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In contrast to measurements of the dimensions of machined parts realized by machine tools and characterized by CMMs, software results are not fully 
traceable and certified. Indeed, a computer is not a perfect machine and binary encoding of real numbers leads to rounding of successive intermediate 
calculations that may lead to globally false results. This is the case for poor implementations and poorly conditioned algorithms. Therefore, accurate 
geometric modelling and implementations will be detailed. Based on the works of National Metrology Institutes, the problem of software traceability will 
also be discussed. Some prospects for this complex task will finally be suggested. 
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1. Introduction  

Humanity is facing very big challenges such as global warming, 
depletion of natural resources, and sustainable development, for 
example. At the same time, the business world tries to improve 
industrial competitiveness accounting for these environmental 
constraints. Most industrialized countries have thus launched 
development programs to answer these challenges (USA: 
Advanced Manufacturing, Manufacturing renaissance, National 
Network for Manufacturing Innovation, India: Make in India, 
Japan: Innovation 25 program, China: Intelligent Manufacturing, 
Made in China 2025, European countries: Horizon 2020, Factories 
of the Future, Industry 4.0…). All these programs are based on the 
development of computerization and networking in industrial 
systems. This is the convergence of the physical and virtual 
worlds to Cyberspace. The German National Academy of Science 
and Engineering defines this evolution as a 4th generation 
industrial revolution based on Cyber-Physical Systems (CPS) 
[84,122,143,172]. In this new environment, information 
technology (IT) will allow decision makers to do more over time 
to improve product quality and customisation, productivity and 
customer satisfaction. This global expansion of the use of 
computers in industry brings to the forefront the need for 
traceability and certification of industrial software. Scientific 
calculations have indeed become central issues in design, 
manufacturing, precision engineering and metrology software. 
The fundamental binary code together with all basic arithmetic 
operations were developed by Leibniz in 1697 [123]. The 
principle of modern programmable computers was first proposed 
by Alan Turing in his 1937 paper: "On Computable Numbers with 
an Application to the Entscheidungsproblem" [167]. The Turing 
machine is the first universal programmable computer. It 
invented the concepts of programming and program. The 
construction of Pilot ACE (Automatic Computing Engine) based 
on Turing's designs was completed by the National Physical 
Laboratory in the early 1950's. In 1946, the first architecture of 
electronic computers was proposed: the ENIAC (Electronic 
Numerical Integrator and Computer, using the vacuum tube 

technology. Figure 1 shows a picture of this computer. The 
second generation of computers was based on the invention of 
the transistor in 1947. Despite the use of transistors and printed 
circuits, the computers were still bulky and only used by 
universities, governments and large companies. The third 
generation of computers (around 1959) was based on electronic 
chips. In 1971, Intel revealed the first commercial 
microprocessor, the 4004. It did not achieve more than 60,000 
operations per second. Today, standard desktop computers have 
a much bigger processing capacity (for example, an Intel Core 2 
Duo processor at 2.4 GHz can execute around 2 billion operations 
per second). Microprocessors include most of the computing 
components (except for the clock and the memory) on a single 
chip. The computer is now the daily companion of people both at 
the office and in private life. For the average user, the computer 
remains however a black box that just provides results from the 
data that were entered. These outcomes are generally considered 
above any suspicion. For future industrial systems, based on 
cybernetics, will the results supplied by computers be really 
traceable and validated numerically? To answer this question, 
technological incidents could be reconsidered that have 
happened in recent history and had a computer error as source. 

In computing, an integer overflow is a condition that occurs 
when a mathematical operation produces a numerical value 
larger than the greatest number that can be represented by the 
set of bits (binary digits) of the implemented variable. Perhaps 
the best-known consequence of such an error is the self-
destruction of the Ariane 5 rocket during its first launch on June 
4th, 1996. The Inertial Reference System (IRS) of Ariane 5 was 
derived from that of Ariane 4 but the new launcher had high 
initial accelerations and a trajectory that resulted in horizontal 
velocities five times larger than those of the previous rocket. 
These high speeds were captured by the sensors of the inertial 
platform but exceeded the maximum value that could be 
processed by the navigation program. It resulted in an integer 
overflow exception in the IRS software and the shutdown of the 
computers caused by the conversion from a 64-bit real number to 
a 16-bit integer [125]. False flight data led than to erroneous 

http://www.linguee.fr/anglais-francais/traduction/business+world.html
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corrections of the launcher trajectory and finally to the self-
destruction of the rocket.  

 

 
Figure 1: ENIAC (Electronic Numerical Integrator and Computer) [95] 

 
An intrinsic feature of numerical computing is that real 

numbers are represented in finite precision and this means 
nearly all real numbers have to be rounded to be represented. 
The accuracy of the rounding operation can have great influence 
on calculated results. In 1992, at Dhahran in Saudi Arabia, a 
Patriot battery failed to track and to destroy a Scud missile [64]. 
This incident was caused by a software problem in the system's 
weapon control computer due to an inaccurate calculation of time 
and consequently of the tracking trajectory. The precision of 
calculations of on-board computers often depends on the number 
of bits of its registers. Patriot’s clock system was performing 
some arithmetic operations using a 24-bit fixed point register. 
This hardware limitation led to a drift between the times elapsed 
since last boot, as measured by the system's internal clock, and 
the real delays. Table 1 shows the evolution of this time drift 
(inaccuracy)and the estimated shift in the range gate that Patriot 
tracked. 

 
Table 1:Precision of a computer’s calculations 

Hours Seconds
Calculed 

time (s)

Inaccuracy 

(s)

Shift in range 

gate (m)

0 0 0 0 0

1 3600 3599.9966 .0034 7

8 28800 28799.9725 .0275 55

20 72000 71999.9313 .0648 137

48 172800 172799.8352 .1648 330

72 259200 259199.7528 .2472 494

100 360000 355999.6667 .3433 687  
 

After 100 hours of monitoring, the elapsed time calculated by 
Patriot’s clock system drifted by approximately 0.3 s.  In 
connection with the speed of the tracked Scud rocket, the 
resulting error of the calculated interception point was estimated 
to be about 700 m. Patriot’s battery therefore failed to destroy the 
missile. The size of the registers of current generation of 
computers is now at least 64 bits, permitting calculations with 
greater precision but rounding effects are still inevitable.  

Can such problems arise in precision engineering and 
metrology? Whereas there is an infrastructure to provide 
traceability of dimensions of machined parts realized by machine 
tools and characterized by CMMs, the results of software 
calculation are usually not fully traceable and certified. Indeed, a 
computer is not a perfect machine and binary encoding of real 
numbers leads to rounding of successive intermediate 
calculations that may lead to globally false results for poorly 
constructed calculations. To understand these calculation limits, 
the second section of the paper will be dedicated to the intrinsic 
performances of computer hardware and software. False 
computation results are often due to poor software 
implementations and badly conditioned or numerically unstable 

algorithms. The third section of the paper will therefore deal with 
detailed smart implementations of geometric modelling. Based on 
the works of National Metrology Institutes, the problem of 
software certification and traceability will also be discussed in the 
fourth section. Some prospects about these different subjects will 
finally be suggested.  

2. Intrinsic performances of computer hardware and 

software 

As discussed in introduction, the hardware (number of bits, 
number of processors…) and software (conversion effects, 
rounding effects, cancellation effects…) of computers, have a 
great influence on the accuracy of the calculated results. These 
topics will therefore be discussed now. The logical structure and 
functional characteristics of computers are shown in Figure 2. A 
computer is built around one or more microprocessors with each 
microprocessor have one or more cores. The processor (named 
CPU for Central Processing Unit) is an electronic circuit clocked at 
the rate of an internal clock. A processor has internal registers of 
a fixed number of bits(now usually 64 bits) used to encode and 
manipulate the processed values. Several processor clock pulses 
are generally necessary to perform an elementary action called an 
instruction. The indicator, Cycles Per Instruction (CPI), 
characterizes the mean number of clock cycles required to 
execute a basic instruction on a microprocessor. It is about four 
for most current microprocessors. The CPU power can thus be 
characterized by the number of instructions processed per 
second and is often expressed in units of millions of instructions 
per second (MIPS) and corresponds to the frequency of the 
processor divided by the CPI. The CPU includes one or several 
Arithmetic Logic Units (ALU) that provide the basic functions of 
arithmetic calculations and logical operations on integers, and a 
Floating-Point Unit (FPU) to perform operations on floating point 
numbers. The processor employs cache memories (buffers) to 
reduce the time to exchange information between the main 
computer memory, its Random Access Memory (RAM), and the 
internal data registers. 

Computer microprocessors only manipulate binary instructions 
and data. The encoding of such information requires two states 0 
and 1. In a simplified way: either the electrical current flows 
through an elementary circuit or it does not. A binary machine 
language encodes the set of basic instructions implemented in the 
microprocessor hardware to perform the available elementary 
operations such as addition, subtraction, multiplication, division, 
comparison, etc. 
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Figure 2: Logical structure and functional characteristics of a computer 

 
The quality of numerical results in scientific calculations 
performed by a computer will depend on both the hardware and 
the software. In the remainder of this section, the hardware 



3 

 

aspects will be treated first, and then the software aspects will be 
presented. 
 
