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ABSTRACT

Aims. A fluid model is developed for multicomponent two-temperature magnetized plasmas in chemical non-equilibrium from the
partially- to fully-ionized collisional regimes. We focus on transport phenomena aiming at representing the chromosphere of the Sun.
Methods. Graille et al. [M3AS 19(04):527-599, 2009] have derived an asymptotic fluid model for multicomponent plamas from
kinetic theory, yielding a rigorous description of the dissipative effects. The governing equations and consistent transport properties are
obtained using a multiscale Chapman-Enskog perturbative solution to the Boltzmann equation based on a non-dimensional analysis.
The mass disparity between the electrons and heavy particles is accounted for, as well as the influence of the electromagnetic field. We
couple this model to the Maxwell equations for the electromagnetic field and derive the generalized Ohm’s law for multicomponent
plasmas. The model inherits a well-identified mathematical structure leading to an extended range of validity for the Sun chromosphere
conditions. We compute consistent transport properties by means of a spectral Galerkin method using the Laguerre-Sonine polynomial
approximation. Two non-vanishing polynomial terms are used when deriving the transport systems for electrons, whereas only one
term is retained for heavy particles. In a simplified framework where the plasma is fully ionized, we compare the transport properties
for the Sun chromosphere to conventional expressions for magnetized plasmas due to Braginskii, showing a good agreement between
both results.
Results. For more general partially ionized conditions, representative of the Sun chromosphere, we compute the muticomponent
transport properties corresponding to the species diffusion velocities, heavy-particle and electron heat fluxes, and viscous stress tensor
of the model, for a Helium-Hydrogen mixture in local thermodynamic equilibrium. The model is assessed for the 3D radiative
magnetohydrodynamic simulation of a pore, in the highly turbulent upper layer of the solar convective zone. The resistive term is
found to dominate mainly the dynamics of the electric field at the pore location. The battery term for heavy particles appears to be
higher at the pore location and at some intergranulation boundaries.

Key words. Sun chromosphere, multicomponent transport properties, Helium-Hydrogen mixture, magnetized plasma, partially
ionized plasma

1. Introduction

The lower atmosphere of the Sun is a complex and dynamic layer
where the plasma is found in a wide range of different regimes
– from weakly-ionized and non-magnetized at the bottom of the
photosphere to fully ionized and magnetized at the top of the
transition region. In the Sun chromosphere, the pressure varies
from a thousand pascals just above the photosphere to a few pas-
cals in the high chromosphere (1). Similarly, the magnitude of
the magnetic field is large in active regions, around thousands of
gauss in sunspots, whereas it is just a few gauss in quiet-Sun re-
gions (2). It is still nowadays a great challenge to develop a uni-
fied model that can be used for both partially- and fully-ionized
regimes under the large disparity of plasma parameters in the
chromosphere.

The study of partially-ionized plasmas in the presence of
a magnetic field, such as in prominences and the lower atmo-
sphere of the Sun, demands models that are beyond the ideal
single-fluid MagnetoHydroDynamic (MHD) description. Phe-
nomena necessary to fully understand the behavior of plasmas

in the Sun chromosphere, such as Cowling’s resistivity, thermal
conduction, heating due to ion-neutral friction, heat transfer due
to collisions, charge exchange collisions and ionization energy
losses, are usually disregarded in ideal MHD models, or only
described by means of ad-hoc terms.

Two types of fluid models to study the Sun chromosphere
are found in the literature. First, the single-fluid MHD descrip-
tion considers the plasma as a conducting fluid in the presence of
a magnetic field. It has the main drawback of assuming thermal
equilibrium conditions, where all the species are considered to
be at the same temperature. This model is assumed to be valid
in the lower Sun atmosphere, allowing us to study the formation
of magnetic field concentrations at the solar surface in sunspots,
magnetic pores, and the large-scale flow patterns associated with
them (3). It is also used for simulating the lower part of the atmo-
sphere of the Sun, e.g., incorporating subgrid-scale turbulence
models for the transport of heat and electrical resistivity (4). The
full MHD equations are solved in (5) accounting for non-grey
radiative transfer and thermal conduction outside local thermo-

Article number, page 1 of 14



A&A proofs: manuscript no. aa

dynamic equilibrium, in order to study the effects of the partial
ionization of the Sun chromosphere.

Second, multi-fluid MHD models have been used more re-
cently to represent the non-equilibrium conditions of the chro-
mosphere, based on continuity, momentum, and energy con-
servation equations for each species considered in the mixture
(6; 7; 8; 9; 10; 11). However, these models lead to very stiff sys-
tems that are difficult to solve numerically as they exhibit charac-
teristic times that range from the convective and diffusive times
of each fluid down to the collisional and chemical kinetics time
scales (8). Leake et al. (10) performed a multi-fluid simulation
of magnetic reconnection for a weakly ionized reacting plasma,
with a particular focus on the solar chromosphere, by consid-
ering collisional transport, chemical reactions between species,
as well as radiative losses. Braginskii (12) has derived rigorous
expressions for the transport properties of fully-ionized plasmas
starting from the Boltzmann equation. Khomenko et al. (7) pro-
posed a model for the description of a multi-component partially
ionized solar plasma. Deriving rigorous transport properties for
such multi-fluid model is complex, and so far, the theory has not
yet been developed to the same level of accuracy as Braginskii’s.

In this paper, we propose a novel approach for studying
the Sun chromosphere that is neither a single-fluid nor a multi-
fluid MHD model, but a multi-component drift-diffusion model
derived by Graille et al. from kinetic theory (13). This ap-
proach is able to capture most of the multi-fluid phenomena,
i.e., different velocities between species, collisional exchange of
mass momentum and energy, chemical reactions, thermal non-
equilibrium, etc. Besides, the system of equations is less stiff as it
solves for only one momentum equation, like in the single-fluid
MHD approach. The transport properties are retrieved through a
generalized Chapman-Enskog solution to the Boltzmann equa-
tion that uses a multiscale perturbation method. These develop-
ments lead to a model with an extended range of validity from
partially- to fully-ionized plasmas, with or without the pres-
ence of magnetic field. We couple this model to the Maxwell
equations for the electromagnetic field and derive the corre-
sponding generalized Ohm’s law for multicomponent plasmas.
As in Braginskii’s theory, our model includes anisotropy in the
transport properties of electrons, that is created by the magnetic
field. These properties are computed by solving for the integro-
differential systems presented by Scoggins et al. (14). We use a
spectral Galerkin method based on the Laguerre-Sonine polyno-
mial approximation previously studied in depth for various ap-
plications (15; 16; 17; 18; 19; 20; 21; 22). The transport sys-
tems are implemented in the Mutation++ library that compiles
state-of-the-art transport collision integral data for the different
pairs of species in the mixture (23). In a simplified framework
where the plasma is fully ionized, we compare the transport
properties for the Sun chromosphere to the conventional expres-
sions for magnetized plasmas due to Braginskii. For more gen-
eral partially ionized conditions representative of the Sun chro-
mosphere, we compute the muticomponent transport properties
corresponding to the species diffusion velocities, heavy-particle
and electron heat fluxes, and viscous stress tensor, for a Helium-
Hydrogen mixture in local thermodynamic equilibrium. Finally,
the model is assessed for the 3D radiative magnetohydrodynamic
simulation of a pore, in the highly turbulent upper layer of the so-
lar convective zone. We compute the thermal conductivity, elec-
trical conductivity, species diffusion coefficients, and the com-
ponents of the generalized Ohm’s law and conclude on the im-
portance of the contribution of its components, in particular, of
the resistive and battery terms.

