
HAL Id: hal-01898648
https://hal.science/hal-01898648

Submitted on 18 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modelling and traceability for computationally-intensive
precision engineering and metrology

J.M. Linares, G. Goch, A. Forbes, J.M. Sprauel, Clément Audibert, F.
Haertig, W. Gao

To cite this version:
J.M. Linares, G. Goch, A. Forbes, J.M. Sprauel, Clément Audibert, et al.. Modelling and traceability
for computationally-intensive precision engineering and metrology. CIRP Annals - Manufacturing
Technology, 2018, 67 (2), pp.815 - 838. �10.1016/j.cirp.2018.05.003�. �hal-01898648�

https://hal.science/hal-01898648
https://hal.archives-ouvertes.fr

1

Modelling and traceability for computationally-intensive precision engineering and
metrology

J.M. Linares(1)a, G. Goch(1)b, A. Forbesc, J.M. Sprauela, A. Clément(1)d, F. Haertige, W. Gao(1)f

a Aix Marseille Univ, CNRS, ISM, Marseille, France
b University of North Carolina, 9201 University City Blvd, Charlotte, NC, United States
c National Physical Laboratory, Hampton Road, Teddington, Middlesex, TW11 0LW, United Kingdom
d Dassault Systèmes, France
e Department of Coordinate Metrology, Physikalisch-Technische Bundesanstalt,D-38116 Braunschweig, Germany
f Tohoku University, Japan

In contrast to measurements of the dimensions of machined parts realized by machine tools and characterized by CMMs, software results are not fully
traceable and certified. Indeed, a computer is not a perfect machine and binary encoding of real numbers leads to rounding of successive intermediate
calculations that may lead to globally false results. This is the case for poor implementations and poorly conditioned algorithms. Therefore, accurate
geometric modelling and implementations will be detailed. Based on the works of National Metrology Institutes, the problem of software traceability will
also be discussed. Some prospects for this complex task will finally be suggested.

Keywords: Geometric modelling, Error, Computational accuracy

1. Introduction

Humanity is facing very big challenges such as global warming,
depletion of natural resources, and sustainable development, for
example. At the same time, the business world tries to improve
industrial competitiveness accounting for these environmental
constraints. Most industrialized countries have thus launched
development programs to answer these challenges (USA:
Advanced Manufacturing, Manufacturing renaissance, National
Network for Manufacturing Innovation, India: Make in India,
Japan: Innovation 25 program, China: Intelligent Manufacturing,
Made in China 2025, European countries: Horizon 2020, Factories
of the Future, Industry 4.0…). All these programs are based on the
development of computerization and networking in industrial
systems. This is the convergence of the physical and virtual
worlds to Cyberspace. The German National Academy of Science
and Engineering defines this evolution as a 4th generation
industrial revolution based on Cyber-Physical Systems (CPS)
[84,122,143,172]. In this new environment, information
technology (IT) will allow decision makers to do more over time
to improve product quality and customisation, productivity and
customer satisfaction. This global expansion of the use of
computers in industry brings to the forefront the need for
traceability and certification of industrial software. Scientific
calculations have indeed become central issues in design,
manufacturing, precision engineering and metrology software.
The fundamental binary code together with all basic arithmetic
operations were developed by Leibniz in 1697 [123]. The
principle of modern programmable computers was first proposed
by Alan Turing in his 1937 paper: "On Computable Numbers with
an Application to the Entscheidungsproblem" [167]. The Turing
machine is the first universal programmable computer. It
invented the concepts of programming and program. The
construction of Pilot ACE (Automatic Computing Engine) based
on Turing's designs was completed by the National Physical
Laboratory in the early 1950's. In 1946, the first architecture of
electronic computers was proposed: the ENIAC (Electronic
Numerical Integrator and Computer, using the vacuum tube

technology. Figure 1 shows a picture of this computer. The
second generation of computers was based on the invention of
the transistor in 1947. Despite the use of transistors and printed
circuits, the computers were still bulky and only used by
universities, governments and large companies. The third
generation of computers (around 1959) was based on electronic
chips. In 1971, Intel revealed the first commercial
microprocessor, the 4004. It did not achieve more than 60,000
operations per second. Today, standard desktop computers have
a much bigger processing capacity (for example, an Intel Core 2
Duo processor at 2.4 GHz can execute around 2 billion operations
per second). Microprocessors include most of the computing
components (except for the clock and the memory) on a single
chip. The computer is now the daily companion of people both at
the office and in private life. For the average user, the computer
remains however a black box that just provides results from the
data that were entered. These outcomes are generally considered
above any suspicion. For future industrial systems, based on
cybernetics, will the results supplied by computers be really
traceable and validated numerically? To answer this question,
technological incidents could be reconsidered that have
happened in recent history and had a computer error as source.

In computing, an integer overflow is a condition that occurs
when a mathematical operation produces a numerical value
larger than the greatest number that can be represented by the
set of bits (binary digits) of the implemented variable. Perhaps
the best-known consequence of such an error is the self-
destruction of the Ariane 5 rocket during its first launch on June
4th, 1996. The Inertial Reference System (IRS) of Ariane 5 was
derived from that of Ariane 4 but the new launcher had high
initial accelerations and a trajectory that resulted in horizontal
velocities five times larger than those of the previous rocket.
These high speeds were captured by the sensors of the inertial
platform but exceeded the maximum value that could be
processed by the navigation program. It resulted in an integer
overflow exception in the IRS software and the shutdown of the
computers caused by the conversion from a 64-bit real number to
a 16-bit integer [125]. False flight data led than to erroneous

http://www.linguee.fr/anglais-francais/traduction/business+world.html

2

corrections of the launcher trajectory and finally to the self-
destruction of the rocket.

Figure 1: ENIAC (Electronic Numerical Integrator and Computer) [95]

An intrinsic feature of numerical computing is that real

numbers are represented in finite precision and this means
nearly all real numbers have to be rounded to be represented.
The accuracy of the rounding operation can have great influence
on calculated results. In 1992, at Dhahran in Saudi Arabia, a
Patriot battery failed to track and to destroy a Scud missile [64].
This incident was caused by a software problem in the system's
weapon control computer due to an inaccurate calculation of time
and consequently of the tracking trajectory. The precision of
calculations of on-board computers often depends on the number
of bits of its registers. Patriot’s clock system was performing
some arithmetic operations using a 24-bit fixed point register.
This hardware limitation led to a drift between the times elapsed
since last boot, as measured by the system's internal clock, and
the real delays. Table 1 shows the evolution of this time drift
(inaccuracy)and the estimated shift in the range gate that Patriot
tracked.

Table 1:Precision of a computer’s calculations

Hours Seconds
Calculed

time (s)

Inaccuracy

(s)

Shift in range

gate (m)

0 0 0 0 0

1 3600 3599.9966 .0034 7

8 28800 28799.9725 .0275 55

20 72000 71999.9313 .0648 137

48 172800 172799.8352 .1648 330

72 259200 259199.7528 .2472 494

100 360000 355999.6667 .3433 687

After 100 hours of monitoring, the elapsed time calculated by
Patriot’s clock system drifted by approximately 0.3 s. In
connection with the speed of the tracked Scud rocket, the
resulting error of the calculated interception point was estimated
to be about 700 m. Patriot’s battery therefore failed to destroy the
missile. The size of the registers of current generation of
computers is now at least 64 bits, permitting calculations with
greater precision but rounding effects are still inevitable.

Can such problems arise in precision engineering and
metrology? Whereas there is an infrastructure to provide
traceability of dimensions of machined parts realized by machine
tools and characterized by CMMs, the results of software
calculation are usually not fully traceable and certified. Indeed, a
computer is not a perfect machine and binary encoding of real
numbers leads to rounding of successive intermediate
calculations that may lead to globally false results for poorly
constructed calculations. To understand these calculation limits,
the second section of the paper will be dedicated to the intrinsic
performances of computer hardware and software. False
computation results are often due to poor software
implementations and badly conditioned or numerically unstable

algorithms. The third section of the paper will therefore deal with
detailed smart implementations of geometric modelling. Based on
the works of National Metrology Institutes, the problem of
software certification and traceability will also be discussed in the
fourth section. Some prospects about these different subjects will
finally be suggested.

2. Intrinsic performances of computer hardware and

software

As discussed in introduction, the hardware (number of bits,
number of processors…) and software (conversion effects,
rounding effects, cancellation effects…) of computers, have a
great influence on the accuracy of the calculated results. These
topics will therefore be discussed now. The logical structure and
functional characteristics of computers are shown in Figure 2. A
computer is built around one or more microprocessors with each
microprocessor have one or more cores. The processor (named
CPU for Central Processing Unit) is an electronic circuit clocked at
the rate of an internal clock. A processor has internal registers of
a fixed number of bits(now usually 64 bits) used to encode and
manipulate the processed values. Several processor clock pulses
are generally necessary to perform an elementary action called an
instruction. The indicator, Cycles Per Instruction (CPI),
characterizes the mean number of clock cycles required to
execute a basic instruction on a microprocessor. It is about four
for most current microprocessors. The CPU power can thus be
characterized by the number of instructions processed per
second and is often expressed in units of millions of instructions
per second (MIPS) and corresponds to the frequency of the
processor divided by the CPI. The CPU includes one or several
Arithmetic Logic Units (ALU) that provide the basic functions of
arithmetic calculations and logical operations on integers, and a
Floating-Point Unit (FPU) to perform operations on floating point
numbers. The processor employs cache memories (buffers) to
reduce the time to exchange information between the main
computer memory, its Random Access Memory (RAM), and the
internal data registers.

Computer microprocessors only manipulate binary instructions
and data. The encoding of such information requires two states 0
and 1. In a simplified way: either the electrical current flows
through an elementary circuit or it does not. A binary machine
language encodes the set of basic instructions implemented in the
microprocessor hardware to perform the available elementary
operations such as addition, subtraction, multiplication, division,
comparison, etc.

Microprocessor

Computer's central

memory RAM
Size

BUS

Screen

In
te

rf
ac

e

Hard discs

In
te

rf
ac

e

Computer
network

In
te

rf
ac

e

Processor number

Core number

Bits number

Clock
Speed

Computer's cache

memory
Size

Figure 2: Logical structure and functional characteristics of a computer

The quality of numerical results in scientific calculations
performed by a computer will depend on both the hardware and
the software. In the remainder of this section, the hardware

3

aspects will be treated first, and then the software aspects will be
presented.

2.1 Technical advances of computer hardware

For use in scientific calculations, the performance of a computer
greatly depends on the number of processors and cores, the clock
frequency, the number of bits of the CPU registers and the size of
the cache memories. The considerable improvements of
computers over the past decades are mainly linked to a great
increase in the number of the elementary components integrated
in the processors. The empirical Moore's law [1], largely verified
since 1971, established that the number of transistors in a
densely integrated circuit is doubled every two years (Figure 3).
This law is unlikely to be satisfied in the near future because of
the physical limitations of the actual silicon technology being
reached quickly. In fact, due to quantum tunnelling effects, the
smallest size of elementary transistors is at present limited to 20
nm [163]. Nevertheless, Intel believes that this size may be
reduced to 7 nm by 2020, even if it will perhaps require using
materials other than silicon, such as Indium Gallium Arsenide
[89]. The computing performance also depends on the length of
the data words manipulated by the computer. The size of the
internal registers and of the data bus of the first Intel 4004
processor was limited to 4 bits. It has grown since the 1970’s to
reach 64 bits on current processors.

Intel 4004 Intel Core i3/i5/i7

Pentium

Moore’s Law

Year

?

4

64 bits

8
16

32

Figure 3: Moore's law

Other technologies are also being developed to replace current

hardware based on electronic transistors. In 1982, Richard
Feynman suggested that simple controllable quantum systems
could be used to simulate the quantum dynamics of problems that
cannot be modelled by a conventional computer [56]. In 2012, the
Nobel Prize for Physics was awarded for scientific research on
ground-breaking experimental methods that enable the
measurement and manipulation of individual quantum systems
[148]. The quantum properties of matter, such as superposition
and entanglement, provide the framework for the development of
quantum computers. Figure 4 shows the possible values of the
state  of a bit and a qubit (quantum bit). A standard computer is
based on binary data: a bit has only two independent values 0 or
1. The quantum computer is working with qubits that can have
multiple states [42,170]. These possible values (states) can be
represented using the Bloch sphere graph where α and β are
complex numbers and probability amplitudes. This property
allows quantum processors to perform multiple operations in
parallel.

Research on quantum computers is very active, with around
8000 publications since 1997. A quantum computer existing
today has several hundred qubits. Quantum processors need
external cooling down to a temperature of about 0.015° K
(around -273° C, very close to absolute zero). The development of
quantum informatics based on superconducting circuits also
requires accurate readout devices to gather the qubit states

[132]. The quantum computer is well-adapted for combinatorial
calculations and uses simulated annealing algorithms for global
optimization problems. Some large companies [112] have begun
using quantum computers principally in cryptography and
optimization problems using simulations (Grover’s search
algorithm) [42].

1

Two independent

electronically

states 

0

І1>

І0>

Linear superposition of

the 2 basis states

bit qubit

1 OR 0 == 
1 :with

1 0

22
=+

+=



  




Figure 4: Values of states  for bit and qubit

A second set of technologies relies on the fact that silicon is

transparent to infrared light, so that optical fibres can be used to
interconnect computer elements or components inside the
processor core. This opens a new way to build optical computers
[146]. For that purpose, an optical nanowire switch was first
designed [147] and, by combining two optical switches, a NAND
logic gate was then developed. Similarly, in non-linear optics, the
property of some materials to change their refractive index under
an electric field (Kerr effect) was studied. This permitted creating
logic gates (AND, OR, NOR...)[121]. Such components may be
employed in the design of future optical processors and
computers.

In addition, photons do not produce magnetic interferences
with the environment and the heat generated by an optical
system remains very low. Optical transistors can work at
frequencies much higher than those of conventional electronic
devices. Optical computers could thus be more powerful than
current conventional computers. The main disadvantage of this
technique is the inability to store photons and light. Furthermore,
as photons propagate in a straight line, building interconnections
causes major difficulties in a reduced space.

Another scientific track to replace current processors is based
on the outcome of molecular biology. The principle of DNA
computers (computing technology based on molecular biology),
enunciated by Leonard Adleman in 1994, is to encode an instance
of the problem with DNA strands and manipulate it by molecular
biology to simulate operations that will isolate the expected
solution of the problem [2,3]. As for quantum technology, DNA
computers will be specialized in computing complex problems
like non-deterministic algorithms in polynomial time because
DNA strands can produce billions of potential answers
simultaneously. However, the process of synthesis and reaction is
very slow.

2.1.1Technical properties of internal computer devices

Current processors work on the scheme of classical Turing
machine and are constrained to perform calculations in sequence.
The consequence is that it is less promising to deal with, in a
given time, a large number of instances of computational
problems of high numerical complexity. As shown in Figure 2, the
performance of a computer is related to the number of processors
and cores, the number of bits of the internal registers and the
data bus, the clock and bus frequencies and the size of the cache
memory.

A global metric was proposed to measure the theoretical
computer performance in scientific calculations that use floating-
point operations: floating-point operations per second (FLOPS).
Equation 1 shows FLOPS formula.

4

cycle

FLOPs
fNNFLOPS clock processorssorcore/proceprocessor= (1)

With:
Nprocessor: Number of processors in microprocessor unit,
Ncore/processor: Number of cores in processor,
fprocessor clock: Frequency of processor clock,

4
cycle

FLOPs
with actual processors.

For a scientific computer with 2 processors containing 12 cores

each and working at a clock frequency of 2.9 GHz, the theoretical
number of floating-point operations per second is 278.4
GigaFLOPS. A laptop with a single-core 2.5 GHz processor has a
theoretical performance of 10 GigaFLOPS. This metric is
sometimes divided by the electrical power (FLOPS/watt) to
analyse the energy efficiency of the computer. The number of
FLOPS is used to compare the theoretical performance of
computers but does not account for specific tasks of the
computation and for the real load rate of each processor and core.
New benchmarks are therefore proposed by the Standard
Performance Evaluation Corporation, launched in 2000, to
compare computer performances. These benchmarks are based
on specific procedures applied to test the computer behaviour
when running next-generation of industrial software (Dassault
Systèmes: CATIA and Solidworks, Pro Eng: CREO, Siemens: NX...),
to stress a system's processor, etc... [83]. These tests highlight the
processor ability to process a set of operations in a limited time
or to give global information on the computer's behaviour. But
these tests do not give an indication of the traceability or the
quality of the numerical results provided by the computer.

Processor

number

x Speed Up

Parallelism

proportion

Figure 5: Amdahl's law

Equation 1 shows that the number of processors and cores
influences the performance of calculation. Multiprocessor
computers allow the program to complete several arithmetic
operations simultaneously, thus increasing the processing
capacity. This technique is called parallelism. The technique of
parallelism can be used inside a processor to address the cores,
between processors or for a pipeline technique. In the third case,
the processor can start executing a new instruction without
waiting for the previous one to be completed. To reduce the
input/output bottleneck of instructions, a vector processor was
developed with specific instructions optimized for fast handling
of tables and quick matrix calculations.

Theoretically, it is expected to halve the processing time by
sharing calculations between two processors with single core, to
quarter the processing time by using 4 processors, etc.
Unfortunately, not all scientific operations can be parallelized
effectively.

] /)-[(11/ PααSpeedup += (2)

With:
: proportion of parallelism
P=Nprocessor Ncore/processor

The empirical Amdahl's Law (Eq.2)can be used to define an upper
limit to the parallelization contribution of software or hardware
architectures [4,88,145]. It assumes a constant amount of data to
be processed. Figure 5 shows the speedup of calculations versus
the processors number used and the proportion of parallelized
computer code. In Figure 6, another empirical law (Eq.3) is
shown, known as the Gustafson–Barsis' relationship [78,96,113].
It is more optimistic than the previous one and reflects the fact
that more data can be processed at the same time by increasing
the number of processors.