2.1 Technical advances of computer hardware 

For use in scientific calculations, the performance of a computer 
greatly depends on the number of processors and cores, the clock 
frequency, the number of bits of the CPU registers and the size of 
the cache memories. The considerable improvements of 
computers over the past decades are mainly linked to a great 
increase in the number of the elementary components integrated 
in the processors. The empirical Moore's law [1], largely verified 
since 1971, established that the number of transistors in a 
densely integrated circuit is doubled every two years (Figure 3). 
This law is unlikely to be satisfied in the near future because of 
the physical limitations of the actual silicon technology being 
reached quickly. In fact, due to quantum tunnelling effects, the 
smallest size of elementary transistors is at present limited to 20 
nm [163]. Nevertheless, Intel believes that this size may be 
reduced to 7 nm by 2020, even if it will perhaps require using 
materials other than silicon, such as Indium Gallium Arsenide 
[89]. The computing performance also depends on the length of 
the data words manipulated by the computer. The size of the 
internal registers and of the data bus of the first Intel 4004 
processor was limited to 4 bits. It has grown since the 1970’s to 
reach 64 bits on current processors. 
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Figure 3: Moore's law 

 
Other technologies are also being developed to replace current 

hardware based on electronic transistors. In 1982, Richard 
Feynman suggested that simple controllable quantum systems 
could be used to simulate the quantum dynamics of problems that 
cannot be modelled by a conventional computer [56]. In 2012, the 
Nobel Prize for Physics was awarded for scientific research on 
ground-breaking experimental methods that enable the 
measurement and manipulation of individual quantum systems 
[148]. The quantum properties of matter, such as superposition 
and entanglement, provide the framework for the development of 
quantum computers. Figure 4 shows the possible values of the 
state   of a bit and a qubit (quantum bit). A standard computer is 
based on binary data: a bit has only two independent values 0 or 
1. The quantum computer is working with qubits that can have 
multiple states [42,170]. These possible values (states) can be 
represented using the Bloch sphere graph where α and β are 
complex numbers and probability amplitudes. This property 
allows quantum processors to perform multiple operations in 
parallel. 

Research on quantum computers is very active, with around 
8000 publications since 1997. A quantum computer existing 
today has several hundred qubits. Quantum processors need 
external cooling down to a temperature of about 0.015° K 
(around -273° C, very close to absolute zero). The development of 
quantum informatics based on superconducting circuits also 
requires accurate readout devices to gather the qubit states 

[132]. The quantum computer is well-adapted for combinatorial 
calculations and uses simulated annealing algorithms for global 
optimization problems. Some large companies [112] have begun 
using quantum computers principally in cryptography and 
optimization problems using simulations (Grover’s search 
algorithm) [42].  
 

1

Two independent 

electronically 

states 

0

І1>

І0>

Linear superposition of 

the 2 basis states

bit qubit

1 OR 0 == 
1 :with

1  0    

22
=+

+=



   




 
Figure 4: Values of states  for bit and qubit 

 
A second set of technologies relies on the fact that silicon is 

transparent to infrared light, so that optical fibres can be used to 
interconnect computer elements or components inside the 
processor core. This opens a new way to build optical computers 
[146]. For that purpose, an optical nanowire switch was first 
designed [147] and, by combining two optical switches, a NAND 
logic gate was then developed. Similarly, in non-linear optics, the 
property of some materials to change their refractive index under 
an electric field (Kerr effect) was studied. This permitted creating 
logic gates (AND, OR, NOR...)[121]. Such components may be 
employed in the design of future optical processors and 
computers.  

In addition, photons do not produce magnetic interferences 
with the environment and the heat generated by an optical 
system remains very low. Optical transistors can work at 
frequencies much higher than those of conventional electronic 
devices. Optical computers could thus be more powerful than 
current conventional computers. The main disadvantage of this 
technique is the inability to store photons and light. Furthermore, 
as photons propagate in a straight line, building interconnections 
causes major difficulties in a reduced space. 

Another scientific track to replace current processors is based 
on the outcome of molecular biology. The principle of DNA 
computers (computing technology based on molecular biology), 
enunciated by Leonard Adleman in 1994, is to encode an instance 
of the problem with DNA strands and manipulate it by molecular 
biology to simulate operations that will isolate the expected 
solution of the problem [2,3]. As for quantum technology, DNA 
computers will be specialized in computing complex problems 
like non-deterministic algorithms in polynomial time because 
DNA strands can produce billions of potential answers 
simultaneously. However, the process of synthesis and reaction is 
very slow. 
 
2.1.1Technical properties of internal computer devices 

Current processors work on the scheme of classical Turing 
machine and are constrained to perform calculations in sequence. 
The consequence is that it is less promising to deal with, in a 
given time, a large number of instances of computational 
problems of high numerical complexity. As shown in Figure 2, the 
performance of a computer is related to the number of processors 
and cores, the number of bits of the internal registers and the 
data bus, the clock and bus frequencies and the size of the cache 
memory. 

A global metric was proposed to measure the theoretical 
computer performance in scientific calculations that use floating-
point operations: floating-point operations per second (FLOPS). 
Equation 1 shows FLOPS formula. 
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cycle

FLOPs
fNNFLOPS clock  processorssorcore/proceprocessor=                          (1) 

With: 
Nprocessor: Number of processors in microprocessor unit, 
Ncore/processor: Number of cores in processor, 
fprocessor clock: Frequency of processor clock, 

4
cycle

FLOPs
with actual processors. 

 
For a scientific computer with 2 processors containing 12 cores 

each and working at a clock frequency of 2.9 GHz, the theoretical 
number of floating-point operations per second is 278.4 
GigaFLOPS. A laptop with a single-core 2.5 GHz processor has a 
theoretical performance of 10 GigaFLOPS. This metric is 
sometimes divided by the electrical power (FLOPS/watt) to 
analyse the energy efficiency of the computer. The number of 
FLOPS is used to compare the theoretical performance of 
computers but does not account for specific tasks of the 
computation and for the real load rate of each processor and core. 
New benchmarks are therefore proposed by the Standard 
Performance Evaluation Corporation, launched in 2000, to 
compare computer performances. These benchmarks are based 
on specific procedures applied to test the computer behaviour 
when running next-generation of industrial software (Dassault 
Systèmes: CATIA and Solidworks, Pro Eng: CREO, Siemens: NX...), 
to stress a system's processor, etc... [83]. These tests highlight the 
processor ability to process a set of operations in a limited time 
or to give global information on the computer's behaviour. But 
these tests do not give an indication of the traceability or the 
quality of the numerical results provided by the computer. 

 

Processor

number

x Speed Up

Parallelism 

proportion

 
Figure 5: Amdahl's law 

 
Equation 1 shows that the number of processors and cores 
influences the performance of calculation. Multiprocessor 
computers allow the program to complete several arithmetic 
operations simultaneously, thus increasing the processing 
capacity. This technique is called parallelism. The technique of 
parallelism can be used inside a processor to address the cores, 
between processors or for a pipeline technique.  In the third case, 
the processor can start executing a new instruction without 
waiting for the previous one to be completed. To reduce the 
input/output bottleneck of instructions, a vector processor was 
developed with specific instructions optimized for fast handling 
of tables and quick matrix calculations. 

Theoretically, it is expected to halve the processing time by 
sharing calculations between two processors with single core, to 
quarter the processing time by using 4 processors, etc. 
Unfortunately, not all scientific operations can be parallelized 
effectively. 

 

] /)-[(11/   PααSpeedup +=                                                  (2) 

With:  
: proportion of parallelism  
P=Nprocessor Ncore/processor 

 
The empirical Amdahl's Law (Eq.2)can be used to define an upper 
limit to the parallelization contribution of software or hardware 
architectures [4,88,145]. It assumes a constant amount of data to 
be processed. Figure 5 shows the speedup of calculations versus 
the processors number used and the proportion of parallelized 
computer code. In Figure 6, another empirical law (Eq.3) is 
shown, known as the Gustafson–Barsis' relationship [78,96,113]. 
It is more optimistic than the previous one and reflects the fact 
that more data can be processed at the same time by increasing 
the number of processors. 
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Figure 6: Gustafson–Barsis' law 

 

1)-)(-(1-  PαPSpeedup =              
(3) 

With:  
: proportion of parallelism  
P=Nprocessor Ncore/processor 
 
2.1.2 Supercomputers and LINPACK/LAPACK benchmarks 
A supercomputer is a computer designed to achieve the highest 
performances at the date of its manufacture. Its use is targeted to 
High-Performance Computing (HPC). These supercomputers have 
thousands of processors and hardware architectures allowing 
them to use the benefits of parallelism. To classify the most 
efficient machines in scientific computing, a TOP500 classification 
project was created. The LINPACK benchmark is used to test and 
to rank supercomputers for the TOP500 list [41,45,92]. It 
measures the time taken to solve a dense linear system of n 
equations in n unknowns, the solution being obtained by a partial 
Gaussian elimination, by 2/3 n² + n³ floating point operations 
[73]. The performance is then calculated by dividing the number 
of operations by the calculation time. To complement the FLOPS 
metric, two other indicators were created for this benchmark: 
- Rmax: maximum performance in LINPACK Giga FLOPS for the 
biggest computable mathematical problem on the computer, 
- Nmax: size of the mathematical problem giving Rmax 
computable on the machine. 
- Rpeak represents the theoretical performance in GigaFLOPS of 
the computer. 
To extend the use of LINPACK packages on computers using 
shared-memory vectors and parallel calculations, a new LINPACK 
package was introduced in this benchmark [7,29,44]. This 
software pack is being constantly improved, particularly in terms 
of accuracy and performance [46]. Table 2 presents the ten first 
supercomputers of the world. After three consecutive years as the 
world’s No. 1 system of the Top500 ranking, Tianhe-2 of National 
Super Computer Center has been exceeded in performance by 
Sunway Super Computer. This computer has 10,649,600 cores 
and needs 15,371 kW of electrical power to obtain its best 
calculation performance. 
 
