMECC/noncommutative Batalin-Vilkovisky equation:

hANCS + (5,5} =0



® Let V= VWy® Vi be Z/27Z -graded vector space,
dimy V < oo, with scalar product B : V®2 — k|[p] of degree
pmod2

o C'= (&, Hom((TIV), K)Z/5%)
S € Sym(C* [1 — p])[[7]] (symmetric for the odd product B,
antisymmetric for the even )

® The noncommutative BV differential on F = Sym(C* [1 — p])

ANC(aPI . apr)A(aTI .- aTt)A =

. A
Z ﬁpqu Apy -+ App 18Tqsy -+ ATg_18ppiy - ..apr) +

A A A
Z (_1)8ﬁ;)/ppq(...app_lapq+l ...ap,) (app+l...apq_1) (aTl...aTt)
ptl#q

g A A A
Z (—1)Sﬁ¥prq(...ap,) (311---3rp_13rq+1---3n) (anH...aTq_l)
ptl#q
® signs are the standard Koszul signs taking into account that
(ap, ... ap ) =1—p+Ya, ,a €Hom(I1V) .

Theorem (S.B.[2006a]) A% =0



The Quantum Master equation on Cyclic Cochains / The
noncommutative Batalin-Vilkovisky equation (S.B.[2006a])

71ANC5+%{S,S}:0 QMCC

S =Ygs0i20 & S0, Sgi€Sym'(:) .

{S0,1, 50,1} =0,

So,1 - Ass— algebra with (even/odd) scalar product, so S—
multiloop, higher genus generalization of A — algebra.

(QMCC) <= Anc(exp35) =0
It is natural to call it the “noncommutative BV" differential
because if the previous summation is over usual graphs with

no cyclic orders at v € Vert(G) then it gives solutions to the
standard BV.



A stable ribbon graph is a connected graph G (recall: a graph G is
a triple (Flag(G), A, o) , where Flag(G) is a finite set, whose
elements are called flags, A is a partition of Flag(G) <> vertices , &
is an involution acting on Flag(G) <+ edges/legs ) together with:

e partitions of the set of flags adjacent to every vertex into i(v)
subsets

Leg(v) = Leg(v)M ... U Leg(v) () v € Vert(G)

* fixed cyclic order on every subset Leg(v))

® amap g: Vert(G) — Zxg such that for any vertex
2(2g(v)+i(v) —2)+n(v) >0.

* Dy k(G or(G)),
or(G) € Det(®vevert(c)(k’:’ag(") @ kee(v)) has natural
“generalized contraction of edges” differential dgaph



Let S € Sym(C* [1 — p])[[7]] be a solution to the QMCC, with
S012=0(dy =0), let I' be a stable ribbon graph, then put:

® on every vertex v — the multi-cyclic tensors
i ) .
S € Sym(@32 Hom((TTV), k)22 [1 — p))

® on every edge e = (ff’) — the two tensor

BY(uf, ver), B € (ITV)2,

e take the contraction Wr = ( & Sgin ( X ,Bv'e>>
' (T)

ve Vert(T) ecEdge

Theorem (S.B.[2006a]) For any S- a solution to the QMCC
equation the following chain is a cycle in the stable ribbon graph
complex
W)= Y #wxE e
{T}eSRG
OgraphW(S) = 0,

therefore [W(S)] € Hy (M. +)



A metric on the stable ribbon graph is a function

| : Edge(G) — R~q . Given a stable ribbon graph G w/out legs
and a metric on G one can construct by standard procedure a
punctured Riemann surface ¥.(G) , which will have double points
in general.

e replace every edge by oriented open strip [0, /] x| — ico, +ioo|
and glue them for each cyclically ordered subset of each vertex
according to the cyclic order.

® identify points corresponding to 2 subsets at vertices with
g(v) =0,i(v) =2, (double points); for points with
2g(v) +i(v) > 2 remplace the vertex by the Riemann surface
of genus g(v) , which does not contain any marked point,
connected to the rest via i(v) double points.

® This gives an isomorphism of complexes
(Dicyesrck [(G,or(G)], Ograpn) —
©gw Ce(My, x RYy/Sy)



More constructions of solutions to the QMCC equation

® Conjecture (S.B.[2006a]). Counting of holomorphic curves
(X,0%, pi) = (M, 11 Li, ®H.(LiNL})) , with Z/2Z -graded
local systems, gives solution to the QMCC equation.

® Theorem (S.B.[2013]) If A is an A —infinity algebra with the
degeneration of the Hodge to de Rham spectral sequence,
then the solution to the QMCC can be constructed step by
step starting from {Sp1, 501} =0



Homotopy theory of the QMCC eq

® Theorem (S.B.[2006a]) Solutions to the QMCC eq are in
one-to-one correspondence with the structure of algebra over

modular operad, which is the Feynman transform of k[S,]
® Theorem (S.B.[2006a])H,(The Feynman transform of

o ——

k[Sn] (0,7, v))=H" (M, /Sy)



Construction of cohomology classes in H*(M;YV/SU)

® A- associative algebra , with odd scalar product

® Assume: | - an odd derivation acting on A, preserving the

scalar product: , in general 12 £0 (1), 31, [I,1] =1,
str([a,:]) = 0 for any a € A.

® Theorem (S.B.[2006b, 2009b]) This data —Cohomology

classes in H*(M, ,)
® Example g(N), g(N) = {[X, ] =0|X € gl(N|N)} ,where

rt—odd involution, g(N) has odd trace otr, | = [E,-], E-
odd element & = (0 |diag(Aq, ..., An)), (2 #0(1)
® Theorem (S.B.[2009b]) This is the generating function for

products of tautological classes ¢;(T;).



® Conjecture (S.B.[2009b]) This construction, applied to
As—algebra A = End(C), C is a generating object of the
D>(Coh(Y)), Y is the mirror dual Calabi-Yau manifold to X

® —all genus Gromov-Witten invariants of X
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