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Abstract 

Riding the wave of smart disclosure initiatives and new privacy-protection regulations, the Personal Cloud paradigm is 

emerging through a myriad of solutions offered to users to let them gather and manage their whole digital life. On the bright 

side, this opens the way to novel value-added services when crossing multiple sources of data of a given person or crossing the 

data of multiple people. Yet this paradigm shift towards user empowerment raises fundamental questions with regards to the 

appropriateness of the functionalities and the data management and protection techniques which are offered by existing 

solutions to laymen users. These questions must be answered in order to limit the risk of seeing such solutions adopted only by 

a handful of users and thus leaving the Personal Cloud paradigm to become no more than one of the latest missed attempts to 

achieve a better regulation of the management of personal data. To this end, we review, compare and analyze personal cloud 

alternatives in terms of the functionalities they provide and the threat models they target. From this analysis, we derive a general 

set of functionality and security requirements that any Personal Data Management System (PDMS) should consider. We then 

identify the challenges of implementing such a PDMS and propose a preliminary design for an extensive and secure PDMS 

reference architecture satisfying the considered requirements. Finally, we discuss several important research challenges 

remaining to be addressed to achieve a mature PDMS ecosystem. 
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1. Introduction  

Behaviors, movements, social relationships and interests of individuals are now constantly recorded, evaluated 

and analyzed in real-time by a small number of data aggregator companies [24]. This concentration negatively 

impacts privacy preservation and self-determination of individuals as well as innovation and fair competition 

between companies. Smart disclosure initiatives (e.g., Blue and GreenButton in the US1, Midata in the UK2, 

MesInfos in France3) are rising worldwide, aiming to restore individuals’ control over their data and improve 

fairness in personal data management practices. The smart disclosure principle allows individuals to freely retrieve 

their personal data through a simple click, in a computer readable format, from the companies and administrations 

hosting them. According to the US government, this is a means to “help consumers make more informed choices; 

give them access to useful personal data; power new kinds of digital tools, products, and services for consumers; 

and promote efficiency, innovation, and economic growth” [51]. This fundamental principle has been recently 

translated into law with the right to data portability of the European General Data Protection Regulation (GDPR) 

[44].  

Not only does smart disclosure allow individuals to be aware of the information collected about them, it also 

holds the promise of new services of high social and societal interest [51]. Indeed, individuals can now gather their 

complete digital environment in a so-called Personal Cloud or Personal Information Management Systems [1], 

Personal Data Server [3] or Personal Data Store [27]. A Personal Cloud is not only composed of data from many 

(previously) isolated information silos (e.g. secondary copies of data issued by their bank, employer, supermarket, 

 

 
1 https://www.healthit.gov/topic/health-it-initiatives/blue-button 
2 https://www.gov.uk/government/news/the-midata-vision-of-consumer-empowerment 
3 http://mesinfos.fing.org/ 
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hospital) but also of primary data (e.g. produced by quantified-self devices and smart meters, photos taken with 

their smartphone or documents stored on their PC). This unprecedented concentration of personal data opens the 

way for new value-added services when crossing multiple data of a given person (e.g., crossing medical data with 

eating patterns or bank statements with shopping history) or crossing the data of multiple people (e.g., conducting 

an epidemiological study), all this under the concerned individual’s control. While this will certainly not stop data 

aggregator companies’ current practices, the Personal Cloud introduces an alternative way to develop fairer 

personal data management services using richer personal data. Hence, smart disclosure and the related Personal 

Cloud concept have become the cornerstone of what is called today user empowerment. 

However, we should be cautious of a potential boomerang effect of user empowerment : returning individual’s 

their data without providing them with the appropriate environment to exercise their control over it. Several 

companies are now riding the Personal Cloud wave and the spectrum of proposals in the internet sphere is highly 

diverse. Online personal cloud solutions (e.g., CozyCloud, Digi.me, BitsAbout.Me to only cite a few) propose a 

centralized web hosting of personal data combined with a rich set of services to collect personal data from various 

sources, store them and cross-exploit them. This approach assumes, by construction, that individuals do not 

question the honesty of the hosting company (including the honesty of the employees) nor its capacity to defeat 

severe attacks, since centralization creates by essence a massive honeypot. Zero-knowledge personal cloud 

solutions (e.g., SpiderOak [26], Sync) mitigate this strong trust assumption by offering a fully encrypted (yet still 

centralized) data store, but impose a new responsibility (managing the encryption keys) on the individuals, thus 

trading user friendliness and rich services for improved security. Home cloud software solutions (e.g., OpenPDS 

[27], DataBox [23, 39]) build upon the paradigm of local/edge computing by considering that the raw personal 

data should remain stored physically close to the user. Hence, they advocate for a decentralized approach where 

individuals install local personal servers on their own equipment (e.g., PC). Home cloud plugs (e.g., CloudLocker, 

Helixee) go further in this direction by offering a dedicated box that can store TBs of data, run a server and simply 

be plugged on an individual’s home internet gateway, alleviating the burden of installing and administering a 

server. Finally tamper-resistant home clouds are home cloud plugs integrating secure chips on their hardware 

board to improve their resistance to confidentiality attacks, viruses and ransomwares. All these alternatives belong 

to the large, fuzzy, personal cloud system family but neither provide the same set of functionalities nor consider 

the same threat model.   

This diversity of solutions raises important questions. Which functionalities are really mandatory in the 

personal cloud context? Which threat model better captures the various uses and architectural environments of the 

personal cloud? Do solutions exist combining the required set of functionalities and appropriate threat model? If 

not, where does the difficulty stem from? Can solutions be devised by adapting existing corporate cloud-based 

techniques or is the personal cloud problem fundamentally different, thus imposing a deep rethink of these 

techniques? These questions are important for the data management research community and for the individual as 

well. By leaving these questions without answers, the risk is high to see the Personal Cloud paradigm be nothing 

but a missed attempt to reach a better regulation of the management of personal data, and maybe one of the last. 

This paper precisely tries to answer these questions by making the following contributions: 

 Personal cloud solutions categorization: we review, compare and categorize the various personal cloud 

alternatives sketched above in terms of provided functionalities and targeted threat model. The functionality axis 

is organized so as to cover all important steps of the personal data life cycle, from collection to storage, recovery, 

individual and collective exploitation of personal data. The threat model axis tries to encompass all actors 

contributing to the use of a personal cloud platform, from the personal cloud service provider, the applications 

providers, to the individual and its storage and computing environment. Beyond identifying the main expected 

features and privacy threats that need to be addressed, we also show that existing alternatives do not cover all of 

these features and threats, and cannot be combined for this purpose. 

 Definition of an Extensible and Secure Personal Data Management System (ES-PDMS): we propose a definition 

of what an extensive (combining all functionalities) and secure (circumventing all the threats) Personal Data 

Management System should be. Therefore, we analyze the specificities of each functionality in the light of the 

individual context considered in this paper, and we deduce the corresponding security properties to achieve them. 

This has not been done until now, as existing personal cloud solutions have mostly been derived from their 

corporate counterparts.  

 Definition of an ES-PDMS reference architecture: we have the strong belief that many security issues are rooted 

in architectural choices. Thus, we propose an abstract design for an ES-PDMS reference architecture satisfying the 

properties we will have defined. We then illustrate how this abstract architecture can be instantiated in different 



  

concrete settings. For the sake of generality, this design makes no assumption on the PDMS data management 

model itself (models and languages to define, manipulate and share objects entering in a PDMS). 

 Research issues related to PDMS architectures: finally, we review a set of important research issues which remain 

to be investigated concerning the definition and security of PDMS architectures. 

The rest of the paper follows this same structure, one section being devoted to each contribution, followed by 

a conclusion highlighting the expected impact of this work. 

2. Existing personal cloud solutions  

The Personal Cloud concept originally appeared under different names such as Personal Information 

Management Systems [1], Personal Data Server [3] or Personal Data Store [27]. It attracts today significant 

attention from both the research and industrial communities. This section provides a review of existing personal 

cloud solutions, representative of current approaches, to help understand the fundamental aspects in terms of 

functional requirements and security/privacy threats.  

We distinguish cloud data management solutions designed for the corporate/enterprise context from those 

targeting individuals, i.e., tailored for personal use and referred to as Personal Clouds in this section. Corporate 

cloud solutions offer digital tools to employees including, e.g., file storage space, email/agenda applications, file 

sharing with other employees based on permissions, user management and authentication based on LDAP 

repositories. They come as enterprise cloud tools either implemented as-a-service in the cloud or hosted on a server 

owned by the company and managed by internal administrators, such as SeaFile, Pydio, ownCloud/NextCloud, 

Sandstorm or Tonido/FileCloud. In terms of data management, the primary foci are multi-user features, workspace 

and user management, authentication, access control, privilege settings, administration and analysis tools. Such 

solutions do not apply to the personal cloud case and hence are not further detailed in this state of the art. Showing 

to which extent and detailing the major differences between individual and corporate-oriented solutions, is 

precisely one of the goals of the paper. 

In contrast, solutions tailored for personal (and generally private) use are mono-user and seek to help users 

manage their entire digital life, i.e., by providing connectors to external data sources (e.g., bank, hospital, 

employer, social network, etc.), by allowing cross-data computation usages (e.g., linking the bank records of the 

individual with corresponding bills and email confirmations) and community uses based on groups of users sharing 

data for a social benefit (e.g., epidemiological study in a community of patients), by permitting their installation 

and configuration by laymen, and by helping individuals (rather than IT experts or administrators) understand and 

control data dissemination.  

In the rest of this section, we thus deliberately focus on solutions tailored for individuals. We first review the 

online personal cloud solutions resorting to a personal cloud provider or remote storage service, then present 

variants offering additional security guarantees including zero-knowledge data stores, and finally analyze some 

more decentralized ‘home cloud’ proposals where the data is stored user-side, using purely software-based 

solution, hardware plugs or tamper resistant devices. We conclude this overview with a summary of the main 

features and security/privacy threats considered by existing solutions. This state-of-the-art analysis provides the 

needed material to derive in the next section the main underlying data management functionalities and related 

security goals of any extensive (in terms of database functionalities) and secure PDMS. 

2.1. Online Personal Cloud solutions  

Many online personal cloud solutions flourish today such as CozyCloud, Digi.me, Meeco, BitsAbout.Me or 

Camilistore/Perkeep to name a few. Governmental programs like MyData.org in Finland, MesInfos.fing.org in 

France or MyDex.org in the UK, target the same objective. These initiatives provide online personal cloud 

solutions to help users gather and store all their personal data in the same place and in a usable format, with the 

possibility to cross-exploit it through various applications. In terms of privacy and security, a common claim of 

these solutions is to proscribe any secondary usage (and in particular monetization of personal data) by the personal 

cloud provider and to guarantee to their users that their personal data is never disclosed to third parties except on 

their explicit request. The main functionalities advertised and the corresponding privacy promises of such systems 

are further described below.  
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Data collectors. Most of the solutions mentioned above build on recent regulations like the GDPR (including 

the EU ‘right to personal data portability’) or smart disclosure initiative (e.g., Blue and GreenButton in US), and 

provide data collectors which can automatically feed a personal cloud with user’s data originating from different 

online services. Data collectors act as data bridges, which retrieve personal data on the behalf of the user (i.e., 

using her credentials) from external data sources. Usually, data collectors rely on web scrapping technologies (e.g., 

Cheerio, Weboob) which act on the behalf of the user on a target website to collect their personal data. For example, 

CozyCloud (through the ‘CozyCollect’ application) and Digi.me provide their users with a catalog of connectors 

to retrieve many kinds of personal data, including financial data (e.g., from banks or PayPal), administrative data 

(e.g., electricity or telco bills and consumption traces, insurance contracts), social network data (e.g., from 

Facebook or Pinterest accounts), music (e.g., Spotify), medical information (e.g., from social security institutions, 

hospitals, or Blue Button compliant sites) or fitness data (e.g., Fitbit), to cite only a few. BitsAbout.Me also 

provides data collectors but focusses instead on the web activity trails of the user and targets personal information 

such as Google geolocation histories, Facebook ‘likes’ graphs and YouTube histories.  

Cross-data computation services. Online personal cloud solutions allow integrating personal data usually 

scattered across distinct and closed data silos, which opens the way for novel applications able to cross-exploit it. 

Digi.me provides transversal data services, transversal data searches, and data sharing between different apps. In 

CozyCloud, the apps interact with the Cozy data system to access documents stored in a CouchDB engine, where 

each document is stored in a JSON format with an associated ‘doctype’ family (e.g., bank, photos, bills, etc.). The 

list of existing doctypes are defined and published by Cozy such that Cozy app developers can conform to a 

common scheme and easily identify the documents of interest (e.g., a finance app may be granted access to all the 

‘bank’ and ‘bills’ doctypes and cross-exploit them to link each bill to a corresponding bank transaction record). In 

Meeco, personal data is organized within life-tiles, i.e., datasets defined by the user which gather specific personal 

information or files uploaded by the user (e.g., photos taken around Christmas in a life-tile entitled ‘Christmas’), 

and web-tiles, i.e., user defined goals (e.g., purchase intents) or user’s activities on specified websites (e.g., 

amazon.com).  

Trusted data storage. The personal data associated with a given personal cloud user is stored online, but within 

a data store which belongs to a single user. In CozyCloud and Meeco, the user’s personal cloud is hosted and 

secured by the cloud service provider on behalf of the personal cloud owner (e.g., using server-side encryption). 