Table 2: TOP500 ranking in June 2017 

https://en.wikipedia.org/wiki/Standard_Performance_Evaluation_Corporation
https://en.wikipedia.org/wiki/Standard_Performance_Evaluation_Corporation
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Top

500
Rmax Year Name

Total 

Cores
Country Nmax

Power 

(kw)

1 93015 2016 Sunway 1,1E+07 China 12288000 15371

2 33863 2013 Tianhe-2 3120000 China 9960000 17808

3 19590 2017 Piz Daint 361760 Switzerland 3569664 2272

4 17590 2012 Titan 560640 United States 0 8209

5 17173 2011 Sequoia 1572864 United States 0 7890

6 14015 2016 Cori 622336 United States 6984960 3939

7 13555 2016 Oakforest 556104 Japan 9938880 2719

8 10510 2011 Riken 705024 Japan 11870208 12660

9 8587 2012 Mira 786432 United States 0 3945

10 8101 2015 Trinity 301056 United States 8847936 4233  
 
In 2005 and in line with the new challenges of this world (global 
warming, resource reduction, sustainable development), a new 
ranking of supercomputers has been set up: Green500 [91]. It 
incorporates the calculation concepts used in the TOP500 
ranking, but it is based on a new metric for supercomputer 
ranking: the power-performance defined by the number of FLOPS 
per Watt (FLOPS/W). Green500 proposes a ranking of the most 
energy-efficient supercomputers in the world. Table 3 presents 
the ten supercomputers ranked using this new metric. At present, 
the Tsubame 3.0 heterogeneous supercomputer (Tokyo Institute 
of Technology)obtains the top spot in the Green500 list and 
currently claims the title of the most energy-efficient (or 
greenest) supercomputer in the world. The Tsubame 3.0 
heterogeneous supercomputer surpassed the fourteen 
gigaflops/watt milestone [91]. To maximize the power-
performance metric, computer manufacturers use specialized 
cards named High Performance Computing (HPC) including 
many-core accelerators, on which parts of the computations are 
subcontracted. These new many-core accelerators are coupled to 
the CPU with an energy-efficient software design. For example, 
computer with HPC cards can treats large data up to 10 times 
faster than a single CPU. 
 
Table 3: Green500 ranking in June 2017 

Green

500

Top5

00

MFLOP

S/W
Year Name

Total 

Cores
Country Rmax

1 61 14110 2017 TSUBAME3.0 36288 Japan 1998

2 466 14046 2017 kukai 10080 Japan 461

3 148 12681 2017 AIST AI Cloud 23400 Japan 961

4 306 10603 2017 RAIDEN GPU 11712 Japan 635

5 100 10428 2017 Wilkes-2 21240 UK 1193

6 3 10398 2017 Piz Daint 361760 Switzerland 19590

7 69 10226 2017 Gyoukou 3E+06 Japan 1677

8 220 9797 2017 Res. Comp. Facility 16320 Japan 770

9 31 9462 2017 Facebook 60512 US 3307

10 32 9462 2016 DGX Saturn V 60512 US 3307  
 
Without fundamental change in the design of supercomputing 
systems, the computer performance advances will not continue at 
their current pace [55,151]. 
 
2.1.3 Sub conclusion 

The improvement of computer performance is now impacted by 
the constraints of sustainable development. The tests conducted 
under Green500 benchmark show that the manufacturers direct 
the development of their supercomputer to heterogeneous 
machines using High Performance Computing accelerators. These 
new hybrid systems, although energetically optimized, are still 
based on electronics. This technology is now well under control, 
but the resistivity of the circuits causes significant energy loss as 
heat. For example, the data can require up to 80% of the power 
consumed by a microprocessor. To solve this problem, new 
technologies have been proposed based on quantum physics, 
optics or molecular biology. The systems derived from these 
technologies are however specialized. They have functionalities 

similar to the accelerators used in actual heterogeneous 
computers. Such new devices will therefore surely be coupled to 
the machines designed with current technology, thus allowing 
continuous improvement of the computer performance. Figure 7 
summarizes the hardware items necessary to enhance and to 
optimize the computing performance of computers. However, the 
performance of computers not only depends on the hardware, but 
also on the manner in which data processing is implemented, i.e. 
the software. For most scientific calculations (outside grand 
challenges) computational time is usually not a limiting factor, 
and solutions to a sufficient accuracy can be determined in an 
acceptable amount of time. The precision of calculated results 
mainly depends on the quality of the data processing, in 
particular on the way the software is implemented. 
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Figure 7: Parameters influencing scientific calculation performances 

 
2.2 Technical advances of computer software  

Transistor gates of current computer processors can only 
handle binary information, in two distinct states 0 and 1, called 
bit. At the hardware level, n bits are then gathered to build words 
that are transmitted to the internal registers of the processors 
and cores. They are treated as instructions or operands for 
arithmetic and logic operations. The set of instructions of the 
machine language directly achieves basic mathematical 
operations on integer numbers (addition, subtraction, 
multiplication, division, modulus …). A floating-point unit is also 
generally embedded in the processor (or connected to it)realizing 
arithmetic calculations on real numbers and computing classical 
mathematical functions (sine, cosine, exponential, power, square 
root, …). These operations, performed at the hardware level, are 
very efficient, but the range of the manipulated data and the 
accuracy of some calculation results are limited by the size of the 
internal processor registers. If a greater range or precision is 
required, the number of bits used to encode a number has to be 
increased. A software layer will then be added to perform the 
operations. The first electronic computer, the ENIAC, used 
decimal arithmetic. In most current computers, the use of binary 
encoding has however been generalized, principally for its 
calculation simplicity and its coherence with the hardware [37]. If 
another encoding base (decimal, hexadecimal ...) is chosen to 
represent a number, it will be necessary to add a software layer 
to achieve encryption and calculations. IEEE 754 standard 
provides the rules of encoding real numbers for binary floating-
point arithmetic. However, only its last revision in 2008 defines 
the encoding of numbers in binary coded decimals. For a better 
understanding, the effect of type and base of encoding and the 
number of bits on the accuracy of calculations in precision 
engineering and metrology has to be explained. 
 
2.2.1 Implementation properties 

Computer hardware is designed with registers of fixed size, 
thus leading to a limited accuracy when performing arithmetic 
operations with the floating-point processor units. However, 
using programming methods, the number of bits used to 
represent numbers can be increased. Nevertheless, at the same 
time, the size required to store this information grows and may 
exceed the maximum available capacity of memory.  
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Figure 8: Limitation of computer encoding 

 
Figure 8 shows that with a finite memory capacity, the software 

cannot decrease the gap  between two successive real numbers 
(the precision of the floating-point arithmetic) to zero. Therefore, 
all real numbers cannot be represented by a computer. This is the 
first limit of computer calculations. Two phenomena are induced 
by this limit: rounding and cancellation [72]. In this context, 
floating point calculations can give entirely inaccurate results 
when no particular precaution is taken. To illustrate this, the 
computation of the simple function f of the variable M might be 
considered, presented in Equation 4 [140,19]. 

 
f(M)= M + M2 + 1 - M - M2 gives 0 for M>108                                                    (4) 
 
For large M values (in this case when M exceeds about 108) the 

value returned by software implementing IEEE arithmetic [100] 
is 0, while the true result is of course 1. The usual computer 
addition process is sequential as shown in Figure 9. 

 

M

M2

+ + + +

1 -M2-M

0
M2 M2 M2

 
Figure 9: Usual computer addition process [19] 

 

To compensate this bias, more efficient calculation methods 
have been developed but they are not automatically implemented 
in all usual programs. For example, computer calculations using a 
Two Sum algorithm (TS) [116] give true results (Figure 10). 
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Figure 10: Two Sum algorithm [19] 

 
If the order of operations in Equation 4 is changed (Figure 11), 

the right calculation result is also obtained. Therefore, the way 
the equations are implemented in the computer affects the 
quality of the result, which is called the implementation effect. 
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Figure 11: Implementation effect 

 

2.2.2 IEEE 754-1985-2008 standard 
For most computers, the representation of numbers in binary 

and decimal floating-point calculations is based on IEEE 754-
1985-2008 standard [100,133,140], where binary floating point 
is commonly used in the computer field. This standard also 
defines special values. 

 

2.2.2.1 Calculations with floating numbers 
Calculation based on floating point encoding is used the most in 

computing, but problems may arise when only a few bits 
represent the real numbers because of the limited accuracy.  

 

0.1 → 0.000110011001… → 1.100110011001  x 2-4

Base 2Base 10 Normalized

Sign Shifted exponent Significant

0 100110011001IEEE 754

1bit +  e bits        +  s bits Limited number of bits

(21bits in example)

With Offset = 2e−1 − 1

Example: e=8 Offset=127

Exponent + Offset = 127-4 = 123

Exponent

11110111

 
Figure 12: IEEE 754-2008 standard (floating point number) 

 
The encryption of numbers and implicit conversions between 

the decimal and binary system during data input/output are the 
first source of rounding. This process is shown in Figure 12. In 
consequence, not all the decimal numbers (i.e., rational numbers, 
the ratios of integers) can be expressed exactly as binary floating-
point numbers. As shown in Equation 5, a real number written 
using IEEE standard is defined by three integers: sign, shifted 
exponent and significant. 

 
)(2 ×  1 ×  = offset - exponent shiftedtsignificansignnumber Encoded     

(5) 

with offset=2e−1–1, e being the bit number of the exponent  
 
The data is represented in a scientific form. The most significant 

bit gives the sign, set to 0 when the number is positive and 1 if it 
is negative. The next e-bits define the exponent, shifted by a fixed 
offset to avoid negative values. Finally, the last binary digits 
define the normalized significant, truncated to the available 
numbers of remaining digits. Because the most significant bit is 
always 1 for a normalized number, this bit is not stored in the 
mantissa and is called the “hidden bit”. The expression of the 
exponent offset and the whole formula permitting the definition 
of the real number are presented in Equation 5. In Figure 12 this 
representation was used to encode the real number 0.1 using a 
register of 21 bits. If this floating number is reconverted to base 
10, the decimal value 0.099990845 is obtained. It clearly shows 
the rounding effects due to the limited accuracy of binary floating 
numbers. In double precision (encoding with 64 bits), the 
smallest positive and greatest negative normalized number 
different from zero are: ±2−1022 ≈ ±4.941×10−308. As the 
mathematical infinite and the mathematical zero cannot be 
encoded, three specific exceptions are considered in IEEE-754-
1985-2008 standard: 

- the exponent offset and mantissa are both zero: the real 
number is ± 0 (according to the sign bit), 

- the exponent offset is equal to 2e-1, and the mantissa is zero: 
the number is ± infinity (according to the sign bit), 

- the exponent offset is 2e-1, but the mantissa is not zero: the 
number is NaN (not a number). 