Processor

number

x Speed Up

Parallelism

proportion

Figure 6: Gustafson–Barsis' law

1)-)(-(1- PαPSpeedup =
(3)

With:
: proportion of parallelism
P=Nprocessor Ncore/processor

2.1.2 Supercomputers and LINPACK/LAPACK benchmarks
A supercomputer is a computer designed to achieve the highest
performances at the date of its manufacture. Its use is targeted to
High-Performance Computing (HPC). These supercomputers have
thousands of processors and hardware architectures allowing
them to use the benefits of parallelism. To classify the most
efficient machines in scientific computing, a TOP500 classification
project was created. The LINPACK benchmark is used to test and
to rank supercomputers for the TOP500 list [41,45,92]. It
measures the time taken to solve a dense linear system of n
equations in n unknowns, the solution being obtained by a partial
Gaussian elimination, by 2/3 n² + n³ floating point operations
[73]. The performance is then calculated by dividing the number
of operations by the calculation time. To complement the FLOPS
metric, two other indicators were created for this benchmark:
- Rmax: maximum performance in LINPACK Giga FLOPS for the
biggest computable mathematical problem on the computer,
- Nmax: size of the mathematical problem giving Rmax
computable on the machine.
- Rpeak represents the theoretical performance in GigaFLOPS of
the computer.
To extend the use of LINPACK packages on computers using
shared-memory vectors and parallel calculations, a new LINPACK
package was introduced in this benchmark [7,29,44]. This
software pack is being constantly improved, particularly in terms
of accuracy and performance [46]. Table 2 presents the ten first
supercomputers of the world. After three consecutive years as the
world’s No. 1 system of the Top500 ranking, Tianhe-2 of National
Super Computer Center has been exceeded in performance by
Sunway Super Computer. This computer has 10,649,600 cores
and needs 15,371 kW of electrical power to obtain its best
calculation performance.

Table 2: TOP500 ranking in June 2017

https://en.wikipedia.org/wiki/Standard_Performance_Evaluation_Corporation
https://en.wikipedia.org/wiki/Standard_Performance_Evaluation_Corporation

5

Top

500
Rmax Year Name

Total

Cores
Country Nmax

Power

(kw)

1 93015 2016 Sunway 1,1E+07 China 12288000 15371

2 33863 2013 Tianhe-2 3120000 China 9960000 17808

3 19590 2017 Piz Daint 361760 Switzerland 3569664 2272

4 17590 2012 Titan 560640 United States 0 8209

5 17173 2011 Sequoia 1572864 United States 0 7890

6 14015 2016 Cori 622336 United States 6984960 3939

7 13555 2016 Oakforest 556104 Japan 9938880 2719

8 10510 2011 Riken 705024 Japan 11870208 12660

9 8587 2012 Mira 786432 United States 0 3945

10 8101 2015 Trinity 301056 United States 8847936 4233

In 2005 and in line with the new challenges of this world (global
warming, resource reduction, sustainable development), a new
ranking of supercomputers has been set up: Green500 [91]. It
incorporates the calculation concepts used in the TOP500
ranking, but it is based on a new metric for supercomputer
ranking: the power-performance defined by the number of FLOPS
per Watt (FLOPS/W). Green500 proposes a ranking of the most
energy-efficient supercomputers in the world. Table 3 presents
the ten supercomputers ranked using this new metric. At present,
the Tsubame 3.0 heterogeneous supercomputer (Tokyo Institute
of Technology)obtains the top spot in the Green500 list and
currently claims the title of the most energy-efficient (or
greenest) supercomputer in the world. The Tsubame 3.0
heterogeneous supercomputer surpassed the fourteen
gigaflops/watt milestone [91]. To maximize the power-
performance metric, computer manufacturers use specialized
cards named High Performance Computing (HPC) including
many-core accelerators, on which parts of the computations are
subcontracted. These new many-core accelerators are coupled to
the CPU with an energy-efficient software design. For example,
computer with HPC cards can treats large data up to 10 times
faster than a single CPU.

Table 3: Green500 ranking in June 2017

Green

500

Top5

00

MFLOP

S/W
Year Name

Total

Cores
Country Rmax

1 61 14110 2017 TSUBAME3.0 36288 Japan 1998

2 466 14046 2017 kukai 10080 Japan 461

3 148 12681 2017 AIST AI Cloud 23400 Japan 961

4 306 10603 2017 RAIDEN GPU 11712 Japan 635

5 100 10428 2017 Wilkes-2 21240 UK 1193

6 3 10398 2017 Piz Daint 361760 Switzerland 19590

7 69 10226 2017 Gyoukou 3E+06 Japan 1677

8 220 9797 2017 Res. Comp. Facility 16320 Japan 770

9 31 9462 2017 Facebook 60512 US 3307

10 32 9462 2016 DGX Saturn V 60512 US 3307

Without fundamental change in the design of supercomputing
systems, the computer performance advances will not continue at
their current pace [55,151].

2.1.3 Sub conclusion

The improvement of computer performance is now impacted by
the constraints of sustainable development. The tests conducted
under Green500 benchmark show that the manufacturers direct
the development of their supercomputer to heterogeneous
machines using High Performance Computing accelerators. These
new hybrid systems, although energetically optimized, are still
based on electronics. This technology is now well under control,
but the resistivity of the circuits causes significant energy loss as
heat. For example, the data can require up to 80% of the power
consumed by a microprocessor. To solve this problem, new
technologies have been proposed based on quantum physics,
optics or molecular biology. The systems derived from these
technologies are however specialized. They have functionalities

similar to the accelerators used in actual heterogeneous
computers. Such new devices will therefore surely be coupled to
the machines designed with current technology, thus allowing
continuous improvement of the computer performance. Figure 7
summarizes the hardware items necessary to enhance and to
optimize the computing performance of computers. However, the
performance of computers not only depends on the hardware, but
also on the manner in which data processing is implemented, i.e.
the software. For most scientific calculations (outside grand
challenges) computational time is usually not a limiting factor,
and solutions to a sufficient accuracy can be determined in an
acceptable amount of time. The precision of calculated results
mainly depends on the quality of the data processing, in
particular on the way the software is implemented.

Scientific

calculation

performances

Parallelism

intra

processor
Parallelism

Multiprocessors

Processor

Clock
Pipeline

treatment

Data

access

Memory

managementCompilation

(pipeline, vector,

parallelization)

Software

Implementation

Hardware

Figure 7: Parameters influencing scientific calculation performances

2.2 Technical advances of computer software

Transistor gates of current computer processors can only
handle binary information, in two distinct states 0 and 1, called
bit. At the hardware level, n bits are then gathered to build words
that are transmitted to the internal registers of the processors
and cores. They are treated as instructions or operands for
arithmetic and logic operations. The set of instructions of the
machine language directly achieves basic mathematical
operations on integer numbers (addition, subtraction,
multiplication, division, modulus …). A floating-point unit is also
generally embedded in the processor (or connected to it)realizing
arithmetic calculations on real numbers and computing classical
mathematical functions (sine, cosine, exponential, power, square
root, …). These operations, performed at the hardware level, are
very efficient, but the range of the manipulated data and the
accuracy of some calculation results are limited by the size of the
internal processor registers. If a greater range or precision is
required, the number of bits used to encode a number has to be
increased. A software layer will then be added to perform the
operations. The first electronic computer, the ENIAC, used
decimal arithmetic. In most current computers, the use of binary
encoding has however been generalized, principally for its
calculation simplicity and its coherence with the hardware [37]. If
another encoding base (decimal, hexadecimal ...) is chosen to
represent a number, it will be necessary to add a software layer
to achieve encryption and calculations. IEEE 754 standard
provides the rules of encoding real numbers for binary floating-
point arithmetic. However, only its last revision in 2008 defines
the encoding of numbers in binary coded decimals. For a better
understanding, the effect of type and base of encoding and the
number of bits on the accuracy of calculations in precision
engineering and metrology has to be explained.

2.2.1 Implementation properties

Computer hardware is designed with registers of fixed size,
thus leading to a limited accuracy when performing arithmetic
operations with the floating-point processor units. However,
using programming methods, the number of bits used to
represent numbers can be increased. Nevertheless, at the same
time, the size required to store this information grows and may
exceed the maximum available capacity of memory.

6

Bit number
Memory

size

Computer

limitation

Figure 8: Limitation of computer encoding

Figure 8 shows that with a finite memory capacity, the software

cannot decrease the gap  between two successive real numbers
(the precision of the floating-point arithmetic) to zero. Therefore,
all real numbers cannot be represented by a computer. This is the
first limit of computer calculations. Two phenomena are induced
by this limit: rounding and cancellation [72]. In this context,
floating point calculations can give entirely inaccurate results
when no particular precaution is taken. To illustrate this, the
computation of the simple function f of the variable M might be
considered, presented in Equation 4 [140,19].

f(M)= M + M2 + 1 - M - M2 gives 0 for M>108 (4)

For large M values (in this case when M exceeds about 108) the

value returned by software implementing IEEE arithmetic [100]
is 0, while the true result is of course 1. The usual computer
addition process is sequential as shown in Figure 9.

M

M2

+ + + +

1 -M2-M

0
M2 M2 M2

Figure 9: Usual computer addition process [19]

To compensate this bias, more efficient calculation methods
have been developed but they are not automatically implemented
in all usual programs. For example, computer calculations using a
Two Sum algorithm (TS) [116] give true results (Figure 10).

M

M2 1 -M2-M

0M2 M2 M2

0
M

M
1 -M 0

0 0

11 1 1
1 0 0 0

TS TS TS TS

TS TS TS TS

TS TS TS TS

Figure 10: Two Sum algorithm [19]

If the order of operations in Equation 4 is changed (Figure 11),

the right calculation result is also obtained. Therefore, the way
the equations are implemented in the computer affects the
quality of the result, which is called the implementation effect.

M2

-M2

+ + + +

M 1-M

1
0 M 0

Figure 11: Implementation effect

2.2.2 IEEE 754-1985-2008 standard
For most computers, the representation of numbers in binary

and decimal floating-point calculations is based on IEEE 754-
1985-2008 standard [100,133,140], where binary floating point
is commonly used in the computer field. This standard also
defines special values.

2.2.2.1 Calculations with floating numbers
Calculation based on floating point encoding is used the most in

computing, but problems may arise when only a few bits
represent the real numbers because of the limited accuracy.

0.1 → 0.000110011001… → 1.100110011001 x 2-4

Base 2Base 10 Normalized

Sign Shifted exponent Significant

0 100110011001IEEE 754

1bit + e bits + s bits Limited number of bits

(21bits in example)

With Offset = 2e−1 − 1

Example: e=8 Offset=127

Exponent + Offset = 127-4 = 123

Exponent

11110111

Figure 12: IEEE 754-2008 standard (floating point number)

The encryption of numbers and implicit conversions between

the decimal and binary system during data input/output are the
first source of rounding. This process is shown in Figure 12. In
consequence, not all the decimal numbers (i.e., rational numbers,
the ratios of integers) can be expressed exactly as binary floating-
point numbers. As shown in Equation 5, a real number written
using IEEE standard is defined by three integers: sign, shifted
exponent and significant.

)(2 × 1 × = offset - exponent shiftedtsignificansignnumber Encoded

(5)

with offset=2e−1–1, e being the bit number of the exponent

The data is represented in a scientific form. The most significant

bit gives the sign, set to 0 when the number is positive and 1 if it
is negative. The next e-bits define the exponent, shifted by a fixed
offset to avoid negative values. Finally, the last binary digits
define the normalized significant, truncated to the available
numbers of remaining digits. Because the most significant bit is
always 1 for a normalized number, this bit is not stored in the
mantissa and is called the “hidden bit”. The expression of the
exponent offset and the whole formula permitting the definition
of the real number are presented in Equation 5. In Figure 12 this
representation was used to encode the real number 0.1 using a
register of 21 bits. If this floating number is reconverted to base
10, the decimal value 0.099990845 is obtained. It clearly shows
the rounding effects due to the limited accuracy of binary floating
numbers. In double precision (encoding with 64 bits), the
smallest positive and greatest negative normalized number
different from zero are: ±2−1022 ≈ ±4.941×10−308. As the
mathematical infinite and the mathematical zero cannot be
encoded, three specific exceptions are considered in IEEE-754-
1985-2008 standard:

- the exponent offset and mantissa are both zero: the real
number is ± 0 (according to the sign bit),

- the exponent offset is equal to 2e-1, and the mantissa is zero:
the number is ± infinity (according to the sign bit),

- the exponent offset is 2e-1, but the mantissa is not zero: the
number is NaN (not a number).

To limit the rounding effects of numbers translated into base 2,
the following rounding procedures have been included in IEEE-
754-1985-2008 standard[133,140,38]. The four rounding modes
[100] are:

-Round toward−∞: RD(x) is the largest floating-point number
less than or equal to x,

-Round toward +∞: RU(x) is the smallest floating-point number
greater than or equal to x,

-Round to nearest: RN(x) is the floating-point number that is the
closest to x,

7

- Round toward zero: RZ(x) is the closest floating-point number
to x that is no greater in magnitude than x. It is equal to RD(x) if x
≥ 0, and to RU(x) if x ≤ 0.

Many studies have been conducted on the effect of rounding in
the calculation of basic functions (-, +, x, /, exp, log...) [40,75,110,
118,119,135,176]. In calculations with floating point numbers,
the implementation of arithmetic operations [141]: addition
[140], subtraction, multiplication, division, square root [111],
fused-multiplication-addition [128] are the basis of scientific
calculations. A lot of research work has been carried out to make
these functions more precise, stable and robust despite the
inaccuracy induced by the encoding of real numbers.

A Graphics Processing Unit (GPU) is an electronic circuit on a
graphics card or CPU. It performs the computations required by
the display functions. The GPU has a parallel structure. It is
designed for the great number of calculations required by the
realization of 3D rendering, for example. The manufacturers of
these components had to develop effective and precise
algorithms to perform such computations. Classical basic
arithmetic functions, vector operations (dot product, cross
product ...) and matrix calculation algorithms have thus been
developed for graphical display and have been incorporated in
the GPU hardware. These efficient procedures are accessible to
software developers and are sometimes used to improve the
performance of programs [174].

The guidelines of the IEEE-754-1985-2008 standard must be
included in the programming of business software used in
metrology and precision engineering. However, most traditional
software has not yet implemented these guidelines.

2.2.2.2 Calculation with Decimal Floating-Point using Binary Coded
Decimal

The last revision of the IEEE-754 standard introduced Decimal
Floating-Point (DFP) formats to encode real numbers in scientific
calculations [36,142]. The first domains of application were
financial analysis, tax calculation and others, where accurate
calculation is sought to avoid mistakes causing financial losses.
The numerical value of a number is given by sign × significant
×10^Exponent. The mantissa and the exponent can be described
in several ways: both values in Binary Coded Decimals (BCD),
significant in BCD and exponent in binary or more complex
compressed formats. Two methods were proposed by Intel [34]
and IBM[35]: The first named binary integer decimal (BID),
encodes the significant of the DFP number as an unsigned binary
integer. The second, named densely packed decimal (DPD),
encodes the significant as a compressed binary coded decimal
integer.

13

0 0 1 1

24 23 21 20

0 0 0 1

24 23 21 20

BCD

Decimal

Figure 13: Binary Coded Decimal (BCD)

Finally, different ways exist to encode the same number in

decimal floating-point. One way to code a number based on the
intrinsic properties of a binary computer is to use the BCD
method. The numbers are then represented by decimal digits,
each of them encoded on four or eight bits (Figure 13). The basic
arithmetic operations and mathematical functions have then been
developed to make this DFP encoding method more accessible
[8,30,51,53,74]. DFP is not yet used on all hardware/software
products. Therefore, only binary coded floating-point numbers
will be considered in the remainder of this section.

2.2.3 Numerical effects of -approximation and implementation

A floating-point number often results from a set of operations
performed on a real machine that tries to compute a given
function F(X) with the best possible approximation. The notion of
calculability was first introduced by Turing [167] as follows: a
real number X is "computable", if there is an algorithm that takes
> 0 as input and produces an approximation x of X with |x-X| <.
To realize that, an exact real number X is converted and rounded
by an algorithm to obtain a floating-point number approximation
x. The error  between these two numerical values mainly
depends on the coding base, the number of bits used in coding
(truncation error) and the rounding error.

In the following, the computing of a given function result Y=F(X)
is investigated. In such a procedure, the exact argument X first
needs to be stored in the computer memory and therefore must
be converted to its floating-point approximation x, thus
introducing an input error X=x-X. The floating-point number x is
next entered in a sequence of software instructions that are
implemented to generate the desired function F. However, due to
successive truncation and rounding errors and perhaps
inaccurate algorithms, the function really realized by the
calculator, denoted as f, may significantly differ from F. Therefore,
the floating-point result ӯ=f(x) calculated by the computer may
itself deviate from F(x). To be displayed or printed, this number is
finally rounded and formatted to the decimal approximation y
delivered to the user (Figure 14). The absolute computing error
(output error) is then characterized by the difference Y between
the value y given by the machine and the exact mathematical
result Y=F(X), i.e. Y=y-Y. It is divided by the true exact value Y to
define the relative error Y i.e. Y=(y-Y)/Y. Figure 14 shows the
effect on the absolute error Y of the implementation of the
function F in f. With poor implementation, the absolute error Y
increases. This phenomenon is called data sensitivity.

Accurate implementation

f(X)=F(X)
Poor-implementation

f(X)≈F(X)

Mathematical

output data
Input

data: X

ΔX≈ɛ

Encoded and

rounded data

x=X+X

Y

y= ỹ +Δ ỹ

ӯ

Input

data: X

ΔX≈ɛ

Encoded and

rounded data

x=X+X

y=ӯ+Δ ӯ

Y

Mathematical

output data

ΔY

ΔY
Δỹ≈ɛ

Δ ӯ ≈ɛ

ỹ

Computed

and rounded

output data

Computed

and rounded

output data

ỹ

Figure 14: Computing error

In case of poor implementation, the absolute error Y can be
divided in three main error contributors (Figure 14):

- The computational error (Y-ỹ) where ỹ=F(x): It is only
sensitive to the input error X and the computer
algorithm stability. X is caused by the truncation or
rounding of the exact real number X during encoding as
floating-point.

- The Implementation error (ỹ-ӯ) where ӯ=f(x): The input
error X is amplified by errors of modelling and
implementation. It must be pointed out that this error is
not related to measurement uncertainties, even if poor
and unstable programming may also amplify the
dispersions of the measurement data entered in a

8

metrology or precision engineering software.
Propagation of uncertainties in software is a topic that
has already been considered in many research works
[14,16,127,130,131]. This topic has also been treated in
a fundamental keynote paper entitled "Measurement as
inference" [52]. Measurement uncertainties are
therefore not considered significantly in this paper.
Error propagation is a research field intensively treated
in laboratories of mathematics and computer science.
Generally, the understanding of the accuracy of floating-
point programs is based on the estimation of the
condition number. It is an indicator that permits to
know the algorithm behaviour when it is calculated at
each program line. Condition number will be detailed in
subsection 2.2.3.3.2 (Mastering of forward error).

- The error (ӯ-y) generated by the conversion of the
computed result to the decimal number displayed or
printed to the user.

These numerical effects will be discussed in detail in the next
subsections.

2.2.3.1Loss of specific properties of arithmetic operations

Due to cancellation, rounding, overflow and underflow effects,
careful implementation is required in the coding of sets of
arithmetic operations. In fact, the commutative, associative and
distributive properties of the operators may be lost in
calculations performed with floating numbers and coded with a
limited number of bits, i.e. (A+B)+C≠A+(B+C), (AB)C≠A(BC),
(A+B)C≠AC+BC, … [33,93,94].