For instance, Meeco has chosen a cloud server in Australia to comply with the strict local privacy regulations, 

while Cozy can be deployed using any cloud service provider. In some cases (e.g. Cozy), expert users can opt for 

a self-hosted instance, which is close to the home cloud approach considered in Section 2.2. In Digi.me, data is 

encrypted and stored where the user whishes (e.g., on Dropbox, Google Drive or MS OneDrive). Encryption keys 

are stored on a user’s device and derived from a user password. Keys are unlocked at connection time and used 

server side by data collectors and personal applications and are only retained for the duration of the session. In 

BitsAbout.Me, a Personal Data Store is dedicated to each user and is hosted encrypted in a datacenter in the EU 

or Switzerland (chosen for the high level of legal privacy protection offered by the GDPR and Swiss laws). 

Camilistore/Perkeep has a rather different approach as its goal is to provide a personal storage for life (above 100 

years) to individuals. The solution thus focuses on providing users with easy means to generate a (searchable) 

personal data archive (storing all their, e.g., Tweets, social media photos, etc.) on a personal (device or cloud) 

store, independently of the websites hosting the data (e.g., Twitter, Instagram, etc.). 

Trust model. All the above-mentioned solutions make strong privacy promises to the users in order to gain their 

trust. In particular, the personal cloud provider commits to never observe nor exploit the users’ personal data for 

secondary usages not advertised to the personal cloud owner such as data monetization. Although the different 

proposals vary widely in the way the personal cloud provider effectively tries to gain the users’ trust, it mainly 

relies on three arguments. The first argument is linked to the trust users may put in the security standards of 

authentication, communications and data encryption. For instance, Digi.me authenticates applications, encrypts 

communication channels using SSL and encrypts passwords with RSA 2048-bit (FIPS compliant). CozyCloud 

also follows the current security best practices in terms of users’ passwords, connections and data at rest 

encryption. BitsAbout.Me declares that the decryption keys are expunged from its servers at user’s disconnection 

and therefore the server can only access the data during the time of a session. The second argument is related to 

the virtuous legal and economic frameworks to which the cloud provider is bound. Typically, most providers 

underline a high degree of independence enacted by contract between the storage provider and the data owner. As 

explained above, Meeco or BitsAbout.Me argue that the location of their servers is chosen for the high level of 

legal privacy protection, and Digi.me lets users select the cloud storage of their choice. In some cases, users can 



  

choose to have their personal cloud instance hosted directly by the cloud provider (e.g., CozyCloud) or by any 

other trusted third party of their choice (e.g., OVH, Dropbox, etc.). CozyCloud follows a similar principle, 

following the motto that ‘users will stay because they can leave’. In addition, such personal cloud providers claim 

to adopt an economic model creating a virtuous circle for privacy and promise not to monetize the personal data 

provided by the users (or unless they explicitly demand it). The third argument to gain users’ confidence is linked 

to the transparency or auditability of the code of the applications and the personal cloud platform. For example, 

CozyCloud's applications and data system code are open source. The main consequence is that expert users can 

review the code or audit it such that any black box effect is avoided.  

Overall, these solutions focus on a very similar set of functionalities, which cover the collection of personal 

data, storage in an individual personal data store, and the integration of the data such that transversal information 

processing is made possible. However, while most initiatives claim to guarantee users’ privacy, these approaches 

mainly rely on legal and economic frameworks with an unclear impact on the technical means to enforce security 

and privacy guarantees. Moreover, these approaches implicitly rely on very strong hypotheses in terms of security: 

(i) the personal cloud provider, employees and administrators are assumed to be fully-honest, and (ii) the overall 

personal cloud code as well as the whole set of personal applications and services running on top of it are 

considered trusted. Common security and privacy threats remain thus insufficiently addressed. Typically, data 

leakage resulting from attacks conducted against the personal cloud provider or the applications (which could be 

granted access to large subsets of raw personal data), or resulting from human errors, negligence or corruption of 

personal cloud employees and application developers, cannot be avoided in practice. This is critical because such 

solutions rely on a centralized cloud infrastructure settings which exacerbate the risk of exposing a large number 

of personal cloud owners, and hence may be subject to many sophisticated attacks.  

2.2. Zero-knowledge-based Personal Clouds  

Zero-knowledge personal clouds such as SpiderOak or Sync and to a certain extent MyDex or Digi.me 

mentioned above, propose architectural variations of the online Personal Cloud solutions in particular to mitigate 

some of the internal privacy issues raised by the strong assumption that the service provider is trusted. These 

solutions focus in particular on secure storage and backup. These functionalities, as well as elements of the 

corresponding privacy threats, are sketched below. 

Secure storage. In most of the personal cloud solutions offering zero-knowledge storage, data is stored 

encrypted in the cloud and the user inherits the responsibility to store and manage the encryption keys elsewhere 

(and never transmit it to the outside nor to the personal cloud provider). In SpiderOak, the personal cloud provider 

knows the number of encrypted data blocks produced by a given user, but not their content nor the associated 

metadata information (e.g., folder or file names). The encryption key of a user is derived from the user’s password 

(i.e., password-based encryption). Note that file deduplication (i.e., storing a file only once at server side if several 

users hold that file) is not feasible as it would result in increasing the knowledge of the server. Sync uses password-

based encryption techniques as well, but focuses more on the synchronization issues between the different devices 

of a same user. MyDex also offers a zero-knowledge service following privacy-by-design principles, but the 

system is here separated in two parts: (i) a front-end service which is in charge of retrieving the private keys from 

the users at connection time, encrypting and decrypting the personal data of the client during the session, and 

expunging the keys at disconnection; and (ii) a back-end service which stores collections of encrypted files. Note 

that an implicit assumption here is that the two parts cannot collude, and that relying on a front-end service at 

server side (instead of a client-side implementation) to manage the cryptographic keys weakens the zero-

knowledge claim. 

Secure backup. A common asset advertised by many zero-knowledge personal cloud services is secure backup, 

as a means to recover personal data when faced with a ransomware attack, personal device failure or unexpected 

data deletion. Thus, most zero-knowledge solutions, like SpiderOak, propose point-in-time recovery, such that 

users can recover any previous version of their personal files at a given date in the past. Note, however, that the 

user must assume the responsibility of storing and managing the encryption keys, since managing them server side 

would conflict with the zero-knowledge nature of these solutions.  

Trust model. The threats considered by these solutions include (i) an attacker who compromises the personal 

cloud provider (i.e., addresses the case of data snooping and data leakage), (ii) a personal cloud provider that 

would want to make non-advertised usages on the customers’ data content (i.e., secondary usages, e.g., personal 
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data monetization), and (iii) a client device failure or corruption (e.g., ransomware attack). Note however that the 

term ‘zero-knowledge’ does not refer here to its cryptographic definition counterpart, since the personal data access 

patterns are not supposed to be hidden from the personal cloud provider. This consideration recently led to adopt 

the term ‘no-knowledge’ data store. A recent analysis of the threat model considered by SpiderOak (which applies 

to the zero-knowledge personal cloud providers as discussed here) is presented in [26]. In a nutshell, the threat 

model assumes Honest-but-curious or Malicious personal cloud providers, and a trusted client application and 

device (at least, considered trusted before the time of failure or before a ransomware acts). 

In conclusion, compared to the basic online personal cloud (see Section 2.1), the zero-knowledge personal cloud 

solutions offer a higher level of security since the personal cloud provider cannot access personal data in clear. 

However, the price to pay is a minimalist functionality, i.e., the difficulty to develop advanced services on top of 

zero-knowledge personal clouds, which reduces the uses of a zero-knowledge personal cloud to those of a robust 

personal data safe. Moreover, since data processing (beyond basic storage) cannot be delegated to the server, data-

oriented treatments are embedded into the client applications, shifting the security and privacy issues to the client’s 

side. On the other hand, the assumption of an honest client application (which has access to the decryption keys 

and to the raw data in clear) on which such cloud solutions rely, may be too strong to hold in practice (due to, e.g., 

the ubiquity of viruses), thus creating a vicious circle.  

2.3. Home cloud software 

Other personal cloud initiatives, called ‘home cloud’ hereafter, build upon the paradigm of local/edge 

computing. These initiatives consider that raw personal data should remain stored at the extremities of the network 

(e.g., within the user’s equipment or close to the IoT device which produced it) as a means to circumvent the 

intrinsic security risks of data centralization (i.e., corruption of the server resulting in massive data leakage and 

illicit data usages). In this Section, we first discuss purely software-based solutions, and then move on to the case 

of hardware-based proposals in the next two Sections.  

Some remarkable representatives of home cloud software solutions are OpenPDS [27] and DataBox [23, 39]. 

Both focus mainly on new privacy models allowing users to reduce the amount of personal data exposed to remote 

parties (i.e., data services or other users) and audit data exchanges. The core of these proposals is based on a trusted 

storage hosted locally on the user’s device or at the edge of the network, combined with cross-computations and 

data sharing such that users may consent revealing only query results to third parties instead of disclosing large 

amounts of sensitive raw data. 

Trusted storage. OpenPDS is a personal cloud solution which allows a user to accumulate personal data about 

her (e.g., web or shopping preferences, location traces) on her device (e.g., smartphone) and which provides a 

privacy preserving framework to explore this data. In Databox, the raw data storage is based on several isolated 

local stores, each data store being associated with a given source of personal raw data (e.g., one store per IoT 

device or sensor equipping the user), all located at the edges of the network. In both cases, data storage is 

considered trusted because it is managed locally on a user device. 

Cross-computations and data dissemination. For both functionalities, the goal is circumventing the problem 

of third-parties being granted access to large amounts of user’s raw data. Data sharing in OpenPDS is based on a 

framework called Safe Answer [27], a query-answering system used to analyze (i.e., cross-compute) the personal 

data collected by the individual and minimize the information about the data exposed to third parties or 

applications. The idea is to answer precise questions rather than externalize the complete set of raw data on which 

the queries are processed. In the same vein, DataBox [23, 39] proposes techniques inspired by the Human-Data 

Interaction (HDI) paradigm to enable individuals to understand what data is collected about them and how it is 

processed. The proposal is based on separating the raw data stores from other stores dedicated to materialize 

aggregated query results, which can be made accessible to remote third parties. The proposed model relies on the 

ability to log all data accesses and data flows, and provides audit capabilities to simplify the users’ control and 

understanding of the effective dissemination of their personal data.  

Trust model. The focus of both OpenPDS and DataBox is not on security and enforcement, but on the study of 

the aforementioned functionalities under the angle of new privacy models and edge computing. An implicit trust 

assumption is that the (local/edge located) data stores hosting the personal raw data are trusted as well as the data 

system used to implement these functionalities (i.e., the cross-computation engine used to produce the aggregated 

results to answer queries, as well as the sharing model and the audit framework). The software architecture of 



  

Databox advocates the use of Docker containers (MirageOS unikernel being mentioned as a long-term alternative) 

to isolate certain data computations on the raw data. However, formal security guarantees are not discussed and 

the proposals do not focus on solutions to ensure that the proposed privacy models cannot be bypassed. 

Compared with zero-knowledge solutions, formal security guarantees (in particular on the backup service) are 

lost. But interestingly, the impact in terms of ‘minimalist functionality’ is alleviated since advanced data services 

could potentially be provided as part of the personal cloud platform (which is obviously not compatible with the 

zero-knowledge guarantee). In addition, such solutions target user privacy protection against over-privileged third-

parties and applications under the strong security assumption of having a fully-secured personal cloud software 

user side. 

2.4. Home cloud plugs 

Home cloud plug solutions such as Lima 4, Helixee 5, CloudLocker6 and MyCloud7, distinguish themselves from 

the previous approaches by providing solutions helping the users to self-host their personal data at home on a 

dedicated hardware platform. These solutions take the form of hardware plugs that can store TBs of data, which 

are synchronized with all the devices of the owner and can be accessed online.  

Trusted storage and backup. In Lima, the hardware plug is connected to the user’s internet home-box and to 

an external disk drive. Other solutions, like Helixee, directly integrate the disk drive into the plug. Personal data 

is stored encrypted locally and is made accessible by the home cloud plug, which holds the encryption keys, to a 

set of personal devices authorized by the user (e.g., her smartphone and laptop). Usually, a central server can be 

used as DNS (as in Lima) to establish a remote connection between the users’ devices and the hardware plug. The 

system can then be backed-up automatically using a second plug or a remote encrypted archive locked by the user 

password.  

Trust model. The main privacy benefit of home cloud plugs comes from the absence of delegation to a central 

cloud server. In terms of security however, the implicit assumption is strong, as the home cloud hardware and 

software platform must be trusted. This hypothesis is supported by the fact that the hardware plug constitutes a 

rather closed (dedicated) platform since no application except the software managing the plug is supposed to run 

on it. This limits the attack surface compared with richer devices (such as a smartphone). However, no formal 

security guarantees are provided to the user concerning the self-hosted platform and the application services 

running on top. This can put the user’s raw data at risk considering that unsecured end-user devices are accessing 

it. For instance, the DynDNS attack of November 2016, which infected unsecured end-user devices (e.g., printers, 

IP cameras and residential gateways) with a malware, illustrates the vulnerability of such home-based solutions. 

To conclude, the focus in terms of personal data uses is again mainly on trusted storage and backup, and to a 

certain extent basic data sharing to support data synchronization between all the devices of the user. However, 

collaborative uses involving personal data from multiple individuals are, to the best of our knowledge, outside of 

the scope of these approaches. In terms of privacy and security, the gain compared to home cloud software 

solutions is, to some extent, a better controlled client execution environment for the personal cloud software, which 

nevertheless does not provide strong security guarantees. These two complementary approaches pose a problem 

in terms of safely extending the data related functionalities. Indeed, implementing a new advanced data service 

would require either to extend the trusted code hosted on the hardware plug, which should be considered as a 

closed platform for security reasons, or to add it as an external app, which in this case would run on vulnerable 

client devices.  