To limit the rounding effects of numbers translated into base 2, 
the following rounding procedures have been included in IEEE-
754-1985-2008 standard[133,140,38]. The four rounding modes 
[100] are: 

-Round toward−∞: RD(x) is the largest floating-point number 
less than or equal to x, 

-Round toward +∞: RU(x) is the smallest floating-point number 
greater than or equal to x, 

-Round to nearest: RN(x) is the floating-point number that is the 
closest to x, 
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- Round toward zero: RZ(x) is the closest floating-point number 
to x that is no greater in magnitude than x. It is equal to RD(x) if x 
≥ 0, and to RU(x) if x ≤ 0. 

Many studies have been conducted on the effect of rounding in 
the calculation of basic functions (-, +, x, /, exp, log...) [40,75,110, 
118,119,135,176]. In calculations with floating point numbers, 
the implementation of arithmetic operations [141]: addition 
[140], subtraction, multiplication, division, square root [111], 
fused-multiplication-addition [128] are the basis of scientific 
calculations. A lot of research work has been carried out to make 
these functions more precise, stable and robust despite the 
inaccuracy induced by the encoding of real numbers. 

A Graphics Processing Unit (GPU) is an electronic circuit on a 
graphics card or CPU. It performs the computations required by 
the display functions. The GPU has a parallel structure. It is 
designed for the great number of calculations required by the 
realization of 3D rendering, for example. The manufacturers of 
these components had to develop effective and precise 
algorithms to perform such computations. Classical basic 
arithmetic functions, vector operations (dot product, cross 
product ...) and matrix calculation algorithms have thus been 
developed for graphical display and have been incorporated in 
the GPU hardware. These efficient procedures are accessible to 
software developers and are sometimes used to improve the 
performance of programs [174]. 

The guidelines of the IEEE-754-1985-2008 standard must be 
included in the programming of business software used in 
metrology and precision engineering. However, most traditional 
software has not yet implemented these guidelines. 
 
2.2.2.2 Calculation with Decimal Floating-Point using Binary Coded 
Decimal 

The last revision of the IEEE-754 standard introduced Decimal 
Floating-Point (DFP) formats to encode real numbers in scientific 
calculations [36,142]. The first domains of application were 
financial analysis, tax calculation and others, where accurate 
calculation is sought to avoid mistakes causing financial losses. 
The numerical value of a number is given by sign × significant 
×10^Exponent. The mantissa and the exponent can be described 
in several ways: both values in Binary Coded Decimals (BCD), 
significant in BCD and exponent in binary or more complex 
compressed formats. Two methods were proposed by Intel [34] 
and IBM[35]: The first named binary integer decimal (BID), 
encodes the significant of the DFP number as an unsigned binary 
integer. The second, named densely packed decimal (DPD), 
encodes the significant as a compressed binary coded decimal 
integer.  
 

13

0     0   1    1
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Figure 13: Binary Coded Decimal (BCD) 

 
Finally, different ways exist to encode the same number in 

decimal floating-point. One way to code a number based on the 
intrinsic properties of a binary computer is to use the BCD 
method. The numbers are then represented by decimal digits, 
each of them encoded on four or eight bits (Figure 13). The basic 
arithmetic operations and mathematical functions have then been 
developed to make this DFP encoding method more accessible 
[8,30,51,53,74]. DFP is not yet used on all hardware/software 
products. Therefore, only binary coded floating-point numbers 
will be considered in the remainder of this section. 

 
2.2.3 Numerical effects of -approximation and implementation 

A floating-point number often results from a set of operations 
performed on a real machine that tries to compute a given 
function F(X) with the best possible approximation. The notion of 
calculability was first introduced by Turing [167] as follows: a 
real number X is "computable", if there is an algorithm that takes  
> 0 as input and produces an approximation x of X with |x-X| <. 
To realize that, an exact real number X is converted and rounded 
by an algorithm to obtain a floating-point number approximation 
x. The error  between these two numerical values mainly 
depends on the coding base, the number of bits used in coding 
(truncation error) and the rounding error.  

In the following, the computing of a given function result Y=F(X) 
is investigated. In such a procedure, the exact argument X first 
needs to be stored in the computer memory and therefore must 
be converted to its floating-point approximation x, thus 
introducing an input error X=x-X. The floating-point number x is 
next entered in a sequence of software instructions that are 
implemented to generate the desired function F. However, due to 
successive truncation and rounding errors and perhaps 
inaccurate algorithms, the function really realized by the 
calculator, denoted as f, may significantly differ from F. Therefore, 
the floating-point result ӯ=f(x) calculated by the computer may 
itself deviate from F(x). To be displayed or printed, this number is 
finally rounded and formatted to the decimal approximation y 
delivered to the user (Figure 14). The absolute computing error 
(output error) is then characterized by the difference Y between 
the value y given by the machine and the exact mathematical 
result Y=F(X), i.e. Y=y-Y. It is divided by the true exact value Y to 
define the relative error Y i.e. Y=(y-Y)/Y. Figure 14 shows the 
effect on the absolute error Y of the implementation of the 
function F in f. With poor implementation, the absolute error Y 
increases. This phenomenon is called data sensitivity.  
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Figure 14: Computing error 

 
In case of poor implementation, the absolute error Y can be 
divided in three main error contributors (Figure 14): 

- The computational error (Y-ỹ) where ỹ=F(x): It is only 
sensitive to the input error X and the computer 
algorithm stability. X is caused by the truncation or 
rounding of the exact real number X during encoding as 
floating-point. 

- The Implementation error (ỹ-ӯ) where ӯ=f(x): The input 
error X is amplified by errors of modelling and 
implementation. It must be pointed out that this error is 
not related to measurement uncertainties, even if poor 
and unstable programming may also amplify the 
dispersions of the measurement data entered in a 
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metrology or precision engineering software. 
Propagation of uncertainties in software is a topic that 
has already been considered in many research works 
[14,16,127,130,131]. This topic has also been treated in 
a fundamental keynote paper entitled "Measurement as 
inference" [52]. Measurement uncertainties are 
therefore not considered significantly in this paper. 
Error propagation is a research field intensively treated 
in laboratories of mathematics and computer science. 
Generally, the understanding of the accuracy of floating-
point programs is based on the estimation of the 
condition number. It is an indicator that permits to 
know the algorithm behaviour when it is calculated at 
each program line. Condition number will be detailed in 
subsection 2.2.3.3.2 (Mastering of forward error). 

- The error (ӯ-y) generated by the conversion of the 
computed result to the decimal number displayed or 
printed to the user. 

These numerical effects will be discussed in detail in the next 
subsections. 

 
2.2.3.1Loss of specific properties of arithmetic operations 

Due to cancellation, rounding, overflow and underflow effects, 
careful implementation is required in the coding of sets of 
arithmetic operations. In fact, the commutative, associative and 
distributive properties of the operators may be lost in 
calculations performed with floating numbers and coded with a 
limited number of bits, i.e. (A+B)+C≠A+(B+C),  (AB)C≠A(BC),  
(A+B)C≠AC+BC, … [33,93,94]. 

 
2.2.3.2Numerical effects of cancellation or overflow 

The subtraction of two nearly equal floating-point numbers 
may lead to a significant loss of relative accuracy. This 
phenomenon is named catastrophic cancellation.  

 

33096 =  and 77617 =  :with

 2 /  + 10  55 + 2  21 = f

ba

baaabbbbbbaabb −−                               (6) 

 
To demonstrate the effect on the cancellation of the number of 

bits used to encode floating-point numbers, the computing of 
Equation 6 represents a good example [152].  
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Figure 15: Effect of the number of bits on calculation 

 
This function was computed with floating-point numbers of 

increasing bit length. The result is shown in Figure 15. As soon as 
the number of bits exceeds a size that enables the display of 19 
decimal digits, an accurate value is returned by the software. 
Below this, the calculation result is false. In conclusion, to reduce 
the numerical effect of the cancellation, the number of bits must 
be increased. Arithmetic operations can also undergo overflow 
and underflow. 

 
2.2.3.3Backward and forward errors analyses 

Forward and backward error analyses are two paradigms used 
to study error analysis and data sensitivity 
[28,32,87,175,176,181]. The backward error is defined as the 

estimated input error XΔ ˆ  that would lead to a given fixed 
absolute error Y after computation. Its calculation process is 
shown in Figure 16. The forward error is the absolute error Y 
calculated for a fixed input error X. 
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Figure 16: Calculation processes of forward and backward errors 

 
The analysis of the change in backward error in relation to the 

forward error allows studying the quality of algorithms. This 
connection can differ from one geometrical problem to another. It 
can be summarized by the classification of Figure 17. 
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Figure 17: Forward error versus backward error 

 
A large forward error of a computation can have the following 

sources: 
- the amplification of a known input inaccuracy onto the 

output error. It can be characterized by the condition 
number. The condition number is a mathematical 
property of an algebraic function F and is therefore 
independent of the algorithm or the computer used to 
evaluate an expression. 

- the amplification of some truncation and rounding 
errors generated by the algorithm used to compute the 
desired function. It depends on the number of bits used 
to encode the floating-points and can be reduced by 
implementing multi-precision calculations. This effect is 
called: stability or instability of the calculation process. 

To minimise the numerical effect of -approximation and 
implementation, the backward error, the condition number and 
the process stability must be managed with caution. 

 
2.2.3.3.1Reduction of input error 

With floating-point numbers, the input error mainly depends on 
the quality of the encoding and rounding. Increasing the number 
of bits is therefore an obvious solution to reduce backward errors 
in floating-point calculations. Some modern commercial floating-
point computing software provide functions (such as the function 
eps() of Matlab that computes the floating-point relative 
accuracy) that allows the  estimation the  error. Figure 18 shows 
the result of the computation of constant  (pi) using Matlab 
software. The number was calculated with standard double 
precision floating-points and was displayed with 15 digits after 
the decimal point. Its relative and absolute errors were also 
defined. The same constant  was also computed with Excel 
spreadsheet. The result: 3.14159265358979 was obtained.   
 