2.2.3.2Numerical effects of cancellation or overflow

The subtraction of two nearly equal floating-point numbers
may lead to a significant loss of relative accuracy. This
phenomenon is named catastrophic cancellation.

33096 = and 77617 = :with

 2 / + 10 55 + 2 21 = f

ba

baaabbbbbbaabb −− (6)

To demonstrate the effect on the cancellation of the number of

bits used to encode floating-point numbers, the computing of
Equation 6 represents a good example [152].

1.172603

-0.82739

-1

-0,5

0

0,5

1

1,5

16 17 18 19 20 21 22 23 24

Usual MATLAB 7.10 (Double)

Digit nb

f

.

.

.

.

Figure 15: Effect of the number of bits on calculation

This function was computed with floating-point numbers of

increasing bit length. The result is shown in Figure 15. As soon as
the number of bits exceeds a size that enables the display of 19
decimal digits, an accurate value is returned by the software.
Below this, the calculation result is false. In conclusion, to reduce
the numerical effect of the cancellation, the number of bits must
be increased. Arithmetic operations can also undergo overflow
and underflow.

2.2.3.3Backward and forward errors analyses

Forward and backward error analyses are two paradigms used
to study error analysis and data sensitivity
[28,32,87,175,176,181]. The backward error is defined as the

estimated input error XΔ ˆ that would lead to a given fixed
absolute error Y after computation. Its calculation process is
shown in Figure 16. The forward error is the absolute error Y
calculated for a fixed input error X.

Mathematical

calculation

Computational

calculation

X
XY 1)(F ==

3=X 3/1=Y

34.0=y

YyΔY −=

Forward error

ΔXXx +=

)(f1)(f x
x

xy +==

941.2ˆ =X

Backward error

...00666.0=ΔY059.0ˆ −=XΔ

errortion Implementa :)f(

error Input:

x

ΔX



)ˆ(F 1 XΔX +−

XXXΔ −= ˆˆ

Figure 16: Calculation processes of forward and backward errors

The analysis of the change in backward error in relation to the

forward error allows studying the quality of algorithms. This
connection can differ from one geometrical problem to another. It
can be summarized by the classification of Figure 17.

B
a
c
k
w

a
rd

 e
rr

o
r

Forward error
Large

L
a
rg

e

Small

S
m

a
ll

Accuracy

insensitive to

implementation

Stable process

Accurate

implementation
Ill-conditioned

problem

Reducing

backward error

Unstable process

Figure 17: Forward error versus backward error

A large forward error of a computation can have the following

sources:
- the amplification of a known input inaccuracy onto the

output error. It can be characterized by the condition
number. The condition number is a mathematical
property of an algebraic function F and is therefore
independent of the algorithm or the computer used to
evaluate an expression.

- the amplification of some truncation and rounding
errors generated by the algorithm used to compute the
desired function. It depends on the number of bits used
to encode the floating-points and can be reduced by
implementing multi-precision calculations. This effect is
called: stability or instability of the calculation process.

To minimise the numerical effect of -approximation and
implementation, the backward error, the condition number and
the process stability must be managed with caution.

2.2.3.3.1Reduction of input error

With floating-point numbers, the input error mainly depends on
the quality of the encoding and rounding. Increasing the number
of bits is therefore an obvious solution to reduce backward errors
in floating-point calculations. Some modern commercial floating-
point computing software provide functions (such as the function
eps() of Matlab that computes the floating-point relative
accuracy) that allows the estimation the  error. Figure 18 shows
the result of the computation of constant  (pi) using Matlab
software. The number was calculated with standard double
precision floating-points and was displayed with 15 digits after
the decimal point. Its relative and absolute errors were also
defined. The same constant  was also computed with Excel
spreadsheet. The result: 3.14159265358979 was obtained.

>> pi

9

ans = 3.141592653589793
>> eps(pi)
ans = 4.440892098500626e-016
>> eps(pi)*pi
ans = 1.395147399203453e-015

Figure 18: Numerical value of constant , relative and absolute errors in
case of calculations with double precision floating-point numbers

One digit was thus lost in comparison with Matlab. Multiple
precision toolboxes are also available in some software systems
to perform calculations with high fixed arbitrary precision.
Quadruple precision floating-point numbers, compliant with IEEE
754-2008 standard, are also now progressively introduced in
programming tools and hardware. It will permit computations
with a precision of about 34 decimal digits. Figure 19 finally
shows the result obtained with 300 decimal digit precision [90].
Such multiple precision computations can be realised with Maple
or Mathematica software without any specific library. They
require however enough memory space to encode the real
numbers (Figure 8) and may lead to large computing times.

>> mp.Digits(300)
>> mp('pi')
ans=3.1415926535897932384626433832795028841971693993751058
209749445923078164062862089986280348253421170679821480865
132823066470938446095505822317253594081284811174502841027
019385211055596446229489549303819644288109756659334461284
756482337867831652712019091456485669234603486104543266482
1339360726024914128

Figure 19: Numerical value of constant  with 300 decimal digits

Figure 20 shows the increase of the calculation time needed to
compute the constant  as a function of the number of encoding
decimal digits. Various C libraries dedicated to multiple-precision
floating-point computations with accurate rounding have already
been developed (GNU-GMP, GNU-MPFR, FLINT, MPIR). Most of
them are open-source and permit calculations with an arbitrary
multiple precision. Links to such libraries are available in [168].

4 E-3

3 E-3

2 E-3

1 E-3

Digit Nb

Seconds

5000 10000 15000
Figure 20: Calculation time of  in multiple precision

The calculation times must also be evaluated for computations

requiring complex numerical operations (matrix inversion, least
squares optimizations…). The U.S. National Institute of Standards
and Technology (NIST) publishes a set of statistical reference
datasets using multiple precision calculations with an accuracy of
500 decimals. Another solution to reduce the input error is to use
BCD encoded numbers. However, industrial software currently
does not offer toolkits to develop in BCD. Nevertheless, the
potentialities of the actual object-oriented programming
languages, such as C++, permits the overload of all the
mathematical operators and most arithmetic functions. Thus,
generic algorithms developed with classical floating-point
numbers can be reused. This will permit evolving towards BCD
processing [21].

2.2.3.3.2Mastering of forward error

Equation 7 presents the demonstration of the condition number
C in the case of a single-variable nonlinear function F. The relative

forward error is the result of the multiplication of the condition
number C by the relative input error X.

δXδX
X

XX

X

XX

X

ΔX
δY

XΔXXΔXXΔXX

X

XΔXX

X

Xx

Y

Yy

Y

ΔY
δY

 C
)(F

)('F

)(F

)('F

)('F)(F)(F)(f :with

)(F

)(F)(f

)(F

)(F)(f



+++

−+
=

−
=

−
==

(7)

In these expressions, X is the exact input argument of the

mathematical function F to be calculated; F’ is the derivative of F;
f(x) represents the result provided by the computer; X is the
absolute input error; X is the relative input error; Y is the
relative forward error and C is the condition number. It must be
pointed out that the approximation f(X+X) ≈ F(X+X) is only
valid in case of accurate and stable software implementations.
The Taylor expansion used in Equation 7 requires also a limited
input error X.

The condition number C represents an intrinsic property of the
mathematical problem and has nothing to do with the computer.
A computing condition number c can therefore also be defined. It
takes the floating-point approximation x of X as input argument
and is based on the result f(x) really provided by the program
implemented in the calculator. Equation 8 shows such definition
and demonstrates that the mathematical meaning of the
condition number may lead to inaccurate estimations of
computing errors because it does not account for deviations
caused by inaccurate or unstable implementation.

)(f

)('f

)(F

)('F

x

xx
c

X

XX
C == (8)

Equation 9 shows the symbolic definition of the condition

number C. It is the ratio between the relative output error
(change in output) and the relative input error (change in input).

X

Y
C




= (9)

100

50

0

-50

-100

1.2 1.4 1.6 1.8 2

X

C

C=X tan(X)

2



Figure 21: Behaviour of the condition number of the Cosine function

Estimating the condition number C (or c) is very important in

understanding the accuracy of floating point software. When C (or
c) is large, the relative input error is amplified and the accuracy of
the computing results becomes poor. A problem characterized by
a low condition number is called “well-conditioned”, otherwise it
is named “ill-conditioned”. The condition number C may greatly
depend on the input argument X. Thus, it can take large values up
to infinity and this even for simple mathematical functions
(cosine, sine, tangent...), this amplifies errors in scientific
computation. As an example, Figure 21 shows the behaviour of
the condition number calculated for the function cosine.

In case of a nonlinear differentiable function F of multiple
variables X, the condition number is defined by equation 10,

10

where J(X) represents the Jacobian matrix of F and ∥…∥ is a given
chosen matrix norm (usually the Euclidian norm).

)(F

)(

X

XX
C

J
=

 (10)

For non-singular systems of linear equations, given in the form

A.X=Y, the condition number (A) is computed as follows:

AAA)(1−=κ (11)

Its value thus depends on the choice of norm. With the

Euclidian norm, the condition number C is the ratio of the largest
to the smallest singular value in the singular value decomposition
(SVD) of a matrix.

The effects of the input error propagation can be mitigated by
reducing the number of floating-point operations (FLOPs)
performed in a computation. Matrix computation is intensively
used for the implementation of approximation methods in
metrology and precision engineering software. In the case of
linear equation systems, the Gauss pivoting method is often used
to obtain the solution. In a problem with n equations and n
unknowns, [n(n+1)]/2 divisions and [(n(n-1)(2n+5)]/6 additions
and multiplications are needed to obtain the result. The Gauss
pivoting method should therefore only be used for linear systems
of limited size (less than a thousand of unknowns). For large
systems (e.g. for Finite Element calculations) specific algorithms
are to be used.

X

f

-5,00E-13

-3,00E-13

-1,00E-13

1,00E-13

3,00E-13

3,
9

99
9

3
,9

9
9

9
5 4

4
,0

0
0

0
5

4
,0

0
0

1

.

.

.

.

.

.
. .

.

Figure 22: Stability or instability of computation

2.2.3.3.3Calculation process stability

To illustrate the stability or instability of the calculation process
[19], Figure 22 presents the behaviour of two implementations:
f1 and f2 (Equation12) of the same mathematical function F,
when the input argument X tends to 4. The results plotted in blue
are obtained from relation f1, while the red curve results from
implementation f2. These computations were performed using
MATLAB 7.10 software and standard double floating-point
precision.

4)-4)(-4)(-4)(-(= f2

256 + 256 - 96 + 16 - = f1 24

XXXX

XXXX 3

 (12)

The first implementation f1 is affected by the rounding errors of

the floating-point calculations. This impacts the stability of the
calculation process. A computing process without subtractive
cancellation is usually stable, especially when a small number of
numerical operations is used. A few guidelines can be found in
[87]. Backward error calculations can be used to test the stability
of the calculation process (method) applied to solve linear
equation systems [28,87]. If the backward error is small, it means
that the result y found by the computer is close to the true

solution Y of the mathematical problem. To improve the stability
of a numerical process, a scaling of the data can lower the
condition number. In linear equation systems, a nearly optimal
strategy is to equilibrate the rows or columns of the associated
matrix.

2.2.3.3.4 Interval and ball arithmetic

The principle of interval arithmetic (IA) is to encode a real value
by an interval provided by the computer. This interval evolved to
shapes in N dimensions. Since the 1960s, this topic was
intensively studied [48, 86, 114, 120, 137]. The input interval x
can be represented by its lower X and upper X endpoints

(interval arithmetic) or as a centre xc and a radius rx (ball
arithmetic). The 1788-2015-IEEE Standard for IA defines basic IA
operations of the commonly used mathematical interval models
(Equation 13). IA estimates the upper and lower limits of an
output, calculated from a set of inputs bounded by intervals.

0 and 0 if
1

,
1

],[/

)] , , , max(), , , , [min(

],[],[

] , []y,[],[

] , [],[],[













=

=

=

−−=−=−

++=+=+

yy
yy

xxyx

yxy xyxyxyxyxyxyxyx

yyxxyx

yxyxyxxyx

yxyxyyxxyx

(13)

The “dependency problem” that may lead to large over-

estimations of computation errors, is a major difficulty in the
application of IA. Very early, the wrapping effect of interval
arithmetic was brought to the forefront. This effect is well
introduced in the presentation of the one-dimensional problem
detailed in [177].

Poor implementation

intval root1 = 1.0e+005 * < -2.99999999999967, 0.00000000000001>
intval root2 = 1.0e-007 * < -0.33324454307149, 0.00014210854716>

Robuste implementation

intval root1 = 1.0e+005 * < -2.99999999999967, 0.00000000000001>
intval root2 = 1.0e-007 * < -0.33333333333337, 0.00000000000001>

0.00001and3000.001,:with

..
2

===

++=

cba

cxbxay

Poor implementation Robust implementation

a

cabb
root2

a

cabb
root1

.2

..4

.2

..4

2

2

−+−
=

−−−
=

1root.

.2

..4
).b(Sign

2

a

c
root2

a

cabb
root1

=

−+
=

Relative
forward error

-4.26e-04

-3e-14

Figure 23: Self-validating implementation with ball arithmetic, applied to

roots of a single-variable quadratic equation

To reduce its impact, coordinate transformations can be used.

In N-dimension domains, new shapes for interval boundaries
were also chosen as polytopes or ellipsoids [169]. For dynamic
problems, Chebyshev or Interval Newton methods can be applied
to solve nonlinear functions with intervals. Ball arithmetic seems
to partially solve the over-estimation of computation errors.
Many libraries for interval arithmetic (GNU Octave) or ball
arithmetic (Mathemagix [169]) have already been developed.
Matlab library INTLAB [153] also proposes tools to perform IA
calculations. In addition, arithmetic intervals are also handled by
Computer algebra systems, such as Mathematica or Maple. To
illustrate the use of interval arithmetic for the self-validation of
an algorithm, Figure 23 presents the results of the calculation of
the roots of a single-variable quadratic equation.

11

2.2.4 Sub conclusion
In scientific computation, the limits of the use of floating-point

numbers were intensively studied during the last fifty years (with
activity intensified during the run up to the year 2000 due to
anticipated problems with “millennium bugs”). Computational
errors and algorithm instabilities are linked to truncation and
rounding errors, generated by the encoding of the handled
numbers into binary data of limited size, inaccuracies of the
implemented mathematical basic functions, cancellation effects
and overflows or underflows.

The first way to avoid these phenomena is to increase the
number of bits used in the conversion of exact real numbers into
floating-points. In fact, computing precision is closely linked to
the number of bits assigned to store the floating-point significant.
In addition, the range of numbers that can be encoded and
handled is related to the number of bits assigned to the exponent.
Quadruple precision calculations conforming to IEEE 754-2008
will soon be available for software developers and will provide
outputs with 34 decimals. Many multi-precision libraries are now
also available to engineers or researchers in precision
engineering or metrology. However, the increase of the number of
digits improves the computing accuracy at the expense of
computation time. Therefore, only the routines that perform
intensive scientific calculations are generally programmed with
multi-precision libraries. But a careful handling of inputs and
outputs is required to avoid rounding and truncation errors
generated by data conversions between program modules of
different types.

The second way to avoid computational errors and algorithm
instabilities is to perform scientific calculations with decimal
numbers. This is realized in pocket calculators and some
supercomputers that have dedicated hardware, but not in laptops
or desktops. Software solutions are available based on the BCD
coding. However, these solutions currently remain reserved for IT
developers who implement their own codes. The quality of
scientific calculations is linked to the quality of the software
implementation [5]. The adjective "well" or "ill" conditioned
refers to the algebraic expression of a given function F. On the
other hand, the adjective "stable or unstable" refers to the
algorithm and the numerical results associated with a machine.
When the algebraic expression is well conditioned, in principle
one can always find a stable process to evaluate it. When the
algebraic expression is very poorly conditioned, it is difficult to
find a stable process to evaluate it. Combining an improperly
conditioned algebraic expression with an unstable process is
generally a recipe to obtain poor result. In exact arithmetic
calculations performed with computer algebra systems
(Mathematica, Maple, …), only rational numbers are
implemented, thus limiting the instabilities of algorithms. In
floating-point calculations, a numerical certification of results can
be realized by using interval or ball arithmetic. In this section, the
intrinsic performances of computer hardware and software were
only highlighted. The numerical result provided by a metrology or
precision engineering software also depends on the quality of the
model describing the physical problem and on its
implementation. This is the subject of Section 3.

3. Modelling and implementation

The physical problems faced by researchers or engineers in
precision engineering or metrology mainly deal with the
quantification of measures (scalar quantities) (e.g. parameters of
geometrical models) used to describe geometrical features of the
measured object, to calibrate machine-tools, to compensate
measuring devices, etc. In this section, the properties of the
mathematical models used to describe the physical problem are
discussed. The choices made in modelling have a significant

impact on the quality of the result. Numerical implementation of
the mathematical approach simultaneously requires a suitable
definition of the nominal geometric model, the deviations from
the nominal features, and the solving method. All this modelling
should be realized at the same level of quality. The global
performance of the process will in fact be imposed by the
software component of lowest quality. On the other hand,
appropriate choices may improve the quality of numerical results
even if calculations are based on a limited number of digits.

x
y

z

A

V
3D model

x
y

z

AXZ

AXY

VXY

VXY

2x2D models

z

Δ

distance

x

y

z

















zyzxz

yzyxy

xzxyx

VarCovCov

CovVarCov

CovCovVar

Numerical solution:

Solver, …

Covariance matrix

N
O

M
IN

A
L

D
E

V
IA

T
IO

N
S

O
L
V

IN
G Iterative algorithm

Equation root SVD, Analytical solution…

Eigenvalues

Eigenvectors

V = AMidi

Mi

zziΔi −=

Mi

A: Nominal point

V: Nominal unit vector

Mi: Measured point

: Deviation z

di: Plumb line distance

Figure 24: Nominal model, deviations, solving methods implemented to bring

to the fore their impacts on the calculation accuracy

To show the effect of modelling, different least squares

optimization algorithms were implemented in a spreadsheet
application (Microsoft Excel) to approximate a straight line based
on a set of acquired coordinates. Reference data provided by the
National Metrology Institute of Germany (PTB) was used for that
purpose. This reference data set includes 8 points. It is well
known, in least squares optimization, that the barycentre of the
measured coordinates lies on the approximating line. The
problem thus comes down to the determination of the three
components of the unit vector defining the line direction. These
vector components Vest were evaluated by several solving
methods and compared to the results VPTB certified by PTB. The
error of each calculation process was thus defined by the norm of
the difference of the two vectors (Equation 14). All these
calculations were performed with 64-bit floating point numbers.

853090.00096136

450810.93129298-

276110.36426975-

 :with PTBPTBest VVV −=Error

 (14)

Figure 24 details the different nominal models, the definitions

of deviations (i.e. the distances between nominal and actual
points) and the solving methods that were implemented. The
resulting errors are summarized in Table 4.