2.4.1. Tamper-resistant home cloud 

 To improve the security of home cloud plugs, research proposals like Personal Data Server (PDS) [3] and 

Trusted Cells [8] introduce secure (i.e., tamper-resistant) hardware at the network edges to manage the user’s 

personal data. These approaches propose to embed a minimal Trusted Computing Base (TCB) dedicated to data 

 

 
4 https://meetlima.com/tech.php?lang=en  
5 http://www.helixee.me/ 
6 https://www.cloudlocker.eu/en/index.html 
7 https://mycloud.com/ 
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management in the secure element of smart phones, set-top boxes or portable USB tokens to form a global 

decentralized secured data platform.  

Secure storage. The PDS approach builds upon the tamper resistance of secure chips (e.g., smart cards, secure 

tokens). A DBMS engine is embedded in a secure chip, and hence inherits its security properties. The database 

metadata are stored in the internal memory of the chip are thus become tamper resistant, and the database itself 

(the data, indexes, logs, etc.) is cryptographically protected and stored in an external Flash memory (e.g., a raw 

NAND Flash chip or a MicroSD card linked by a bus to the microcontroller like in PlugDB8).  

Secure cross-computations. Simple query evaluation and an access control engine can be integrated into the 

PDS engine running in the secure chip [9, 33]. The secure cross-computations are however limited to simple 

database queries. 

Secure distributed computations. The possibilities of crossing data belonging to multiple individuals (e.g., 

performing statistical queries over personal data, computing queries on social graphs or organizing participatory 

data collection) while providing strong privacy guarantees have been explored in the context of a network of PDSs 

so that each user can keep control over her data. The personal data is stored locally in each user’s PDS and the 

execution takes place on a hybrid infrastructure called an asymmetric architecture: on the one hand the PDSs of 

the participants are secure (i.e., behave honestly) but have low computation power, on the other hand, they are 

supported by an untrusted cloud infrastructure (e.g., honest-but-curious) implementing an IaaS or PaaS  with 

significant storage and computing power. Different algorithms and computing paradigms have been studied on 

this architecture, from SQL aggregates [53] to special aggregation in a mobile participatory sensing context [52]. 

In all cases, the challenge is to trade privacy for performances depending on the equilibrium between the secure 

computations executed by the secure PDSs and the ones delegated to the untrusted cloud infrastructure. 

Trust model. In this line of work, each PDS is assumed to be trusted. This trust assumption comes from several 

factors: (i) the PDS software inherits the tamper resistance of the hardware and can be certified according to the 

Common Criteria, making hardware and software attacks highly difficult, and (ii) the embedded database can be 

auto-administered due to its simplicity (in contrast with multi-user server counterparts) which precludes DBA 

attacks. However, a PDS cannot provide all the required database functionalities without resorting to an external 

infrastructure (e.g., distributed queries involving several PDSs as described above require external supporting 

servers). While the PDSs can be assumed to be fully trusted, the supporting communication and computation 

infrastructure is considered as the main adversary. It is considered as a malicious adversary having weakly 

malicious intents [17]. This means that it may deviate from the protocols it implements in order to infer personal 

information, but only tries to cheat when it cannot be detected by any PDS user. This assumption is commonly 

made for cloud services, as publicly advertising data leaks would cause important (financial) damages to the 

underlying service provider.  

In conclusion, a high security level can be achieved since tamper resistant hardware is used. However, only 

rather simple queries can be addressed, and the underlying query engine being part of the TCB (running inside the 

secure microcontroller) must be proven secure. In addition, this approach leads to a non-extensible data system for 

two main reasons. First, supporting any new data and query model would require redesigning the underlying data 

storage, indexing and query processing techniques to comply with the strong constraints of tamper resistant 

hardware. Second, any advanced and potentially extensible database processing (e.g., large pieces of code 

implementing user defined database functions, stored procedures, database workflows or involving existing 

libraries supporting data intensive processes) is proscribed as it cannot be integrated as part of the TCB. These two 

main drawbacks drastically limit the practicality and the genericity of the PDS approach. The security is hence 

achieved at the price of extensibility. Hence, such solutions mainly target ad-hoc applications managing highly 

sensitive data, e.g., personal Electronic Health Records. 

2.5. Synthesis of the existing approaches  

The solutions presented above address different functionalities of the personal cloud and consider different trust 

models, which are both summarized in Tables 1 and 2.  
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In terms of functionalities (see Table 1), two important conclusions can be drawn. First, the whole personal 

cloud data life-cycle must be covered. We observe that the different solutions tackle different stages of the life 

cycle of the personal data in a personal cloud. In particular, all solutions discussed above address data collection, 

storage, backup, cross-computations and data dissemination. An extensive personal cloud solution should hence 

include all these functionalities to cover the whole personal data life cycle. 

 

 

Table 1. Main functionalities of the state-of-the-art personal cloud solutions  

  Representative Personal Cloud approaches 

  
Online  

personal cloud 

Zero-knowledge  

personal cloud 

Home cloud  

software  

Home cloud  

plug  

Tamper resistant home 

cloud 

F
u

n
c
ti

o
n

a
li

ty
 

Storage 
Regular DBMS  

technology 

Zero-knowledge cloud 
storage 

Data stored on a 
generic user-side 

device, separated 

stores for different 
data sources  

Data stored on a 

dedicated user-side 

device  

Data stored in a 

tamper resistant device 

at the user-side 

Backup 
Regular DBMS 

technology 

Encrypted archive, point-in-

time recovery 

Replication / 

offline storage 

Replication / offline 

storage 

Replication / offline 

storage 

Data collection Web scrapping 

Files pushed or 

synchronized by the user to 
the cloud provider 

Personal data 
inserted by the user 

or automatically to 

the home cloud 

Personal files 

inserted by the user 
to the home cloud 

Personal data pushed 
by the user or third 

parties to the home 

cloud 

Cross-
computations 

Transversal DB 
queries 

At application level 

Question 

answering, local 

data aggregation 

At application level 
Simple transversal DB 

queries 

Distributed 

computations 
    

Simple distributed 
SQL statistics at large 

scale 

Data 

dissemination 
[synchronization] At application level 

Minimum 
privileges for third 

parties and 

applications  

[synchronization] 

Minimum privileges 
for third parties and 

applications, secure 

access control 

 

Second, distributed computations should be part of the covered functionalities. We also note that the 

distributed computations step is currently poorly covered. Is this because this functionality is less useful or because 

it is too difficult to be covered in practice in the personal cloud context? Regarding the utility of this functionality, 

we argue the opposite. Distributed computations over the personal data of (very) large sets of individuals 

unquestionably pave the way for Big –personal– Data computations with many applications in a personal cloud 

context, like computing recommendations, launching participative studies, learning information using the data of 

users belonging to a community (e.g., training a neural network in a patient community) or making collective 

decisions. However, this also requires privacy preserving implementations. A primary condition under which large 

sets of individuals would contribute with their own private data to collective uses is the guarantee that neither the 

other participants nor the infrastructure can access individual data. This probably explains why the only line of 

work addressing this step is focusing on security and proposes solutions based on tamper resistant hardware. 

Trust is another essential concern of the personal cloud (see Table 2). Two conclusions can be drawn for the 

state-of-the-art analysis. 

First, all the privacy threats considered in the state-of-the-art solutions must be circumvented to protect 

user’s privacy and security in a meaningful way. Indeed, several threats are addressed by the different proposals, 

such as data snooping and secondary data uses performed by cloud providers (e.g., data monetization), corrupted 

applications or client devices (e.g., ransomware), or personal device failure. They all makes sense from a personal 

user point of view, since her whole digital life is managed and controlled using the platform.  

However, a second (negative) conclusion is that unifying these different solutions does not lead to a secure 

personal cloud architecture. This is the case because building the union of the proposals would undeniably face 

irreconcilable architectural choices. Indeed, we observe that the existing personal cloud solutions cover a rather 

wide spectrum of architectural choices, but this leads to different – and sometimes contradictory – trust models 

and security measures. More precisely, each class of solutions addresses a specific subset of functionalities while 
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considering a specific threat model. For example, how is it possible to combine zero-knowledge encrypted storage 

with online personal cloud data-oriented computation facilities without returning all an individual’s data to the 

client side and putting them at risk?  

Table 2. Trust considerations in the state-of-the-art of personal cloud solutions  

  Representative Personal Cloud approaches 

  
Online  

personal cloud 

Zero-knowledge  

personal cloud 

Home cloud  

software  

Home cloud  

Plug 

Tamper resistant 

personal server 

T
r
u

st
 

Considered 

threats 

secondary usages 
(monetization) 

performed by the 

cloud provider 

Data snooping or leakage, 

secondary usages performed 

by the cloud provider, client 
device failure and 

ransomware attacks 

Massive data 
snooping or 

leakage, secondary 

usages, over-
privileged third 

parties and 

applications 

Massive data 

snooping or leakage, 

pecuniary usages, 
home plug device 

failure 

Massive data snooping 

or leakage, secondary 

usages, over-
privileged third parties 

and applications 

Trust model 

Fully-honest personal 
cloud provider, 

trusted personal 

cloud code, trusted 

applications  

Honest-but-curious to 

Malicious cloud provider, 

trusted applications, trusted 
client device (before time of 

failure or ransomware 

attack) 

Trusted personal 
cloud code, trusted 

client device, 

untrusted 

applications 

Trusted personal 

cloud code, trusted 
home plug, trusted 

client applications 

Trusted personal cloud 

code, honest-but-

curious central 
supporting 

infrastructure, 

untrusted applications 

Privacy and 
security 

measures 

Security standards, 
virtuous legal and 

economic framework, 

transparency and 
auditability of the 

code (apps/PDMS) 

Client-side encryption, ‘no-

knowledge’ cloud store 

SafeAnswers, 

logical separation 

of the personal data 
stores, audit  

Closed platform 
(dedicated device), 

physical ownership 

Secure hardware, 

physical ownership 

small TCB, secure 
distributed protocols 

 

In conclusion, we can derive from this state-of-the-art analysis the set of functionalities to be implemented in 

the underlying Personal Data Management Systems (PDMS for short) to cover the complete data life-cycle, and 

the list of privacy threats the PDMS must circumvent. However, existing solutions do not address the whole 

functionality/threats spectrum and cannot be combined. Our goal in the next section is to progress towards a clearer 

definition of what an extensive (covering all the functionalities) and secure (addressing all the threats) PDMS 

should be.  

3. Definition of an Extensive and Secure Personal Data Management Systems (ES-PDMS) 

Currently, the principles underlying most existing solutions seem to be directly inherited from those considered 

in the context of the corporate cloud and have not been rethought with personal use in mind. For example, many 

solutions examined in the previous section rely on data encryption but nothing is said about restoring the master 

key in case of damage, except resorting on trivial unsecure protocols or on so-called-trusted third parties. Similarly, 

how to securely collect personal data from web sites through a myriad of unsecure wrappers without leaking both 

the user credentials needed to connect to the remote site and the collected personal data ? We argue that the way 

the PDMS functionalities are implemented and secured is determined by the intrinsic personal use of the PDMS, 

and must be deeply redesigned with this statement in mind. 

In what follows, we first review in Section 3.1 each of the PDMS functionalities identified in the state of the 

art as needed to cover the whole data life-cycle and we analyze their intrinsic specificities. Then, in Section 3.2, 

we derive the fundamental security property attached to each functionality (and hence to each step of the data life-

cycle). This analysis leads to the definition of an Extensive (i.e., providing the needed functionalities to cover the 

whole data life-cycle in a personal cloud) and Secure (i.e., achieving all the expected security goals) Personal 

Data Management System (ES-PDMS), which is provided in Section 3.3.  

3.1. Specificities of data management in the PDMS context 

As identified in Section 2.5, the PDMS functionalities are expected to cover the main stages of the personal 

data life-cycle and should thus integrate data collection, storage and recovery, personal computations, distributed 

computations and data dissemination management. For each functionality, we discuss their main specificities, and 

highlight to which extent they differ from their corporate data management system counterpart. Note that some 



  

operational aspects (e.g., how to interact with the PDMS, how to engage into a collective computation, etc.) are 

more platform dependent and will be addressed in Section 4 where physical instances of PDMS will be discussed. 

Data collection. The data collection functionality concerns both primary copies of user data (e.g., quantified-

self data, smart home data, photos, videos, documents generated by the user, etc.) and secondary copies (e.g., 

banking data, health, employment, insurance, etc.). While the primary copies can be directly fed to the PDMS 

from data sources under the user’s control, secondary copies have to be scrapped from the online services holding 

them. Collecting data from external sources is a basic operation of any corporate data management system. This 

task is usually handled thanks to a well-known and predefined set of carefully audited, patched and supported 

wrappers, under the control of data and security administrators who guarantee the quality and integrity of the 

integrated data. In the PDMS context, the situation is totally different. The PDMS owner is confronted with a large 

variety of scrappers (e.g., Web Outside of Browsers9) capable of capturing various types of data from a myriad of 

online services, the code of which cannot be trusted due to code complexity, diversity of contributors and 

sometimes closed source. However, by construction, such scrappers have access to highly sensitive data, from the 

credentials required to connect to the online service to the scrapped data itself (e.g., bank records, pay slips, 

invoices, medical records). Moreover, the user environment (e.g., operating system, network, other apps) in which 

the wrappers run is by far less trusted than an enterprise administered environment. 