The structure of the paper is as follows. In section 2, the non-
dimensonal analysis used for the generalized Chapman-Enskog
expansion is presented, together with the multi-component drift-
diffusion model for two-temperature magnetized plasmas, the
transport fluxes, and the generalized Ohm law. In section 3, one
describes the mixture considered, the conditions representative
of the Sun chromosphere and the method used for computing the
transport properties. In section 4, we verify the model proposed
on a fully-ionized case by comparing the results with those ob-
tained by means of Braginskii’s theory. Finally, in section 5, we
discuss all the transport properties for a partially ionized case.
Additionally, we compute the transport properties and the com-
ponents of the generalized Ohm’s law for 3D radiative MHD
simulations of a pore in the low Sun atmosphere.

2. Drift-diffusion model for multicomponent
plasmas

In this section, we present the multi-component drift-diffusion
model for two-temperature magnetized plasmas. It was derived
from kinetic theory by Graille et al. (13) as a generalized
Chapman-Enskog solution to the Boltzmann equation, using a
multi-scale perturbation method based on a non-dimensional
analysis. Additionally, we compare this model to the multi-fluid
description widely used for the Sun chromosphere.

2.1. Multi-scale analysis of the Boltzmann equation

We consider a multicomponent plasma composed of electrons,
denoted here by the index e, and heavy-particles (atoms and
molecules, neutral or ionized), denoted the subscript h. The
species are assumed to be point particles, neglecting their inter-
nal energy. We combine the equations derived in (13; 24) for the
fully magnetized case and the Maxwellian regime for reactive
collisions.

In order to apply the Chapman-Enskog method, Graille et
al. (13) perform a multi-scale analysis on the non-dimensional
Boltzmann equations for electrons and heavy species. The or-
der of magnitude of the different terms in the Boltzmann equa-
tion is studied by choosing carefully reference quantities. In the
asymptotic fluid limit, the Knudsen number is assumed to be of
the same order of magnitude of the square root of the mass ratio
between electrons and heavy particles, defined as ε =

√
me/mh,

where me and mh are the mass of electrons and heavy parti-
cles respectively. This small parameter drives thermal nonequi-
librium between the electron and heavy-particle baths. In the
strongly magnetized regime, the Hall parameter is assumed to
scale as ε0 = 1. The species distribution functions are expanded
in the multiscale perturbation parameter ε following Enskog’s
approach. As opposed to Braginskii, no assumption is made a
priori on the zero-order distribution function. The asymptotic
analysis of the Boltzmann equation is performed at successive
orders of ε. The main results occurring at different time-scales
are summarized in Table 1.

In time scales of order t∗e , the electron population thermal-
ize at the temperature Te. The electron distribution function is
a Maxwell-Boltzmann distribution obtained by solving the elec-
tron Boltzmann equation at the order ε−2. At order ε−1 that cor-
responds to the time scale t∗

h
, heavy particles thermalize at tem-

perature Th. At the zeroth order ε0 that corresponds to the con-
vective time scales, Euler equations for heavy particles and zero-
order drift-diffusion equations for electrons are obtained. Finally,
at order ε, corresponding to the diffusive time scale, we ob-
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Table 1. Time scales hierarchy and macroscopic equations derived us-
ing the Chapman-Enskog method (13)

Order Time Heavy particles Electrons

ε−2 t∗e Thermalization at Te

ε−1 t∗
h

Thermalization at Th

ε0 t∗ Euler 0th-order drift-diffusion

ε t∗/ε Navier-Stokes 1st-order drift-diffusion

tain Navier-Stokes equations for heavy particles and first-order
drift-diffusion equations for electrons. It is important to men-
tion that in Braginskii’s approach, the macroscopic equations are
retrieved by taking moments of the Boltzmann equation by as-
suming directly that the zero-order Maxwell-Boltzmann distri-
butions. Only a correct scaling deduced from dimensional anal-
ysis can yield a sound multicomponent treatment.

2.2. Multi-component equations

We denote by symbol H the set of indices for the heavy particles
of the mixture considered. First, the mass conservation equations
for electron and heavy particles are, as follows,

∂tρe + ∂x·
[
ρe(vh + Ve )

]
= ωe, (1)

∂tρi + ∂x·
[
ρi(vh + Vi )

]
= ωi, i ∈ H. (2)

Here, ρe is the density of electron, ρi is the density of heavy par-
ticle i ∈ H, vh is the heavy particle hydrodynamic velocity that
has been chosen as the velocity reference frame, Ve is the elec-
tron diffusion velocity, Vi , i ∈ H is the heavy diffusion velocity
of heavy particle i in the heavy hydrodynamic reference frame,
such that

∑
i∈H ρiVi = 0. Quantities ωe and ωi, with i ∈ H, are re-

spectively the chemical production rates of electrons and heavy
particles.

Second, the one momentum equation Eq. (3) for all the par-
ticles within plasma is

∂t(ρhvh) + ∂x·
[
ρhvh⊗vh + pI

]
= −∂x·Πh + nqE + I∧B. (3)

Here, p = pe + ph is the total pressure which is the sum of the
partial pressure of electron pe and heavy particle ph, Πh is the
viscous stress tensor. ρh is the total density of heavy particles,
where n = ne + nh is the density (ne the number of electron and
nh the total number of heavy particle per unit of volume). nq is
the total charge of the system defined by nq = neqe +

∑
i∈H niqi,

E is the electric field, and I is the total current density defined as

I = nqvh + Je + Jh = nqvh + neqeVe +
∑
i∈H

niqiVi , (4)

where Jh is the heavy-particle conduction current density, Je is
the electron conduction current density, I is the total current den-
sity, and B is the magnetic field.

Third, the two equations (5) and (6) for the thermal energies
of electrons and heavy particles are

∂t(ρeee) + ∂x·
[
ρeeevh

]
+ pe∂x·vh+

∂x·qe = Je·E′ −∆E0
h −∆E1

h + Ωe, (5)

∂t(ρheh) + ∂x·
[
ρhehvh

]
+ (phI +Πh):∂xvh+

∂x·qh = Jh·E′ + ∆E0
h + ∆E1

h + Ωh, (6)

where ρeee and ρheh are the internal energies of electron and
heavy-particles respectively, and qe and qh are the electron and
heavy particle heat flux, respectively. E′ = E + vh∧B is the elec-
tric field in the heavy particle reference france, ∆E0

h
and ∆E1

h

are the relaxation terms at order ε0 and ε, respectively. Jh·E′
and Je·E′ are respectively the power that is developed by the
heavy particle and electron current density, and Ωe and Ωh are
respectively the energy production rate for electrons and heavy
particles.

