Quantum master equation on cyclic cochains and categorical Gromov-Witten invariants
Serguei Barannikov

To cite this version:
Serguei Barannikov. Quantum master equation on cyclic cochains and categorical Gromov-Witten invariants. Simons Collaboration Workshop on Homological Mirror Symmetry and Hodge Theory, Harvard University, Jan 2018, Cambridge, MA, United States. hal-01898715

HAL Id: hal-01898715
https://hal.science/hal-01898715
Submitted on 18 Oct 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Quantum master equation on cyclic cochains and categorical Gromov-Witten invariants.
Conference “Homological Mirror Symmetry and Hodge Theory”, Harvard

Serguei Barannikov (Paris Diderot University)

12/01/2018
\((A, m)\) is a \(d\mathbb{Z}/2\mathbb{Z}\) graded associative algebra with odd scalar product \(\beta\), \(\dim_k A < \infty\).

\(H\) is an odd selfadjoint operator \(H : A \rightarrow \Pi A, \ H^\dagger = H\), such that \(\text{Id} - [d, H] = P, \ dP = 0, \ P^2 = P\). \(B\) - the image of \(P\).

Let \(\Gamma\) be a 3-valent ribbon graph with legs, then put:

- on every vertex \(v \rightarrow\) the 3-tensors of the cyclic product on \(A\)

\[
m^v \in ((\Pi A)^ \otimes 3)^\dagger
\]

- on every interior edge \(e = (ff') \rightarrow\) the two tensor

\[
\beta^\dagger (H^\dagger u_f, v_{f'}), \ \beta^\dagger,^e_H \in (\Pi A)^ \otimes 2,
\]

- on every leg \(l \in \text{Leg}(\Gamma) \rightarrow\) element \(a_l \in \Pi B\)

- make the contraction

\[
\mathcal{W}_\Gamma \left(\bigotimes_{l \in \text{Leg}(\Gamma)} a_l \right) = \left\langle \bigotimes_{v \in \text{Vert}(\Gamma)} m^v, \left(\bigotimes_{e \in \text{Edge}(\Gamma)} \beta^\dagger,^e_H \right) \bigotimes_{l \in \text{Leg}(\Gamma)} a_l \right\rangle
\]
The summation over 3-valent ribbon graphs with legs (cont’d).

\[W_\Gamma(\bigotimes_{l \in \text{Leg}(\Gamma)} a_l) = \langle \bigotimes_{\nu \in \text{Vert}(\Gamma)} m^{\nu}, \left(\bigotimes_{e \in \text{Edge}(\Gamma)} \beta_{\Gamma, e}^{\nu, e} \right) \bigotimes_{l \in \text{Leg}(\Gamma)} a_l \rangle \]

\[S = \sum_{\{\Gamma\}} \mathcal{h}^{1-\chi(\Gamma)} W_\Gamma \]

\[S \in \text{Sym}\left(\bigoplus_{j=1}^{\infty} \text{Hom}(\Pi B^\otimes j), k^{\mathbb{Z}/j\mathbb{Z}} \right)[[\mathcal{h}]] \]

Theorem (S.B.[2009a]) The sum over 3-valent ribbon graphs \(S \) satisfy the QMECC/noncommutative Batalin-Vilkovisky equation:

\[\hbar \Delta_{NC} S + \frac{1}{2} \{ S, S \} = 0 \]
• Let $V = V_0 \oplus V_1$ be $\mathbb{Z}/2\mathbb{Z}$-graded vector space, $\dim_k V < \infty$, with scalar product $\beta : V \otimes^2 \to k[p]$ of degree $p \mod 2$

• $C^\lambda = (\bigoplus_{j=1}^\infty \text{Hom}((\prod V \otimes^j), k)\mathbb{Z}/j\mathbb{Z})$, $S \in \text{Sym}(C^\lambda [1 - p])[\hbar]$ (symmetric for the odd product β, antisymmetric for the even β)