Storage and recovery. As any data management system, a PDMS has to securely store and ensure the 

durability of the data it manages. This means setting up encryption protocols to protect the data at rest against 

piracy and backup/recovery mechanisms to protect them against accidental loss. In a corporate DBMS, all these 

tasks are handled by DBA and DSA, having a recognized expertise in data management and security. Such 

expertise cannot be assumed for the PDMS owner. However, the risk of confidentiality and integrity attacks on 

private data has never been so high, as demonstrated by massive ransomware attacks affecting both individuals 

and organizations. Hence, the PDMS owner is facing the choice between endorsing the responsibility of data 

administration tasks that she cannot reasonably undertake or delegating these tasks to a (trusted) third party and 

thus abandoning the empowerment she just received from the PDMS paradigm. Zero-knowledge storage providers 

argue they have a solution to this problem, but this is by ignoring the issue of restoring the master key protecting 

the data in case of loss. They simply suggest deriving the master key from a password, but the password entropy 

is such that the cryptographic protection becomes highly questionable in this case. Cloud encryption is however 

not new and robust corporate solutions exist, like resorting on expensive Hardware Security Modules (HSM) to 

secure the master-key, a solution that individuals can unfortunately not afford.  

Another distinguishing issue between the corporate and personal contexts is the liability regarding the hosted 

data. A company hosting personal data must guarantee the confidentiality of this data and can be subject to 

sanctions by a court in the event of a data leak. Thus, companies usually take appropriate measures to protect 

themselves. The legal responsibility of a PDMS owner remains unclear today, yet a PDMS can host personal data 

from many other people (e.g., contact details of doctors and relatives or external personal data gathered during a 

collective computation). Thus, the PDMS must protect this data on the owner’s behalf and might even have to 

prevent her from accessing some of this data. Hence, the PDMS owner must not be granted access to the full 

content of her PDMS. Consequently, the PDMS owner must not even be granted a direct access to the master key 

required to decrypt the backup archive in case of a crash. This is a typical example of new issue raised in the 

PDMS context. 

Personal computations. Personal computations in a PDMS usually refer to apps crossing various data of a 

single individual: the PDMS owner. We can distinguish between two types of such apps reflecting two specific 

uses of a PDMS: (i) apps used directly by the PDMS owner (e.g., for quantified-self, health and wellbeing, statistics 

and analyses related to smart home data or user’s mobility, etc.); and (ii) apps representing external services to 

which the owner willingly subscribes (e.g., billing apps allowing a car insurance company to compute the premium 

based on the owner’s car trajectory data – as in pay-as-you-drive, or an electric company to compute the bill based 

on the user’s electric smart meter traces). Therefore, an important specificity in the PDMS context is that apps 

“move” towards the data as opposed to personal data migrating towards remote services as it happens with most 

existing cloud services.  

This has two main implications. First, the apps manipulate sensitive raw data, but neither the apps nor the 

environment in which they run can be trusted in general, leading to similar security problems as the ones discussed 
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for data collection. By-default auditing mechanisms are thus required to detect malicious apps deviating from their 

manifest. These mechanisms must be easily understandable by non-expert users, disqualifying advanced audit 

tools based on complex models and formal languages usually employed by audit experts and security 

administrators in an enterprise context. Second, some external service apps need strong guarantees regarding the 

results produced by a PDMS (e.g., the billing apps discussed above). That is, an attestation process is required to 

ensure that the result was indeed produced by a certain computation code using all the required input data, and that 

the PDMS owner cannot tamper with the computation process nor the inputs. 

Collective computations. Collective computations relate to various types of big personal data processes 

computed over a large set of PDMSs (e.g., contributing to participative studies, training a neural network, building 

an anonymous dataset). In addition to the security issues already discussed regarding the intrinsic untrusted nature 

of apps and computing environment, collective computations introduce a new difficulty. Gathering all the 

participants’ data in a single place to perform the computation introduces a single point of vulnerability and 

maximizes the incentive to attacks. Conversely, decentralizing the processing implies to temporarily transfer 

personal data among participants, transforming each into a potential attacker. In this latter case, two guarantees 

must be provided: (i) data confidentiality, i.e., any PDMS owner cannot access the data in transit of other 

participants, and (ii) distributed computation integrity, i.e., any participant PDMS can attest that any result it 

supplies corresponds to the assigned computation. Classical distributed computation techniques used in enterprise 

systems cannot apply here due to the unusual scale of the distribution (i.e., the computation may target a fraction 

of the population of a country). Generic secure multiparty computation protocols based on cryptographic 

techniques (MPC) are disqualified for the same reason (performance does not scale with the number of 

participants). Conversely, the participants cannot trust each other since participants are unknown a priori (and 

probably wish remaining anonymous). 

Data dissemination management. The purpose of a PDMS is to enable the owner to make the necessary 

decisions regarding the dissemination of his or her personal information. In particular, according to the 

aforementioned functionalities, the user should be able to give the appropriate permissions on the data or 

documents to share with acquaintances and distant third parties, to decide which personal computations she will 

authorize and which collective computations she accepts to contribute to. In a corporate context, such decisions 

would be managed and enforced by central authorities and would once again rely on IT experts (DBA and DSA) 

who define appropriate roles, set access control policies (e.g., following RBAC, MAC, ABAC or TBAC models), 

and provide system security and audit to ensure that everything goes as planned. On the contrary, the PDMS 

context puts such decisions and their enforcement into non-expert users’ hands, with the risk of generating more 

security holes than solving them. For example, the aforementioned access control models are not well adapted to 

a non-expert administrator having to manage a highly dynamic set of interactions with a myriad of other users and 

third parties. Specific tools have been suggested to let individuals manually define their sharing preferences (e.g., 

thanks to PGP, Web of Trust models or FOAF dissemination rules) but they provide little consistency guarantees 

about the final outcome. Conversely, relying on a trusted third party to manage personal data dissemination would 

be contrary to the very notions of user control and empowerment. Hence, whatever the way the PDMS owner 

defines her sharing preferences, the PDMS must provide ad-hoc tools to help her easily understand the net effects 

of her decisions related to data dissemination and sanitize the policy accordingly when required. In addition, the 

PDMS owner is not a super-user having all privileges over the full content of her own PDMS content. As already 

stated, a PDMS may host other users’ personal data and the PDMS must protect this data against unintended 

actions of the owner of the PDMS herself. 

3.2. Security properties of a PDMS  

As a conclusion of the preceding analysis, the PDMS context sketches an open and rich ecosystem of new 

untrusted data processing apps in interaction with an unsecure execution environment and a layman PDMS owner. 

This significantly contrasts with corporate data management systems where the applications and computing 

environment are significantly more static and carefully controlled by data and security administrators. 

Additionally, typical distributed computation infrastructures (cluster/cloud) strongly differ from a fully 

decentralized infrastructure of PDMSs (e.g., in terms of scale, ownership, legal agreements, deployed hardware 

and software, etc.). As a consequence, the PDMS must integrate by default novel security measures to overcome 

the inherent weaknesses of the PDMS owner and tackle the specific threats to this open and untrusted ecosystem. 

We detail below the security properties expected from a PDMS, and linked to each functionality described in the 

previous section (one security property is thus associated with each step of the data life-cycle). We make no 

assumption about the technical means to enforce these properties, delaying this discussion to the next sections. 



  

 

Piped data collection. Under the hypothesis of untrusted collection code and untrusted user computing 

environment, a PDMS is said to enforce piped data collection iff:  

1. the only PDMS data accessible by the collection code are the credentials allowing access to the related data 

providers; 

2. the credentials and the collected data related to a given data provider cannot be leaked outside the PDMS and 

the data provider. 

This property guarantees that the only channel to the outside world provided to the data collector is a 

specified data provider and that the code is suitably isolated so as not to be able to leak data to a potentially 

corrupted user environment.  

 

Mutual data at rest protection. Under the hypothesis of a layman PDMS owner, a PDMS is said to enforce 

Mutual data at rest protection iff: 

1. the PDMS unconditionally protects the hosted raw data and the backup archive against any form of 

confidentiality and integrity attacks or accidental damages conducted by external adversaries or by the PDMS 

owner herself; 

2. The secret protecting the backup archive is recoverable; 

3. This secret is not accessible to the owner nor any other party except another PDMS belonging to the owner 

and providing all the expected PDMS functionalities and security properties (typically, an Extensive and 

Secure PDMS as defined in Section 3.3). 

Since a PDMS stores raw data from the owner and also personal data from other users, data protection must 

also operate against the PDMS owner, thus the term mutual. To be effective, the PDMS must enforce this property 

automatically, without any owner intervention which could open the door to administrator attacks. Moreover, it 

requires that the archived data can only be interpreted by a PDMS, whatever the way the secret protecting it is 

produced, made resilient and recovered. 

 

Bilaterally trusted personal computation. Under the hypothesis of untrusted external code and untrusted owner 

computing environment, a PDMS is said to enforce bilaterally trusted personal computation iff: 

1. a personal computation may access only the owner’s raw data specifically required for the computation; 

2. only the final result of the computation - not the raw data - may ever be exposed to a third party; 

3. the execution of the computation produces trustworthy audit trails accessible to the owner; 

4. the PDMS can provide a proof that the result of the computation was produced by the expected code. 

This property provides bilateral guarantees to the PDMS owner and the third party willing to execute code on 

the owner’s data. It guarantees to the former that the minimal collection principle enacted in laws protecting 

personal data (e.g., GDPR) is fulfilled, that the computation cannot leak unexpected data and finally that she will 

have the ability - not the obligation - to audit the compliance to this property. Conversely, it guarantees to the latter 

(e.g., an energy provider willing to compute the owner’s bill) that the code remotely sent to the PDMS has been 

accurately computed. If this computation combines several tasks, the proof produced by the PDMS must guarantee 

that the orchestration of these tasks cannot be tampered with without the caller being able to detect it. However, 

the PDMS cannot attest by itself that the data targeted by this code is genuine. Such attestation remains under the 

responsibility of the computation code, assuming that the data has been properly signed by their producer. 

 

Mutually trusted collective computation. Under the hypothesis of untrusted external code and untrusted user 

computing environment, a PDMS is said to enforce mutually trusted collective computation iff: 

 

1. a collective computation may access only the participants’ raw data specifically required for the computation; 

2. only the result of the computation - not the raw data - may ever be exposed to a third party or to any participant; 

3. the execution of the computation on a participant generates trustworthy audit trails accessible to that 

participant;  

4. a proof can be provided that the result of the computation was produced by the expected code over the expected 

set of participants. 

This property targets the same objective as its bilaterally trusted personal computation counterpart. It must 
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integrate the fact that participants can contribute to the collection phase and/or the processing phase of the 

computation with no assumption on the cardinality of these two sets of participants and on their intersection. 

 

Controlled data dissemination. Under the hypothesis of a lay PDMS owner and of an untrusted execution 

environment, a PDMS is said to enforce controlled data dissemination iff: 

1. the integrity and confidentiality of interactions between the PDMS and its owner are guaranteed, when 

defining the dissemination policy and auditing its effects, and when decisions are made regarding the 

regulation of data dissemination 

2. the decisions are enforced by the PDMS and cannot be circumvented;  

This property guarantees to the PDMS owner that all decisions (e.g., entrust a secret share to a remote user for 

recovery purposes or allow a collective computation) are faithfully captured (point 1), which calls for integrity 

guarantees to ensure that the decisions cannot be corrupted when captured, and confidentiality to ensure that the 

decisions themselves and the personal data on which they may rely cannot be leaked. Thus, the effects of these 

decisions in terms of data dissemination are enforced by the PDMS and cannot be circumvented (point 2) neither 

by any third party, nor by any potentially untrusted parts of the execution environment, and not even by the PDMS 

owner who may have restricted privileges (e.g., over data generated by other users, or over cryptographic secrets 

or metadata generated for administrative purposes such as ensuring mutual trust as explained above). Finally, audit 

tools (point 1) are provided in order to help layman PDMS owners understanding all the effects of the taken 

decisions in terms of data dissemination and allow her to act to update decisions or rectify their effects if needed. 

3.3. Extensive and Secure Personal Data Management Systems  

The definition of an Extensive and Secure Personal Data Management Systems is directly derived from the 

previous sections and is expressed as follows: 

Extensive and Secure PDMS. An Extensive and Secure Personal Data Management Systems provides the 

expected set of functionalities to cover the complete data life cycle in a personal cloud, namely data collection, 

storage and recovery, personal cross-computations, collective computations and data dissemination management, 

and is compliant with their respective security properties counterparts, namely piped data collection, mutual data 

at rest protection, bilaterally trusted personal computation, mutually trusted collective computation and controlled 

data dissemination. 

4. Extensive and Secure PDMS Architecture 

Designing an extensive and secure PDMS architecture providing the functionalities and the five security 

properties defined above is highly challenging, given the fundamental tension between the security expectations 

of a layman PDMS owner and the need for supporting an open ecosystem of applications running on an untrusted 

environment. In this section, we introduce the fundamentals of a PDMS reference architecture tackling this tension 

and detail its building blocks. We then show that physical instances of this reference architecture can be already 

envisioned today and discuss how existing and forthcoming software and hardware mechanisms may impact the 

satisfaction of our security properties. 

4.1. Logical architecture 

Ideally, the support of potentially complex manipulations of personal data while preventing unexpected data 

leaks could be achieved by securely collecting, storing and manipulating the data in a secure subsystem, managed 

under the control of the holder, while never letting the (untrusted) applications or third parties directly access the 

raw data. Such a clean separation can only be based on the assumption that there exist a few generic functions that 

can be used to manipulate personal data without violating privacy. Such an assumption is obviously a fantasy, 

because the most interesting manipulations of personal data are application-specific and consequently, privacy 

violations are also application-specific. 