By summing the equations of internal energies, i.e., Eq. (5)
and Eq. 6, and the equation of kinetic energy, the equation of
total energy can be obtained, as follows,

∂tE + ∂x·
[
(E + p) vh

]
+ ∂x·(Πh·vh) + ∂x·

(
qe + qh

)
= I·E, (7)

where E = ρeee + ρheh + 1/2ρhv2
h
, I·E is the power developed by

the electromagnetic field.
The system of equations (1,2,3,5,6,7) is coupled to the set of

Maxwell’s equations (8) :

∂x·E =
nq

ε0
,

∂x·B = 0,
∂t B = −∂x∧E,
∂x∧B = µ0I + µ0ε0∂t E

(8)

where ε0 is the vacuum permittivity and µ0 the vacuum perme-
ability.

The electron transport fluxes such as the electron diffusion
velocity Ve , the electron heat flux qe, the electron current density
Je are composed of two terms: 1- a term at the convective time
scale, at order ε0, corresponding to the Euler equations for heavy
species, and 2- a term which is a first order correction, at order ε,
at the dissipative time scale corresponding to the Navier-Stokes
equations for heavy species.

Similarly, the heavy transport fluxes such as the heavy-
particle diffusion velocity Vi , i ∈ H, the heavy-particle heat flux
qh, the viscous stress tensor Πh, the heavy particle current den-
sity Jh are defined at the dissipative time scale, at the order ε
of the generalized Chapman-Enskog expansion. In (13), the mo-
mentum equation for electrons is vanishing in the generalized
Chapman-Enskog expansion, due to the nondimensional analy-
sis. Electrons do participate in the momentum balance through
the total pressure gradient and Lorentz force. Besides, electrons
do not participate in the stress tensor due to the small mass dis-
parity between electrons and heavy particles.

The governing equations (1,2,3,5,6,7,8) differ from the
multi-fluid models used for partially ionized plasmas. Whereas
multi-fluid models consider one hydrodynamic velocity for each
species, here we consider one hydrodynamic velocity for the
heavy species while each species diffuse in this reference frame.

In addition, the structure of the governing equations is sym-
metrizable hyperbolic, which can be regarded as an important
property for the numerical discretization of the system. Nev-
ertheless, it is necessary to close the model by computing the
transport properties. This computation is presented in section 5
for a Helium-Hydrogen mixture. Additionally, by using the def-
inition of the total current density I and the Maxwell equations
(8), a generalized Ohm’s law for this particular model is derived
in Section 2.5.

2.3. Transport fluxes for heavy particles

With the same formalism that is used in Graille et al. (13), we
introduce some extra notations in order to express the anisotropic
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transport properties in the presence of a magnetic field. First, a
unit vector for the magnetic field B = B/|B| is defined and also
three direction matrices

M‖ = B⊗B, M⊥ = I −B⊗B, M� =

 0 −B3 B2
B3 0 −B1
−B2 B1 0


so that we have for any vector x in three dimensions

x‖ = M‖x = x·B B, x⊥ = M⊥x = x − x·B B,

x� = M�x = B∧x.

In the (x,B) plane, the vector x‖ is the component of x that is
parallel to the magnetic field and x⊥ is the perpendicular compo-
nent. Therefore, we have x = x‖ + x⊥. The vector x� lies in the
direction transverse to the (x,B) plane. The three vectors x‖, x⊥,
and x� are then mutually orthogonal. The anisotropic transport
coefficients are expressed by means of the matrix notation

¯̄µ = µ‖M‖ + µ⊥M⊥ + µ�M� (9)

If the transport coefficients are identical in the parallel and per-
pendicular directions, µ‖ = µ⊥, and vanish in the transverse di-
rection, µ� = 0 an isotropic system is obtained.
In the governing equations presented in section (2.2), the heavy
particle transport fluxes are

Πh, Vi , i ∈ H, qh.

First, the viscous stress tensorΠh is defined as

Πh = −ηh

([
∂xvh + (∂xvh)>

]
−

2
3

(
∂x·vh

)
I

)
, (10)

where ηh is the viscosity of heavy particles. Then, the heavy par-
ticle diffusion velocity Vi , i ∈ H is defined as

Vi = −
∑
j∈H

Di j

(
d j + χh j∂xlnTh

)
, i ∈ H, (11)

where Di j is the multicomponent diffusion coefficient of heavy
particles, d j is the diffusion driving force of the particle j ∈ H
that is interacting with the heavy particle i ∈ H, and χh j, j ∈ H is
the heavy thermal diffusion ratio. The diffusion driving force d j
is defined as

d j =
1
ph

(
∂x p j − n jq jE′ − n jF je

)
, j ∈ H. (12)

The latter is composed of three forces: 1- the force due to the
gradient of the partial pressure ∂x p j, j ∈ H, 2- the Lorentz force
and 3- F je, j ∈ H that is an average electron forces acting on the
heavy particle j. F je belongs to the category of diffusion driving
forces and allows for a coupling between the heavy particles and
electrons (13). This average force is defined as

F je = −
pe
n j

¯̄αe jde −
pe
n j

¯̄χe j∂xlnTe, j ∈ H. (13)

where ¯̄αe j, j ∈ H and ¯̄χe j, j ∈ H are anisotropic transport coeffi-
cients. Finally, the heavy particle heat flux reads

qh = −λh∂xTh + ph
∑
j∈h

χh jVj +
∑
j∈H

ρ jh jVj (14)

where λh is the heavy thermal conductivity and ρ jh j is the
enthalpy of heavy particle j ∈ H. The second term of Eq. (14)

can be seen as a friction term between the species i and j.

In the previous transport fluxes, some of the usual terms can
be identified. The viscous stress tensor for heavy particles Eq.
(10) is proportional to the strain tensor. Similarly, the first term
of Vi in Eq. (11) is a generalized Fick’s law where the flux is
proportional to the diffusion driving force d j, j ∈ H. Also, the
first term of the heavy particle heat flux qh in Eq. (14) is the usual
Fourier’s law. Besides, Vi includes a term that is proportional to
∂xlnTh. This term is known as the Soret effect, highly described
in (18).

In summary, the transport coefficients for heavy particles to
be computed in the following sectionss are

ηh, Di j, χh j, λh, i, j ∈ H.

In addition, the anisotropic transport coefficients associated to
the coupling terms between electron and heavy particles are

¯̄αe j, ¯̄χe j, j ∈ H.