The choice of the nominal model, the definition of deviations
(distances) or deviation functions and solving methods have a
great influence on the quality of the obtained result. In the case of
a 3D line, calculating the eigenvectors of the coordinate
covariance matrix or its Singular Value Decomposition (SVD)
leads to the best precision. These algorithms are also the
optimized solving solutions to be used in the case of a plane.
Choice 8 (3D nominal model, 3D deviation function, description of
the line unit vector by 2 independent angles) also gives results
very close to the certified values. But in this case, the solver
integrated in the spreadsheet application is applied, working as a
black box. This does not allow a fine tuning of the optimization
process. The three items: Nominal model, deviation function, and
solving method will be further detailed in this section.

12

Table 4: Comparison of 9 computation processes

Choice Nominal Deviation Resolution Error

1 2x2D Pt/line in Y and Z Solver 2,54E-05

2 2x2D Pt/line in Y and Z Analytic 2,15E-06

3 3D Distance Pt/line Solver (6 dependant parameters) 1,66E-07

4 2x2D Pt/line in Y and Z Solver and reducing para. 1,52E-07

5 2x2D Distance Pt/lines Analytic 1,05E-07

6 2x2D Eigenvalue/vector Analytic 1,05E-07

7 3D Distance Pt/Line Solver (3 dependant parameters) 9,34E-09

8 3D Distance Pt/Line
Solver (2 independant

parameters) 7,46E-11

9 3D Eigenvalue/vector Analytic 7,22E-11

3.1 Guidelines to a smart implementation of a nominal model
Different general principles exist to guide researchers or

engineers in modelling physical problems. One such basic rule is
Occam's Razor (OR), attributed to an English Franciscan friar,
William of Ockham (1287–1347). It is also called the Law of
Parsimony (LP) and may be formulated in Latin as follows:
Pluralitas non est ponenda sine necessitate (entities should not
be multiplied unnecessarily) [164]. In science, Occam's razor is
used as a heuristic to guide scientists in developing theoretical
models [150, 159]. In precision engineering or metrology, this
powerful rule leads researchers or engineers to use a limited
number of parameters to explain a physical phenomenon. An
additional consequence of the application of this principle is that
it permits defining the minimum number of parameters required
to characterize a model. This allows using variables that are
statistically independent and thus simplifies uncertainty
evaluation and propagation.








 
=



=

















=

==

θ
θ

θ

θ

var0

0var
)(parameterst independen 2

Cos

Sin.Sin

Cos.Sin

var),cov(),cov(

),vycov(var),cov(

),cov(),cov(var

)(

equation constraint 1 and parameters 3 1 with

i

i

p

vzvzvyvzvx

vzvyvyvx

vzvxvyvxvx

p

vz

vy

vx

VARV

VAR

VV

(15)

Equation 15 details the parametrisation of the unit direction

vector for a straight line, corresponding to choices 7 and 8 of
Table 4. Table 4 already highlighted that the choice of two
independent parameters (two angles) gives a better estimation of
the 3D line direction vector than a modelling by three dependent
components. Another aspect to point out is the orthogonality of
the coordinate basis that enables the characterization of a
deviation. Figure 25 shows the calculation of a distance d, defined
by the two components p1 and p2 of a vector in a 2D plane. It
illustrates the effect of non-orthogonality of the coordinate basis
on the description of the same deviation.

p1=p’1

p2

a’1 a1

a2 p’2


a’1=-7.342

a’2= 11.517

a1=4

a2=2Deviation: d=4,472

d=ǁa1 p1+a2 p2ǁ

Orthogonal

p1, p2

p’1, p’2

Non orthogonal

Figure 25:Orthogonal or non orthogonal parameters describing a deviation d

In Figure 25, the data plotted in green are described by an

orthogonal coordinate system. It is non-orthogonal for the blue
items. When the angle α approaches 90°, the coordinates a’1 and
a’2 tend to infinite. In classical model of an aspheric shape [59],

potential numerical instabilities induced by such effect led the
authors to propose a new mathematical definition using an
orthogonal basis of the parameters.

The geometric characterization of surfaces, parts or products is,
generally, based on the measurement of two-point distances, or
angles between items (Figure 26). This data is scalar. In the
1970’s, the development of CMM’s enabled capturing the
coordinates of a point in a reference frame. These coordinates are
distances acquired in three orthogonal directions. A Cartesian
approach of geometry is then used in modelling. Since the
structures of real devices are not perfect, geometric models of
CMMs or CNC machine structures were substantially improved,
giving rise to the currently applied calibration and error
compensation methods for three-dimensional measuring or
manufacturing systems. The nominal mathematical models of
calibration and measurement processes are characterized by a
set of parameters (distances, angles and intrinsic parameters).
The first type of nominal models aims thus to identify the
geometric errors of machine structures and to compensate for
these defects afterwards. The goal of the second kind of nominal
models is to characterize the geometry of a surface area or an
entire measuring object during an inspection process. Some
parameters of a nominal model define the position and
orientation of a geometric entity with respect to other geometric
elements or a reference coordinate system derived from different
features.

angle

Scalar measures

Localization and orientation

of geometrical features

X

Y

Z

p1

p2

p3

pi distances, angles or

intrinsic parameters
with i=1 to n

π/2

π/2

π/2

CMM:
3 distances

1 measured point

Machine Tool:
3 distances

1 measured point

3 distances + 1 angle or

3 distances + 2 angles
1 measured point and orientation

Laser Tracker:
1 distance + 2 angles

1 measured point

Laser Tracer:
(Pos.Pts) distances

Pts measured points

With:

Pts=(4.Pos-6)/(Pos-3)
Pos: Nb of Laser Tracer positions

Measuring arm:
3 angles

1 measured point

Nominal parameters

p4

p5p6

Calibration model
Metrological model

p7

Measured

points

Each captured point needs:

Example

Example

Measured set of points

Figure 26: Links between measures and models

Other intrinsic parameters (dimensions, angles, curvatures, etc)

define the shape of the geometrical elements. A minimum of 6
parameters is required to locate and orient a geometrical item in
a 3D space (3 translations and 3 rotations). The mathematical
models that describe the rotation of a geometrical entity are
generally based on Euler matrix transformations, Roll-Pitch-Yaw
matrices (or the simplified linear representations: Small Screw
Displacement) or Rodrigues' rotations. Euler’s angles can
describe transformations with large angles, but they degenerate
for small rotations. Roll-Pitch-Yaw representations are well
adapted to small rotations, but they cause problems for angles
close to π/2. However, these two transformations use the
minimum number of parameters (i.e. three) required to define
any 3D rotation. Rodrigues’ rotation has no angular limitation,
but it requires an additional parameter. This representation is not
minimal. The nominal geometric models for the calibration and
error compensation of CMMs, CNC machine tools or other
measuring devices were described in many papers [6,20,27,43,
50,99,155,171] and different CIRP Keynotes [65,156]. These

13

models will not be discussed here, but the general rules
mentioned above can be applied to them, too.

C

n V

C

C

ni
Mi

Mi

ni

ni,j

Mth,i,j

Mth,i,j,k ni,j,k

ni

V

niMi

C

Mi Mi

Mth Mth

Mth

Mth

Mth

Mi

Mi

Level

of

complexity

Data

processing

C
o

n
ti

n
u

o
u

s
 M

o
d

e
l

D
is

c
re

te
 M

o
d

e
l

E
x
p

li
c
it

Im
p

li
c
it

E
x
p

li
c
it

S
T

L

S
T

E
P

S
ig

n
e
d

D
is

ta
n

c
e

D
ir

e
c
t

Figure 27:Model typology

The nominal mathematical models, used in metrology to

describe surface areas or geometrical features, can be subdivided
into two complementary forms: continuous models and discrete
models (Figure 27). Continuous models are used in the
description of basic surfaces (spheres, cylinders, aspheres, B-
spline surfaces, gear flanks...).

ni or Ni Mi

C

Mth
di

tiModel

Aim: Signed distance calculation

Parametric model Implicit model

X

Y

Z
Sphere

)Cos(),h(),(

)Sin()Sin(),g(),(

)Sin()(Cos),f(),(

vRZvuvuZ

vuRYvuvuY

vuRXvuvuX

0

0

0

+==

+==

+==
0²-)²Z-()²-()²-(),,F(=++= RZYYXXZYX 000
























=
























=

v

vu
v

vu
v

vu

u

vu
u

vu
u

vu

vu

),h(

),g(

),f(

T,

),h(

),g(

),f(

T)()(

Normal equation: ni or Ni

Normal equation: ni or Ni

i

i
ii

N

N
n ,

f

f

f

N =


























=

z

y

x

Solve ()() 0NCMNCM iiii =ithMM=id

ithi MMCM =

)()(i)()(i

)(

)(

(v)

)(

)(

)(

t tn ,TTN

T

T
 t,

T

T
 t

vuvu

v

v

u

u

u

==

==

Figure 28: Plumb line distance calculation based on a parametric and implicit

model

The mathematical definition for the surface of such a

continuous model can be expressed in two ways:
- By an implicit equation: the 3D coordinates (X, Y, Z) of all

points on the nominal surface are given by an equation in the
form F (X, Y, Z) = 0. As an example, the implicit equation of a
sphere is presented in Figure 28. This equation defines all those
points, whose coordinates X, Y and Z fulfil the equation. They are
located on a sphere around the center (X0,Y0,Z0) with the radius R.

- By a parametric equation: the coordinates of all points on the
surface are explicitly written as functions of two surface
parameters u and v, i.e. X(u, v), Y(u, v), Z(u, v). The parametric
equation of a sphere is also shown in Figure 28. The choice
between these two models is generally made when choosing the
deviation. Generally, it is the nominal model giving the simplest
metric equation that will be selected to limit potential numerical
discrepancies. The next paragraph, dedicated to deviations, will
provide further detail regarding this aspect. When the topology
becomes more complex (e.g. a car body door in Figure 29), free
form surfaces, free form shaped parts or full 3D masters [129,
130,154] are split into a set of elementary surfaces that can still
be described by implicit or parametric equations (set of planes in

STL files, set of basic surfaces and B-splines in STEP files). Such
models are named discrete models. The accuracy of a full 3D
master used in metrology is determined by the quality of the
process used to translate the CAD model into a data exchange file
(STL: CAD models in stereo-lithography or solid freeform
fabrication technologies, IGES: Initial Graphics Exchange, ASME
Y14.26M [102], VDAFS: Verband der Automobilindustrie-
Flächenschnittstelle or “automotive industry association – surface
data interface”[149], STEP: Standard for the Exchange of Product
model data, ISO 10303 [13]). The native model implemented in a
CAD system is the representation used the most in discrete
models, since it does not require any translation and thus leads to
the best accuracy. The quality of discrete models greatly depends
on the conditions of continuity of the elementary surfaces: C0
(point continuity), C1 (slope continuity) and C2 (curvature
continuity). The STL format transforms the CAD model into a set
of planes, delimited by three triangle vertices and its normal. It
does therefore not satisfy the continuum in slope (C1) and
curvature (C2). The IGES format describes a volumetric geometric
element by a set of parametric tiles or basic surfaces. The STEP
neutral file presents the latest technological advances in the
volume description of complex or simple features. Complex
surfaces are described by a set of B-Splines. The degree of these
parametric surfaces can guarantee the geometrical continuity in
C0, C1 and C2. However, geometric discontinuities can still be
observed with such a surface exchange format, depending on the
quality of the translation module.

Figure 29: Full 3D master of a car body door, given in blue, and measured

point deviations

3.2 Deviation calculation

ISO 17450-part 1 [15,104] defines the basic operations
available to verify a dimensional or geometric specification:
partition, extraction, filtration, collection, association and
construction. The surface model is defined in the partition
operation. Section 2 summarized some precautions to take in
order to obtain a smart modelling of the studied metrological
problem. In the association operation, a deviation quantity is
required to approximate the measured coordinates to the
nominal model.

(Euclidean distance)

nc

deuclidean

dproj

X

Y

Z

nominal

surface

Mi

nMth

Mth

C

di

(Plumb line distance)

(Projected distance)
Mi/proj

Figure 30: Distance definition

In order to handle all deviations in the same way, i.e. to give all
measured points the same weight in approximation routines, a

14

general function valid for all captured points is required called
the deviation function. Depending on the inspection task and
geometric restrictions, three types of deviation functions are
commonly applied: the Euclidean distance(CMi norm), the
projected distance (CMi/proj norm), and the plumb line distance
(MthMi norm). The two last distances are Signed Distances (SD),
calculated between a measured point Mi and the nominal
geometric element (Figures 28 and 30). This nominal geometry
can either be represented by a nominal point Mth or C
corresponding to Mi and the unit normal vector ni on the nominal
surface in the environment of Mi [70], or by the implicit or
parametric nominal surface (or a real sub-patch of it). The latter
gives the plumb line distance, defined by the smallest-possible
distance magnitude between Mi and the nominal surface. This
distance vector crosses the nominal surface perpendicularly, i.e.
its direction is given by grad F(X,Y,Z) in implicit model definition
[67] or partial derivatives in parametric model (Figure 28). Its
distance value is defined positive when the point Mi is located
outside the material or when the dot product between the vector
MiMth and the normal vector ni on the modelled surface or curve
is positive, equal to zero when the measured point lies on the
surface or curve (dot product equal to zero) and negative
otherwise (negative dot product). By convention, the normal
vector on a surface is oriented to the outside of the material.

Using one of the 3 deviation function types defined before,
other deviation functions (or measures of distance) can be
defined, but they must satisfy some conditions. For example, in an
inspection process for assessing the form or orientation of a
geometric feature, compliant with the ISO 1101 standard, the
deviation used to realize the association are no longer directly
given by signed distances, but either by the difference between its
maximum and minimum deviation or two times the maximum
distance (minimum zone criterion) [139].

The law of conservation is a suitable guide for the choice of the
deviation quantity. Several types of conservation principle are
known in engineering science: conservation of mass, and
conservation of energy, for example. In physics, a conservation
law states that a measurable property of a system remains
constant while the system’s state might change. This definition
can be easily applied to the field of precision engineering and
metrology. For the three types of deviation functions explained
before (see also Figures 27,28 and 30), it is obvious that signed
distances and eigenvalues/vectors are independent of any change
in the reference frame, whereas the unidirectional distance
 depends on the selected direction of computation. Signed
distances and eigenvalues respect the law of conservation and
define dimensional quantities that allow the location of the 3D
line in the space, independent of the reference system.

If the deviation function is based on a distance (Figures 27 and
30), its computing leads to three basic configurations: point-to-
point distances or Euclidean distances (calibration of Machine-
tools or Coordinate Measuring Machines, Iterative Closed Point
(ICP) algorithms, etc), point-to-curve distances (approximation of
circles or lines in metrology, toolpath optimization in
manufacturing, etc) and point-to-surface distances
(approximation of basic or complex surfaces in metrology, control
of geometrical specifications with full 3D masters, etc). The latter
two configurations could be based on projected distances or
plumb line distances (Figure 30).

In many cases, the topology of the geometric element explicitly
provides a sense for the normal vector. This is the case for the
standard geometric elements circle, line, plane, cylinder, sphere,
cone and torus. Discrete models using STL format or meshed
surfaces can be added to this class. The signed distance is
obtained using point-point, point-line and point-plane distance
formulae. These cases are in the “Explicit” boxes of Figure 27. For

this first class of standard geometric elements the calculation of
deviations does not present any difficulty. In the case of other
continuous models (paraboloid, ellipsoid, asphere…) and discrete
models using parametric surfaces (B-spline, Bezier, Coons…), the
calculation of the deviation becomes much more difficult, because
then it is necessary to define the minimum distance between each
measured point Mi and the approximating surface. This is
generally achieved by the determination of plumb line distance. If
the normal vector in the environment of Mi is known, the
projected distance is a reasonable estimation for the plumb line
distance. Analytically, the plumb line distance is given by the
orthogonal projection Mth of point Mi onto the surface. Figure 28
summarizes the computational process that enables the
determination of this projection and therefore the computing of
the signed distance. These two subclasses are merged in the
“Implicit” box of Figure 27.

() ()() 0 == iiiiii NCMNCMNCM 0 (16)

Equation 16 shows an implicit expression that can be used to

determine the orthogonal projection Mth in Figure 28. The degree
of this equation depends on the model used. This degree can
quickly increase which requires numerical iterative methods such
as Gauss–Newton or Levenberg–Marquardt algorithms for its
solution [138]. However, it must be pointed out that Equation 16
may lead to more than one solution if the normal vector line Ni or
ni intersects multiple surface points. To obtain the plumb line
distance, it is then necessary to select the result with the smallest
distance.

Best-fit criterion

Least square

Minimum zone

Minimum

circumscribed

or

Maximum

inscribed

L2-Norm

or

Gaussian

Norm

T-Norm

T-Norm

di

Prob(=di)

PDFNorm

number SD:

²
1

k


=

k

i
id

)min()max(ii dd −

)max(id

ExampleEquation

)max(

)max(

ifixMI

ifixMC

dRR

dRR

−=

+=

Figure 31: Objective functions or approximation criterions

In the case of least squares approximation there is no need for

some geometric elements such as planes or lines to compute
distances between the measured coordinates and the theoretical
nominal item. In fact, it can be shown that the barycentre of the
measured points lies on the approximating element. Moreover,
the vector which completes the characterization of the
approximated feature (normal to the plane, direction vector of
the line) can be deduced from the covariance matrix of the
measured coordinates and corresponds to the eigenvector of
lowest eigenvalue. It is this method, using an SVD factorisation,
that obtained the best result in the test carried out in Figure 24.
This algorithm thus avoids the iterations of the classical methods
and therefore prevents successive rounding and cancellation
errors of the computer. This case is labelled “Direct” in Figure 27.
Figure 27 highlights two major difficulties encountered in
computing the deviations: the level of complexity in the
calculation of the distances that greatly increases when implicit
equations are to be solved, and the volume of data to be
processed. For explicit models, no real numerical difficulty exists.
However, for 3D full masters, the number of deviations to be

15

processed increases, which leads to the management of large data
files (big data).

3.3 Solution methods

In previous sub-sections, the nominal model and its parameters
were chosen. The types of deviation functions and the distances
between the measured points and the model were also defined.
The signs and magnitudes of all distances depend on their
relative position and orientation with respect to the position and
orientation of the approximating geometric element (which is to
be determined) and on the geometric features characterizing the
element like cylinder radius or cone angle (which are also to be
determined. This means that starting from a given cloud of
captured measuring points, there is an infinite number of possible
approaches for the parameters of the geometric element that
represent, to a greater or lesser extent, a “good approximation”.
To find the best-possible approximation, a criterion is required to
differentiate a “good” from a “better” solution of the
approximation problem. These criteria are called objective
functions. Several types of objective functions are used in
production metrology (see Section 3.3.1), primarily determined
by the inspection task and the definition of tolerances.
Mathematically, an objective function is a functional, i.e. a
mapping from a vector space (more specifically: a space of
functions) into the space of real numbers. This objective function
assigns each possible approximation solution for the geometric
element to one corresponding scalar value. In other words: the
objective function creates a “ranking list” among the possible
solutions, where the best-possible approximation can be
determined unambiguously by the minimum scalar value of the
functional [67,68,69].