To solve this problem, we propose a three-layer logical architecture where a minimal Secure Core (Core) 

implementing basic operations on personal data is extended with Isolated Data Tasks (Data tasks) themselves 

accessed by Applications (Apps) on which no security assumption is made (see Figure 1). The objective is to 

control the flow of raw personal data from the Core to the outside, such that only expected results are declassified 

to untrusted applications or third parties. The general description of the architectural layers follows: 



  

 Core. The Core is a secure subsystem that is a Trusted Computing Base (TCB) ideally minimal, inextensible, 

proven correct through formal methods and isolated from the rest of the system. The Core must provide all basic 

operations required to enforce the confidentiality, integrity and resiliency of the personal data hosted by the PDMS. 

It must be the unique entry point to manipulate this data. The Core must thus implement a data storage module. 

A policy enforcement module must be integrated in the Core to regulate the data access performed by the other 

layers of the architecture. A communication manager is also needed to securely communicate with other users, 

applications and third parties. In what follows, we give an empirical view of the Core minimality, by identifying 

which combination of functionalities is (strictly) mandatory in each of the three parts of the Core to guarantee the 

security properties introduced in Section 3.2.  

 

  

Figure 1. Global Architecture 

 Data Tasks. Data tasks are introduced as a means to deal with application-specific personal data management. The 

idea is to control complex data-oriented tasks by (1) splitting their execution into data tasks evaluated in a 

sufficiently isolated environment to maintain control on the data accessed by the Core and delivered to the Apps 

in order to avoid any side effect in terms of data leaks, and (2) scheduling and verifying the execution of data tasks 

by the Core such that security and privacy can be globally enforced. 

 Apps. Any developer should be able to develop an application to ensure a wide and diverse application panel. 

However, the complexity of these applications (large code base, extensible and not proven) and their execution 

environment (web browser, smartphone, etc.) make them vulnerable. Therefore, no security assumption is made 

on applications, which manipulate only authorized data resulting from data tasks but have no privileges on the raw 

data. 

4.2. Building blocks 

This section details how each security property introduced in Section 3.2, namely piped data collection, mutual 

data at rest protection, bilaterally trusted personal computation, mutually trusted collective computation and 

controlled data dissemination, can be practically satisfied. For each property, we identify the required elementary 

building blocks and explain how they should be combined to reach the expected goal without introducing security 

breaches.  

Each building block in turn relies on a set of common security primitives provided by the Operating System 

(OS) and/or the hardware platform hosting the PDMS. Hence, these primitives are the foundations of our empirical 

minimal definition of the Core. Since they are commonly used by various building blocks, we present them first. 

As their implementations differ across platforms, we concentrate below of the security primitives they provide. 

Common security primitives: 

 Isolation. A component of the architecture is said to be isolated if (i) the internal execution state of the 

component cannot be accessed nor influenced from the outside of the component except with the collaboration 

of the system administrator (e.g., the PDMS owner) and (ii) the component may not observe nor influence the 

behavior of any external system except through its own inputs/outputs behavior. See for example [28] for a 

survey of ways to implement code isolation in a partly untrusted context. 

 Attestation. A component is said to be attestable if a trustworthy certificate can be produced to demonstrate 

that the component output was indeed produced by the specific code of this component. This common security 

primitive is usually considered for a whole complex system (e.g., [21]). It was formalized in the case of a single 

task running on a complex system in [16]. 
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 Confidentiality. A component is said to ensure data confidentiality if neither the internal execution state nor 

the input and output data of the component can be leaked to any system other than the party initiating the 

component (in our case the PDMS Core) even with the collaboration of the system administrator. This property 

is described in [32] and formalized together with isolation and attestation as ‘secure outsourced computations’ 

in [16]. 

 Peripherals isolation. A component is said to satisfy peripherals isolation if the data exchanged between that 

component and the peripherals cannot be leaked outside of the component except with the intervention of the 

PDMS owner. For illustration purpose, [7] and [36] show how text messages can be securely displayed even 

in the presence of an untrusted OS using ARM TrustZone.   

For the sake of clarity, each the security primitive defined here will be represented by a simple pictogram in 

the next figures showing the building blocks required to implement each of the security property introduced in 

Section 3.2. The pictograms used are  for code isolation,  for attestation,  for confidentiality and  for 

peripherals isolation. 

4.2.1. Piped data collection  

The piped data collection property requires the ability to execute arbitrary data collection code (e.g. a scrapper) 

in a secure manner. The objective of this property is actually twofold.  

First, it should guarantee that the collection code will not access any data stored in the PDMS other than the 

credentials required to connect to the related service provider (e.g., the web site to be scrapped). This specific 

privilege must be part of the manifest declared at the time this collection code is registered in the PDMS. The 

resulting authorization itself will be enforced at execution time thanks to the controlled data dissemination property 

(see Section 4.2.5 for details). 

Second, it should guarantee that the collected data and the credentials related to a given data provider cannot 

leak to any third party (including another data provider targeted by the same collection code). According to the 

reference architecture sketched in Figure 1, this guarantee can be provided by considering the collection code as 

an isolated data task and granting a write access to this data task only to the destination PDMS. This requires data 

task authentication to be implemented in the Core. In other words, this means restricting the write capacity of the 

data task to the insertion of the collected data into the Core. The enforcement of this restriction at execution time 

relies itself on the code isolation property. 

While executing the collection code as an isolated data task inside the PDMS ensures that the effects on the 

Core are controlled, further measures are required in order to ensure the absence of leakage of both credentials and 

collected data. Indeed, the collection code needs to communicate with the outside world in order to reach the data 

provider. To preclude the collection code to leak data to any other party than the related data provider, the Core 

must be able to establish a (TLS for example) secure channel between that specific data provider and the data task. 

Regarding the minimality objective, the complete network stack (e.g., TCP/IP, DNS) does not have to be in the 

Core, only the critical security operations of the creation of the secure channel, named TLS trusted in Figure 2, 

need to be. 

Remark that each data collector task should be dedicated to a single remote site (e.g., my bank), to avoid a 

malicious data task from leaking credentials or personal data (e.g., the bank credentials/data to another site) through 

an authorized communication channel. Note that in addition a malicious data collector task may use the owner’s 

credentials on the remote site to perform unexpected actions (e.g., the data collector retrieving the bank related 

data could trigger a money transfer using the bank credentials). However, such issues are mostly related to the 

definition of a weak security policy at the data provider side, rather than a problem to be addressed at the PDMS 

architectural level. We thus assume here that the credentials delivered by the data provider for data collection 

purposes will grant only read access to the reduced dataset of interest (e.g., bank account history).  

 

 



  

 

Figure 2. Data collection 

Summing up the architecture presented in Figure 2, when performing data collection for a specific source, the 

Core launches an isolated data task executing the collection code for said source, provides it with the credentials 

and a secure channel to the source, which requires the implementation of data task authentication and secure 

channel set up (TLS-trusted) in the Core. Once collection is finished the collector returns the data to the Core 

which stores it appropriately. This ensures the absence of leakage (through isolation and secure channel), and 

proper behavior of the data collector in terms of input and output data (through access control). Another statement 

is that the safety properties are not independent from each other. Piped data collection indeed relies on controlled 

data dissemination and mutual data at rest protection to make sense when considered in a complete scenario. 

4.2.2. Mutual data at rest protection     

 

This property should be ensured by the Core which is the only entity authorized to have a full access to the 

PDMS data (recall that, even the owner does not have such an access, since the PDMS data may include, for 

instance, data from other users). Secure storage is thus ensured by the Core, potentially using classical 

cryptographic techniques (encryption, hashing) if the storage medium is not part of the Core, to protect the data 

against confidentiality and integrity attacks. In the following, we focus on the backup and recovery issues which 

are less classical in the PDMS context. We note that the secret protecting the backup archive can obviously not be 

stored on the PDMS (otherwise, it would be lost in case of failure). As already mentioned, relying on a password 

is not adequate due to the generally reduced entropy and to the difficulty and the risks associated with the 

memorization of complex passwords, with no way to reinitialize it. In addition, the owner should not be capable 

of restoring this secret alone since he does not have full access to the PDMS data, further disqualifying password-

based solutions. A reasonable solution to this problem is to split the secret in a number of secret shares using a 

secret sharing scheme (for instance [2]). We provide below a simple example of how such a task could be 

performed, using standard cryptographic techniques and the common security primitives introduced at the 

beginning of Section 4.2. 

We split the backup and recovery process in three steps. First the setup, which consists in generating and 

distributing all cryptographic material necessary for performing the encrypted backup and recovery. Then comes 

the backup phase. Finally, assuming one’s PDMS has been lost/compromised, comes the recovery phase. 

Setup phase:  

1. The PDMS generates a master key, inaccessible to the PDMS’s owner, which will be used for performing 

encrypted backup 

2. The PDMS owner chooses a number n of trustees (among her friends/family), who will hold shares of her master 

secret key. She also chooses a security threshold s. This threshold is the number of trustees who need to cooperate 

to recover the owner’s PDMS content. 

3. The PDMS executes an s out of n secret sharing scheme (e.g., Shamir’s secret sharing). The shares are subsequently 

distributed through a secure channel (using the TLS-trusted module) to the PDMSs of the trustees. We need to 

ensure that secure channels are indeed established with the trustees’ PDMS and no other parties (i.e. to avoid other 

people from getting the shares). This can be done using a certificate that proves that a PDMS is genuine or using 

the Core hardware attestation mechanism of the PDMS if available. Note that it is essential that the trustees 
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themselves cannot access the share directly, even though it is stored in their PDMSs. Indeed, if they could access 

these shares, they could, in collaboration with the PDMS owner, decrypt all encrypted backups outside a PDMS, 

and thus access data that is meant to not be accessible to the PDMS owner herself. Therefore, the permissions for 

these shares need to be set to only be accessible to the recovery functionality. 

Backup phase: this phase is not specific to the PDMS context. The encrypted backup of the PDMS is performed 

on an untrusted third-party server by the backup module of the PDMS. One should be careful to choose a backup 

scheme that preserves integrity as well as secrecy (e.g., SpiderOak backup service [26], see Section 2.2). 

Recovery phase: This phase is triggered when the user has lost access to its PDMS and needs to obtain a new 

copy of her data. It proceeds as follows (note that the practical means to realize this protocol may be adapted to 

minimize the PDMS’s owner burden). 

1. The user acquires a new empty PDMS. 

2. The user contacts s trustees, and informs them that they need to perform the recovery procedure, with the 

identification data of the new PDMS, using an out-of-band communication channel (e.g., phone call, chat or 

email message). 

3. The PDMS recovery modules of the s trustees communicate their shares of the master secret to the recovery 

module of the new PDMS, using the provided identification data of the new PDMS, on a secure channel (using 

the TLS trusted module again). It is essential to ensure that these shares are indeed communicated to a genuine 

PDMS, belonging to the user. As in step 3 of the setup phase, to achieve this guarantee, either a certificate or 

remote attestation is used by the trustee’s PDMS in order to ensure that they are indeed communicating with 

the recovery module of a specific PDMS. 

4. The recovery module of the new PDMS reconstructs the master secret using the share provided by the trustees’ 

PDMSs. 

5. The new PDMS retrieves the encrypted backup and recovers the data using the master secret. 

 

As illustrated in Figure 3, the main impact on the architecture is the need for backup and recovery modules in 

the Core. As the recovery can only be performed inside a legitimate PDMS, the user is never given direct access 

to restricted data. Additionally, neither the user nor the trustees may gain access to the secret shares, which ensures 

that the encrypted backup may never be decrypted outside the recovery process. Finally, the s out of n secret 

sharing ensures that the owner’s secret is recoverable, even if the PDMS of a number of trustees fail. One can 

choose the threshold according to her confidence in the hardware and the reliability of her trustees and may even 

include one or several mandatory trustees in the secret recovery process. 

 

 

Figure 3. Mutual data at rest protection 

4.2.3. Bilaterally Trusted Personal computations 

 

First, as required in the security property (see Section 3.2) the personal computation functionality needs to be 

able to execute (arbitrary) code ensuring that only raw data required for the computation is made available to the 

code. The minimality requirement on the Core prohibits the execution of such complex tasks inside the Core. As 

a consequence, extensibility in terms of code execution is achieved by executing personal computations as data 

tasks. In order to restrict access to raw data, we require that any personal computation task comes with a manifest 

specifying precisely the data needed for said computation. This manifest should be approved by the user (see the 

controlled data dissemination property in Section 4.2.5). Subsequently, when executing a personal computation 
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task, the Core’s reference monitor provides only the data required by the manifest, ensuring by construction that 

the manifest is respected.  

Second, only the result of the computation should be made available to third parties. As the user’s system may 

be corrupted, this implies that the personal computation task should be isolated from the environment. This 

prevents the user’s system from accessing the internal state of the data task, hence preventing leaks of raw data. 

Additionally, the data task should be authenticated by the Core and only be able to store the result in the Core. 

Any subsequent disclosure of the result to the outside world should be done by the Core and subject to control 

from the reference monitor. 

Third, the computation should provide an audit trail accessible by the owner. This is again achieved through 

the reference monitor, which should update the audit trail accordingly through the audit component of the Core. 

In order to guarantee the minimality of the audit component of the Core, only simple actions should be logged, 

such as a handle on the data used in the computation and a handle on the result together with a handle pointing to 

the manifest of the data task which has computed the result. This avoids providing the complex relationship 

between the data and the result directly in the log while retaining the ability to reconstruct this relationship from 

data safely held in the PDMS. 