>> pi 
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ans = 3.141592653589793 
>> eps(pi) 
ans = 4.440892098500626e-016 
>> eps(pi)*pi 
ans = 1.395147399203453e-015 

Figure 18: Numerical value of constant , relative and absolute errors in 
case of calculations with double precision floating-point numbers 

 
One digit was thus lost in comparison with Matlab. Multiple 
precision toolboxes are also available in some software systems 
to perform calculations with high fixed arbitrary precision. 
Quadruple precision floating-point numbers, compliant with IEEE 
754-2008 standard, are also now progressively introduced in 
programming tools and hardware. It will permit computations 
with a precision of about 34 decimal digits. Figure 19 finally 
shows the result obtained with 300 decimal digit precision [90]. 
Such multiple precision computations can be realised with Maple 
or Mathematica software without any specific library. They 
require however enough memory space to encode the real 
numbers (Figure 8) and may lead to large computing times. 
 
>> mp.Digits(300) 
>> mp('pi')                       
ans=3.1415926535897932384626433832795028841971693993751058
209749445923078164062862089986280348253421170679821480865
132823066470938446095505822317253594081284811174502841027
019385211055596446229489549303819644288109756659334461284
756482337867831652712019091456485669234603486104543266482
1339360726024914128 

Figure 19: Numerical value of constant  with 300 decimal digits 

 
Figure 20 shows the increase of the calculation time needed to 
compute the constant  as a function of the number of encoding 
decimal digits. Various C libraries dedicated to multiple-precision 
floating-point computations with accurate rounding have already 
been developed (GNU-GMP, GNU-MPFR, FLINT, MPIR). Most of 
them are open-source and permit calculations with an arbitrary 
multiple precision. Links to such libraries are available in [168]. 
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Figure 20: Calculation time of  in multiple precision 

 
The calculation times must also be evaluated for computations 

requiring complex numerical operations (matrix inversion, least 
squares optimizations…). The U.S. National Institute of Standards 
and Technology (NIST) publishes a set of statistical reference 
datasets using multiple precision calculations with an accuracy of 
500 decimals. Another solution to reduce the input error is to use 
BCD encoded numbers. However, industrial software currently 
does not offer toolkits to develop in BCD. Nevertheless, the 
potentialities of the actual object-oriented programming 
languages, such as C++, permits the overload of all the 
mathematical operators and most arithmetic functions. Thus, 
generic algorithms developed with classical floating-point 
numbers can be reused. This will permit evolving towards BCD 
processing [21]. 
 
2.2.3.3.2Mastering of forward error 

Equation 7 presents the demonstration of the condition number 
C in the case of a single-variable nonlinear function F. The relative 

forward error is the result of the multiplication of the condition 
number C by the relative input error X. 
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In these expressions, X is the exact input argument of the 

mathematical function F to be calculated; F’ is the derivative of F; 
f(x) represents the result provided by the computer; X is the 
absolute input error; X is the relative input error; Y is the 
relative forward error and C is the condition number. It must be 
pointed out that the approximation f(X+X) ≈ F(X+X) is only 
valid in case of accurate and stable software implementations. 
The Taylor expansion used in Equation 7 requires also a limited 
input error X.  

The condition number C represents an intrinsic property of the 
mathematical problem and has nothing to do with the computer. 
A computing condition number c can therefore also be defined. It 
takes the floating-point approximation x of X as input argument 
and is based on the result f(x) really provided by the program 
implemented in the calculator. Equation 8 shows such definition 
and demonstrates that the mathematical meaning of the 
condition number may lead to inaccurate estimations of 
computing errors because it does not account for deviations 
caused by inaccurate or unstable implementation.  
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Equation 9 shows the symbolic definition of the condition 

number C. It is the ratio between the relative output error 
(change in output) and the relative input error (change in input).  
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Figure 21: Behaviour of the condition number of the Cosine function  

 
Estimating the condition number C (or c) is very important in 

understanding the accuracy of floating point software. When C (or 
c) is large, the relative input error is amplified and the accuracy of 
the computing results becomes poor. A problem characterized by 
a low condition number is called “well-conditioned”, otherwise it 
is named “ill-conditioned”. The condition number C may greatly 
depend on the input argument X. Thus, it can take large values up 
to infinity and this even for simple mathematical functions 
(cosine, sine, tangent...), this amplifies errors in scientific 
computation. As an example, Figure 21 shows the behaviour of 
the condition number calculated for the function cosine. 

In case of a nonlinear differentiable function F of multiple 
variables X, the condition number is defined by equation 10, 
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where J(X) represents the Jacobian matrix of F and ∥…∥ is a given 
chosen matrix norm (usually the Euclidian norm).  
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              (10) 

 
For non-singular systems of linear equations, given in the form 

A.X=Y, the condition number (A) is computed as follows: 
 

AAA  )( 1−=κ              (11) 

 
Its value thus depends on the choice of norm. With the 

Euclidian norm, the condition number C is the ratio of the largest 
to the smallest singular value in the singular value decomposition 
(SVD) of a matrix.  

The effects of the input error propagation can be mitigated by 
reducing the number of floating-point operations (FLOPs) 
performed in a computation. Matrix computation is intensively 
used for the implementation of approximation methods in 
metrology and precision engineering software. In the case of 
linear equation systems, the Gauss pivoting method is often used 
to obtain the solution. In a problem with n equations and n 
unknowns, [n(n+1)]/2 divisions and [(n(n-1)(2n+5)]/6 additions 
and multiplications are needed to obtain the result. The Gauss 
pivoting method should therefore only be used for linear systems 
of limited size (less than a thousand of unknowns). For large 
systems (e.g. for Finite Element calculations) specific algorithms 
are to be used. 
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Figure 22: Stability or instability of computation 

 
2.2.3.3.3Calculation process stability 

To illustrate the stability or instability of the calculation process 
[19], Figure 22 presents the behaviour of two implementations: 
f1 and f2 (Equation12) of the same mathematical function F, 
when the input argument X tends to 4. The results plotted in blue 
are obtained from relation f1, while the red curve results from 
implementation f2. These computations were performed using 
MATLAB 7.10 software and standard double floating-point 
precision.   

 

4)-4)(-4)(-4)(-( = f2

256 + 256 - 96 + 16 -  = f1 24

XXXX

XXXX 3

                             (12) 

 
The first implementation f1 is affected by the rounding errors of 

the floating-point calculations. This impacts the stability of the 
calculation process. A computing process without subtractive 
cancellation is usually stable, especially when a small number of 
numerical operations is used. A few guidelines can be found in 
[87]. Backward error calculations can be used to test the stability 
of the calculation process (method) applied to solve linear 
equation systems [28,87]. If the backward error is small, it means 
that the result y found by the computer is close to the true 

solution Y of the mathematical problem. To improve the stability 
of a numerical process, a scaling of the data can lower the 
condition number. In linear equation systems, a nearly optimal 
strategy is to equilibrate the rows or columns of the associated 
matrix. 

 
2.2.3.3.4 Interval and ball arithmetic 

The principle of interval arithmetic (IA) is to encode a real value 
by an interval provided by the computer. This interval evolved to 
shapes in N dimensions. Since the 1960s, this topic was 
intensively studied [48, 86, 114, 120, 137]. The input interval x 
can be represented by its lower X and upper X  endpoints 

(interval arithmetic) or as a centre xc and a radius rx (ball 
arithmetic). The 1788-2015-IEEE Standard for IA defines basic IA 
operations of the commonly used mathematical interval models 
(Equation 13). IA estimates the upper and lower limits of an 
output, calculated from a set of inputs bounded by intervals.  
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The “dependency problem” that may lead to large over-

estimations of computation errors, is a major difficulty in the 
application of IA. Very early, the wrapping effect of interval 
arithmetic was brought to the forefront. This effect is well 
introduced in the presentation of the one-dimensional problem 
detailed in [177].  
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Figure 23: Self-validating implementation with ball arithmetic, applied to 

roots of a single-variable quadratic equation 

 
To reduce its impact, coordinate transformations can be used. 

In N-dimension domains, new shapes for interval boundaries 
were also chosen as polytopes or ellipsoids [169]. For dynamic 
problems, Chebyshev or Interval Newton methods can be applied 
to solve nonlinear functions with intervals. Ball arithmetic seems 
to partially solve the over-estimation of computation errors. 
Many libraries for interval arithmetic (GNU Octave) or ball 
arithmetic (Mathemagix [169]) have already been developed. 
Matlab library INTLAB [153] also proposes tools to perform IA 
calculations. In addition, arithmetic intervals are also handled by 
Computer algebra systems, such as Mathematica or Maple. To 
illustrate the use of interval arithmetic for the self-validation of 
an algorithm, Figure 23 presents the results of the calculation of 
the roots of a single-variable quadratic equation. 
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2.2.4 Sub conclusion 
In scientific computation, the limits of the use of floating-point 

numbers were intensively studied during the last fifty years (with 
activity intensified during the run up to the year 2000 due to 
anticipated problems with “millennium bugs”). Computational 
errors and algorithm instabilities are linked to truncation and 
rounding errors, generated by the encoding of the handled 
numbers into binary data of limited size, inaccuracies of the 
implemented mathematical basic functions, cancellation effects 
and overflows or underflows.  

The first way to avoid these phenomena is to increase the 
number of bits used in the conversion of exact real numbers into 
floating-points. In fact, computing precision is closely linked to 
the number of bits assigned to store the floating-point significant. 
In addition, the range of numbers that can be encoded and 
handled is related to the number of bits assigned to the exponent. 
Quadruple precision calculations conforming to IEEE 754-2008 
will soon be available for software developers and will provide 
outputs with 34 decimals. Many multi-precision libraries are now 
also available to engineers or researchers in precision 
engineering or metrology. However, the increase of the number of 
digits improves the computing accuracy at the expense of 
computation time. Therefore, only the routines that perform 
intensive scientific calculations are generally programmed with 
multi-precision libraries. But a careful handling of inputs and 
outputs is required to avoid rounding and truncation errors 
generated by data conversions between program modules of 
different types.  