3.3.1 Types of objective functions

The following will explain the types of objective functions,
predominantly applied in production metrology. The selection of
the approximation criterion is related to the solving method
(numerical or analytical solving, iterative computation or root
calculation) to be used to find the optimal parameters of the
model. Since metrology and precision engineering software are
mainly implemented with floating point numbers, this subsection
will focus on the numerical behaviour of the criterion or the
optimization method. The approximation methods used the most
in metrology and precision engineering are least squares
optimization, minimum zone evaluation, and calculation of
minimum circumscribed or maximum inscribed feature. They are
all approximated according to an objective function, which is a
norm of the deviations di between the measured points and the
geometrical element to be determined. This norm is called Lp-
norm, written as

=







=− 

=

 to1 withNormLp

/1

1

p

pk

i

p
id

 (17)

where p is the degree of the norm, ranging between 1 and infinity.
And k is the number of measured points.

Two special cases of this norm are mainly used as approximation
criterion (Figure 31): the L2-Norm with p = 2 [60,157] that leads
to least squares optimization (LSQ), and the infinite norm (L∞-
Norm), where p tends to infinite, also called Tschebyscheff-Norm
(T-Norm) [9,69, 71,158,178]. As shown in [71], calculations of
minimum circumscribed or maximum inscribed features can also
be realized by approximations according to the T-norm. The
Probability Density Function (PDF) associated with each
approximation criterion is shown in Figure 31 [10]. LSQ
corresponds to the maximum likelihood estimation for Gaussian
noise. The L1-Norm with p = 1 may also be used in specific cases.

An infinite norm would require the calculation of the functional in
Equation 17 for a degree p tending to infinity, but that cannot be
achieved numerically. The case of p = infinity corresponds to a
minimax problem, minimising the maximum residual distance. It
can be implemented in a comparably simple way by selecting for
p a value between 50 and 100 which provides a good estimation
of the T-norm. Higher degree values (e.g. p=300 to 500) can
improve this estimation, but require more decimal digits and thus
more calculation time [71]. [67] and [70] suggest an upper and
lower bound for the T-norm, both based on the Lp-norm with a
finite p.

p1

p2

Best solution

0=




p2

W

0=




p1

W


=

=
K

i

idW
1

²

p1

p2

Best solution ?


=

=
K

i

idW
1

²

a) b)

Figure 32: Numerical effect of an incomplete set of points: a) points

distributed over a large angular range b) points distributed over a comparable

small angular range [31]

From the point of view of computational convenience, a desired

property of an approximation criterion is to provide an objective
function with only one single minimum. Situations of non-
uniqueness of the minimum are however reported by [158] in
case of approximations according to the T-Norm (form inspection
or maximum-inscribed criterion). In fact, it is possible to
construct examples of approximating a plane according to the T-
norm that have a number of local solutions that is almost the
same as the number of data points. As shown Figure 32a, the L2-
norm (least squares optimization) should present, theoretically,
only one single minimum. This is the case, in practice, when the
acquired coordinates are distributed over a large angular range of
closed geometric features (circles, cylinders, cones, spheres, etc)
or on a wide lateral extent of the measured surface. When the
extent of the measured points is reduced, numerical problems are
amplified due to the presence of local minima. These local minima
are added by successive rounding and cancellation errors of
floating point operations (see Figure 32b). It can lead to a poor
parameter estimation of the approximating element. In the case
of a circle, the origin of these numerical problems is the
cancellation of high degree terms of the polynomial
approximation used by the computer to calculate square roots
[31]. This phenomenon of digital degeneracy can be observed for
any type of surface. This shows the importance of the choice of
the initial parameters (also called starting solution) required for
an iterative numerical process. In the case of existing local
minima, the algorithm will converge to the nearest local
minimum and therefore not necessarily “find” the global optimum
parameters. The use of floating point numbers in computer codes
leads to this phenomenon. Using multi-precision libraries or
computer algebra systems (Mathematica, Maple, …) will limit the
cancellation effects. Factors such as the choice of the optimization
criterion (objective function), the distribution of the points
measured on the geometric element, the mathematical model, etc,
will have an impact on the success of a computation method
applied to find the approximating parameters. In following
subsection, the behaviour of the computation methods will be
studied.

16

3.3.2 Calculation methods
In metrology or precision engineering software, two types of
computation methods are used:
- Numerical and/or iterative computation methods,
- Symbolic computation methods.
The first one is strongly influenced by the use of floating point
numbers and its limitations, whereas the second one, in theory, is
not influenced by them.

3.3.2.1Numerical and/or Iterative computation

The mathematical problems met in the field of precision
engineering or metrology generally correspond to the
optimization of objective functions with specific characteristics.
Figure 33 details these characteristics, i.e.: what is the number of
estimated parameters; is the objective function linear, quadratic
or nonlinear, with or without constraints? Are specialized
mathematical methods or algorithms used? The objective
function may be deterministic or stochastic and may or may not
require the calculation of derivatives.

As written in Section 2.2.4, the precision to which a numerically
stable algorithm can solve an ill-conditioned problem is limited
by the accuracy of the data. However, a numerically unstable
algorithm can produce bad solutions even for well-conditioned
problems. This means that an unstable algorithm can yield
solutions that are less precise than theoretically achievable from
the given data [11,66,162].

Mathematical

method choice

to derive optimal

result

Number of

parameters

Constrained or

unconstrained

objective function

Linear, quadratic,

nonlinear objective

function

Methods with

derivative

calculation or not

Global or

local

method

Deterministic

or stochastic

method
Figure 33: Characteristics of mathematical problem

To avoid these problems, numerical computation must respect

three basic rules:
- the inverse problem used in parameter model approximation

must be well conditioned,
- the applied algorithms must be numerically stable in order to

achieve results with a given finite arithmetic precision,
- the software requires a careful implementation of the

algorithms.
The stability of the optimization method with respect to

rounding-off errors is a fundamental characteristic to obtain
accurate numerical results.

Parameters of

optimization

method

Initial

approximation

Convergence

Stability Stopping criterion
Figure 34: Parameters of optimization method

Figure 34 summarizes the parameters which influence the

precision of the obtained result: stability, initial approximation,
convergence, and stopping criterion. Newton's method is the
basis for many optimization routines or root search programs
(Figure 35). Optimization algorithms, generally, require
computing derivatives of the first (Gradient or Jacobian) and
often second order of the function (Hessian). The properties of
the different mathematical methods (advantages and
inconveniences) are summarized in Figure 35. The solving of the
equations used in least-squares methods, can be performed by

specific calculations (Cholesky, QR factorisation [73]). Using the
QR factorisation of the Jacobian matrix, for example, is more
numerically stable than finding the Cholesky factorisation of the
product of the transposed Jacobian matrix with itself. The
condition number of the product is the square of the condition
number of the Jacobian matrix; there will also be a loss of
precision simply by forming the product. The use of a singular
value decomposition of the Jacobian matrix is also numerically
stable [73].

Intelligence

oriented algo.

Least squares

method (LSM)

Linear: Moore-Penrose

Non linear:

Gauss–Newton

Levenberg –Marquardt

(LM)

Genetic algorithms

Swarm colony

optimization

Bees algorithm

Particle swarm

Adv

Inv

Normal equations are

used

Gauss–Newton (GN)

Levenberg –Marquardt
Far from the solution, it

reacts like a SDM, close

as GN.

More stable than GN

Simple algorithm

Good flexibility

Search for minimum or

maximum overall

facility for functions

with mini or max local

Method does not

guarantee the true

extreme discovery

For some very regular

functions LM can

converge slightly

slower than GN

[49,124,134,

136,138,161]
[97,173,179,180]

Figure 35: Properties of mathematical methods

Quasi-Newton methods attempt to build an approximation of the
Hessian matrix (or its inverse) that incorporates second order
information by incorporating first order information as the
optimisation proceeds. The Broyden–Fletcher–Goldfarb–Shanno
Algorithm (BFGS) [49,126,136,144] is one of the most famous
quasi-Newton algorithms for unconstrained optimization. Moving
away from deterministic algorithms, intelligence-oriented
algorithms (Genetic algorithms, Swarm algorithms)
[97,173,179,180] with their simplicity are another way to search
the solution of extreme problems with many local minima. An
optimization toolbox has been implemented in Matlab software
for solving complex optimization problems. It automatically
selects the most efficient algorithm for the computed
mathematical problem. Matlab uses several algorithms depending
on the type of problem to be solved: interior reflective Newton

Newton's

method (NM)

Quasi Newton's

method (QNM)

BFGS method

L-BFGS method

Steepest descent

methods (SDM)

Newton -Raphson

method

Optimal, fixed or

variable steps

Conjugate gradients

methods

(linear prob.)

Conjugate

gradient method

is simpler to code

and requires less

storage space

Adv

Inv

[12,57,58,85]

Local method

Successive

determination of

search directions

and step lengths

Preconditioning

required

If the cost function is

quadratic, the global

minimum is reached

in 1 iteration

Hessian inverse is

computed at each

iteration

With many parameters,

calculation are long

and expensive in

storage

Risk of divergence

Newton method ‘s

convergence is

quadratic

Approximation of the

Hessian which is

locally re-estimated

at each iteration

L-BFGS method is

able to handle large

memory problems

Less information

about cost function

form

BFGS is the best

Quasi -Newton

methods

[17-18] [49,126,136,144]

17

method, trust-region-dogleg, trust-region-reflective, Levenberg-
Marquardt, simplex, BFGS, MiniMax, and so on.

3.3.3.2 Symbolic computation

In Section 3.3.3.1, numerical methods were investigated
performing calculations related to problems of precision
engineering and metrology. As an alternative, symbolic
calculation is offered today to researchers and engineers [39].

Step1

R1= numerical
intermediatecalculation

Step i

Ri=Functioni (Ri-1)

Final step

Symbolic

computation
with

Computer

Algebra System
(CAS)

Numerical computation

N
u
m

e
ri
c
a
l
p
ro

c
e
s
s

Numerical result

Model

Numerical data

It
e
ra

ti
o
n
s

Figure 36: Numerical or symbolic computation

Figure 36 illustrates the difference between these two manners

of handling a computational problem. In numerical methods, all
the data is handled in a numerical form, usually as floating-point
numbers, extending from the beginning of the computational
process to its end. Rounding and cancellation errors may thus be
generated at any intermediate calculation. Careful
implementation of each step of the computational process is
therefore required to obtain a correct result. Symbolic
calculation, on the contrary, gives a formal solution of a
mathematical problem. The numerical application is therefore
performed at the end of the calculation process, which reduces
the rounding and cancellation effects that arise with floating-
point calculations. To avoid numerical degeneracy, floating-point
numbers are not permitted in symbolic calculus. Decimal
numbers are thus treated as rationals (ratio of two integers).

Polynome degree Methods Computation

1rd Classical method Symbolic

2th Classical method Symbolic

3th Girolamo Cardano method Symbolic

4th Lodovico de Ferrari method Symbolic

5th Sturm's theorems Numerical

6th Sturm's theorems Numerical

… Sturm's theorems Numerical

Abel Theorem & Galois Theorem

Figure 37: Root research of univariate polynomial

Symbolic calculation is based on exact calculations and

equations including parameters or numbers in arbitrary
precision. Unfortunately, all mathematical problems cannot be
processed in symbolic computation. The differentiation or
integration of functions, the manipulation of polynomials, vectors
or matrices (linear equations) are treated in symbolic calculation.
The resolution of polynomial systems and systems of nonlinear
multivariate equations [22,23,24,54] are also available in
symbolic computation. Formal calculation solutions are offered
by commercial computer algebra systems (Maple, Mathematica,
…) and open source software (GAP, Maxima, SAGE, …).

The calculation of the deviations (distances) between the
nominal model and the measured points often requires finding
the roots of a polynomial. For example, in the case of a
paraboloid, a 5th degree polynomial equation has to be solved. For
an ellipsoid, the equation is of degree 6. Similarly, for the
approximation of a plane using the SVD method, it is necessary to

determine the eigenvalues. They result from the roots of a
3rd order characteristic polynomial. The computation of roots of
univariate polynomials is thus one core problem to be solved in
metrology and precision engineering. Any non-constant real
polynomial can be factored as a product of irreducible real
polynomials of degrees 1 or 2.

x=778

45

θ1 ?

x

y

Laser

Reflector

θ2 ?

θ3 ?

Figure 38: Robot calibration

This theorem does not provide any explicit decomposition

algorithm. It only predicts what the final form of the result should
be. Consequently, this raises the problem to (i) ascertain the
existence of real roots and (ii), if they exist, to evaluate them with
a certified precision. The direct method to prove the existence of
roots is to formally exhibit them (when possible). One can find an
explicit formula - using radicals - for each root of a polynomial of
1st, 2nd, 3rd and 4th degree. But from the 5th degree on, there is an
insurmountable difficulty. The work of N.H. Abel and E. Galois
[63] has highlighted, in fact, that the roots of polynomials of a
degree greater than 4 cannot, in the general case, be expressed
with radicals (Figure 37). It is therefore impossible to obtain an
explicit formula determining the roots and, consequently, it is
necessary to implement numerical methods with all of their well-
known weaknesses. Sturm's sequence or Sturm's theorems can
however be applied to this problem to define the number of roots
existing in a given real range [160]. Dichotomic search algorithms
can thus be used to find the roots with the desired precision.

Notations:

Sin(θi)=si, Cos(θi)=ci with i=1 to 3
Maple symbolic calculations:

with(Groebner);
P[1]:=-392*c2*s1-(9475/100)*c2*c3*s1-392*c1*s2-(9475/100)*c1*c3*s2-
(9475/100)*c1*c2*s3+(9475/100)*s2*s3*s1-425*s1-778;
P[2]:=-(9475/100)*c1*s2*s3-(9475/100)*c3*s1*s2-
(9475/100)*c2*s1*s3+392*c2*c1+(9475/100)*c2*c3*c1+425*c1-
392*s1*s2;
P[3]:=c1*c2*c3-c1*c2*s3-c1*c3*s2-c1*s2*s3-c2*c3*s1-c2*s1*s3-c3*s1*s2
+s1*s2*s3;
P[4]:=-c2*c3*s1-c1*c3*s2+c3*s1*s2-c1*c2*s3+c2*s1*s3+c1*s2*s3-
c1*c2*c3+s1*s2*s3-sqrt(2);
P[5]:=c1^2+s1^2-1;
P[6]:=c2^2+s2^2-1;
P[7]:=c3^2+s3^2-1;
Eqs:= [P[1], P[2], P[3], P[4], P[5], P[6], P[7]];
Base_Eq:= Basis(Eqs, plex(c1, c2, c3, s1, s2, s3));

Groebner polynomial basis:
EQ1:-54258895713987415992*sqrt(2)+388332180977704960809
+922584152329361887232*s3^2+(874147898398981466624*sqrt(2)-
9930712645324111872)*s3
EQ2:-6060151255*sqrt(2)+1575385983048+(1662712247616*sqrt(2)
+6097273168)*s3+894619342400*s2
EQ3:-493215819*sqrt(2)+4305672952+(-64351168*sqrt(2)-
528392704)*s3+4564384400*s1
EQ4:-2024917716*sqrt(2)+15578795+(-264196352*sqrt(2)-
2169337856)*s3+2104986688*c3
EQ5:-4479561+1179448*sqrt(2)+5331200*c2
EQ6:-493215819*sqrt(2)-4049835432+(-4274324544*sqrt(2)-
528392704)*s3+4564384400*c1

Figure 39: Symbolic calculation for the example shown in Figure 38

18

The solving of linear equation systems is another classical
problem treated by computer algebra software. Symbolic calculus
can also treat nonlinear physical problems that can be modelled
as a system of multivariate polynomial equations. This is achieved
by using a Groebner basis. Groebner bases can be seen as the
generalization of Gaussian elimination algorithm to nonlinear and
multivariate polynomial systems.

The Groebner bases were introduced in 1965 by B. Buchberger
[22,23,24], who proposed a calculation algorithm in his
dissertation. He gave it the name of his thesis supervisor: W.
Groebner. To illustrate the power of Groebner bases, the
approach was applied to inverse kinematic calculations of a
three-axis robot. Figure 38 shows an example of such an
application with numerical values. The aim of this study is to
calibrate a robot using a tracking laser. In the experiment, the
optical reflector of the tracking laser must always keep a fixed
orientation (45°), while the robot moves in a straight trajectory
along the x axis. For each measured x-position (x=778mm in
Figure 38), the joint angles (θ1, θ2, θ3) of the robot are to be
calculated. The closures of the geometric and angular loops of the
robot lead to multivariate polynomial equations of the sines and
cosines of the three joint angles. These equations are completed
by the quadratic relation combining the sine and the cosine of the
same angle. A multivariate polynomial system (P[1], P[2], P[3],
P[4], P[5], P[6], P[7]) is thus obtained [25]. The set of equations
are summarised in Figure 39. Groebner based symbolic calculus
was applied to this multivariate polynomial system using Maple
software. In the best case, the results are provided in the form of
a triangular system of univariate polynomials. For x=778, the
computation gives 6 equations EQ1, EQ2, EQ3, EQ4, EQ5, EQ6.
These equations are shown at the bottom of Figure40. The first
equation EQ1 is a 2nd degree univariate polynomial equation that
allows the computation of sinθ3. Its solving gives two solutions
corresponding to two possible configurations of the robot. The
calculation of sinθ3, step by step, leads to the solutions of the
other variables. Table 5 shows one of the two geometric
configurations of the robot that simultaneously reaches the
position x=778 and respects the orientation angle of the reflector
(45°).

Table 5: Set of computed robot angles

 (rd) (°)

θ1 0.9916 56.8183

θ2 2.1263 121.8286

θ3 3.4908 200.0103

A. Clement summarized the Groebner bases properties in five

practical pieces of information:
- Roots of P[i] with i = 1 to n of variable vi are identical to the

roots of basis (P[i]), i.e. P[i] and basis (P[i]) show the same affine
variety.

- If 1 is an element of basis (P[i]), the equation 1 = 0 results in a
contradiction and, leads to the conclusion that the polynomial
system has no roots.

- P[i] is called (and therefore also basis (P[i])) zero-dimensional
if a finite number of roots exists. This property can be read
directly, if each variable is a pure power of a dominant coefficient
of one of the base polynomials (P[i]).