Finally, it should be possible to provide a proof that the result is indeed produced by the expected code. This is 

achieved through attestation of the data task which exactly provides this guarantee. Note that, while attestation 

provides guarantees that the result was indeed produced by a specific computation task, this does not in any way 

provide guarantees on the raw data that was used in order to compute said result. If one wants to obtain guarantees 

on the data used, the checks should be included in the personal computation code. For example, if an energy 

provider wants to compute the monthly energy consumption from certified data from the energy meter using a 

personal computation task, this computation task should include checking the certificates for the data; otherwise 

the user might execute the data task on counterfeit data and the attestation would still certify that the result 

transmitted was indeed produced by the right computation task. 

In order to perform computations that are not represented by one atomic task but rather by a succession of tasks, 

the task can leverage attestation in order to provide guarantees on the end result in a manner similar to checking 

certificates for data. Indeed, if a computation task T is supposed to be executed on some data resulting from the 

execution of a previous computation R, T’s code can verify that its input data is attested as the result of task R. 

Using this mechanism iteratively, it is possible to guarantee the integrity of a result coming from an arbitrary 

combination of computation tasks. 

 

Figure 4. Bilaterally trusted personal computations 

This functionality is presented in Figure 4. To sum up, this implementation of the functionality ensures that 

only the required data is accessed (through reference monitor), that this data may never be leaked to the outside 

world (through isolation), that the operation flow is auditable by the user (through the audit component), and 

finally that a proof can be provided that a result corresponds to a specific computation (through attestation). This 

leads to the introduction of a reference monitor, an attestation module and an audit module in the Core. 
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4.2.4. Mutually trusted collective computations  

This property targets the same objective as its bilaterally trusted personal computation counterpart. It must 

integrate the fact that the participants can contribute to the collection phase and/or the processing phase of the 

computation with no assumption on the cardinality of these two sets of participants and on their intersection. 

As for the personal computations, our architecture implements collective computations as data tasks (or more 

precisely as a set of data tasks communicating through the network) in order to achieve system extensibility. The 

reference monitor ensures that a collective computation data task can only access the data required for the 

computation (point 1 of the Mutually trusted collective computation property in Section 3.2). Note that this data 

may include intermediate results transferred by other PDMSs participating in the collective computation. As in the 

personal computation case the data access requirements are specified by the manifest of the collective computation, 

which has to be accepted by the user. Also, to enable the PDMS owner to audit her computations (see Section 

4.2.5), the access audit module records information related to the execution of collective data tasks (point 3 of the 

Mutually trusted collective computation property in Section 3.2). 

Another requirement of collective computation (point 2) is that only the result of the computation can be 

disclosed, and not the raw data. To this end, a first measure is to execute the collective computation data tasks as 

isolated data tasks. This protects a participant’s raw data against an untrusted system environment. However, a 

collective computation requires the transmission of intermediate results between data tasks belonging to various 

participant’s PDMSs. In order to ensure the confidentiality of these intermediate results, the reference monitor 

takes the following measures. First, it only gives access to the intermediate results to the other PDMSs executing 

the collective computation which are allowed to get these results as specified in the respective computation 

manifest. Second, at local level, it only gives access to the intermediate results to the specified data task and forbids 

any access by the PDMS’ owner. Hence, to guarantee the enforcement of access control against malicious PDMS 

owners, the collective data tasks have to implement the confidentiality security property. Also, transferring 

intermediate results to other participating PDMSs is done using the TLS-trusted module to ensure that data is 

transmitted on a secure channel. 

The final requirement for collective computation (point 4) is to ensure that a proof can be provided that the 

result of the computation was produced by the expected code running on the expected set of participants. This 

requires a global manifest (i.e., a formal description of the computation including the participants and their 

delegated tasks) allowing to check that messages originating from other participants were produced as expected. 

The global manifest is registered in the Core of each participant involved in the collective computation. We then 

need to propagate trust between nodes during the execution of the global computation protocol. Therefore, each 

data task output involved in the distributed protocol should be certified through attestation, such that each Core 

can check the local integrity of its local data task, and propagate it to the other participating Cores in order to 

incrementally establish the global integrity of the distributed protocol, with acceptable performance. Note indeed 

that instead of being verified by the third party exploiting the result as it is the case for local computations (see 

Section 4.2.3), the attestation must be verified here by the participants involved in the collective computation. 

 

Figure 5. Mutually trusted collective computations 

In conclusion, mutually trusted collective computations (as defined in Section 3.2) can be implemented in the 

proposed PDMS logical architecture by using isolated and confidentiality protected data tasks which are controlled 

and attested by the Core. As shown in Figure 5, the main modules needed for this type of computations are the 

reference monitor and audit modules to ensure that only proper data access is performed, and the attestation 

module  to obtain global integrity guarantees for the computation. 
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4.2.5. Controlled data dissemination  

A PDMS must provide a secure way to capture the decisions of the owner, accordingly implement and enforce 

the resulting effects on data dissemination, and help users to understand these effects and apprehend what 

effectively happens during data dissemination. Of course, the overall process is highly complex and opens up 

several challenges (see Section 5, Challenge 2).  

Our goal here is to introduce the main architectural elements induced by controlled data dissemination and 

guarantee the two points of the corresponding security property as defined in Section 3.2.  

First, securing a decision impacting data dissemination forces the PDMS to provide means for users to truthfully 

view the needed information to make the decision (e.g., view a manifest describing a computation, the underlying 

personal data to be authorized, etc.), capture it (at the very least, a button to accept/decline that manifest) and 

potentially check its effects and/or audit its effective use. From a security viewpoint, this means relying on the use 

of visualization software (e.g., file or image readers, up to more complex visualization tools according to the 

semantics of the manifest or the audit trails), which may contain external code with security breaches that could 

be exploited by an attacker. Therefore, this code cannot be part of the Core, but should be executed as part of a 

data task, called here a decision-making data task. In addition, in order to  be sure that the code of this data task 

behaves as expected, the integrity of the execution should be guaranteed against any potentially malicious external 

entities or corrupted runtime environments. Moreover, the decisions which are made may also be considered 

personal for the PDMS owner or depend on personal information, and should thus not be leaked outside the PDMS 

(except through a deliberate intervention of the owner). To ensure both the integrity of the execution and the 

confidentiality of the decision, decision making data tasks must be run in isolation. Beyond this, making decisions 

by nature relies on interactions with the PDMS owner via peripherals (e.g., screen, keyboard). This requires 

peripherals isolation to ensure that the data exchanges between the peripherals and the data task cannot be altered 

nor leaked outside the data task. Subsequently, in order to correctly interact with decision making data tasks, the 

Core must ensure that the data task effectively runs the expected (original) version of the code. This requires 

authenticating the decision-making data task through the authentication module integrated into the Core (already 

introduced above).  

Second, all the decisions must be unconditionally enforced. The decisions captured by the PDMS are thus 

translated into low level data dissemination policies and enforced by the Core. Enforcing decisions typically leads 

in our system to implement access control policies managed by the access control module and relying on a trusted 

reference monitor to enforce the effects of these access control policies. Of course, the form of the policies (e.g., 

access control lists, execution privileges on computations, etc.) and their use typically depend on the decision to 

be enforced.  

We argue that the overall architectural design presented on Figure 6 offers an interesting backbone to operate 

data dissemination decisions in the PDMS context. This requires a reference monitor to store and enforce 

decisions, and an audit module to store audit data on the effects of these decisions. We give two example below 

showing how controlled data dissemination could be operated in the case of the recovery protocol described in 

Section 4.2.2 and in the case of local computations presented in Section 4.2.3: 

Controlling data dissemination in data recovery. When a PDMS owner Alice wants to share a secret share S 

with another PDMS owner Bob, a decision-making data task with access to the contact files of Alice’s PDMS is 

launched, is authenticated by the Core of Alice’s PDMS and displays a list of Alice’s contacts from which she 

chooses Bob as a recipient of the secret share S. The effect of that decision on the reference monitor of Alice is to 

grant a read privilege on S to Bob’s PDMS. On Bob’s PDMS, Bob makes the decision to accept Alice’s secret share 

S (using a decision-making data task). As a result, Bob’s reference monitor grants a read permission on S to the 

recovery data tasks (no other data task nor Bob himself have granted access to S). At recovery time, Alice contacts 

Bob (out-of-band communication) and Bob’s PDMS contacts Alice’s the new PDMS. Bob accepts his PDMS to 

declassify S to Alice’s using a decision-making data task and assuming that B confirms to its PDMS that the 

recipient of S is indeed the new PDMS owned by Alice.  

Controlling data dissemination in local computations. Alice wants to authorize her energy supplier EnergySupp 

to run a data task consum which aggregates the electricity consumption of Alice on the last 30 days. A decision-

making data task shows the manifest of consum to Alice which includes a description of the raw energy data taken 

as input (energy trail of the last 30 days, called raw-data-30). Alice accepts it and the resulting effect on Alice’s 

reference monitor are an execute privilege on consum granted to EnergySupp, a read privilege on raw-data-30, a 
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write privilege on its result to consum, and a read privilege on the result to EnergySupp. Alice’s PDMS also audits 

the execution of consum when it is launched by EnergySupp and the access to its successive results by EnergySupp. 

Alice, when looking at the audit trail realizes that EnergySupp accesses consum every day and is thus able to infer 

her energy consumption on a daily basis. In consequence, Alice may either revoke this decision or apply a ‘fix’ 

(which could have been provided by EnergySupp or by a community of users) to update the read privilege on raw-

data-30 of consum such that only a fixed size batch of data is included in raw-data-30 (e.g., the data of the previous 

month). 

 

 

 
Figure 6. Controlled data dissemination 

4.3. Overall architecture design 

The union of the above-mentioned building blocks constitutes a baseline for a logical architecture to manage 

the data life cycle in a personal cloud, while answering the main security goals. 

 

 
Figure 7. Logical architecture 

Depending on its type, each data task requires an execution environment that provides the appropriate common 

security primitives introduced in Section 4.2, namely Isolation, Attestation, Confidentiality and Peripherals 

isolation. 

Ideally, the code of the Core must be formally proven to avoid security breaches leading to unexpected 

behaviors. Equally important, the Core must run in an execution environment that satisfies isolation, attestation 

and confidentiality. The isolation property is required for the Core to protect it from all the other software 

components running on the same personal cloud platform (in particular the Apps and the data tasks). The attestation 

property is required for the collective computations which are orchestrated and/or executed by the Core. Finally, 

to provide mutual guarantees of security between PDMS users and third parties (see Section 3.2), the environment 

of the Core also has to provide confidentiality since it coordinates the distributed data tasks with potential access 

to private personal data supplied by other nodes, which remain hidden from the PDMS owner. This leads to the 

architecture presented in Figure 7. 
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4.4. Concrete PDMS instances 

The goal of this subsection is to show that the logical architecture presented above can be instantiated in 

practice, using existing software and hardware solutions, and that its modular aspect helps defining physical PDMS 

instances easily. We first discuss here existing software and hardware security solutions, offering the required 

security primitives (namely isolation, attestation, confidentiality and peripheral isolation). Second, we show how 

to combine them into physical ES-PDMS architectures which instantiate three different configurations: (1) PDMS 

on a home box, (2) on a mobile device and (3) in the cloud. Third, we provide an example of a preliminary 

implementation of the proposed architecture.  

There is no unique way of implementing the common security primitives on which our architecture relies, but 

rather various solutions with different guarantees regarding the enforcement of these primitives. We investigate 

below existing software and hardware targets. 

Software-based security solutions. Let us first consider the security properties which could be provided by 

pure software-based solutions. The first of these properties is isolation, which is intensively investigated as it 

constitutes a foundation of secure software architectures. Isolation is usually provided by an operating system (e.g., 

Linux, seL4, etc.), a virtual machine monitor (VMM or hypervisor, e.g., XEN, KVM) or a container manager (e.g., 

Docker, Kubernetes). Such solutions have the advantage to provide a high level of extensibility (in the sense that 

potentially complex/external code can be run). But enforcing the isolation security primitive means considering 

the underlying software components (the OS, VMM or container manager) as part of the trusted computing base 

(TCB), i.e., critical part of the software that, when compromised, can jeopardize the security of the entire system. 

The TCB must therefore be made completely free of vulnerabilities (e.g. bugs, buffer overflows, etc.) and ideally 

must be formally proven. This is a difficult task with large and complex code. Existing solutions rely on reducing 

the attack surface by minimizing the code which is part of the TCB (e.g., microkernels like seL4 and unikernels 

like MirageOS) or by hardening it (e.g., by adding access control, an IDS or a firewall [31]). Today, software 

solutions offer some form of isolation and peripheral isolation (discussing to which extent being beyond the scope 

of this paper). However, assuring strong isolation guarantees in software is still an open issue (see [28] for a recent 

survey) and side channel attacks remain prominent [17] (thus, the mention ‘satisfied with limitations’ in Table 3). 

Moreover, since using software as a root of trust is still an unresolved problem [38], confidentiality against the 

PDMS owner and attestation of the code execution cannot be achieved purely through software. As a conclusion, 

the advantage of using VMMs in terms of extensibility is obvious, but such solutions should be considered in 

combination with other solutions (typically, secure hardware) to achieve the desired confidentiality and attestation 

properties of a PDMS (as summarized in Table 3). 