The second way to avoid computational errors and algorithm 
instabilities is to perform scientific calculations with decimal 
numbers. This is realized in pocket calculators and some 
supercomputers that have dedicated hardware, but not in laptops 
or desktops. Software solutions are available based on the BCD 
coding. However, these solutions currently remain reserved for IT 
developers who implement their own codes. The quality of 
scientific calculations is linked to the quality of the software 
implementation [5]. The adjective "well" or "ill" conditioned 
refers to the algebraic expression of a given function F. On the 
other hand, the adjective "stable or unstable" refers to the 
algorithm and the numerical results associated with a machine. 
When the algebraic expression is well conditioned, in principle 
one can always find a stable process to evaluate it. When the 
algebraic expression is very poorly conditioned, it is difficult to 
find a stable process to evaluate it. Combining an improperly 
conditioned algebraic expression with an unstable process is 
generally a recipe to obtain poor result. In exact arithmetic 
calculations performed with computer algebra systems 
(Mathematica, Maple, …), only rational numbers are 
implemented, thus limiting the instabilities of algorithms. In 
floating-point calculations, a numerical certification of results can 
be realized by using interval or ball arithmetic. In this section, the 
intrinsic performances of computer hardware and software were 
only highlighted. The numerical result provided by a metrology or 
precision engineering software also depends on the quality of the 
model describing the physical problem and on its 
implementation. This is the subject of Section 3. 

3. Modelling and implementation 

The physical problems faced by researchers or engineers in 
precision engineering or metrology mainly deal with the 
quantification of measures (scalar quantities) (e.g. parameters of 
geometrical models) used to describe geometrical features of the 
measured object, to calibrate machine-tools, to compensate 
measuring devices, etc. In this section, the properties of the 
mathematical models used to describe the physical problem are 
discussed. The choices made in modelling have a significant 

impact on the quality of the result. Numerical implementation of 
the mathematical approach simultaneously requires a suitable 
definition of the nominal geometric model, the deviations from 
the nominal features, and the solving method. All this modelling 
should be realized at the same level of quality. The global 
performance of the process will in fact be imposed by the 
software component of lowest quality. On the other hand, 
appropriate choices may improve the quality of numerical results 
even if calculations are based on a limited number of digits.  
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Figure 24: Nominal model, deviations, solving methods implemented to bring 

to the fore their impacts on the calculation accuracy 

 
To show the effect of modelling, different least squares 

optimization algorithms were implemented in a spreadsheet 
application (Microsoft Excel) to approximate a straight line based 
on a set of acquired coordinates. Reference data provided by the 
National Metrology Institute of Germany (PTB) was used for that 
purpose. This reference data set includes 8 points. It is well 
known, in least squares optimization, that the barycentre of the 
measured coordinates lies on the approximating line. The 
problem thus comes down to the determination of the three 
components of the unit vector defining the line direction. These 
vector components Vest were evaluated by several solving 
methods and compared to the results VPTB certified by PTB. The 
error of each calculation process was thus defined by the norm of 
the difference of the two vectors (Equation 14). All these 
calculations were performed with 64-bit floating point numbers.  

 

853090.00096136

450810.93129298-

276110.36426975-

 :with PTBPTBest VVV −=Error

   

         (14) 

 
Figure 24 details the different nominal models, the definitions 

of deviations (i.e. the distances between nominal and actual 
points) and the solving methods that were implemented. The 
resulting errors are summarized in Table 4. 

The choice of the nominal model, the definition of deviations 
(distances) or deviation functions and solving methods have a 
great influence on the quality of the obtained result. In the case of 
a 3D line, calculating the eigenvectors of the coordinate 
covariance matrix or its Singular Value Decomposition (SVD) 
leads to the best precision. These algorithms are also the 
optimized solving solutions to be used in the case of a plane. 
Choice 8 (3D nominal model, 3D deviation function, description of 
the line unit vector by 2 independent angles) also gives results 
very close to the certified values. But in this case, the solver 
integrated in the spreadsheet application is applied, working as a 
black box. This does not allow a fine tuning of the optimization 
process. The three items: Nominal model, deviation function, and 
solving method will be further detailed in this section. 
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Table 4: Comparison of 9 computation processes 

Choice Nominal Deviation Resolution Error

1 2x2D Pt/line in Y and Z Solver 2,54E-05

2 2x2D Pt/line in Y and Z Analytic 2,15E-06

3 3D Distance Pt/line Solver (6  dependant parameters) 1,66E-07

4 2x2D Pt/line in Y and Z Solver and reducing para. 1,52E-07

5 2x2D Distance Pt/lines Analytic 1,05E-07

6 2x2D Eigenvalue/vector Analytic 1,05E-07

7 3D Distance Pt/Line Solver (3  dependant parameters) 9,34E-09

8 3D Distance Pt/Line 
Solver (2  independant 

parameters) 7,46E-11

9 3D Eigenvalue/vector Analytic 7,22E-11  
 

3.1 Guidelines to a smart implementation of a nominal model 
Different general principles exist to guide researchers or 

engineers in modelling physical problems. One such basic rule is 
Occam's Razor (OR), attributed to an English Franciscan friar, 
William of Ockham (1287–1347). It is also called the Law of 
Parsimony (LP) and may be formulated in Latin as follows: 
Pluralitas non est ponenda sine necessitate (entities should not 
be multiplied unnecessarily) [164]. In science, Occam's razor is 
used as a heuristic to guide scientists in developing theoretical 
models [150, 159]. In precision engineering or metrology, this 
powerful rule leads researchers or engineers to use a limited 
number of parameters to explain a physical phenomenon. An 
additional consequence of the application of this principle is that 
it permits defining the minimum number of parameters required 
to characterize a model. This allows using variables that are 
statistically independent and thus simplifies uncertainty 
evaluation and propagation.  
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Equation 15 details the parametrisation of the unit direction 

vector for a straight line, corresponding to choices 7 and 8 of 
Table 4. Table 4 already highlighted that the choice of two 
independent parameters (two angles) gives a better estimation of 
the 3D line direction vector than a modelling by three dependent 
components. Another aspect to point out is the orthogonality of 
the coordinate basis that enables the characterization of a 
deviation. Figure 25 shows the calculation of a distance d, defined 
by the two components p1 and p2 of a vector in a 2D plane. It 
illustrates the effect of non-orthogonality of the coordinate basis 
on the description of the same deviation.  
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Figure 25:Orthogonal or non orthogonal parameters describing a deviation d 

 
In Figure 25, the data plotted in green are described by an 

orthogonal coordinate system. It is non-orthogonal for the blue 
items. When the angle α approaches 90°, the coordinates a’1 and 
a’2 tend to infinite. In classical model of an aspheric shape [59], 

potential numerical instabilities induced by such effect led the 
authors to propose a new mathematical definition using an 
orthogonal basis of the parameters. 

The geometric characterization of surfaces, parts or products is, 
generally, based on the measurement of two-point distances, or 
angles between items (Figure 26). This data is scalar. In the 
1970’s, the development of CMM’s enabled capturing the 
coordinates of a point in a reference frame. These coordinates are 
distances acquired in three orthogonal directions. A Cartesian 
approach of geometry is then used in modelling. Since the 
structures of real devices are not perfect, geometric models of 
CMMs or CNC machine structures were substantially improved, 
giving rise to the currently applied calibration and error 
compensation methods for three-dimensional measuring or 
manufacturing systems. The nominal mathematical models of 
calibration and measurement processes are characterized by a 
set of parameters (distances, angles and intrinsic parameters). 
The first type of nominal models aims thus to identify the 
geometric errors of machine structures and to compensate for 
these defects afterwards. The goal of the second kind of nominal 
models is to characterize the geometry of a surface area or an 
entire measuring object during an inspection process. Some 
parameters of a nominal model define the position and 
orientation of a geometric entity with respect to other geometric 
elements or a reference coordinate system derived from different 
features.  
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Figure 26: Links between measures and models 

 
Other intrinsic parameters (dimensions, angles, curvatures, etc) 

define the shape of the geometrical elements. A minimum of 6 
parameters is required to locate and orient a geometrical item in 
a 3D space (3 translations and 3 rotations). The mathematical 
models that describe the rotation of a geometrical entity are 
generally based on Euler matrix transformations, Roll-Pitch-Yaw 
matrices (or the simplified linear representations: Small Screw 
Displacement) or Rodrigues' rotations. Euler’s angles can 
describe transformations with large angles, but they degenerate 
for small rotations. Roll-Pitch-Yaw representations are well 
adapted to small rotations, but they cause problems for angles 
close to π/2. However, these two transformations use the 
minimum number of parameters (i.e. three) required to define 
any 3D rotation. Rodrigues’ rotation has no angular limitation, 
but it requires an additional parameter. This representation is not 
minimal. The nominal geometric models for the calibration and 
error compensation of CMMs, CNC machine tools or other 
measuring devices were described in many papers [6,20,27,43, 
50,99,155,171] and different CIRP Keynotes [65,156]. These 
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models will not be discussed here, but the general rules 
mentioned above can be applied to them, too.  
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Figure 27:Model typology 

 
The nominal mathematical models, used in metrology to 

describe surface areas or geometrical features, can be subdivided 
into two complementary forms: continuous models and discrete 
models (Figure 27). Continuous models are used in the 
description of basic surfaces (spheres, cylinders, aspheres, B-
spline surfaces, gear flanks...).  
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Figure 28: Plumb line distance calculation based on a parametric and implicit 

model 

 
The mathematical definition for the surface of such a 

continuous model can be expressed in two ways: 
- By an implicit equation: the 3D coordinates (X, Y, Z) of all 

points on the nominal surface are given by an equation in the 
form F (X, Y, Z) = 0. As an example, the implicit equation of a 
sphere is presented in Figure 28. This equation defines all those 
points, whose coordinates X, Y and Z fulfil the equation. They are 
located on a sphere around the center (X0,Y0,Z0) with the radius R. 