- Let a new constraint be represented by the polynomial P[n+1].
This new polynomial is redundant with respect to the system P, if
and only if 1 belongs to the base for the new variable. This means
that the satisfaction of P [n + 1] is inevitable if the system P[i] for
i=1 to n is satisfied, so that P [n + 1] can be eliminated.

- Basis (P[i]) based on the lexicographer order v1>v2>v3> ...>vn
is a triangular system in the sense that some polynomials contain
only the variable x1, others only x2, … so that the numerical

resolution is analogous to the triangular elimination of a linear
system. Theoretically, Groebner based calculation method is the
most efficient solver of polynomial equation systems, since it
provides not only absolutely all algebraic roots of a multivariate
polynomial system, but also the invariants of the associated
manifold. The least "efficient" solver is then Newton's algorithm,
since it, eventually, provides a unique solution. The usual
numerical method for proving the existence of a root by
calculating it numerically is insufficient for three reasons: (i) the
solver used can provide a neighbouring solution, but different
from the one sought (unstable algorithm), (ii) the algorithm can
provide a non-existent solution and (iii) the precision of the
result, with few exceptions, –cannot be certified.

The advantages and disadvantages of the Groebner bases can be
summarized as follows:

- Groebner bases provide absolutely all roots in the form
of a set of polynomials in "row echelon form”. Each
polynomial only depends on one independent variable
and is of minimum degree. This leads to fast and
"certifiable" numerical solving.

- However, there is a serious technical disadvantage:
multivariate polynomial equation systems that can be
treated on actual desktops or laptops are limited to 12
variables. Large computing times are also often
necessary to obtain the results. Since the method
provides absolutely all the roots, the problem is then to
eliminate uninteresting solutions as soon as possible
during the treatment to speed up the procedure.

- Groebner basis calculations work with complex
numbers and therefore do not distinguish between real
or complex roots. Sturm’s theorem must therefore be
applied to each polynomial basis to verify the existence
of real roots.

4. Software validation and traceability

A significant, and sometimes dominant, contribution to
measurement uncertainty arises from these numerical
calculations. Unfortunately, the influence of evaluation software
is often underestimated or simply ignored. One of the reasons for
this is that neither developers nor end-users have access to
validated test data (traceable soft gauges) for validating
metrological software [79].

4.1Computer aims/Standard

A helpful and detailed vocabulary of information technology
including terms relating to software testing is given in ISO/IEC
2382:2015 [109]. There are many standards that give common
and generic recommendations on the development, design,
maintenance and validation of software. For example, general
information is provided in ISO 9001 [108], ISO 20000-1 [105],
and ISO 27001:05 [107]. However, concrete instructions for
testing metrological algorithms are still very rare. Specific
examples are mentioned in the following. ISO 10360-6 [103]
gives instructions that allow the evaluation of least squares
approximation algorithms in the field of coordinate metrology.
ISO 5436-2 [106] describe sets of test data used in roughness
metrology.

4.2Testing methodologies

There are two basic approaches to test the correctness of
software, (i) structural or white box testing, in which the source
code is reviewed against its design (Figure 40), and (ii) functional
or black box testing (Figure 41), in which the test data is supplied
to the software and the results output by the software is
compared against the expected outputs.

19

Test of software behavior

with input numerical error

Test of accuracy

convergence of software
Test of search global

optimum

Test of approximation

method usedTest of algorithm reliability

White box

testing

Figure 40: White box tests

In the case of black box testing, there is no need to have access

to the source code, the software is regarded as a “black box”, that
produces outputs for given inputs. While white box testing is
required to find errors in coding (“bugs”), there are many reasons
why correctly coded numerical software will not give perfectly
accurate answers. First, the computations are performed in finite
precision and some rounding errors will accrue, as discussed in
Section 2.2. One of the early (and still current) challenges of
numerical analysis is to understand how these errors build up.
Next is to manage how to design algorithms for which the build-
up is controlled such that error bounds can be established for the
computed solutions [87,176]. Second, nonlinear computational
tasks require iterative algorithms, for which convergence
tolerances need to be set (Section 3.3). Determining these
tolerances in such a way that they cope with different scalings
(units) associated with the data and parameters can be difficult. It
is possible that for some tasks the software terminates
prematurely before an accurate solution has been found. Third,
for nonlinear optimization tasks, the algorithm may converge
accurately to a local minimum, but fails to find the global
minimum (Section 3.3.1). Approximation of geometric elements
according to the Chebyshev criteria can be prone to this type of
behaviour. Fourth, the software might implement an
approximation algorithm that determines for some sets of data a
sufficiently accurate solution, but an inaccurate one for other data
sets. Fifth, the user might apply the software incorrectly, for
example, by assigning the input parameters incorrectly. For these
and other reasons, well-engineered software could provide
outputs that are not sufficiently accurate for the user’s
requirements. These issues can be addressed by black box testing.

Black box testing

Test data and associated test results

(Example: 44 PTB test data)

Forward generation of

numerical artefacts

Inverse generation of

numerical artefacts
Output of

engineered

software

Numerical comparison
Figure 41: Black box principle

4.3 Generation of test data

Black box testing (Figure 41) requires the provision of test data
and associated test results [117]. The value of a black box test
using such test data depends on the extent to which the test input
and output data are aligned with the intended computational aim
of the software. It is assumed that the computational aim of the
software can be expressed as a mathematical function a=f(x)
relating the input data x to the output data a through a known,
deterministic function f:m ->n (It is not assumed that f can be

described in a closed form, only that for any x there is a unique a).
A numerical artefact for the computational aim f is a finite
precision pair <x,a> such that nominally a=f(x) .

4.3.1 Forward generation of numerical artefacts

One method of generating numerical artefacts is to assign input
data x and then apply a reference software S to evaluate a.

Reference software is characterized by a high degree of
confidence: it addresses the true computational intent, uses
numerically stable algorithms, is implemented in software
developed using recognized quality assurance methodologies,
and is subjected to a high level of testing. Further confidence in
the computed results can be gained by comparing independent
implementations of the algorithms (analogous to inter-laboratory
comparisons called round robin tests, common practice in
metrology). The test results can be validated by comparing
different independent implementations [80]. Additional
assurance can be gained by implementing such software in
extended precision with the expectation that any of the
unavoidable numerical rounding errors are small enough to be
negligible, compared to the outputs calculated with standard
precision rounding.

4.3.2 Inverse generation of numerical artefacts
A second method for generating test data is to start with the

“solution” a and then generate data x such that a=f(x) [26,61]. In

practice, finding such x can be a much easier problem than

determining the solution a for a given x. For example, for
nonlinear least square problems, the generation of input data x
for a given solution involves determining the null space of the
associated Jacobian matrix, a standard problem in numerical
linear algebra, which can be solved using the QR factorization
[73]. Thus, the forward generation of data requires the solution of
a nonlinear problem, while the inverse generation involves only
the solution of a linear problem. Similarly, it is possible to
generate data for Chebyshev approximation problems using of
solutions in terms of points, at which the maximum error is
attained [61, 98]. Again, the inverse data generation can be
performed in extended precision to provide very high confidence
in the accuracy of the numerical artefacts.

4.3.3 Numerical accuracy of numerical artefacts and numerical

standards
A numerical artefact can be assumed as the digital equivalent of

a physical artefact, used to check the performance of an
instrument: the numerical artefact is used to check the
performance of software addressing a computational aim – a
“digital instrument”. For a numerical artefact <x,a>, the very fact
that <x,a> is represented in finite precision means that only
under very special circumstances the relationship a=f(x) will hold
exactly. A numerical standard is a numerical artefact, for which a
quantitative measure (accuracy bounds, uncertainty) is known
stating how far <x,a> is apart from a pair <x*,a*>, for which
a*=f(x*) is given mathematically. Once the uncertainty associated
with a numerical standard has been assessed, the numerical
standard can be used to assess the accuracy of a digital
instrument since it is possible to distinguish (in principle) the
uncertainty contribution of the digital instrument from that
associated with the standard.

[x] also denotes those elements of m
 that are rounded to x in

the implemented finite precision arithmetic, and [a] etc. is
defined, similarly. The best that can be expected is that there exist
a x* in [x] and an a* in[a] such that a*=f(x*). This situation arises
in generating numerical artefacts using extended precision.
Assuming that the extended precision artefacts are sufficiently
accurate, the standard precision artefacts will represent the finite
precision representation of a mathematically exact <x*,a*>. More
generally, there will be a Vm

 and Wm such that x,x*V and
a, a*W and a*=f(x*) exactly. The diameters V and W specify the
numerical accuracy bounds associated with the numerical
artefact. The diameters of V and W (or similar measures) provide
a statement of the accuracy of the numerical artefact. It is
possible to evaluate V and W with V={x}. In this case, the diameter

20

of W is a measure of how far a is apart from f(x), the
mathematically exact solution for the input x, which represents
an assessment of the forward accuracy of the numerical artefact.
Alternatively, for V and V={x}, the diameter of V is a measure of
how much we the input x has to be modified in order to find an
x* such that a=f(x*), that is, a set of input data for which the
stated a is the mathematically exact solution. Thus, the diameter
of V in this case is a measure of the inverse or backward accuracy
of the numerical artefact. The concepts of forward and backward
accuracy here are directly related to those discussed in Section
2.2.3.3. The term backward accuracy reflects the practice in
numerical analysis of assessing the accuracy of the computed
solution in terms of perturbations of the input data – backward
error analysis [26,61]. For metrology applications, the input x
usually represents measurement data, and the inverse accuracy
of a numerical artefact can be compared directly with the
probable measurement uncertainty associated with the data.

4.3.4 Required accuracy of numerical standards in dimensional
metrology

If it is assumed that the best practice in dimensional metrology
operates at a numerical accuracy of one part in 10n, then a
minimal requirement is that software should be accurate in one
part in 10n+1. Consequently, in order to assess such software, the
numerical standards should be accurate in one part in 10n+2 or
better. For IEEE double precision arithmetic, numerical standards
will not be more accurate than one part in 106 but since n is in the

region of 7 for dimensional metrology, providing numerical
standard accurate to 1 part in 109 or better is easily achievable.

4.4Performance metrics

Numerical standards can be used to assess the performance of
software, the digital instrument. In a metrology context, the
uncertainty contribution associated with the software needs to be
assessed, along with all other uncertainty contributions.
Performance metrics are a way of assessing the uncertainty
contribution of software relative to a set of criteria. In general,
there are two types of performance metrics: (i) those metrics
assessing the accuracy of the computed results relative to the best
possible accuracy given the conditioning of the numerical
problem (Section 2.2.3.3), and (ii) those metrics assessing the
accuracy relative to pre-assigned tolerances derived from user
requirements.

4.4.1 Performance metrics relating to numerical accuracy

Suppose a numerical standard <x,a> has accuracy bounds V and
W so that there is an x*V and a*W such that a*=f(x*). Thus, a*
must lie in the image f(V)={f(y: yV)}. The diameter of f(V)
depends on the sensitivity of the solution to perturbations in the
input data. It is also known that the distance of a* from a is
specified by the diameter of W, such that the distance of a* from a
is bounded by a combination of the diameter of f(V) and the
diameter of W, reflecting both the accuracy of the numerical
standard and the sensitivity or conditioning of the computational
problem. The combined bound represents the best possible
accuracy that can be expected of a computed solution.

One approach, based on the GUM [76,77] to derive a
performance metric base for this type of analysis is as follows. For
numerical bounds V and W, let VV and VW be the variance matrices
associated with the uniform distributions defined on V and W,
respectively. Here, x can be regarded as a best estimate of x* with
associated variance matrix VV and a as best estimate of a* with
associated variance matrix VW. If f is a sufficiently smooth function
of x, the sensitivity matrix C of a can be calculated with respect to
x.

Then
() ()() () ()

()
() ().*xx*aaa

*xx*a

*xx*x*xx*xx

−+−+=

−+=

−+−+=

C

C

Cfff

The exact solution for x is perturbed from a by (a-a*)+C(x- x*),
where the first term has an associated variance matrix VW

and the

second term has a variance matrix CVvCT. The best estimate of f(x)
is a, and the variance matrix associated with this estimate is
Va=VW+CVvCT. A computed solution can be assessed based on its
distance from a, relative to the probabilistic distance derived
from Va. A similar approach can be used to derive performance
metrics relating to inverse numerical accuracy.

4.4.2 Performance metrics relating to user requirements

While it is preferable to have software that provides maximum
achievable accuracy, in practice such software may be difficult to
implement and/or computationally expensive to run. Under these
circumstances, software calculating an approximate solution is
developed instead, and it is necessary to assess whether the
computed solution is sufficiently accurate for the user’s
requirements. A pragmatic approach is to say that a software is
suitable for a given purpose if the uncertainty contribution
associated with the software is small compared to other
uncertainty contributions. Thus, in coordinate metrology
involving measurement uncertainties of the order of 1
micrometer, an uncertainty contribution from software in the
order of 10 nanometres will have no practical impact.

The user requirements may be specified in terms of the
accuracy (or maximum permissible error) of the computed
solution, for example, the accuracy in the computed diameter of a
cylindrical shaft. Such a specification does not take into account
the numerical sensitivity associated with the computational aim.
If the data on the cylinder lies on a small arc of the cylinder
surface, the diameter of the approximated cylinder is poorly
determined and the computed solution will be unavoidably less
accurate than for data distributed more uniformly on the cylinder
surface.

Alternatively, the user requirements may be specified in terms
of an equivalent measurement uncertainty derived using an
inverse measure of accuracy: the computed solution must be the
exact solution corresponding to a perturbation of the input data,
where the perturbation is smaller than some pre-assigned
tolerance. For the example of a cylinder approximation, the user
may require that the computed diameter is exact as long as to the
data differ from the input data by no more than 10 nanometres.
These inverse types of user requirements automatically take into
account the sensitivity of the computational task.

4.5 National Metrology Laboratories works

One of the first areas of metrology to become aware of the
potentially large influence of numerical software was that of
coordinate metrology. The diversity of evaluation algorithms and
their different implementations led to inconsistent results when
evaluating prismatic 2D and 3D objects consisting of lines, planes,
cylinders, circles and cones. As a consequence, the National
Physical Laboratory (NPL, UK) and the Physikalisch-Technische-
Bundesanstalt (PTB, Germany) cooperated in some European
projects to provide test data [47,77] and reference algorithms
[62,9].

As a result of these and other initiatives, PTB provides a
commercial offline software test for prismatic objects since 1995.
To date it has been used by more than 200 companies for
validating their evaluation software systems. In 2012, the design
of this offline test became basis of the online test TraCIM (see
below).

21

The National Institute of Standards and Technology (NIST, USA)
provides algorithms testing the least-squares approximation of
elementary geometries used in coordinate metrology. Specifically,
the geometries for which testing is available include lines (2d and
3d data), planes, circles (2d and 3d data), spheres, cylinders, and
cones. Testing is modelled after the ASME B89.4.10-2000
standard, Methods for Performance Evaluation of Coordinate
Measuring System Software.

The NIST Algorithm Testing System computes with a precision
much greater than the double precision normally applied in
scientific computing. In fact, 60 digits of working precision are
used to compute the reference fits. Because of this, the
uncertainty of the reference least-squares approximations is
limited only by the accuracy of the input data. For ASME B89.4.10
default test data sets, which are theoretically exact (i.e., data
values are assumed to have infinite trailing zeros) the expanded
uncertainty U (k = 2) is much less than 10-14 m for distances and
10-15 radians for angles.

NPL, NIST and PTB also provide test data and reference
software in the field of roughness measurement according to ISO
5436-2 (2001) [101]. Since 2014, an established realization of the
online validation is named Traceability for Computationally-
Intensive Metrology (TraCIM) [81]. It allows service users to
validate their software at the point of application. The service is
operated by European national metrology institutes (NMIs). It is a
fundamental principle that the TraCIM service is provided and
hosted only by a NMI or an authorized organization (Figure 43).
These institutions assume delcredere liability and finally
guarantee for the correctness of the results.

TraCIM is registered as a word mark. It is operated as a legal
non-profit association under German law and allows NMIs and
designated institutes (DIs) to become members. The TraCIM
association has been established with its main mission to provide
quality rules for the TraCIM service [165]. The business concept
and the income of the TraCIM service are strictly uncoupled from
the TraCIM association. In association with and under the
supervision of European metrology institutes, TraCIM aims to
validate analysis algorithms in the field of metrology. In the
following, they will be referred to as "algorithm tests" or simply
"tests". Similar to the well-known calibration chain, which is
related to physical standards, the NMIs transfer the numerical
accuracy of evaluation algorithms from the highest metrological
authority to the individual application. Computations are
addressed, which are used to analyze measurands of the
International System of Units (SI) and their derived units. The
medium of choice for communication between the service
provider and the user is the Internet. The principle is shown in
Figure 42. On the left, the service provider is represented as the
network of metrology institutes. This is of paramount
importance, since the algorithm tests are to be carried out – or at
least monitored – by the supreme metrological authority of a
country. The metrology institutes are linked with each other
under the umbrella of the TraCIM association. TraCIM's main task
consists of describing quality guidelines and defining the
technical infrastructure, under which the algorithm tests are to be
performed. Each service provider is, however, solely responsible
– and therefore held liable – for the extent of the algorithm tests
provided, for the business workflow, for the maintenance of the
datasets, for consultation upon installation as well as for running
the tests. For this reason, each metrology institute runs its own
server, i.e. each server has to be addressed individually, which
leads to a different extent of services depending on each
metrology institute. The metrology institutes, however, have the
possibility of mutually providing algorithm tests as
subcontractors, which allows a service provider to enhance the
extent of services provided. The service users are essentially
manufacturers of analysis software or measuring instruments.

This algorithm test service allows them to have their analysis
algorithms validated by an independent metrology institute. This
mainly serves to increase confidence in the products they offer on
the market. In principle, they can have this service unlocked for
their customers in order to have, for example, updates validated
directly. Software engineers can already test their algorithms
during the development phase to be on the safe side and, thus,
make development faster. Each registered user, which supports
the specifications of the client-server interface, can access
individual tests via the internet. The service is available 24 hours
a day on every day of the year at each location on the globe to
which internet is provided.

Furthermore, the response times are considerably shorter than
with the existing validation capabilities. A full test dataset
includes test data as input quantities of an algorithm test,
reference results and their assigned numerical uncertainties.
Hereby, the test data are defined as being error-free. In contrast,
the indication of the reference results, by analogy with the
indication of measurement results, is defective in the case of
geometrical measurements [115]. Hereby, it is up to the
metrology institutes to develop procedures as long as these meet
the requirements. The following is a description of the approach
followed by PTB. To this end, all test datasets are computed,
tested and archived in a database when setting up an algorithm.

This database – also called "golden dataset" – thus contains all
sensitive test data and must therefore be protected from
unauthorized access. Contrary to a reference software, for which
test data can be specified externally, PTB's approach, consisting
in the one-time computation of test datasets, is far more secure,
since the correctness of a software component can never be
guaranteed.