Table 3. Claimed properties of different execution environments (left) and required properties of the different modules of our ES-PDMS 

architecture (right)  

 

                      

The properties can be satisfied () or satisfied with limitations () 
 

Hardware-based trusted execution environments (TEE). Hardware TEEs target many different kinds of 

devices, from personal computers and IoT devices to cloud servers. The most prominent TEEs include secure 

elements as SIM cards (e.g., in smartphones), ARM TrustZone [13] for SoCs and CPUs integrated into 

smartphones, tablets and smart appliances, and Intel SGX [25] embedded in all recent Intel CPUs present in 

personal computers and cloud servers. Although there is still no unique security definition of TEE and their 
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capabilities vary depending on proposals [45], most TEEs offer capabilities to run code in isolation and remote 

attestation, which allows it to prove required properties of the code running to third parties. Table 3 summarizes 

the security tools offered by three technologies: SGX, TrustZone and secure elements (smartcard). These three 

solutions mainly vary in the way confidentiality and peripheral isolation are achieved and in terms of the possible 

level of extensibility of the code they can run: 

 Intel SGX [25] integrates cryptographic primitives in hardware to isolate applications within enclaves, while 

providing confidentiality and attestation of the code executed in the enclave. Additionally, it provides mechanisms 

for managing the information flow from code running in the TEE to the outside world, both secure external storage 

primitives thanks to encryption and management of the communications between processes running in TEEs. It 

can be used both for securing Cloud apps and in the context of personal computers, leading to an advanced form 

of extensibility.  

 ARM TrustZone technology isolates sensitive code executed in the secure area of the CPU, from application 

code executed in the rich area. It also aims to isolate the device’s peripherals (typically, the screen of a 

smartphone) once code inside the secure area is executed. The code executed inside the secure area has some 

limitations in terms of resources (e.g., TrustZone ARM1176JZ based on Cortex A series is clocked at 772 MHz 

and can access several tens of MBs of RAM) leading to a certain form of extensibility.  

 Secure elements, on the other hand, offer much less resources (e.g., advanced secure elements like ST33 based 

on ARM SecureCore SC300 Cortex M series is clocked at 60 MHz and has only 50KB RAM), thus having a 

negative impact on extensibility, if used to run a data task. In terms of security, on the contrary, such components 

provide –in addition to isolation and attestation–  confidentiality (with strong guarantees due to tamper-resistance) 

for running code and data. 

The common security primitives needed by the different modules of our ES-PDMS architecture and the 

primitives provided by these TEEs are reported in Table 3. Several conclusions can be drawn regarding the 

implementation of the logical architecture we envision: (i) it cannot be implemented using a single technology 

since none currently ensures all the required properties, and therefore has to combine several elements; (ii) the 

Core relying on isolation, confidentiality and attestation, can be run on a secure element or on SGX, or be 

implemented by a combination of execution environments (e.g., pioneer works like TrustVisor [38] propose a 

secure hypervisor based on combining a secure element with an hypervisor to provide confidentiality and 

attestation); and (iii) the data tasks needing peripherals isolation (i.e., decision-making) can only be run on 

TrustZone or a hypervisor/VMM.  

An important remark concerns another implicit property in our architecture, which cannot be directly ensured 

by secure hardware alone. That is the data tasks are exclusively controlled by the Core and the communications 

between the Core and the data tasks are protected, despite the OS (executing said tasks, e.g., within an SGX enabled 

CPU) being potentially compromised. In itself neither attestation nor isolation directly provide this property, and 

some code encapsulation has to be provided in order to make sure that the input/output behavior of the data task 

cannot be observed by the untrusted OS. A solution for SGX enclaves can be found in [14]. It leverages secure 

channels and the attestation mechanisms provided by SGX in order to allow for protected execution of an arbitrary 

remote computation with confidentiality of the input/output behavior.  

 



  

 
Figure 9. Physical ES-PDMS instances: (a) home box; (b) mobile device; (c) cloud based  

The above listed software and hardware solutions can be combined in many ways to achieve the security 

primitives needed to implement the proposed ES-PDMS logical architecture, but a complete study of the potential 

architectures, their impact on the data management tasks and their limitations, constitute open challenges. In the 

following, we limit to presenting a few basic examples of physical architectures encompassing the security 

properties of an ES-PDMS.  

Physical architectures of an ES-PDMS. In Figure 9 we propose three illustrative physical instances of our 

logical architecture adapted to three different ES-PDMS configurations based on a home box, a personal device 

and the cloud: 

 Home box (Figure 9.a). The data is stored in the box and is cryptographically protected. The Core runs on a secure 

element as well as the collective computation tasks10 to benefit from its security and achieve the attestation and 

confidentiality requirements. Personal computation and data collector tasks are executed on a TrustZone CPU 

equipping the box, and thus benefit from extensibility. If no peripheral is available on the box to interact with the 

user (e.g., no touch screen), the apps and the decision-making tasks run on the smartphone of the PDMS owner, in 

the rich area and the trusted area respectively, to safely capture the user’s I/O. 

 Mobile device (Figure 9.b). Similarly to the home box, the Core and collective computation tasks are operated in 

the secure element of the smartphone (i.e., an additional SIM card slot is needed), the other tasks (personal 

computation, data collector and decision-making) run in the trusted area of the TrustZone CPU of the smartphone, 

while the apps run in the rich area of the CPU. 

 Cloud (Figure 9.c). The SGX-based instance pictured on the right part of Figure 9 is running both the Core and 

the data tasks in distinct SGX enclaves. The enclave running the Core takes advantage of the attestation capabilities 

of SGX to control the other enclaves, and collective computations can be performed seamlessly (as well as other 

personal computation and data collector tasks) given the confidentiality property offered by SGX, with the Core 

relaying the remote attestation guarantees to the other participants of the protocol. To protect the user’s I/O with 

the decision-making console, this architecture also needs a smartphone with a TEE (e.g., ARM TrustZone). 

 

 
10 The collective computation data tasks being operated on a secure element are highly secure (tamper resistant) at the price of extensibility. However, 

advanced distributed data processing tasks must be done with the support of a more powerful CPU integrated in the box and connected to the secure element, 
which is an open issue. 
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Before concluding this section, we describe a preliminary implementation which prefigures the home box 

architecture instance presented above and constitutes a reasonable base for a first validation of the ES-PDMS 

concept. 

A concrete ES-PDMS instance. A consortium, built around Inria, UVSQ and a French company, has been set 

up in 2018 with the goal to conceive and deploy a secure decentralized social-medical folder facilitating the 

coordination of social and medical care at home for elderly people. In a first step, 10 thousand patients from the 

Yvelines district in France are targeted. In terms of hardware, the solution is close to the home box case presented 

above. The box is based on a combination of a secure element (SE) hosting the Core and a microcontroller hosting 

basic data tasks. Applications dedicated to social and medical workers as well as the patient’s decision making app 

run on smartphones. The microcontroller is a STM32F based on an ARM Cortex-M4 CPU with 168KB of RAM 

and 1MB of embedded NOR where data tasks code resides. The Core itself will run in a ST33J MCU, a certified 

tamper-resistant SE (Common Criteria EAL6+) equipped with an ARM SC300 CPU, 50KB of RAM and 1 MB of 

NOR, where the Core code and metadata linked to its secure functioning reside. The porting of the Core on the 

ST33J is under way, while in the current version of the box a reduced, essential set of security properties is provided 

by a TPM (Trusted Platform Module). The three main modules of the Core are implemented as follows:  

 Data storage. The data storage module incorporates an embedded database engine based on PlugDB  [10, 11, 33] 

which manages an encrypted database hosting the personal data on a large Flash memory (GBs microSD card) and 

a recovery procedure based on the protocol described in Section 4.2.2. 

 Communication. The communication module includes an authentication procedure relying on certificates 

delivered by a PKI and a preliminary implementation of TLS trusted to communicate with the remote services (the 

application of the practitioners running on their smartphones and external servers hosting social-medical personal 

data).  

 Policy enforcement. The policy enforcement module is based on RBAC policies defining differentiated views of 

the personal data to the connected user depending on his role (physician, nurse, social worker, etc.), with a 

reference monitor enabling the PDMS owner to visualize and control all the enacted authorizations [55] from her 

smartphone.  

The choice of a STM32F microcontroller to run the data tasks has been dictated by economic and energy saving 

constraints. It limits the scope of the box to a reduced set of predefined Data collectors and Personal computations, 

with strong assumptions made on isolation (i.e., considered in our specific context of a rather ‘closed’ and ad-hoc 

platform). Collective computations are not implemented yet. Since collective data tasks cannot be operated inside 

an MCU which does not protect data confidentiality, they will be operated inside the secure element as simple 

sequences of SQL queries evaluated by the Core. Although within this architecture, the level of extensibility is 

still limited and specific security assumptions are made, the limitations are clearly identified and overcoming them 

is an integral part of the roadmap. More powerful versions of the box are already planned, to support a full range 

of data tasks with no impact on the global design.    

In conclusion, several existing technologies implement today, at least partially, the security properties required 

by the proposed logical architecture and combining them to obtain appropriate physical instances of an ES-PDMS 

in different usage contexts is already possible. Regarding the near future, the current trend suggests that the 

availability and diversity of TEE technologies will increase. New solutions are already envisioned, like 

heterogeneous multicore platforms [35] in which security/isolation oriented cores (à la SGX) would cohabit with 

other all-purpose cores, allowing for separation of tasks inside the CPU. We expect the modularity of our logical 

architecture to be of great help in accommodating new physical instances for such upcoming solutions. While this 

opens to practical ES-PDMS instances, database challenges linked to the underlying data management features 

and the PDMS context specificities need to be explored. We discuss below some dimensions of the problem, and 

introduce certain database challenges linked to the architecture in Section 5. 

4.5. Discussion 

Different practical solutions based on secure hardware can already give rise to some form of ES-PDMS. 

However, the problem of implementing an ES-PDMS is large and as such there are important related issues which 

have to be considered as well. We discuss below some dimensions of the problem and limitations of our proposal, 

not addressed so far for simplicity and conciseness reasons, or because they are rather orthogonal to the 

architectural dimension considered as the cornerstone of the ES-PDMS introduced in this paper. 

A first aspect concerns the security level of a physical instance used to deploy our logical architecture. We 

discussed above a few examples of instances by taking into account the required set of security primitives (i.e., a 



  

physical instance is valid if it covers all the required properties of the targeted ES-PDMS module) but without a 

deeper consideration of the security guarantee level associated with the properties. Thinking that a security 

property can hold in any condition is wishful even for TEEs. Generally, it is wise to think security in terms of an 

attack’s cost/benefit ratio. From this viewpoint, a Cloud based PDMS instance (e.g., running on Intel SGX) could 

be considered as more exposed to attacks than a home box instance since in the former case the physical platform 

is shared by many PDMS instances (although each PDMS uses its own dedicated enclaves), while in the latter case 

the physical platform is dedicated to running a single PDMS. Also, different environments can offer different 

protection levels for a same security primitive. For example, a software implemented security primitive is generally 

considered to have a weaker security level than if it were hardware implemented (e.g., TEE), while some TEEs 

can be considered more secure than others (e.g., smartcard versus ARM TrustZone).  

A second important aspect specific to our architecture is to ensure a clean separation between the application 

level and the data computation level. Indeed, the apps are considered untrusted in our architecture mainly because 

one cannot trust in general the user computing environment (typically the OS and browser). Therefore, the apps 

should ideally have access only to the computation results and never to the raw data. Hence, app developers should 

push as much as possible of the complex app-related data computations into data tasks leaving thus the sensitive 

task of app policy enforcement to the Core. A few recent works in the domain of web application security are 

following a similar approach. For example, systems like Amber [22], DIY [40] and Box [34] consider isolating 

and sandboxing application subparts to increase security and user’s control with untrusted applications. Amber 

[22] separates web services from data processing by introducing a data-sharing model relying on secure distributed 

query mechanisms implementing a reduced subset of SQL. Following a similar approach, Box [34] proposes to 

split the app into client and cloud sides, establishes restricted communication channels (read-only, write-only, 

collect statistics) between the two and relies on sandboxes (also coupled with differential privacy) to counter 

attacks conducted through applications. Our three-tier logical architecture generalizes this separation principle, 

i.e., application versus data computation, and thus lays the foundation of a framework enabling a number of good 

security practices for app developers. Besides, we note that the guarantees offered by the above mentioned 

frameworks are inherently weaker than the guarantees provided by secure hardware. Thus, applications 

implemented using these frameworks can essentially be considered as weakly secure, based on extensible data 

tasks satisfying isolation and peripheral isolation (provided the user’s web browser is trusted). Also, these 

frameworks do not provide confidentiality and attestation, two important security properties for an ES-PDMS, 

which further underlines the importance of secure hardware in this context. 

A third aspect is related to data destruction and more generally the usage control offered by the ES-PDMS. In 

terms of functionalities, we focused in this paper on five main stages of the personal data life-cycle. One might 

object that data destruction represents also an important stage and should be considered as such. While we agree 

with this observation, we argue that data destruction raises issues that are mainly outside the scope of the 

architectural study of this paper. For example, in the case of secondary copies of user data (e.g., email and other 

social interaction data, health, employment, insurance), the main issue is not deleting the copies of the data 

collected into the PDMS but destroying the original data managed by the external service that generated it. Thus, 

the problem shifts to a legal issue, e.g., see the “right to be forgotten” on the Internet in the European legislation. 

Also, regarding the primary copies of some user data (e.g., quantified-self data, smart home data, photos, videos 

and documents generated by the user), a general problem appears if the users disseminates the data to other users. 

In this case, a form of user control can be maintained if the data is shared with another ES-PDMS (e.g., a sticky 

policy is associated to the shared object and is enforced by the reference monitor module of the PDMS). However, 

there are major limitations in practice, e.g., how can one preclude a malicious user from making a screenshot when 

she visualizes a photo that has been shared with her. Hence, data destruction leads to important but very 

challenging problems such as enforcing usage control or making users aware of their responsibilities.  

Many other important problems remain to be addressed such as personal data visualization, data integration, 

legal, economic or cognitive aspects, or user perception regarding security. Although quite independent of 

architectural issues, we argue that the extensible architecture introduced in this paper offers interesting means 

(through data tasks) to tackle such issues without decreasing the security level of the solution. In the following 

section we discuss a few important challenges from the data management perspective and from an architectural 

angle. 