- By a parametric equation: the coordinates of all points on the 
surface are explicitly written as functions of two surface 
parameters u and v, i.e. X(u, v), Y(u, v), Z(u, v). The parametric 
equation of a sphere is also shown in Figure 28. The choice 
between these two models is generally made when choosing the 
deviation. Generally, it is the nominal model giving the simplest 
metric equation that will be selected to limit potential numerical 
discrepancies. The next paragraph, dedicated to deviations, will 
provide further detail regarding this aspect. When the topology 
becomes more complex (e.g. a car body door in Figure 29), free 
form surfaces, free form shaped parts or full 3D masters [129, 
130,154] are split into a set of elementary surfaces that can still 
be described by implicit or parametric equations (set of planes in 

STL files, set of basic surfaces and B-splines in STEP files). Such 
models are named discrete models. The accuracy of a full 3D 
master used in metrology is determined by the quality of the 
process used to translate the CAD model into a data exchange file 
(STL: CAD models in stereo-lithography or solid freeform 
fabrication technologies, IGES: Initial Graphics Exchange, ASME 
Y14.26M [102], VDAFS: Verband der Automobilindustrie-
Flächenschnittstelle or “automotive industry association – surface 
data interface”[149], STEP: Standard for the Exchange of Product 
model data, ISO 10303 [13]). The native model implemented in a 
CAD system is the representation used the most in discrete 
models, since it does not require any translation and thus leads to 
the best accuracy. The quality of discrete models greatly depends 
on the conditions of continuity of the elementary surfaces: C0 
(point continuity), C1 (slope continuity) and C2 (curvature 
continuity). The STL format transforms the CAD model into a set 
of planes, delimited by three triangle vertices and its normal. It 
does therefore not satisfy the continuum in slope (C1) and 
curvature (C2). The IGES format describes a volumetric geometric 
element by a set of parametric tiles or basic surfaces. The STEP 
neutral file presents the latest technological advances in the 
volume description of complex or simple features. Complex 
surfaces are described by a set of B-Splines. The degree of these 
parametric surfaces can guarantee the geometrical continuity in 
C0, C1 and C2. However, geometric discontinuities can still be 
observed with such a surface exchange format, depending on the 
quality of the translation module. 

 

 
Figure 29: Full 3D master of a car body door, given in blue, and measured 

point deviations  

 
3.2 Deviation calculation 

ISO 17450-part 1 [15,104] defines the basic operations 
available to verify a dimensional or geometric specification: 
partition, extraction, filtration, collection, association and 
construction. The surface model is defined in the partition 
operation. Section 2 summarized some precautions to take in 
order to obtain a smart modelling of the studied metrological 
problem. In the association operation, a deviation quantity is 
required to approximate the measured coordinates to the 
nominal model.  
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Figure 30: Distance definition 

 

In order to handle all deviations in the same way, i.e. to give all 
measured points the same weight in approximation routines, a 
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general function valid for all captured points is required called 
the deviation function. Depending on the inspection task and 
geometric restrictions, three types of deviation functions are 
commonly applied: the Euclidean distance(CMi norm), the 
projected distance (CMi/proj norm), and the plumb line distance 
(MthMi norm). The two last distances are Signed Distances (SD), 
calculated between a measured point Mi and the nominal 
geometric element (Figures 28 and 30). This nominal geometry 
can either be represented by a nominal point Mth or C 
corresponding to Mi and the unit normal vector ni on the nominal 
surface in the environment of Mi [70], or by the implicit or 
parametric nominal surface (or a real sub-patch of it). The latter 
gives the plumb line distance, defined by the smallest-possible 
distance magnitude between Mi and the nominal surface. This 
distance vector crosses the nominal surface perpendicularly, i.e. 
its direction is given by grad F(X,Y,Z) in implicit model definition 
[67] or partial derivatives in parametric model (Figure 28). Its 
distance value is defined positive when the point Mi is located 
outside the material or when the dot product between the vector 
MiMth and the normal vector ni on the modelled surface or curve 
is positive, equal to zero when the measured point lies on the 
surface or curve (dot product equal to zero) and negative 
otherwise (negative dot product). By convention, the normal 
vector on a surface is oriented to the outside of the material.  

Using one of the 3 deviation function types defined before, 
other deviation functions (or measures of distance) can be 
defined, but they must satisfy some conditions. For example, in an 
inspection process for assessing the form or orientation of a 
geometric feature, compliant with the ISO 1101 standard, the 
deviation used to realize the association are no longer directly 
given by signed distances, but either by the difference between its 
maximum and minimum deviation or two times the maximum 
distance (minimum zone criterion) [139]. 

The law of conservation is a suitable guide for the choice of the 
deviation quantity. Several types of conservation principle are 
known in engineering science: conservation of mass, and 
conservation of energy, for example. In physics, a conservation 
law states that a measurable property of a system remains 
constant while the system’s state might change. This definition 
can be easily applied to the field of precision engineering and 
metrology. For the three types of deviation functions explained 
before (see also Figures 27,28 and 30), it is obvious that signed 
distances and eigenvalues/vectors are independent of any change 
in the reference frame, whereas the unidirectional distance 
 depends on the selected direction of computation. Signed 
distances and eigenvalues respect the law of conservation and 
define dimensional quantities that allow the location of the 3D 
line in the space, independent of the reference system.  

If the deviation function is based on a distance (Figures 27 and 
30), its computing leads to three basic configurations: point-to-
point distances or Euclidean distances (calibration of Machine-
tools or Coordinate Measuring Machines, Iterative Closed Point 
(ICP) algorithms, etc), point-to-curve distances (approximation of 
circles or lines in metrology, toolpath optimization in 
manufacturing, etc) and point-to-surface distances 
(approximation of basic or complex surfaces in metrology, control 
of geometrical specifications with full 3D masters, etc). The latter 
two configurations could be based on projected distances or 
plumb line distances (Figure 30). 

In many cases, the topology of the geometric element explicitly 
provides a sense for the normal vector. This is the case for the 
standard geometric elements circle, line, plane, cylinder, sphere, 
cone and torus. Discrete models using STL format or meshed 
surfaces can be added to this class. The signed distance is 
obtained using point-point, point-line and point-plane distance 
formulae. These cases are in the “Explicit” boxes of Figure 27. For 

this first class of standard geometric elements the calculation of 
deviations does not present any difficulty. In the case of other 
continuous models (paraboloid, ellipsoid, asphere…) and discrete 
models using parametric surfaces (B-spline, Bezier, Coons…), the 
calculation of the deviation becomes much more difficult, because 
then it is necessary to define the minimum distance between each 
measured point Mi and the approximating surface. This is 
generally achieved by the determination of plumb line distance. If 
the normal vector in the environment of Mi is known, the 
projected distance is a reasonable estimation for the plumb line 
distance. Analytically, the plumb line distance is given by the 
orthogonal projection Mth of point Mi onto the surface. Figure 28 
summarizes the computational process that enables the 
determination of this projection and therefore the computing of 
the signed distance. These two subclasses are merged in the 
“Implicit” box of Figure 27.  

 

( ) ( )( ) 0 == iiiiii NCMNCMNCM 0           (16) 

 
Equation 16 shows an implicit expression that can be used to 

determine the orthogonal projection Mth in Figure 28. The degree 
of this equation depends on the model used. This degree can 
quickly increase which requires numerical iterative methods such 
as Gauss–Newton or Levenberg–Marquardt algorithms for its 
solution [138].  However, it must be pointed out that Equation 16 
may lead to more than one solution if the normal vector line Ni or 
ni intersects multiple surface points. To obtain the plumb line 
distance, it is then necessary to select the result with the smallest 
distance. 
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Figure 31: Objective functions or approximation criterions 

 
In the case of least squares approximation there is no need for 

some geometric elements such as planes or lines to compute 
distances between the measured coordinates and the theoretical 
nominal item. In fact, it can be shown that the barycentre of the 
measured points lies on the approximating element. Moreover, 
the vector which completes the characterization of the 
approximated feature (normal to the plane, direction vector of 
the line) can be deduced from the covariance matrix of the 
measured coordinates and corresponds to the eigenvector of 
lowest eigenvalue. It is this method, using an SVD factorisation, 
that obtained the best result in the test carried out in Figure 24. 
This algorithm thus avoids the iterations of the classical methods 
and therefore prevents successive rounding and cancellation 
errors of the computer. This case is labelled “Direct” in Figure 27. 
Figure 27 highlights two major difficulties encountered in 
computing the deviations: the level of complexity in the 
calculation of the distances that greatly increases when implicit 
equations are to be solved, and the volume of data to be 
processed. For explicit models, no real numerical difficulty exists. 
However, for 3D full masters, the number of deviations to be 
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processed increases, which leads to the management of large data 
files (big data). 

 
3.3 Solution methods 

In previous sub-sections, the nominal model and its parameters 
were chosen. The types of deviation functions and the distances 
between the measured points and the model were also defined. 
The signs and magnitudes of all distances depend on their 
relative position and orientation with respect to the position and 
orientation of the approximating geometric element (which is to 
be determined) and on the geometric features characterizing the 
element like cylinder radius or cone angle (which are also to be 
determined. This means that starting from a given cloud of 
captured measuring points, there is an infinite number of possible 
approaches for the parameters of the geometric element that 
represent, to a greater or lesser extent, a “good approximation”.  
To find the best-possible approximation, a criterion is required to 
differentiate a “good” from a “better” solution of the 
approximation problem. These criteria are called objective 
functions. Several types of objective functions are used in 
production metrology (see Section 3.3.1), primarily determined 
by the inspection task and the definition of tolerances. 
Mathematically, an objective function is a functional, i.e. a 
mapping from a vector space (more specifically: a space of 
functions) into the space of real numbers. This objective function 
assigns each possible approximation solution for the geometric 
element to one corresponding scalar value. In other words: the 
objective function creates a “ranking list” among the possible 
solutions, where the best-possible approximation can be 
determined unambiguously by the minimum scalar value of the 
functional [67,68,69].  
 
3.3.1 Types of objective functions 

The following will explain the types of objective functions, 
predominantly applied in production metrology. The selection of 
the approximation  criterion is  related to the solving method 
(numerical or analytical solving, iterative computation or root 
calculation) to be used to find the optimal parameters of the 
model. Since metrology and precision engineering software are 
mainly implemented with floating point numbers, this subsection 
will focus on the numerical behaviour of the criterion or the 
optimization method. The approximation methods used the most 
in metrology and precision engineering are least squares 
optimization, minimum zone evaluation, and calculation of 
minimum circumscribed or maximum inscribed feature. They are 
all approximated according to an objective function, which is a 
norm of the deviations di between the measured points and the 
geometrical element to be determined. This norm is called Lp-
norm, written as  
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where p is the degree of the norm, ranging between 1 and infinity. 
And k is the number of measured points.  
 