2.4. Transport fluxes for electrons

The electron transport fluxes are

Ve and qe.
The electron diffusion velocity is defined as

Ve = − ¯̄De
(
de + ¯̄χe∂xlnTe

)
+

∑
i∈H

¯̄αeiVi , (15)

where ¯̄De is the tensor of the diffusion coefficient of electrons, de
is the electron diffusion driving force and ¯̄χe is the electron ther-
mal diffusion ratio. The electron diffusion velocity Ve is splitted
into two terms : 1- the terms proportional to de and to ∂xlnTe are
at order ε0, at the heavy particle convective timescale and 2- the
terms proportional to Vi , i ∈ H are at order ε at the heavy parti-
cle dissipative timescale. The electron diffusion driving force is
defined as

de =
1
pe

(
∂x pe − neqeE′

)
. (16)

The latter is composed of two forces: 1- the force due to the gra-
dient of the partial pressure of electron ∂x pe and 2- the Lorentz
force. The electron heat flux reads :

qe = − ¯̄λe∂xTe +
(
pe ¯̄χe + ρehe

)
Ve

+ pe
∑
j∈H

¯̄χe jVj + ρehe
∑
j∈H

¯̄αe jVj (17)

where ¯̄λe is the electron thermal conductivity tensor and ρehe is
the enthalpy of electrons. qe is split into two terms : 1- the terms
proportional to ∂xTe and Ve are at the heavy particle convective
timescale, and 2- the terms proportional to Vi , i ∈ H that are at
the heavy particle dissipative timescale.

As in the heavy species transport properties, some usual
terms can be identified,i.e, Fick’s and Fourier’s law. Addition-
ally, terms that couple to the heavy particles diffusion are present
at the first order of the generalized Chapman-Enskog expansion.

In summary, the anisotropic transport coefficients associated
to the transport fluxes for electrons are

¯̄De, ¯̄χe, ¯̄λe.

In this section, a list of the transport fluxes and the corre-
sponding transport coefficients has been presented. The method
used for computing the latter will be presented in the next section
3.
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2.5. Generalized Ohm’s law

In the following, we derive a general expression for the Ohm’s
law in the previous set of governing equations (1)-(8). In order
to do that, we rewrite the expression of the electric current by
grouping the terms in each driving forces. By doing this, we ob-
tain a general algebraic expression for the electric field E as a
function of the transport coefficients and the corresponding driv-
ing forces.

With the electron diffusion velocity (Eq. (16)) and the heavy
particle diffusion velocity (Eq. (11)) we find the total current I
as follows

I = nqvh +
(neqe)2

pe
¯̄ME′E′ − neqe

[
¯̄Mpe
∂x pe

pe

+
∑
j∈H

¯̄Mp j

∂x p j

ph
+ ¯̄MTe∂xlnTe + ¯̄MTh∂xlnTh

]
(18)

where the multicomponent electromagnetic matrices ¯̄M are de-
fined as:

¯̄ME′ =
pe
ph

∑
i∈H

¯̄ξei

∑
j∈H

Di j
¯̄ξe j

 + ¯̄De

 , (19)

¯̄Mpe =
pe
ph

∑
i∈H

¯̄ξei

∑
j∈H

Di j
¯̄αe j

 + ¯̄De

 , (20)

¯̄Mp j =
∑
i∈H

¯̄ξeiDi j, j ∈ H, (21)

¯̄MTe =
pe
ph

∑
i∈H

¯̄ξei

∑
j∈H

Di j
¯̄χe j

 + ¯̄De ¯̄χe

 , (22)

¯̄MTh =

∑
i∈H

¯̄ξei

∑
j∈H

Di jχh j


 , (23)

and the tensor ¯̄ξei is defined as

¯̄ξei =
niqi

neqe
I + ¯̄αei, i ∈ H. (24)

Using Ampere’s law, the general expression of the electric
field is obtained

E′ = ¯̄M−1
E′

[
pe

(neqe)2

(
Je + Jh

)
+

pe
neqe

( ¯̄Mpe
∂x pe

pe
+

∑
j∈H

¯̄Mp j

∂x p j

ph

+ ¯̄MTe∂xlnTe + ¯̄MTh∂xlnTh
)]

(25)

The expression of the multicomponent electromagnetic matrices
¯̄ME′ ,

¯̄Mpe ,
¯̄MTe ,

¯̄MTh ,
¯̄Mp j j ∈ H can be subdivided into two terms:

1) a term which depend on the coupled heavy particle-electron
transport properties, such as ¯̄αe j, ¯̄χe j,Di j, χh j i, j ∈ H, which
scales at the dissipative timescale for the heavy particles at order
ε, and 2) a term which depend only on the electron transport
properties ¯̄De, ¯̄χe, which scales at the convective timescale for
the heavy particles at order ε0.

Some usual terms can be identified in the general expression
of the electric field Eq. (25). The first term of Eq. (25) is the
resistive term, where the expression of the resistivity tensor is
defined as

¯̄ηe =
pe

(neqe)2
¯̄M−1

E′ . (26)

The second term and third term of Eq. (25), can be identified as
a general expression of the battery term for a multicomponent
plasma due to the pressure gradients of electrons and heavy par-
ticles. The fourth and last term of Eq. (25) are additional terms
due to the presence of Soret/Dufour terms in the equations of the
diffusion velocities Eq. (11) and Eq. (16).

In Appendix B, a simplified fully ionized plasma case has
been considered which leads to a simplified expression for the
expression of the electric field. In this case, the multicomponent
electromagnetic matrices can be simplified, and the usual
expression of the electric field and magnetic induction equation
are retrieved (see in Appendix B).

3. Methodology

For the purpose of the work, a Helium-Hydrogen mixture, com-
posed of 92% of Hydrogen and 8% of Helium which is typical
in the Sun atmosphere (25), is considered, as follows

S 1 = {He, He+, H, H2, He++, H+, e−}. (27)

The heavy species such as carbon, oxygen or metals are not con-
sidered. We assume that they do not impact the transport prop-
erties as they are trace elements, i.e., the mole fractions are very
small.

We study the transport coefficients for the previous mixture
within a range of temperature, pressure, and magnetic field that
are typical of the chromosphere (1; 26): the temperature varies
from 1000 K to 30000 K, the pressure from 1 Pa to 104 Pa, and
the magnetic field from a few Gauss to thousands of Gauss (2).
In the following, the plasma beta parameter is defined as βp =

2µ0 p/|B|2, where p is the total pressure of the plasma in Pascal
and |B| is the magnetic field in Tesla.

Consequently, for a range of temperature between 1000 K
and 30000 K, two cases have been considered. The case A,
where the total pressure is p = 104 Pa, and βp = 10, which
represents typical conditions of the bottom of the photosphere.
The case B, where the total pressure is p = 1 Pa, and βp = 0.1,
representing a magnetized region of the upper chromosphere.