5. Research challenges towards an ES-PDMS architecture 

Without claiming to be exhaustive, we believe that at least three main challenges arise from the core of our 

analysis of the architectural vision introduced in the paper. The first challenge directly stems from the reference 
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architecture presented above and concerns its formal analysis. The second challenge relates to the control tools 

derived from the enforced position and responsibilities acquired by the PDMS owners. The third challenge 

concerns the concrete implementation and enforcement of distributed data processing without leaks using Trusted 

Execution Environments. These three challenges are described below. 

 

Challenge 1: Design and formal definition of the Core engine. As sketched in Section 4, the Core engine is 

expected to provide at least authentication and secure personal data storage and access, to enforce security and 

privacy policies, and to sequence the execution of data tasks installed under the user's control. While existing work 

(e.g., relational algebra, iterator model and classical query rewriting to access data) can be reused to this end, a 

particular focus must be put on minimizing the code size and complexity such that the Core engine can be proven 

through formal methods. This leads to delegate non-critical operations to data tasks potentially based on existing 

–non proven and large– code modules or libraries, interacting with the Core without jeopardizing the global 

security of the computations. 

A modular architecture such as the one we propose allows to construct independent definitions of the security 

goals, rigorous proofs for each Core component, and rely solely on the security of the Core and on the security 

properties of the data tasks (rather than on their implementation). While such an approach is common in 

cryptographic protocol design, the complexity lies in the large amounts of data and large scale of the system 

considered here, compared to usual cryptographic protocols. The modularity of our architecture can help in solving 

these issues, as designing provably secure components allows abstracting away lower level details. A good 

example of such a modular design is the secure map-reduce framework VC3 [48] which builds on top of SGX’s 

local isolation and attestation guarantees to prove security and integrity of the whole computation. A similar 

approach could be adapted to the combination of components described in this paper. Solutions already exist to 

model the low-level properties of data tasks as described in Section 4.1 (e.g., [14, 16]), which could form a solid 

foundation for higher-level properties. 

 

Challenge 2: Controlled data sharing. Defining a well-calibrated data sharing policy, and enforcing it despite 

piracy actions, requires an expertise which is out of reach of most individuals. Of course, new data sharing and 

usage control techniques dedicated to personal cloud lay users should be invented. Although this issue is general 

and might go beyond the strict case of the PDMS context [54], a new challenge specific to the PDMS context is 

the one of making the PDMS owner able to define her own sharing policy without being forced to understand the 

underlying access control semantics. To this end, the administration of data sharing should rely on three properties: 

(i) visualization: whatever the underlying access control model, the owner should have the capacity to visualize 

the net effects of these rules and to easily adjust them if required; (ii) trusted reference monitor: the reference 

monitor logic enforcing the sharing policy must itself be understandable by the holder and the platform 

implementing this logic must be trusted by her; and (iii) zero-knowledge grants: side channels should be proscribed 

to avoid leaking personal information within authorized sets of permission. Each of these properties leads to 

specific challenges. 

Visualization. Regarding the first point, existing works like Box [34] promote the idea of letting users visualize 

the effects of their decisions before validating any sharing action. In the personal cloud context however, the 

amount of permissions can be huge. A first issue is thus to assist the holder in this validation task. A recent study 

[55] makes one step in this direction by identifying suspicious grants, thanks to ‘watchdog triggers’ comparing 

new authorizations with previous ones to identify outliers. A second issue is to help the owner regulate, and then 

visualize, the complete lifecycle of her personal data, e.g., from their capture to their dissemination, all the way to 

their deletion while the data may undergo transformations (e.g., aggregation, anonymization) at some steps of this 

lifecycle to reduce its sensitivity. Moreover, the effects of some rules are challenging to visualize (e.g., time or 

location-based contextual rules). Hence significant work remains to be done to define such friendly visualization 

tools. The challenge is important since providing a visual feedback to the individuals about the way they are 

exposed greatly helps them to adapt their behavior [5, 30]. 

Trusted reference monitor. As shown in Section 4, visualization tools only make sense if the holder can trust 

what is actually plotted. This means designing visualization tools that can be integrated in data tasks providing 

peripherals isolation, and provide to the PDMS owner means to trust the reference monitor to precisely enforce 

the effect visualized. Therefore, the reference monitor logic must be basic to be easily understood by the holder 

and must be integrated in the Core and run inside a TEE. A primary solution is to materialize all permissions by 



  

means of ACLs (i.e., user u is granted access a to resource r if (u, r, a)  ACL list), whatever the complexity of 

the underlying access control model producing these ACLs. This leads to a materialized view maintenance problem 

in the TEE and to an embedded data management problem to minimize the reference monitor overhead at data 

access time.  

Zero-knowledge grants. A third issue is to proscribe by design any side channel to be created between the 

personal cloud and a remote party. For example, a set {(u, r, a)} of authorizations could be consider acceptable by 

the PDMS owner when each triple (u, r, a) is examined individually, but may reveal unexpected sensitive 

information from the PDMS through a side channel when considered globally. For example, imagine a sharing 

model extracting from Alice’s PDMS a set of ACLs authorizing her friend Bob to access to certain photos. The set 

of photos authorized to a Bob could be legitimate when considered individually (i.e., a legitimate permission, 

granted to a legitimate subject, on a regular object), but could globally leak information about the content of Alice’s 

PDMS (e.g., the photos being ordered on size, the values of the ith pixel of each picture may be used as a side 

channel and leak the credit card number of Alice). Building on the proposed architecture, specific system data tasks 

could be imagined to circumvent such issues. Typically, verification techniques based on the replay of the data 

tasks checking the resulting permissions on a ‘what if’ basis (e.g., replay the sharing rule on a dataset of photos 

with and without the banking information) may help reveling such side channels. Of course, this problem is not 

limited to the PDMS context, but is of great importance here as data sharing decisions are made by lay users on 

the basis of their entire digital assets. 

 

Challenge 3: Secure distributed data-oriented computations using trusted execution environments. The 

personal cloud paradigm allows for novel big data applications on personal data (e.g., participatory sensing, 

epidemiological studies, personalized recommender systems, etc.). More precisely, the objective of distributed 

database computations in the PDMS context is being able to compute any function taking as inputs the private 

values of n PDMS owners without leaking any information other than the final result. This is close to the well-

known secure multiparty computation (MPC) problem. While secure distributed –personal– data processing is not 

a new issue, the architecture promoted in this paper introduces new specificities which open up to new possibilities 

but also raises new challenges. First, the PDMS architecture is distributed at the individual level and is expected 

to scale up to nationwide populations. While MPC protocols have been widely studied in cryptography, they have 

not been designed with scalability in mind and large-scale solutions exist only for a very limited set of functions 

[46]. Second, the security of the architecture we propose relies on secure hardware (or more precisely, Trusted 

Execution Environment as described in Section 4.4), which exhibit specific constraints with a potential impact on 

data management structures and algorithms, and calls for new threat models when compared to traditional MPC. 

Secure and efficient data processing in this context leads to specific challenges including the following: 

Integrity and confidentiality of generic hardware-based distributed computations. Relying on the properties of 

the proposed architecture inherited from a TEE opens up the field for generic and scalable solutions, but has major 

differences with traditional MPC. First, the adversary model is different. Traditional MPC considers an honest-

but-curious adversary model, which makes sense when the risk of being blacklisted is a strong enough deterrent 

to force the participating entities (e.g., central servers) to not deviate from the protocol. Under the assumption that 

the data tasks involved in the distributed computation are isolated thanks to TEEs, even in the presence of a curious 

or malicious PDMS owner, the data task sticks close to a fully honest behavior. A first research issue is thus to 

propose a way to map any arbitrary distributed protocol within an understandable manifest specifying the overall 

orchestration of the computation (i.e., specifying the role and privileges of each data tasks involved), and ensure 

at execution that the computation protocol is respected as stated in a manifest. This is not an easy task for several 

reasons. First, the secure execution of the distributed computation protocol may be enforced on a local correctness 

checking basis, i.e., each participant involved in the computation should be given means to check the correctness 

of the distributed protocol from its local view and be guaranteed that, if the local check is verified, the global 

output is also correct. Second, in the case of many data oriented operations (e.g., hashing or sorting as part of joins, 

group by or duplicate removal) the data flow specified between the data tasks is not deterministic and independent 

of the data content, but can lead to transferring data to a subsequent data task depending on the data value (e.g., 

Alice’s data tasks transmits data to Bob’s data task according to a hash of the data value) which may reveal personal 

information to an attacker able to observe the data exchanges. Counter measures should be thus envisioned to 

enrich the manifest, e.g., with pre-processing data sampling steps or introduction of dummy data exchanges into 

the manifest. Third, while TEEs are supposed to guarantee the confidentiality of the data task content, this security 

property cannot be considered in practice as unconditionally unbreakable. Indeed, even if secure hardware is used, 
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a fraction of the participating PDMS owners may have instrumented their PDMS platform and exploit side channel 

attacks to retrieve the content of the data tasks they are in charge of. Such attacks should be taken into account 

when building the computation manifest, to avoid letting an attacker compromise a large set of users’ privacy or 

being able to target a specific user. A new expected property should thus be introduced, called data locality, 

specifying that any information in possession of any involved data task should be as close as possible to the 

personal data contributed by the PDMS owner of that data task. This property is essential to reason about 

corruption, define relevant metrics quantifying the potential impact on data leakage of colluding participants with 

instrumented hardware, and design and integrate appropriate counter measures in the manifest to minimize the 

benefit-to-cost ratio of such attacks.  

Performance of large scale data-oriented operations under the TEE constraints. Considering the PDMS 

architecture presented in Section 4, an important challenge is obviously to investigate the use of Trusted Execution 

Environments (TEEs) available at user side (e.g., Intel SGX available in PCs, ARM TrustZone in 

smartphones/tablets and home boxes). In the database area, there is an intense research agenda on data management 

for new and/or specialized hardware [6, 35] and systems like Oracle M7 even start to provide hardware 

implementations of rich sets of database operations (SQL in silicon). But the focus is on secure centralized 

databases or on the database-as-a-service (DaaS) context. Typically, TrustedDB [15] considers a database running 

of a tamper proof dedicated secure hardware, Cypherbase [12] adjuncts a secure hardware to an SQL-Server 

database and EnclaveDB [42] considers a transactional database running inside an SGX enclave. The typical 

limitations of the cryptographic overhead of accessing persistent data outside the TEE enclave [20], the limited 

RAM amount of each TEE enclave [25], the cost of external function calls [59] and memory access overheads 

[18], may slow the computing by orders of magnitude compared to a regular environment, and have to be taken 

into account. Preliminary works in this direction try to take advantage of several Intel SGX enclaves [25, 48] to 

parallelize the processing in a secure manner. The problem mentioned above of enforcing the local correctness 

checking and leakage resilience properties hence turns the decentralized challenge itself into a performance issue. 

A precise analysis of TEEs enclaves w.r.t. data-oriented operations in a distributed context still remains to be done 

and will undoubtedly raise many interesting data management challenges. 

6. Conclusion 

The personal cloud paradigm is coming at a rapid pace. The goal is to empower individuals with their personal 

data and to unlock new usages founded on the use of their personal data under their control. The recent worldwide 

smart disclosure initiatives and privacy regulations offer great support for the personal cloud movement. However, 

the journey is not without danger and many solutions have taken a path that eventually leads to empower users in 

a way which may exacerbate privacy risks. 

A first approach was to consider that the personal cloud context could be addressed with a simple adaptation 

of classical corporate cloud techniques, hence the proliferation of online personal cloud services. This is 

unfortunately not the case. While corporate solutions address a carefully controlled set of applications and are 

tuned towards data management and security experts, the PDMS context sketches an open and rich ecosystem of 

untrusted data processing apps in interaction with an unsecure execution environment and a layman PDMS owner. 

Trying to answer the fear associated with online personal clouds, zero-knowledge and home cloud solutions 

emerged but in fact, they transformed the trust assumption in the personal cloud provider into the myth of the 

owner’s self-capacity to administer and guarantee the security of her own environment.   

Solving this issue is both a scientific, technical and societal challenge. On the scientific side, the primary 

challenge addressed to the data management and security research communities is to define and formally analyze 

a personal cloud architecture capable of combining strong expectations in terms of security with extensible data 

management capabilities covering the complete personal data life cycle. Our definition of an Extensive and Secure 

Personal Data Management System (ES-PDMS) along with a set of security properties and reference architecture 

is a first step towards this goal but many exciting research issues still need to be investigated. On the technical 

side, we have sketched different alternatives for instantiating this reference architecture into concrete platforms 

but a long road remains before achieving operational solutions exploiting the full capacity of advances in secure 

hardware. Some steps along this road are undoubtedly difficult enough to introduce new research issues on their 

own. Finally, the societal challenge is multidisciplinary: how to devise new economic models reconciling lucrative 

(or non-profit) exploitation of personal data and user’s empowerment? How to make the legislation evolve in 

relation with the evolution of PDMS architectures, notably regarding the sharing of liability between the PDMS 

provider, the application providers and the owner herself? And finally, how to convince people of the importance 



  

of all the previous questions and provide them with the right choices? Architecture also matters when devising 

solutions to these questions. It must provide formal guarantees that the interest of each party will be preserved, 

that each party will get the appropriate tools to endorse her own responsibility and finally it must be as transparent 

and friendly to use as possible. 

Hence, we believe that the personal cloud paradigm is a cornerstone of the digital evolution and that many of 

its challenges are rooted in architectural choices. Our hope is that this paper will provide a solid foundation for the 

discussions around this promising topic and lead to impactful and original research. 
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