PTB

NPL

INRIM

CMI

VSL

Tracim

Service-provider

NMI1NMI1NMI1NMI1NMI1NMI1NMI1KBS1KBS1KBS1KBS1KBS1KBS1KBS1

INDUSTRY

METROLOGY

INSTITUTES

CALIBRATION

SERVICES

INTERNET

WWW

Figure 42: TraCIM service providing to industry and scientific institutes

In addition, specified datasets are practically not subject to

ageing. Reference algorithms, in contrast, depend on the state of
the art of the programming language, of the operating system, of
the processor properties and, thus, need maintenance and are
short-lived. Yet, the test data do not represent an inflexible
system. They can be adapted to an individual application without
losing their accuracy. This can mean, for example, that an SI unit
or a derived unit is indicated. In the case of geometrical
measurands, the test data can be represented with additional SI
prefixes such as "nano-", "micro-", "milli-" etc. This does not affect
the numerical presentation – and, thus, the accuracy. The same
applies to the scaling of measuring ranges, which may only be
realized in the form of decimal powers (i.e. ×10; ×100, etc.). The
error bars of the reference results are yielded by means of
comparative computations. Thus, the reference results of at least
three independent software implementations are computed and
compared with each other. The numerical accuracy is determined
by varying the test data by means of a Monte Carlo simulation.
For this purpose, the last decimal digits of the test data are
randomly varied, and the dispersion of the corresponding

22

reference results is determined. After ignoring another decimal
for safety's sake, this value is deemed the assigned numerical
uncertainty. The presentation of the test datasets is adapted to
the technical applications in question – and not to what is
mathematically feasible. The test datasets are supposed to
simulate frequent technical situations. Exceptions, which require
a high degree of development and consultation effort should, as a
rule, be avoided. TraCIM's IT architecture consists of four central
modules. These are represented in Figure 43. The server is the
core module. As a management module, it is operated by a
competent metrology institute. It manages all of the operating
data and controls the data flow to the other modules. The expert
modules are developed by experts responsible for a particular
individual test. Each expert module operates basically
autonomously and deals with all logical processes in connection
with a test. It makes the test datasets available on request,
compares the test results computed by the users with its own
reference results and, finally, issues the test report. Since the
individual tests may vary significantly from one application to
another, only few input parameters have been defined by TraCIM
for the data traffic. This applies, for instance, to the support of a
software interface in JAVA, which allows the expert system to be
logged into the server system. Indispensable operating data such
as the order number must also be transmitted via this interface.
Since the formats of the test data can be freely selected, the
expert is, to a large extent, free to design the test according to his
needs. Furthermore, existing tests and test data structures can
easily be integrated into the TraCIM system.

Intercomparison

Chebyshev

Gauss

Expert Modules

TraCIM

Service-provider

Server

Client 1

Client 2

Client 3

Service-users

WEB

Shop

JAVA REST

XML

Figure 43: TraCIM's IT architecture

The formal specifications of the TraCIM server with regard to

the user are, in contrast, more restrictive. The server-client
communication runs via a REST interface. Hereby, the data are
embedded into an XML structure. Then again, within this
structure, free formats of test data (such as binary formats or
established test data structures) can be defined, depending on the
application. The expert is solely responsible for the test data
format, the test data and the test results. The interface is available
externally via a web shop, which is also connected to the server
module. At the current implementation stage of the system, this
interface is, however, not yet available. Similar to online
shopping, interested users will be able to register via the internet
and to order individual tests [166]. The precondition for running
the test is, however, that the REST interface is supported. Until
the web shop has been set up, interested users can contact an
individual service provider or the TraCIM secretariat in order to
register. In the current state of implementation, PTB offers the so-
called "Gaussian test". This test is used in the field of length
measurement. It is used to check the correct determination of the
parameters for the adjustment of geometrical elements like 2D
straight line, 3D straight line, 3D circle, 3D plane, cylinder, cone
and sphere, according to the least-square approximation. Two

other tests, comparison of measurement data [82] and Chebyshev
approximation [98], are offered as well. During the last years,
many users from all over the world gained certificates for their
metrological algorithms.

5. Conclusion

Traceability of intensive computation is needed due to the
evolution of industrial systems towards a cybernetic industry. In
metrology and precision engineering fields, the geometry of parts
or mechanical assemblies to be checked becomes more complex
in terms of topology and quantity of data to be processed.

In the near future, current processors will be replaced by new
technologies such as quantum, DNA or optical processors. These
advances on the hardware should make it possible to question
the binary coding massively used in the computation of the
current computers. However, the implementation of these new
technologies in office computers will not be available
immediately. Consequently, the use of floating point numbers,
imposed by current hardware technology, will require
precautions in the development of metrology and precision
engineering software.

Software tools and methods are available to validate and trace
the numerical results of metrology or precision engineering
software. With actual computer technology, a multiple precision
module or software and a calculation using decimal floating-point
allow compensating the numerical degeneracy, which limits the
numerical calculation accuracy. Standards have included, in their
texts, the computation with quadruple precision and a great
number of recommendations to reduce the numerical
disturbances present within the current technology of computers.
However, the software solutions offered today are not up-to-date
in including these new recommendations.

When an algebraic expression of metrology or precision
problems is well conditioned, one can always find a stable
process to evaluate it. When the algebraic expression is very
poorly conditioned, it is difficult to find a stable process to
evaluate it. Combining an improperly conditioned algebraic
expression with an unstable process, the obtained result will be
poor. Over the past decade, the National Metrology Institutes
have developed numerous methods to validate test data, like
traceable soft gauges for validating metrological software.
Symbolic computation is another way to realize high-precision
calculation and to obtain certified solutions. To estimate the
behaviour of the algorithms, research work on arithmetic or ball
intervals provides computer solutions that determine the interval
of numerical error. Probabilistic approaches are developed to
certify the numerical calculation. In the future, new sets of
reference data for software development and new hardware
paradigms, e.g. survey implementation in line, are the best ways
to check the traceability of computer calculations in metrology
and precision engineering software. To help the software
developers to validate their software at the point of use, online
solution was proposed by National Metrology Institutes.

By managing in the implementation phase, the stability and
conditioning of the computation, metrology or precision
engineering software should be suitable to perform high-
precision calculations. This is the new challenge for a new cyber
industry.

Acknowledgments
The authors gratefully acknowledge contributions or assistance
by: Alexandro Balsamo (INRIM), Edward Morse (UNCC), Klaus
Wendt (PTB), Albert Weckenmann (QFM), Xiangqian Jane Jiang
(Univ. Huddersfield), Harald Bosse (PTB), Jean-François Rameau
(Dassault Systèmes), Jesse Groover (UNCC). We also would like to
give thanks to Tyler Estler (NIST) for his valuable comments.

23

References

[1] Arden W, Brillouët M, Cogez P, Graef M, Huizing B, Mahnkopf R (2010) More-
than-Moore, White paper, International Technology Roadmap for Semiconductors.
[2] Adleman, L M (1994) Molecular computation of solutions to combinatorial
problems. Science, 266(5187), 1021-1024.
[3] Adleman, L M (1998) Computing with DNA. Scientific American, 279(2):54 - 61.
[4] Amdahl G (1967) Validity of the single processor approach to achieving large
scale computing capabilities. In: Proceedings of the April 18–20, 1967 spring joint
computer conference. ACM, New York, 483-485.
[5] Boldo S, Filliâtre J C, Melquiond G (2009) Combining Coq and Gappa for certifying
floating-point programs. In International Conference on Intelligent Computer
Mathematics. Springer Berlin Heidelberg.
[6] Aguado S, Samper D, Santolaria J, Aguilar J J (2012) Identification strategy of
error parameter in volumetric error compensation of machine tool based on laser
tracker measurements International Journal of Machine Tools & Manufacture
53:00:00 160–169.
[7] Anderson E, Bai Z, Bischof C, Blackford S, Demmel, J, Dongarra J, Du Croz J,
Greenbaum A, Hammarling S, McKenney A, Sorensen D (1999) LAPACK Users' Guide
(Third ed.). Philadelphia, PA: Society for Industrial and Applied Mathematics.
[8] Anderson M J, Tsen C, Wang L K, Compton K, Schulte M J (2009) Performance
analysis of decimal floating-point libraries and its impact on decimal hardware and
software solutions. Computer Design, ICCD 2009 IEEE International Conference on
465 - 471.
[9] Anthony G T, Anthony H M, Bittner B, Butler B P, Cox M G, Drieschner R, Elligsen
R, Forbes A B, Gross H, Hannaby S A, Harris P M, Kok J (1996) Reference software for
finding Chebyshev best-fit geometric elements, Precision Engineering 19(1):28-36.
[10] Aranda S, Linares J M, Sprauel J M (2010) Best-fit criterion within the context of
likelihood maximization estimation. Measurement, 43(4), 538-548.
[11] Arioli M, Demmel J W, Du J S (1989) Solving Sparse Linear Systems with Sparse
Backward Error, Journal on Matrix Analysis and Applications, 10(2):165-190.
[12] Arioli M, Gratton S (2012) Linear regression models, least-squares problems,
normal equations, and stopping criteria for the conjugate gradient method,
Computer Physics Communications 183:2322–2336.
[13] ASME Y14.26M Digital Representation for Communication of Product Definition
Data.
[14] Bachmann J, Linares JM, Sprauel JM, Bourdet P, (2004) Aide in decision-making:
contribution to uncertainties in three-dimensional measurement. Precision
Engineering 28(1):78-8.
[15] Ballu A, Mathieu L, Dantan J (2015) Formal Language for GeoSpelling. Journal of
Computing and Information Science in Engineering, 15(2):021002-021002-6.
[16] Beaman J, Morse E, (2010) Experimental evaluation of software estimates of
task specific measurement uncertainty for CMMs. Precision Engineering 34(1):28-
33.
[17] Bertsekas D P (1999). Nonlinear programming. Belmont: Athena scientific.
[18] Björck Å (1996) Numerical methods for least squares problems. Society for
Industrial and Applied Mathematics.
[19] Boldo S, Muller J M (2014) Les ordinateurs capables de calculer plus juste. La
Recherche 492:46-52.
[20] Bringmann B, Knapp W (2006) Model-based 'Chase-the-ball' calibration of a 5-
axes machining center, CIRP Annals-Manufacturing Technology, 55(1):531-534.
[21] Brisebarre N, Louvet N, Martin-Dorel E, Muller J M, Panhaleux A, Ercegovac M D
(2010) Implementing decimal floating-point arithmetic through binary: some
suggestions. In ASAP 2010-21st IEEE International Conference on Application-
specific Systems, Architectures and Processors, 317-320.
[22] Buchberger B (1965). An Algorithm for Finding the Basis Elements of the
Residue Class Ring of a Zero Dimensional Polynomial Ideal. Ph.D. dissertation,
University of Innsbruck. English translation by Michael Abramson in Journal of
Symbolic Computation 41 (2006): 471–511.
[23] Buchberger B (1986) Gröbner bases. An Algorithmic Method in the Theory of
Polynomial Ideals. Computer algebra. Symbolic and algebraic computations. Mir,
Moscow.
[24] Buchberger B, Winkler F (1998) Gröbner bases and applications (Vol. 251).
Cambridge University Press.
[25] Buchberger B, Kauers M (2010) Scholarpedia, 5(10):7763.
(doi:10.4249/scholarpedia.7763).
[26] Butler B P, Cox M G, Forbes, A B, Hannaby S A, Harris P M (1997), A
methodology for testing the numerical correctness of approximation and
optimisation software, in The Quality of Numerical Software: Assessment and
Enhancement, Boisvert, R, ed., Chapman and Hall.
[27] Caja J, Gómez E, Maresca P (2015) Optical measuring equipments. Part I:
Calibration model anduncertainty estimation, Precision Engineering 40:00:00 298–
304.
[28] Chaitin-Chatelin F, Fraysse V. (1996) Lectures on finite precision computations.
Siam.
[29] Chen Z, Dongarra J, Luszczek P, Roche K (2003) Self-adapting software for
numerical linear algebra and LAPACK for clusters, Parallel Computing 29:1723–
1743.
[30] Chen D, Han L, Choi Y, Ko S B (2012) Improved Decimal Floating-Point
Logarithmic Converter Based on Selection by Rounding. IEEE Transactions on
Computers 61(5):607-621.
[31] Chernov N, Lesort C, (2005) Least Squares Fitting of Circles. Journal of
Mathematical Imaging and Vision, 23(3):239-252.
[32] Cline A K, Moler C B, Stewart G W, Wilkinson J H (1979) An Estimate for the
Condition Number of a Matrix SIAM Journal on Numerical Analysis, 16(2):368-375.

[33] Colonna J-F (1996) Kepler, von Neumann and God (More rounding-off error
visualizations). The Visual Computer 12(7):346-349.
[34] Cornea M (2009) IEEE 754-2008 Decimal Floating-Point for Intel, ARITH,
Computer Arithmetic, IEEE Symposium on, Computer Arithmetic 225-228.
[35] Cornea M, Anderson C, Harrison J, Tak Peter Tang P, Schneider E, Gvozdev E
(2009) A software implementation of the IEEE 754R decimal floating-point
arithmetic using the binary encoding format, IEEE Transactions on Computers
58(2):148–162.
[36] Cowlishaw M F (2003) Decimal floating-point: algorism for computers. In
Computer Arithmetic, Proceedings 16th IEEE Symposium on IEEE 104-111.
[37] Cowlishaw, M. F. (2003) Decimal floating-point: algorism for computers.
Computer Arithmetic, 16th IEEE Symposium on IEEE 104-111.
[38] Daramy-Loirat C, Defour D, X de Dinechin F, Gallet M, Gast N, Muller J M (2005)
CR-LIBM A library of correctly rounded elementary functions in double-precision on
Application-specic Systems Architectures and Processors (ASAP).
[39] Davenport J H, Siret Y, Tournier É (1988) Computer algebra (Vol. 5). London:
Academic Press.
[40] De Dinechin F, Lauter C, Muller JM (2007) Fast and correctly rounded
logarithms in double-precision. Rairo-Theoretical Informatics and Applications
41(1):85-102
[41] Deng Y, Zhang P, Marques C, Powell R, Zhang L (2013) Analysis of Linpack and
power efficiencies of the world’s TOP500 supercomputers, Parallel Computing 39(6–
7):271-279.
[42] DiCarlo L, Chow J M, Gambetta J M, Bishop L S, Johnson B R, Schuster D I, Majer J,
Blais A, Frunzio L, Girvin S M, Schoelkopf R (2009) Demonstration of two-qubit
algorithms with a superconducting quantum processor. Nature 460 240-244.
[43] Dong L, Jindong T (2013) An accurate calibration method for a camera with
telecentric lenses, Optics and Lasers in Engineering 51:00:00 538–541.
[44] Dongarra J, Luszczek P, Petitet A (2003) The LINPACK Benchmark: past, present
and future. Concurrency and Computation: Practice and Experience 15(9):803–820.
[45] Dongarra J J, Meuer H W, Strohmaier E (1997) TOP500 supercomputer sites,
Supercomputer 13(1): 89-120.
[46] Dongarra J, Faverge M., Ltaief H, Luszczek P (2014) Achieving numerical
accuracy and high performance using recursive tile LU factorization with partial
pivoting. Concurrency and Computation: Practice and Experience 26:1408–1431.
[47] Drieschner R, Bittner B, Elligsen R (1991) Testing Coordinate Measuring
Machine Algorithms, Phase 2. EC.
[48] Edmonson W W, Van Emden M H (2008) Interval Semantics for Standard
Floating-Point Arithmetic. arXiv preprint arXiv:0810.4196.
[49] El-Hayek N, Nouira H, Anwer N, Gibaru O, Damak M (2014) A new method for
aspherical surface fitting with large-volume datasets. Precision Engineering 38:935–
947.
[50] Erkan T, Mayer J R R (2010) A cluster analysis applied to volumetric errors of
five-axis machine tools obtained by probing an uncalibrated artefact, CIRP Annals -
Manufacturing Technology, 59(1): 539–542.
[51] Erle M A, Schulte M J, Hickmann B J 2007 Decimal floating-point multiplication
via carry-save addition. Proceedings of the 18th IEEE Symposium on Computer
Arithmetic (ARITH-18), pages 46–55. IEEE Computer Society Conference Publishing
Services.
[52] Estler W T (1999) Measurement as Inference: Fundamental Ideas, CIRP Annals -
Manufacturing Technology 48(2):611-631.
[53] Farmahini-Farahani A, Tsen C, Compton K (2009) FPGA implementation of a 64-
Bit BID-based decimal floating-point adder/subtractor. International Conference on
Field-Programmable Technology 518 - 521.
[54] Faugere J C (1999) A new efficient algorithm for computing Gröbner bases (F 4).
Journal of pure and applied algebra, 139(1): 61-88.
[55] Feng W C, Cameron K W (2007) The Green500 List: Encouraging sustainable
supercomputing. Computer 40(12): 50-+.
[56] Feynman R P (1982) Simulating Physics with Computers. International Journal
of Theoretical Physics, 21(6/7): 467-488.
[57] Fletcher R, Powell M J D (1963) A rapidly convergent descent method for
minimization, Computer Journal, 6 :163-168.
[58] Fletcher R, Reeves C M (1964) Function minimization by conjugate gradients.
Computer Journal, 7 :149-154.
[59] Forbes G W, Brophy C P (2008) Asphere, O Asphere, how shall we describe
thee? In Optical Systems Design (pp. 710002-710002). International Society for
Optics and Photonics.
[60] Forbes A B (1989) Least-squares best-fit geometric elements. NPL, DITC
140/89.
[61] Forbes A B and Minh H D (2012), Generation of numerical artefacts for
geometric form and tolerance assessment, Int. J. Metrol. Qual. Eng., 145—150.
[62] Forbes A B (1990), Least Squares Best Fit Geometric Elements, Algorithms for
Approximation II, Mason J C and Cox M G eds., London, Chapman & Hall, 311—319.
[63] Galois E (1846). Sur les conditions de résolubilité des équations par radicaux.
Journal de mathématiques pures et appliquées, 11 : 417-444.
[64] GAO/IMTEC-92-26 Patriot Missile Software Problem, 1992.
[65] Gebhardt M, Mayr J, Furrer N, Widmer T, Weikert S, Knapp W (2014) High
precision grey-box model for compensation of thermal errors on five-axis machines,
CIRP Annals - Manufacturing Technology, Volume 63(1):509-512.
[66] Gilli M (2006). Méthodes numériques. Département d’économétrie, Université
de Genève.
[67] Goch G (1982) Theorie der Prüfung gekrümmter Werkstück-Oberflächen in der
Koordinatenmeßtechnik, Helmut-Schmidt-University Hamburg-Germany (formerly
University of German Forces), Dissertation
[68] Goch G, Haupt, M (1990) Modifizierte Tschebyscheff-Approximation von
Kreisen, technische Rundschau 41/90:50-53.