• The noncommutative BV differential on $F = \text{Sym}(C^\lambda [1 - p])$

$$\Delta_{NC}(a_{\rho_1} \ldots a_{\rho_r})^\lambda (a_{\tau_1} \ldots a_{\tau_t})^\lambda =$$

$$= \sum_{p,q} (-1)^{\epsilon} \beta^\lambda_{\rho_p \rho_q} (a_{\rho_1} \ldots a_{\rho_{p-1}} a_{\tau_{q+1}} \ldots a_{\tau_{q-1}} a_{\rho_{p+1}} \ldots a_{\rho_r})^\lambda +$$

$$\sum_{p \pm 1 \neq q} (-1)^{\epsilon} \beta^\lambda_{\rho_p \rho_q} (\ldots a_{\rho_{p-1}} a_{\rho_{q+1}} \ldots a_{\rho_r})^\lambda (a_{\rho_{p+1}} \ldots a_{\rho_{q-1}})^\lambda (a_{\tau_1} \ldots a_{\tau_t})^\lambda$$

$$\sum_{p \pm 1 \neq q} (-1)^{\epsilon} \beta^\lambda_{\tau_p \tau_q} (\ldots a_{\rho_r})^\lambda (a_{\tau_1} \ldots a_{\tau_{p-1}} a_{\tau_{q+1}} \ldots a_{\tau_t})^\lambda (a_{\tau_{p+1}} \ldots a_{\tau_{q-1}})^\lambda$$

• signs are the standard Koszul signs taking into account that $(a_{\rho_1} \ldots a_{\rho_r})^\lambda = 1 - p + \sum a_{\rho_i} \bar{a}_{\rho_i}$, $a_i \in \text{Hom}(\prod IV)$

Theorem (S.B.[2006a]) $\Delta_{NC}^2 = 0$
The Quantum Master equation on Cyclic Cochains / The noncommutative Batalin-Vilkovisky equation (S.B.[2006a])

\[\hbar \Delta_{NC} S + \frac{1}{2} \{ S, S \} = 0 \quad \text{QMCC} \]

\[S = \sum_{g \geq 0, i > 0} \hbar^{2g-1+i} S_{g,i}, \quad S_{g,i} \in \text{Sym}^{i}(\cdot) . \]

\{ S_{0,1}, S_{0,1} \} = 0,

\(S_{0,1} \) - \(A_{\infty} \) — algebra with (even/odd) scalar product, so \(S \) — multiloop, higher genus generalization of \(A_{\infty} \) — algebra.

(QMCC) \iff \(\Delta_{NC}(\exp \frac{1}{\hbar} S) = 0 \)

It is natural to call it the “noncommutative BV” differential because if the previous summation is over usual graphs with no cyclic orders at \(\nu \in \text{Vert}(G) \) then it gives solutions to the standard BV.
A stable ribbon graph is a connected graph G (recall: a graph G is a triple $(\text{Flag}(G), \lambda, \sigma)$, where $\text{Flag}(G)$ is a finite set, whose elements are called flags, λ is a partition of $\text{Flag}(G) \leftrightarrow$ vertices, σ is an involution acting on $\text{Flag}(G) \leftrightarrow$ edges/legs) together with:

- partitions of the set of flags adjacent to every vertex into $i(v)$ subsets

$$\text{Leg}(v) = \text{Leg}(v)^{(1)} \sqcup \ldots \sqcup \text{Leg}(v)^{(i(v))}, \, v \in \text{Vert}(G)$$

- fixed cyclic order on every subset $\text{Leg}(v)^{(k)}$,

- a map $g : \text{Vert}(G) \to \mathbb{Z}_{\geq 0}$ such that for any vertex $2(2g(v) + i(v) - 2) + n(v) > 0$.

- $\bigoplus_G k(G, \text{or}(G))$,

$$\text{or}(G) \in \text{Det}(\otimes_{v \in \text{Vert}(G)} (k^{\text{Flag}(v)} \oplus k^{\text{Cycle}(v)}))$$ has natural “generalized contraction of edges” differential δ_{graph}
Let \(S \in \text{Sym}(C^1 [1 - p])[\hbar]\) be a solution to the QMCC, with \(S_{0,1,2} = 0 \) (\(d_V = 0 \)), let \(\Gamma \) be a stable ribbon graph, then put:

- on every vertex \(\nu \rightarrow \) the multi-cyclic tensors

\[
S^\nu_{g,i} \in \text{Sym}(\bigoplus_{j=1}^\infty \text{Hom}((\Pi V^\otimes j), k)^{\mathbb{Z}/j\mathbb{Z}} [1 - p])
\]

- on every edge \(e = (ff') \rightarrow \) the two tensor

\[
\beta^\nu(u_f, v_{f'}), \ \beta^\nu,e \in (\Pi V)^\otimes 2,
\]