Based on the chosen conditions, we compute the thermo-
chemical equilibrium composition. The mole fraction and the
ionization degree of the Helium-Hydrogen mixture S 1 for the
case A and case B are shown in Fig. 1, Fig. 2 and Fig. 3. These
results are obtained with a method that is based on the mini-
mization of the Gibbs free energy with suitable mass balance
constraints (27) in thermal equilibrium. The compositions that
are shown in Figs. 1 and 2 will be used to study the transport
properties in the following sections.

The calculation of the transport coefficients is based on the
solution of integro-differential equations. In order to solve these
equations, the spectral Galerkin method is applied. This method
expands the coefficients in a series of orthogonal Laguerre-
Sonine polynomials that are truncated at a given order of ap-
proximation. The calculation is thus reduced to a linear alge-
braic system of equations. As a result, the transport coefficients
can be obtained by the resolution of determinants that are known
functions of the macroscopic parameters, i.e., the field variables
and the collision integrals between particles. The solution of
these systems allows for the transport coefficients to be writ-
ten as linear combinations of the collision integrals, which take
into account the interaction potential for a collision between
two particles. These linear combinations are derived by extend-
ing the definition and the calculation of bracket integrals intro-
duced by Ferziger and Kapper (16) or in (17; 19; 28) to the
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Fig. 1. Mole fraction of the Helium-Hydrogen mixture S 1, for P = 104

Pa (case A), as a function of temperature

Fig. 2. Mole fraction of the Helium-Hydrogen mixture S 1, for P = 1 Pa
(case A), as a function of temperature

Fig. 3. Ionization degree of S 1, for case A and case B as function of the
temperature. Case A in full line, case B in dashed line

thermal nonequilibrium case, studied in depth by Kolesnikov
(29). According to Magin & Degrez (20), Kolesnikov (29) and
Tirsky (30), the transport coefficients involving collisions be-
tween heavy particles and electrons converge for expansions in
second order non vanishing Laguerre-Sonine polynomials and
higher. In this work, we use the third order Laguerre Sonine
polynomials approximation in order to compute the transport
properties. This method has been widely used in the literature
(e.g., (15; 17; 18; 19; 28; 22)).

The explicit relations for ¯̄αe j, ¯̄χe j, with j ∈ H and ¯̄De, ¯̄χe, ¯̄λe
in terms of the solutions to the transport systems can be found
in Scoggins et al. (14). The heavy particle transport systems for
ηh,Di j, χh j, λh, with i, j ∈ H are found in Magin & Degrez (18)
with the difference that the mole fractions are given in terms of
heavy species only, excluding electrons.

4. Verification of the method in a fully ionized
plasma case S2

In order to verify the presented method, we perform a compari-
son with Braginskii’s transport properties. In Braginskii (12), the
method that is used for the computation of the transport prop-
erties as well as the derivation of the governing equations are
identified and valid only for fully ionized plasmas. The objective
is to validate the method that is used for the computation of the
transport properties.

As it can be seen in Fig. 3, the Helium-Hydrogen mixture
S 1 can be considered to be fully-ionized, mainly composed of
S 2 = {H+, e−}, when the temperature is higher than 15000 K.
The comparison will be thus performed in conditions where the
mixture is S 2 in a range of temperatures from T = 15000 K to
T = 30000 K for the case A and case B. To illustrate the com-
parison, we focus on the properties λ‖e, λ⊥e , ηh and λh, although
the rest of preperties show similar behaviour.

On the one hand, in (12), the derivation of the governing
equations can be summarized in three main steps: 1- A fully ion-
ized ion-electron plasma is considered in a constant magnetic
field, 2- The Landau collision operators are used, simplified by
the Lorentz process, and 3- an adapted Chapman-Enskog method
is used based on the square root of the mass ratio between elec-
tron and ions (28). On the other hand, in Graille et al. (13), a
general multicomponent plasma that can be partially or fully ion-
ized is considered in a constant magnetic field, the Chapman and
Cowling collision operators highly studied in (16; 17) are used
and the Chapman-Enskog expansion is performed after a non-
dimensional analysis of the Boltzmann equation. Finally, the two
methods lead to distinct governing equations.

Although the governing equations between the two models
are different, the integro-differential systems for computing the
transport properties are similar or even identical in the case of
a fully ionized plasma. As a matter of fact, in both models, the
anisotropic electron transport properties have the same integro-
differential systems. However, only the integro-differential sys-
tems related to the parallel component of the heavy particle
transport properties are identical to those from the model derived
by Graille et al. (13). Consequently, only the parallel component
of the heavy particle transport properties can be compared with
those from the model of Graille et al (13). This is due to the fact
that both models are based on the Chapman-Enskog expansion.
However, the differences result from the scale analysis from the
Boltzmann equation that is carried out by Graille et al. (13) be-
fore applying the expansion.
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In both models, the transport coefficients are expanded in
a series of orthogonal Laguerre-Sonine polynomials. The latter
are written as linear combinations of collision integrals that are
simplified by potential interactions, based on the usual Coulomb
interaction cut-off at the Debye-length. This approximation as-
sumes collisions with large impact parameters and small scatter-
ing angles. However, in Braginskii (12), the series are truncated
at the second order approximation (28) whereas a third order
approximation has been performed in the case of the presented
model. The expression of the transport coefficients depends on
the mean collision times τ̄e and τ̄h defined as

τ̄e =
3m∗e

2ε0
2

nhqe
4 log(Λ)

(
2πkBTe
qe

2ne

) 3
2

, τ̄h =

√
2m∗
h

m∗e

(
Th
Te

) 3
2

Z−2τ̄e,

(28)

where log(Λ) is the Coulomb logarithm defined by Spitzer (31),
and Z is the charge number. The mean collision times as de-
fined in Eq.(28), can be seen as a first order Chapman Cowling
approximation of the collision time for electron/ion and ion/ion
collisions (17). Correction terms depending on Z are used for the
computation of the transport coefficients. This method leads to
simplified expressions of the transport coefficients that depend
only on the mean collision times and the charge number of the
fully ionized plasma considered (28; 17).

In Braginskii (12), the parallel and perpendicular compo-
nents of the electron thermal conductivity tensor are defined as

λ‖e :=
Br

nek2
BTe

m∗e
τ̄e [3.16] , (29)

λ⊥e :=
Br

nek2
BTe

m∗e
τ̄e

[
4.664x2 + 11.92

x4 + 14.79x2 + 3.77

]
, (30)

where Br denotes the computation of the transport coefficient as
dervied by Braginskii (12). x = ωeτ̄e and ωe = qeB/m∗e and the
values in brackets correspond to Braginskii’s coefficients for a
charge number Z = 1.

Fig. 4 and Fig. 5 show the parallel and perpendicular com-
ponent of the electron thermal conductivity tensor ¯̄λe, as func-
tion of the temperature, for the case A and the case B, for the
fully ionized plasma S 2. Here, we compare the expressions from
Braginskii Eq. (29) and Eq. (30) with those that are given by
Scoggins (14) that are based on a third order Laguerre-Sonine
polynomials approximation.