24

[69] Goch G, Renker H J (1991) Efficient Multi-Purpose Algorithm for Approximation
and Alignment Problems in Coordinate Measurement Techniques, CIRP Annals -
Manufacturing Technology, 39(1):553-556.
[70] Goch G, Tschudi, U, Pettavel, J (1992) A Universal Algorithm for the Alignment
of Sculptured Surfaces, CIRP Annals - Manufacturing Technology, 41(1):597-600.
[71] Goch G, Lübke K (2008) Tschebyscheff approximation for the calculation of
maximum inscribed/minimum circumscribed geometry elements and form
deviations, CIRP Annals - Manufacturing Technology 57(1):517–520.
[72] Goldberg D (1991) What every computer scientist should know about floating-
point arithmetic. Computing Surveys 23(1): 5-48.
[73] Golub G H, Van Loan C F (1996), Matrix Computations, Johns Hopkins University
Press, Baltimore.
[74] Gonzalez-Navarro S, Tsen C, Schulte M J (2013) Binary Integer Decimal-Based
Floating-Point Multiplication. IEEE Transactions on Computers 62(7):1460-1466.
[75] Graillat S, Lefevre V, Muller JM (2015) On the maximum relative error when
computing integer powers by iterated multiplications in floating-point arithmetic.
Numerical Algorithms 70(3): 653-667.
[76] GUM BIPM, IEC, ISO, IUPAC, IUPAP, OIML; "Guide to the expression of the
uncertainty in measurement, First Edition". 1993, ISBN 92-6710188-9.
[77] GUMS1: BIPM, IFCC, & IUPAP (2008). Evaluation of measurement data—
Supplement 1 to the GUM: propagation of distributions using a Monte Carlo method.
Technical report, International Organization for Standardization (ISO), Geneva.
[78] Gustafson J L (1988) Reevaluating Amdahl's Law, Communications of the ACM,
1(5):532-533.
[79] Härtig F Certificate for Involute Gear Evaluation Software American Gear
Manufacturers Association, Fall Technical Meeting, 2006
[80] Härtig F, Müller B, Wendt K, Franke M, Forbes A, Smith I (2015) Online
validation of metrological software using the TraCIM system, XX IMEKO World
Congress “Measurement in Research and Industry”.
[81] Härtig F, Müller B, Gahrens M, Franke F, Delpy H, Forbes A, Smith I (2014)
Online validation of numerical algorithms in the field of metrology, 11thLaser
Metrology for Precision Measurement and Inspection in Industry 2014
[82] Härtig F, Tang J, Hutzschenreuter D, Wendt K, Kniel K, Shi Z Online (2015)
Validation of Comparison Algorithms using the TraCIM-System, Journal of
Mechanical Engineering and Automation, 2(7): 312-327
[83] Henning J L (2000) SPEC CPU2000: measuring CPU performance in the New
Millennium. Computer 33(7):28 - 35.
[84] Hermann M, Pentek T, Otto B (2016) Design Principles for Industrie 4.0
Scenarios, HICSS, 49th Hawaii International Conference on System Sciences (HICSS),
3928-3937, doi:10.1109/HICSS.2016.488.
[85] Hestenes M R, Stiefe E (1952) Methods of Conjugate Gradients for Solving
Linear Systems", Journal of Research of the National Bureau of Standards. 49
(6):409-436.
[86] Hickey T, Ju Q, Van Emden M H (2001) Interval arithmetic: From principles to
implementation. Journal of the ACM (JACM), 48(5): 1038-1068. .
[87] Higham N J (2002) Accuracy and numerical stability of algorithms, SIAM,
Philadelphia.
[88] Hill M D, Marty, M R (2008). Amdahl's Law in the Multicore Era. Computer
41(7):33-38.
[89] http://wccftech.com/intel-10nm-cannonlake-ice-lake-tiger-lake-cpu/
[90] http://www.advanpix.com/
[91] http://www.green500.org/
[92] http://www.top500.org
[93]http://www.lactamme.polytechnique.fr/Mosaic/descripteurs/FloatingPointNu
mbers.01.Ang.html
[94]http://www.lactamme.polytechnique.fr/Mosaic/descripteurs/OrdinateursEtCal
culs.01.Ang.html
[95] https://www.youtube.com/watch?v=kH8gehlirrE
[96] Huang T, Zhu Y, Qiu M, Yin, Wang X (2013) Extending Amdahl's law and
Gustafson's law by evaluating interconnections on multi-core processors. Journal of
Supercomputing 66(1):305-319.
[97] Huanga P-H, Leeb J-C (2010) Minimum zone evaluation of conicity error using
minimum potential energy algorithms. Precision Engineering 34:709–717
[98] Hutzschenreuter D, Härtig F, Wendt K, Lunze U, Löwe H (2015) Online
Validation of Chebyshev Geometric Elements Algorithms using the TraCIM-System
Journal of Mechanical Engineering and Automation, 5(3): 94-111
[99] Ibaraki S, Kudo T, Yano T, Takatsuji T, Osawa S, Satoc O (2015) Estimation of
three-dimensional volumetric errors of machining centers by a tracking
interferometer, Precision Engineering 39:179–186.
[100] IEEE Standard for Floating-Point Arithmetic IEEE Std 754 2008.
[101] ISO 5436-2 Geometrical Product Specifications (GPS) - Surface texture: Profile
method; Measurement standards - Part 02:00 Software measurement standards.
International Organization for Standardization, 2001.
[102] ISO 10303-1:1994 Industrial automation systems and integration - Product
data representation and exchange - Part 01:00 Overview and fundamental principles
[103] ISO (2001) Geometrical Product Specifications (GPS) -- Acceptance and
reverification tests for coordinate measuring machines (CMM) -- Part 06:00
Estimation of errors in computing Gaussian associated features (10360 Part 6)
[104] ISO 17450-1:2011, “Geometric Product Specification (GPS) – General
concepts– Part 01:00 Model for geometrical specification and verification”.
[105] ISO (2011) Information technology -- Service management -- Part 01:00
Service management system requirements (20000 Part 1)
[106] ISO (2012) Geometrical product specifications (GPS) -- Surface texture: Profile
method; Measurement standards -- Part 02:00 Software measurement standards
(5436 Part 2)

[107] ISO (2013) Information technology -- Security techniques -- Information
security management systems – Requirements (27001)
[108] ISO (2015) Quality management systems – Requirements (9001)
[109] ISO/IEC (2015) Information technology – Vocabulary (2382)
[110] Jeannerod CP, Louvet N, Muller, JM (2013) On the componentwise accuracy of
complex floating-point division with an FMA, 21ST IEEE Symposium On Computer
Arithmetic (ARITH), Proceedings Symposium on Computer Arithmetic 83-90
[111] Jeannerod C P, Knochel H, Monat C, Revy G (2010) Computing floating-point
square roots via bivariate polynomial evaluation. LIP research report RR2008-38.
2010.
[112] Johnston, H (2013) D-Wave sells second quantum computer-this time to NASA.
Physics World, 26(7): 9.
[113] Karp, Alan H. & Flatt, Horace P. (1990) Measuring Parallel Processor
Performance". Communication of the ACM 33(5): 539–543.
[114] Kearfott R B (1996) Interval computations: Introduction, uses, and resources.
Euromath Bulletin, 2(1): 95-112.
[115] Keller F, Wendt K, Härtig F (2015) Estimation of Test Uncertainty for TraCIM
Reference Pairs,Series on advances in mathematics for applied sciences: 86 187 –
194 .
[116] Knuth D E (1993) Artistic programming - a citation-classic commentary on the
art of computer-programming, vol 2 seminumerical algorithms. Current
contents/engineering technology & applied sciences.34 8 - 8.
[117] Kok G J P, Harris, P M, Smith, I M and Forbes, A B, (2016) Reference data sets
for testing metrology software, Metrologia,53(4).
[118] Kornerup P, Lefevre V, Louvet N, Muller JM (2012) On the Computation of
Correctly Rounded Sums. IEEE Transactions On Computers 61(3):289-298
[119] Kornerup P, Lauter C, Lefevre V, Louvet N, Muller JM (2010) Computing
Correctly Rounded Integer Powers in Floating-Point Arithmetic. ACM Transactions
On Mathematical Software 37(1).
[120] Kulisch U W (2009) Complete interval arithmetic and its implementation on
the computer. In Numerical Validation in Current Hardware Architectures (pp. 7-
26). Springer Berlin Heidelberg.
[121] Kuzyk M G, Pérez-Moreno J, (2013) Shafei J, Rules and scaling in nonlinear
optics. Physics Reports 529:297-398.
[122] Lee J, Bagheri B, Kao K-A (2014) Recent Advances and Trends of Cyber-
Physical Systems and Big Data Analytics in Industrial. Informatics International
Conference on Industrial Informatics, Brazil, doi:10.13140/2.1.1464.1920.
[123] Leibniz G W, (1697) Brief an den Herzog Rudolf von Braunschweig-
Wolfenbüttel vom 2. Januar 1697; Leibniz Museum Hannover
[124] Levenberg K (1944) A method for the solution of certain non-linear problems
in least squares. Quartely Journal of Applied Mathematics II, 2(2) :164-168.
[125] Lions J-L, (1996) Ariane 5, Flight 501, Report of the Inquiry Board, European
Space Agency.
[126] Liu D C, Nocedal J (1989) On the limited memory BFGS method for large scale
optimization. Mathematical programming, 45(1):503-528.
[127] Linares J M, Sprauel J M, Bourdet P (2009). Uncertainty of reference frames
characterized by real time optical measurements: Application to Computer Assisted
Orthopaedic Surgery. CIRP Annals-Manufacturing Technology, 58(1):447-450.
[128] Louvet N, Muller J M, Panhaleux A (2010) Newton-Raphson Algorithms for
Floating-Point Division using an FMA. Proceeding of the21st IEEE International
Conference Jul 2010 Rennes, France, 200-207.
[129] Mailhe J, Linares J M, Sprauel J M (2009) The statistical gauge in geometrical
verification Part I. Field of probability of the presence of matter, Precision
Engineering 33(4): 333-341.
[130] Mailhe J, Linares J M, Sprauel J M (2009) The statistical gauge in geometrical
verification. Part II. The virtual gauge and verification process, Precision Engineering
33(4): 342-352.
[131] Mailhe J, Linares JM, Sprauel JM, Bourdet P (2008) Geometrical checking by
virtual gauge, including measurement uncertainties CIRP Annals - Manufacturing
Technology 57(1): 513-516.
[132] Mallet F, Ong F R, Palacios-Laloy A, Nguyen F, Bertet P, Vion D, Esteve D (2009)
Single-shot qubit readout in circuit Quantum Electrodynamics. Nature Physics
5:791-795.
[133] Markstein P (2008) The new IEEE-754 standard for floating point arithmetic.
In Dagstuhl Seminar Proceedings. Schloss Dagstuhl-Leibniz-Zentrum für Informatik.
[134] Marquardt D W (1963) An algorithm for least squares estimation of non-linear
parameters. Journal of the Society of Industrial and Applied Mathematics, 11(2)
:431-441.
[135] Martin-Dorel E, Melquiond G, Muller, JM (2013) Some issues related to double
rounding. Bit Numerical Mathematics 53(4): 897-924
[136] Mascarenhas W F (2014) The divergence of the BFGS and Gauss Newton
methods, Mathematical Programming 147(1):253–276.
[137] Moore R E, Bierbaum F (1979) Methods and applications of interval analysis
Vol. 2. Philadelphia: Siam.
[138] Moré J J (1978) The Levenberg-Marquardt algorithm: implementation and
theory. Numerical analysis. Springer Berlin Heidelberg.
[139] Moroni G, Petr S (2008) Geometric tolerance evaluation: A discussion on
minimum zone fitting algorithms, Precision Engineering 32:232–237.
[140] Muller J M, Brisebarre N, De Dinechin F, Jeannerod C P, Lefevre V, Melquiond G,
Revol N, Stehle D, Torres S (2009) Handbook of floating-point arithmetic. Springer
Science & Business Media.
[141] Muller J M. Elementary Functions, Algorithms and Implementation.
Birkhauser, Boston, 1997.
[142] Muller J M (2005) Elementary Functions, Algorithms and Implementation.
Boston, USA: Birkäuser Verlag.

25

[143] National Academy of Science and Engineering (2013) Recommendations for
implementing the strategic initiative INDUSTRIE 4.0. Berlin, 15 Mai 2013.
[144] Nocedal J (1980) Updating quasi-Newton matrices with limited storage.
Mathematics of computation, 35(151):773-782.
[145] Paul J M, Meyer B H (2007) Amdahl's law revisited for single chip systems.
International Journal of Parallel Programming 35(2):101-123.
[146] Piccione B, Cho C-H, van Vugt L K, Agarwal R (2012) All-optical active
switching in individual semiconductor nanowires. Nature Nanotechnology, 07:00
640–645.
[147] Piggott A Y, Lu J, Lagoudakis K G, Petykiewicz J, Babinec T M, Vuckovic J (2015)
Inverse design and demonstration of a compact and broadband on-chip wavelength
demultiplexer. Nature photonics 9(6):374 - 377.
[148] Press release – Particle control in a quantum world. Royal Swedish Academy
of Sciences. Retrieved 9 October 2012.
[149] Rehwald P (1985), VDAFS—An interface to transfer surface description data
between CAD systems. Computers & Graphics 9(1):69-70.
[150] Rodriguez-Fernández, J (1999) Ockham's razor. Endeavour, 23(3): 121-125.
[151] Rohr D, Bach M, Neskovic G, Lindenstruth V, Pinke C, Philipsen O (2015)
Lattice-CSC: Optimizing and Building an Efficient Supercomputer for Lattice-QCD
and to Achieve First Place in Green500. High Performance Computing, Isc High
Performance 2015 Book Series: Lecture Notes in Computer Science 9137:179-196.
[152] Rump S M (2010) Verification methods: Rigorous results using floating-point
arithmetic. Acta Numerica 19:287-449.
[153] Rump S M (1999) INTLAB - INTerval LABoratory. In Tibor Csendes, editor,
Developments in Reliable Computing. Kluwer Academic Publishers, Dordrecht.
[154] Savio E, De Chiffre L, Schmitt R (2007) Metrology of freeform shaped parts.
CIRP Annals-Manufacturing Technology 56(2):810-830.
[155] Schwenke H, Frank, M, Hannaford J (2005) Error mapping of CMMs and
machine tools by a single tracking interferometer, CIRP Annals-Manufacturing
Technology, 54(1):475-478.
[156] Schwenke H, Knapp W, Haitjema H, Weckenmann A, Schmitt R, Delbressine F
(2008) Geometric error measurement and compensation of machines—An update,
CIRP Annals - Manufacturing Technology 57(2): 660–675.
[157] Shakarji C (1998) Least-squares fitting algorithms of the NIST algorithm
testing system, Journal of research of the National Institute of Standards and
Technology, 103:633–641.
[158] Shakarji C, Clement A (2004) Reference Algorithms for Chebyshev and One-
Sided Data Fitting for Coordinate Metrology, CIRP Annals - Manufacturing
Technology 53(1): 439-442.
[159] Soklakov A N (2002) Occam’s razor as a formal basis for a physical theory.
Foundations of Physics Letters, 15(2): 107-135.
[160] Sturm M C (2009) Analyse d’un mémoire sur la résolution des équations
numériques. In Collected Works of Charles François Sturm (pp.323-326). Birkhäuser
Basel.
[161] Sun W, McBride J W, Hill M (2010) A new approach to characterising aspheric
surfaces, Precision Engineering 34:171–179.
[162] Tarantola A (2005). Inverse problem theory and methods for model
parameter estimation. Society for Industrial and Applied Mathematics.
[163] Thompson S E, Parthasarathy S, (2006). Moore's law: the future of Si
microelectronics. Materials today, 9(6), 20-25.
[164] Thorburn, W M (1915) Occam's Razor. Mind XXIV (2): 287-288.
[165] TraCIM e. V. (2014) Handeslregisterauszug VR 201236 OH-Nummer
C1626559
[166] TraCIM PTB (2016) Homepage of the TraCIM Service at PTB
https://tracim.ptb.de/tracim/index.jsf, access déc-16
[167] Turing A (1937) On Computable Numbers, with an Application to the
Entscheidungsproblem, Proc. London Math. Soc, 42:00:00 230-265
[168] Van Der Hoeven J, Lecerf G, Quintin G. (2014) Modular SIMD arithmetic in
Mathemagix. arXiv preprint arXiv:1407.3383.
[169] Van Der Hoeven, J (2009). Ball arithmetic (https://hal.archives-
ouvertes.fr/hal-00432152v1).
[170] Veldhorst M, Yang C H, Hwang J C C, Huang W, Dehollain J P, Muhonen J T,
Simmons S, Laucht A, Hudson F E, Itoh K M, Morello A, Dzurak A S (2015) A two-
qubit logic gate in silicon. Nature 526:410-414.
[171] Velenosi A, Campatelli G, Scippa A (2015) Axis geometrical errors analysis
through a performance test toevaluate kinematic error in a five axis tilting-rotary
table machine tool, Precision Engineering 39:00:00 224–233.
[172] Vogel-Heuser B, Lee J, Leitão P (2015) Agents enabling cyber-physical
production systems. At - Automatisierungstechnik 63(10): 777–789.
[173] Wen X-L, Huang J-C, Sheng D-H, Wang F-L (2010) Conicity and cylindricity
error evaluation using particle swarm optimization. Precision Engineering 34:338–
344.
[174] Whitehead N, Fit-Florea A (2011) Precision and Performance: Floating Point
and IEEE 754 Compliance for NVIDIA GPUs. nVidia technical white paper, 2011
[175] Wilkinson J H. (1961) Error analysis of direct methods of matrix inversion.
Journal of the ACM, 8(3): 281-330.
[176] Wilkinson, J H (1963), Rounding Errors in Algebraic Processes, HMSO.
[177] Wu J, Luo Z, Zhang Y, Zhang N, Chen L (2013) Interval uncertain method for
multibody mechanical systems using Chebyshev inclusion functions. International
Journal for Numerical Methods in Engineering, 95(7): 608-630.
[178] Zhang X, Zhang H, He X, Xu M, Jiang X (2013) Chebyshev fitting of complex
surfaces for precision metrology, Measurement 46:3720–3724.
[179] Zhang X, Jiang X, Scott P J (2011) Minimum zone evaluation of the form errors
of quadric surfaces. Precision Engineering 35:383–389.

[180] Zhang X, Jiang X, Scott J P (2011) A reliable method of minimum zone
evaluation of cylindricity and conicity from coordinate measurement data, Precision
Engineering 35:484–489.
[181] Zhoulai F, Zhaojun B, Zhendong S. (2015) Automated backward error analysis
for numerical code. In Proceedings of the 2015 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA 2015).