- take the contraction \(W_\Gamma = \langle \bigotimes_{\nu \in \text{Vert}(\Gamma)} S^\nu_{g,i}, \left(\bigotimes_{e \in \text{Edge}(\Gamma)} \beta^\nu,e \right) \rangle \)

Theorem (S.B.[2006a]) For any \(S\)- a solution to the QMCC equation the following chain is a cycle in the stable ribbon graph complex

\[
W(S) = \sum_{\{\Gamma\} \in \text{SRG}} \hbar^{1-\chi(\Sigma \Gamma)} W_\Gamma [\Gamma]
\]

\[
\delta_{\text{graph}} W(S) = 0,
\]

therefore \([W(S)] \in H_* (\overline{M}_{\ast,\ast}) \)
A metric on the stable ribbon graph is a function $l : \text{Edge}(G) \to \mathbb{R}_{>0}$. Given a stable ribbon graph G w/out legs and a metric on G one can construct by standard procedure a punctured Riemann surface $\Sigma(G)$, which will have double points in general.

- replace every edge by oriented open strip $[0, l] \times] - i\infty, + i\infty[$ and glue them for each cyclically ordered subset of each vertex according to the cyclic order.
- identify points corresponding to 2 subsets at vertices with $g(v) = 0, i(v) = 2$, (double points); for points with $2g(v) + i(v) > 2$ remplace the vertex by the Riemann surface of genus $g(v)$, which does not contain any marked point, connected to the rest via $i(v)$ double points.
- This gives an isomorphism of complexes

$$
\left(\bigoplus_{\{G\} \in \text{SRG}^k} \left[(G, or(G)), \delta_{\text{graph}} \right] \right) \to \\
\bigoplus_{g,v} C_* \left(\overline{\mathcal{M}}_{g,v}^/ \times \mathbb{R}_{>0}^v / S_v \right)
$$
More constructions of solutions to the QMCC equation

- **Conjecture** (S.B. [2006a]). Counting of holomorphic curves $(\Sigma, \partial \Sigma, p_i) \rightarrow (M, \bigsqcup L_i, \bigoplus H_*(L_i \cap L_j))$, with $\mathbb{Z}/2\mathbb{Z}$-graded local systems, gives solution to the QMCC equation.

- **Theorem** (S.B. [2013]) If A is an A_∞—infinity algebra with the degeneration of the Hodge to de Rham spectral sequence, then the solution to the QMCC can be constructed step by step starting from $\{S_{0,1}, S_{0,1}\} = 0$
Homotopy theory of the QMCC eq

- **Theorem** (S.B.[2006a]) Solutions to the QMCC eq are in one-to-one correspondence with the structure of algebra over modular operad, which is the *Feynman transform* of $k[\mathcal{S}_n]$
- **Theorem** (S.B.[2006a]) $H_*(\text{The Feynman transform of } k[\mathcal{S}_n](0, \gamma, \nu)) \simeq H^*(\bar{\mathcal{M}}'_{g,\nu}/\mathcal{S}_\nu)$
Construction of cohomology classes in $H^*(\overline{\mathcal{M}}_{g,v}^I / \mathcal{S}_v)$

- A- associative algebra, with odd scalar product
- Assume: I - an odd derivation acting on A, preserving the scalar product: $I^2 \neq 0 (!)$, $\exists \tilde{I}$, $[I, \tilde{I}] = 1$, $str([a, \cdot]) = 0$ for any $a \in A$.
- **Theorem** (S.B.[2006b, 2009b]) This data \rightarrow Cohomology classes in $H^*(\overline{\mathcal{M}}_{g,n}^I)$
- Example $q(N)$, $q(N) = \{ [X, \pi] = 0 | X \in gl(N|N) \}$, where π—odd involution, $q(N)$ has odd trace otr, $I = [\Xi, \cdot]$, Ξ—odd element $\Xi = (0 | diag(\lambda_1, \ldots, \lambda_n))$, ($I^2 \neq 0 (!)$)
- **Theorem** (S.B.[2009b]) This is the generating function for products of tautological classes $c_1(T_i)$.
• **Conjecture** (S.B.[2009b]) This construction, applied to A_∞—algebra $A = \text{End}(C)$, C is a generating object of the $D^b(\text{Coh}(Y))$, Y is the mirror dual Calabi-Yau manifold to X →...

• → all genus Gromov-Witten invariants of X