Strong similarities are obtained in all the considered cases. In
Braginskii (12), the components of the electron thermal conduc-
tivity tensor are underestimated leading to differences that are
less than 20%. These differences are increasing at high tempera-
tures. Similar results have been obtained for all the other electron
transport properties.

Similarly, the parallel component of the heavy thermal con-
ductivity and of the heavy particle viscosity of the model of Bra-
ginskii (12), have been compared with the expression from (14)
and (20). In Braginksii (12), the heavy thermal conductivity and
heavy particle viscosity are defined as

λ‖
h

:=
Br
nhk2

BThτ̄h [3.91] , (31)

η‖
h

:=
Br
nhkBThτ̄h [0.96] . (32)

Fig. 6 and Fig. 7 show the heavy thermal conductivity λh and
the heavy particle viscosity ηh respectively, in the same condi-
tions as in Fig. 4 and Fig. 5.

Fig. 4. Parallel component of the electron thermal conductivity tensor λ‖e
for a fully ionized plasma S 2, as function of temperature: Dashed lines
and full lines correspond to the transport coefficient from the model
of Braginskii (12), and from Graille et al. (13) respectively. Bold lines
correspond to the case A, the other lines correspond to the case B

Fig. 5. Perpendicular component of the electron thermal conductivity
tensor λ⊥e for a fully ionized plasma S 2, as function of temperature:
Dashed lines and full lines correspond to the transport coefficient from
the model of Braginskii (12), and from Graille et al. (13) respectively.
Bold lines correspond to the case A, the other lines correspond to the
case B

As it was seen before, strong similarities have been obtained
in all the considered cases for the chosen conditions, which leads
to differences that are smaller than 20%. In addition, it can be
shown that the heavy transport properties from (12) are isotropic
at the chosen conditions.

In summary, we can conclude that the proposed method is
verified for the fully ionized case. The main differences that are
obtained between the two models are due to 1-the order of La-
guerre Sonine polynomials that was used, i.e., second order in
Braginskii’s model (28) and third order in the proposed method,
and 2- the nature of the collision operators used, Landau col-
lision operators in the model of Braginskii and Chapman and
Cowling collision operators in the model of Graille et al. (13).
Additionally, the formulation of the transport properties that are
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Fig. 6. Heavy thermal conductivity λh for a fully ionized plasma S 2, as
function of temperature: Dashed lines and full lines correspond to the
transport coefficient from the model of Braginskii(12), and from Graille
et al. (13) respectively. Bold lines correspond to the case A, the other
lines correspond to the case B

Fig. 7. Heavy particle viscosity ηh for a fully ionized plasma S 2, as
function of temperature: Dashed lines and full lines correspond to the
transport coefficient from the model of Braginskii(12), and from Graille
et al. (13) respectively. Bold lines correspond to the case A, the other
lines correspond to the case B

considered in this paper are generalized for any type of partially
ionized mixture.

5. Transport properties for a partially ionized
Helium-Hydrogen plasma

5.1. Transport fluxes in thermo-chemical equilibrium

In order to simplify the analysis of the presented transport sys-
tems, we consider thermochemical equilibrium Te = Th = T ,
isobaric mixtures at rest. The total heat flux is entirely a func-
tion of the temperature gradient and magnetic field and may be
written as

qh + qe = −
(
λh + ¯̄λe + ¯̄λS + ¯̄λR

)
∂xT, (33)

Fig. 8. Components of the electron thermal conductivity tensor ¯̄λe for
the isotropic case A, at the third order Laguerre Sonine polynomials,
for the Helium-Hydrogen mixture S 1 as a function of temperature

where the Soret and reactive thermal conductivities may be writ-
ten as

¯̄λS = −pe ¯̄χeθe −
∑
j∈H

[
phχh j + pe ¯̄χe

]
θi, (34)

¯̄λR = −ρeheθe −
∑
j∈H

[
ρ jh j + ρehe ¯̄αe j

]
θ j. (35)

where θe and θi, i ∈ H are defined as

θe = − ¯̄De

[
1
xe

∂xe
∂T

+
¯̄χe
T

]
, (36)

θi =
∑
j∈H

Di j

[
1

1 − xe

(
∂xi

∂T
+
∂xe
∂T

¯̄αe j

)
+
χh j

T
+

pe
ph

¯̄χe j
T

]
, i ∈ H.

(37)

Where θe and θi, i ∈ H correspond to diffusion velocities for a
temperature gradient of 1, i.e, Ve = θe∂xT and Vi = θi∂xT . Us-
ing the Mutation++ library (23), we compute all the transport
properties for the Helium-Hydrogen mixture S 1 for case A, i.e.,
weakly magnetized, and case B (magnetized case).

Fig. 8 and Fig. 9 present the parallel, perpendicular and trans-
verse components of the electron thermal conductivity tensor ¯̄λe
as a function of the temperature, for both cases. According to
Fig. 8 (case A), the perpendicular component is equal to the par-
allel component for the entire range of temperatures, i.e, the elec-
tron thermal conductivity is isotropic. Indeed, the pressure forces
are dominating the magnetic pressure forces, so the plasma is
unmagnetized. On the other hand, in Fig. 9 (case B), for higher
temperatures than T = 5000 K, the electron thermal conductivity
¯̄λe is anisotropic since the magnitude of magnetic field is higher.
This results in a transverse component that is higher than the per-
pendicular component of ¯̄λe. Similar results have been obtained
for the other anisotropic electron transport properties such as ¯̄De
and ¯̄χe.

Fig. 10 shows the heavy particle thermal conductivity λh as
a function of the temperature, for the case A and case B. In Fig.
10, strong differences between the two cases for a temperature
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Fig. 9. Components of the electron thermal conductivity tensor ¯̄λe for
the anisotropic case B, at the third order Laguerre Sonine polynomials,
for the Helium-Hydrogen mixture S 1 as a function of the temperature

Fig. 10. Heavy thermal conductivity λh, at the third order of Laguerre
Sonine approximation, for case A and case B, for the Helium-Hydrogen
mixture S 1 as a function of temperature

higher than 6000 K can be seen. In the case A, λh increases from
1000 K to 9000 K, which is expected since λh is an increasing
function of the temperature. However, in the case A after 9000
K, λh decreases. This decrease is due to the ionization of the hy-
drogen. Indeed, the heavy particle thermal conductivity is related
to a combination of the cross sections variations of all the heavy
species in the mixture, which are proportional to the mole frac-
tions of each heavy particles. This result is coherent with Fig.
1, which shows that the mole fraction of H is decreasing after
9000 K. Similar behavior as the case A have been observed for
the case B, except that the ionization of H starts at 6000 K for
this pressure. In Fig. 10, the second modulation observed around
12000 K is due to the ionization of the Helium as shown in Fig.
2.

Fig. 11 shows the components of the total heat flux (Eq. 33)
as a function of the temperature, for the isotropic case A. It is
clear that the reactive thermal conductivity λ‖R is higher than
the other components for certain ranges of temperature between
2200 K and 4300 K and for temperature higher than 10000 K.

Fig. 11. Component of the total heat flux (33) as a function of the tem-
perature for the isotropic case A for the Helium-Hydrogen mixture S 1

Fig. 12. Parallel component of the electron-heavy particle transport co-
efficient α‖

e j, j ∈ {He,He+,H,H2,He++,H+}, for the isotropic case A,
for the Helium-Hydrogen mixture S 1

The heavy thermal conductivity λh is the second term which
dominates the total heat flux, and is higher than λ‖R for a range
of temperature between 4200 K and 10000 K. The results here
obtained are consistent with those of Scoggins et al. (14).

Fig. 12 and Fig. 13 show the parallel component of each
term of the electron-heavy particle transport coefficients α‖

e j, j ∈
{He,He+,H,H2,He++,H+}, as a function of the temperature, for
the case A and case B. As before, each term of the electron-
heavy particle transport tensor α‖

e j, is proportional to the mole
fraction.

5.2. Transport properties in a pore in the low Sun
chromosphere

As done in the previous section, the transport coefficients of the
previous Helium-Hydrogen mixture are computed for the condi-
tions found in the upper layer of the solar convective zone from
the radiative 3D MHD simulations of a pore by Kitiashvili et al.
(32). The simulation results are obtained for the computational
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Fig. 13. Parallel component of the electron-heavy particle transport co-
efficient α‖

e j, j ∈ {He,He+,H,H2,He++,H+}, for the anisotropic case B,
for the Helium-Hydrogen mixture S 1

Fig. 14. Plasma beta coefficient βp distribution from the radiative 3D
MHD simulations of a pore by Kitiashvili et al.(32)

domain of 6.4 × 6.4 × 5.5 Mm with the grid sizes: 50 × 50 × 43
km, 25 × 25 × 21.7 km and 12.5 × 12.5 × 11 km (1282 × 127,
2562 × 253 and 5122 × 505 mesh points). The domain includes
a top, 5 Mm-deep, layer of the convective zone and the low Sun
chromosphere. A thermal equilibrium case Te = Th has been
considered for the computation of the transport coefficients.

Figs.14, 15, and Fig.(16) show snapshots of the distribution
of the plasma beta parameter βp, temperature T , and total den-
sity, respectively. As it can be seen, the temperature is varying
from 4000 K to 6500 K, the plasma beta parameter is vary-
ing on a large range of magnitude, from weakly- to strongly-
magnetized. In the snapshot of the simulation, a characteristic
granulation pattern with the relatively hot (T > 5500 K) and less
dense upflowing weakly-magnetized plasma in the middle of the
granular cells can be observed. In addition, the lower temper-
ature (T < 4500 K) and higher density downflowing strongly-
magnetized plasma at the intergranulation boundaries can be
perceived (red lines of granulation). A strongly-magnetized cold
plasma can be seen in the middle of the snapshot.

Fig. 15. Temperature (K) distribution from the radiative 3D MHD sim-
ulations of a pore by Kitiashvili et al.(32)

Fig. 16. Total density (kg.m−3) distribution from the radiative 3D MHD
simulations of a pore by Kitiashvili et al.(32)

Figs. 17, 18, 19, and 20 present the distribution of the heavy
particle heat flux λh|∂xT |, the ratio λ‖e/λ⊥e , λ‖R/λh, and λ‖e/λh, re-
spectively. Fig. 18 shows that the electron thermal conductivity
tensor ¯̄λe is almost isotropic everywhere, except in the middle of
the snapshot where λ‖e/λ⊥e = 1.08. Fig. 20 shows that the elec-
tron thermal conductivity is small compared to the heavy thermal
conductivity. This results is related to the results from Fig. 1 and
Fig. 2 that show that the mole fraction of electron is very small
compared to the mole fraction of heavy particle in that range of
temperature between 4000 K to 6500 K.

5.3. Components of the generalized Ohm’s law in a pore in
the low Sun chromosphere

Similarly as section 5.2, we compute the components of the gen-
eralized Ohm’s law from Eq. (25) using a Helium-Hydrogen
mixture, from the simulation by Kitiashvili et al. (32). According
to the result found in Fig. 18, we assume an isotropic distribution
of the transport properties.
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Fig. 17. Distribution of the heavy particle heat flux λh|∂xT | , for the
Helium-Hydrogen mixture S 1 based on the results of the radiative 3D
MHD simulations of a pore by Kitiashvili et al.(32)

Fig. 18. Ratio λ‖e/λ
⊥
e distribution, computed at the third order of the

Laguerre-Sonine polynomials approximation, for the Helium-Hydrogen
mixture S 1 based on the results of the radiative 3D MHD simulations of
a pore by Kitiashvili et al.(32)

Fig. 21,22,23,24,and 25 show the distribution of the resistive
term, the electron battery term, the heavy particle battery term
and the Soret terms for electron and heavy particle respectively.

Under this condition, the dynamic of the electric field is dom-
inated by the resistive term at the middle of the pore. The battery
term for heavy particles appears to be higher at the middle of the
pore and at some intergranulation boundaries. Finally, the Soret
and battery terms for electrons have higher magnitude at the in-
tergranulation boundaries, the latters is negligible compared to
the other terms of the generalized Ohm’s law. Indeed, this is due
to the mole fraction of electrons which is very small compared to
heavy particles under these conditions. These results are coher-
ent with the distribution mole fraction presented in Fig. 1,Fig. 2
and Fig. 3.

We have been able to compute all the components of the gen-
eralized Ohm’s law applied to a pore. One can identify the dis-
tribution and the magnitude of the different terms. Under these
conditions, since the ionization level is weak, the resistive term

Fig. 19. Ratio λ‖R/λh distribution, computed at the third order of the
Laguerre-Sonine polynomials approximation, for the Helium-Hydrogen
mixture S 1 based on the results of the radiative 3D MHD simulations of
a pore by Kitiashvili et al.(32)

Fig. 20. Ratio λ‖e/λh distribution, computed at the third order of the
Laguerre-Sonine polynomials approximation, for the Helium-Hydrogen
mixture S 2 based on the results of the radiative 3D MHD simulations of
a pore by Kitiashvili et al.(32)

and battery term for heavy particles appear to dominate the dy-
namic of the electric field.

6. Conclusion

The present model, derived from the kinetic theory (13), is nei-
ther a single-fluid MHD nor a multi-fluid model. It is an in-
termediary model between the single-fluid MHD models and
the multi-fluid plasma models, i.e., a multi-component model.
The main difference between the presented model (13) and the
conventional multi-fluid approach that are derived from the ki-
netic theory is the scaling that has been used in the generalized
Chapman-Enskog expansion. The scaling leads to a thermal non-
equilibrium multicomponent model with one momentum equa-
tion, where the electrons diffuse in the heavy particle reference
frame. These developments that are derived by Graille et al. (13)
lead to a model with an extended range of validity for partially
and fully ionized plasma, non-,weakly- and strongly-magnetized
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Fig. 21. Distribution of the resistive term (first term of (25)), computed
at the third order of the Laguerre-Sonine polynomials approximation,
for the Helium-Hydrogen mixture S 1, based on the results of the radia-
tive 3D MHD simulations of a pore by Kitiashvili et al.(32)

Fig. 22. Distribution of the electron battery term (second term of (25)),
computed at the third order of the Laguerre-Sonine polynomials approx-
imation, for the Helium-Hydrogen mixture S 1, based on the results of
the radiative 3D MHD simulations of a pore by Kitiashvili et al.(32)

plasmas and for a general multicomponent mixtures, which can
be applied in Sun chromosphere conditions. From the set of gov-
erning equations, a generalized Ohm’s law has been derived. A
general expression of the resistive term as well as the battery
term, has been obtained for a general multicomponent plasma.
This general expression of the electric field can be simplified in
a fully ionized plasma case (See Appendix B).

General conditions representative of the Sun chromosphere
have been chosen in order to compute all the transport prop-
erties for a Helium-Hydrogen mixture S 1. A spectral Galerkin
method based on a a third order of Laguerre-Sonine polynomi-
als approximation has been implemented into Mutation++, an
open-source library. First, in order to validate the model and the
presented method, a comparison with the model of Braginskii
(12) has been performed in the case of a fully ionized plasma
S 2. Both models are derived from the kinetic theory based a
Chapman-Enskog expansion. Although differences are observed
in 1-the structure of the governing equations and 2- the nature of

Fig. 23. Distribution of the heavy battery term (third term of (25)), com-
puted at the third order of the Laguerre-Sonine polynomials approxima-
tion, for the Helium-Hydrogen mixture S 1, based on the results of the
radiative 3D MHD simulations of a pore by Kitiashvili et al.(32)

Fig. 24. Distribution of the Soret/Dufour term (fourth term of (25)),
computed at the third order of the Laguerre-Sonine polynomials ap-
proximation, for the Helium-Hydrogen mixture S 1, based on the results
of the radiative 3D MHD simulations of a pore by Kitiashvili et al.(32)

the collision operators, the method that is used for computing the
transport properties is the same in both cases. The corresponding
integro-differential systems that allow for computing the trans-
port properties are identical in both models. While in (12), the
heavy transport properties are anisotropic, in the present model,
the latter are isotropic. Nevertheless, under the studied chromo-
spheric conditions both behave as isotropic. In (12), the corre-
sponding series of Laguerre-Sonine polynomials are truncated at
the second order (28), whereas a third order has been performed
in the presented model. Good agreement has been obtained for
the considered fully ionized S 2 mixture, in the chosen condi-
tions.

Finally, by using Mutation++ Library, the presented method
gives the possibility to compute all the transport properties for
a partially ionized plasma for a given mixture. The obtained re-
sults strongly depend on the mole fraction and the ionization re-
actions between the species of the mixture. We have been able
to identify the behavior of the transport coefficients related to
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Fig. 25. Distribution of the Soret/Dufour term (last term of (25)), com-
puted at the third order of the Laguerre-Sonine polynomials approxima-
tion, for the Helium-Hydrogen mixture S 1, based on the results of the
radiative 3D MHD simulations of a pore by Kitiashvili et al.(32)

the chemistry of the species in the partially ionized mixture S 1.
We have computed the transport coefficient based on the results
from a radiative 3D MHD simulations of a pore, in the highly
turbulent upper layer of the solar convective zone by Kitiashvili
et al. (32). In such conditions, the electrons are not magnetized,
and the heavy particles dominate the dynamics of the pore. In
the middle of the pore, the total heat flux is mainly due to the
heavy particle flux, where the main components of the thermal
conductivity are the heavy thermal conductivity and the reactive
thermal conductivity. Similarly, we have been able to compute
all the components of the generalized Ohm’s law in the same
conditions. The results show that the resistive term is dominating
mainly the dynamic of the electric field at the pore. The battery
term for heavy particle appears to be higher at the pore and some
intergranulation boundaries. The rest of the terms appear to be
negligible since the ionization level is small in such conditions.
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Appendix A: Non-dimensional Boltzmann
equations

In Graille et al. (13), the non-dimensional Boltzmann equations
for electron and heavy particles is

∂t f e +
1
εMh

(
Ce + +εMhvh

)
·∂x f e

+ ε−(1−b)
qe

(
Ce + εMhvh

)
⊗ B·∂Ce f e

+

(
1
εMh
qeE − εMh

Dvh
Dt

)
·∂Ce f e

− (∂Ce f e ⊗ Ce):∂xvh =
1
ε2Je, (A.1)

and for each heavy species,

∂t f i +
1

Mh

(
Ci + Mhvh

)
·∂x f i

+ ε−(1+b)
qi

(
Ci + εMhvh

)
⊗ B·∂Ci f i

+ (
1
εMh

qi

mi
E − Mh

Dvh
Dt

).∂Ci f i

−
(
∂Ci f i ⊗ Ci

)
:∂xvh =

1
ε
Ji, i ∈ H. (A.2)

Where the collision operators are defined as

Je = Jee( f e, f e) +
∑
j∈h

Je j( f e, f j)., (A.3)

Ji =
1
ε
Jie( f i, f e) +

∑
j∈h

Ji j( f i, f j), i ∈ H. (A.4)

Where Ci, i ∈ H and Ce are the peculiar velocities for heavy
species and electron respectively.

Appendix B: Ohm’s law for a fully ionized plasma S1

In a fully ionized plasma, the definition of the current density is

I = nqvh + Je (B.1)

where the electron current density is defined by Eq. (4). It
should be noted that in the particular case of a fully ionized
plasma, no diffusion velocities of heavy species are considered,
because the presented model is in the reference frame of heavy
particles.

Then, similarly as the general case, the total current density
can be expressed in function of fluxes, as follows,

I = nqvh +
(neqe)2

pe
¯̄DeE′ − neqe

[
¯̄De
∂x pe

pe
+ ¯̄De ¯̄χe∂xlnTe

]
(B.2)

It should be noted that the multicomponent electromagnetic ma-
trices in a fully ionized plasma are

¯̄ME′ = ¯̄De, (B.3)
¯̄Mpe = ¯̄De, (B.4)
¯̄Mp j = 0, j ∈ H (B.5)
¯̄MTe = ¯̄De ¯̄χe (B.6)
¯̄MTh = 0. (B.7)

Using the Maxwell-Ampere’s law ∂x∧B = µ0I in a non-
relativistic context, the expression of the electric field as a func-
tion of fluxes can be obtained

E = −vh∧B + ¯̄ηe Je +
∂x pe
neqe

+
pe
neqe

¯̄χe∂xlnTe (B.8)

where the electron resistivity tensor is ¯̄ηe = ¯̄D−1
e pe/(neqe)2.
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