Two special cases of this norm are mainly used as approximation 
criterion (Figure 31): the L2-Norm with p = 2 [60,157] that leads 
to least squares optimization (LSQ), and the infinite norm (L∞-
Norm), where p tends to infinite, also called Tschebyscheff-Norm 
(T-Norm) [9,69, 71,158,178]. As shown in [71], calculations of 
minimum circumscribed or maximum inscribed features can also 
be realized by approximations according to the T-norm. The 
Probability Density Function (PDF) associated with each 
approximation criterion is shown in Figure 31 [10]. LSQ 
corresponds to the maximum likelihood estimation for Gaussian 
noise. The L1-Norm with p = 1 may also be used in specific cases. 

An infinite norm would require the calculation of the functional in 
Equation 17 for a degree p tending to infinity, but that cannot be 
achieved numerically. The case of p = infinity corresponds to a 
minimax problem, minimising the maximum residual distance. It 
can be implemented in a comparably simple way by selecting for 
p a value between 50 and 100 which provides a good estimation 
of the T-norm. Higher degree values (e.g. p=300 to 500) can 
improve this estimation, but require more decimal digits and thus 
more calculation time [71]. [67] and [70] suggest an upper and 
lower bound for the T-norm, both based on the Lp-norm with a 
finite p. 
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Figure 32: Numerical effect of an incomplete set of points: a) points 

distributed over a large angular range b) points distributed over a comparable 

small angular range [31] 

 
From the point of view of computational convenience, a desired 

property of an approximation criterion is to provide an objective 
function with only one single minimum. Situations of non-
uniqueness of the minimum are however reported by [158] in 
case of approximations according to the T-Norm (form inspection 
or maximum-inscribed criterion). In fact, it is possible to 
construct examples of approximating a plane according to the T-
norm that have a number of local solutions that is almost the 
same as the number of data points. As shown Figure 32a, the L2-
norm (least squares optimization) should present, theoretically, 
only one single minimum. This is the case, in practice, when the 
acquired coordinates are distributed over a large angular range of 
closed geometric features (circles, cylinders, cones, spheres, etc) 
or on a wide lateral extent of the measured surface. When the 
extent of the measured points is reduced, numerical problems are 
amplified due to the presence of local minima. These local minima 
are added by successive rounding and cancellation errors of 
floating point operations (see Figure 32b). It can lead to a poor 
parameter estimation of the approximating element. In the case 
of a circle, the origin of these numerical problems is the 
cancellation of high degree terms of the polynomial 
approximation used by the computer to calculate square roots 
[31]. This phenomenon of digital degeneracy can be observed for 
any type of surface. This shows the importance of the choice of 
the initial parameters (also called starting solution) required for 
an iterative numerical process. In the case of existing local 
minima, the algorithm will converge to the nearest local 
minimum and therefore not necessarily “find” the global optimum 
parameters. The use of floating point numbers in computer codes 
leads to this phenomenon. Using multi-precision libraries or 
computer algebra systems (Mathematica, Maple, …) will limit the 
cancellation effects. Factors such as the choice of the optimization 
criterion (objective function), the distribution of the points 
measured on the geometric element, the mathematical model, etc, 
will have an impact on the success of a computation method 
applied to find the approximating parameters. In following 
subsection, the behaviour of the computation methods will be 
studied. 
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3.3.2 Calculation methods 
In metrology or precision engineering software, two types of 
computation methods are used: 
- Numerical and/or iterative computation methods, 
- Symbolic computation methods. 
The first one is strongly influenced by the use of floating point 
numbers and its limitations, whereas the second one, in theory, is 
not influenced by them. 
 
3.3.2.1Numerical and/or Iterative computation 

The mathematical problems met in the field of precision 
engineering or metrology generally correspond to the 
optimization of objective functions with specific characteristics. 
Figure 33 details these characteristics, i.e.: what is the number of 
estimated parameters; is the objective function linear, quadratic 
or nonlinear, with or without constraints? Are specialized 
mathematical methods or algorithms used? The objective 
function may be deterministic or stochastic and may or may not 
require the calculation of derivatives. 

As written in Section 2.2.4, the precision to which a numerically 
stable algorithm can solve an ill-conditioned problem is limited 
by the accuracy of the data. However, a numerically unstable 
algorithm can produce bad solutions even for well-conditioned 
problems. This means that an unstable algorithm can yield 
solutions that are less precise than theoretically achievable from 
the given data [11,66,162]. 
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Figure 33: Characteristics of mathematical problem 

 
To avoid these problems, numerical computation must respect 

three basic rules: 
- the inverse problem used in parameter model approximation 

must be well conditioned, 
- the applied algorithms must be numerically stable in order to 

achieve results with a given finite arithmetic precision, 
- the software requires a careful implementation of the 

algorithms. 
The stability of the optimization method with respect to 

rounding-off errors is a fundamental characteristic to obtain 
accurate numerical results.  
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Figure 34: Parameters of optimization method 

 
Figure 34 summarizes the parameters which influence the 

precision of the obtained result: stability, initial approximation, 
convergence, and stopping criterion. Newton's method is the 
basis for many optimization routines or root search programs 
(Figure 35). Optimization algorithms, generally, require 
computing derivatives of the first (Gradient or Jacobian) and 
often second order of the function (Hessian). The properties of 
the different mathematical methods (advantages and 
inconveniences) are summarized in Figure 35. The solving of the 
equations used in least-squares methods, can be performed by 

specific calculations (Cholesky, QR factorisation [73]). Using the 
QR factorisation of the Jacobian matrix, for example, is more 
numerically stable than finding the Cholesky factorisation of the 
product of the transposed Jacobian matrix with itself. The 
condition number of the product is the square of the condition 
number of the Jacobian matrix; there will also be a loss of 
precision simply by forming the product. The use of a singular 
value decomposition of the Jacobian matrix is also numerically 
stable [73].  
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Figure 35: Properties of mathematical methods 

 
Quasi-Newton methods attempt to build an approximation of the 
Hessian matrix (or its inverse) that incorporates second order 
information by incorporating first order information as the 
optimisation proceeds. The Broyden–Fletcher–Goldfarb–Shanno 
Algorithm (BFGS) [49,126,136,144] is one of the most famous 
quasi-Newton algorithms for unconstrained optimization. Moving 
away from deterministic algorithms, intelligence-oriented 
algorithms (Genetic algorithms, Swarm algorithms) 
[97,173,179,180] with their simplicity are another way to search 
the solution of extreme problems with many local minima. An 
optimization toolbox has been implemented in Matlab software 
for solving complex optimization problems. It automatically 
selects the most efficient algorithm for the computed 
mathematical problem. Matlab uses several algorithms depending 
on the type of problem to be solved: interior reflective Newton 
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method, trust-region-dogleg, trust-region-reflective, Levenberg-
Marquardt, simplex, BFGS, MiniMax, and so on. 

    
3.3.3.2 Symbolic computation 

In Section 3.3.3.1, numerical methods were investigated 
performing calculations related to problems of precision 
engineering and metrology. As an alternative, symbolic 
calculation is offered today to researchers and engineers [39].  
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Figure 36: Numerical or symbolic computation 

 
Figure 36 illustrates the difference between these two manners 

of handling a computational problem. In numerical methods, all 
the data is handled in a numerical form, usually as floating-point 
numbers, extending from the beginning of the computational 
process to its end. Rounding and cancellation errors may thus be 
generated at any intermediate calculation. Careful 
implementation of each step of the computational process is 
therefore required to obtain a correct result. Symbolic 
calculation, on the contrary, gives a formal solution of a 
mathematical problem. The numerical application is therefore 
performed at the end of the calculation process, which reduces 
the rounding and cancellation effects that arise with floating-
point calculations. To avoid numerical degeneracy, floating-point 
numbers are not permitted in symbolic calculus. Decimal 
numbers are thus treated as rationals (ratio of two integers). 
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Figure 37: Root research of univariate polynomial 

 
Symbolic calculation is based on exact calculations and 

equations including parameters or numbers in arbitrary 
precision. Unfortunately, all mathematical problems cannot be 
processed in symbolic computation. The differentiation or 
integration of functions, the manipulation of polynomials, vectors 
or matrices (linear equations) are treated in symbolic calculation. 
The resolution of polynomial systems and systems of nonlinear 
multivariate equations [22,23,24,54] are also available in 
symbolic computation. Formal calculation solutions are offered 
by commercial computer algebra systems (Maple, Mathematica, 
…) and open source software (GAP, Maxima, SAGE, …).  

The calculation of the deviations (distances) between the 
nominal model and the measured points often requires finding 
the roots of a polynomial. For example, in the case of a 
paraboloid, a 5th degree polynomial equation has to be solved. For 
an ellipsoid, the equation is of degree 6.  Similarly, for the 
approximation of a plane using the SVD method, it is necessary to 

determine the eigenvalues. They result from the roots of a 
3rd  order characteristic polynomial. The computation of roots of 
univariate polynomials is thus one core problem to be solved in 
metrology and precision engineering. Any non-constant real 
polynomial can be factored as a product of irreducible real 
polynomials of degrees 1 or 2.  
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Figure 38: Robot calibration 

 
This theorem does not provide any explicit decomposition 

algorithm. It only predicts what the final form of the result should 
be. Consequently, this raises the problem to (i) ascertain the 
existence of real roots and (ii), if they exist, to evaluate them with 
a certified precision. The direct method to prove the existence of 
roots is to formally exhibit them (when possible). One can find an 
explicit formula - using radicals - for each root of a polynomial of 
1st, 2nd, 3rd and 4th degree. But from the 5th degree on, there is an 
insurmountable difficulty. The work of N.H. Abel and E. Galois 
[63] has highlighted, in fact, that the roots of polynomials of a 
degree greater than 4 cannot, in the general case, be expressed 
with radicals (Figure 37). It is therefore impossible to obtain an 
explicit formula determining the roots and, consequently, it is 
necessary to implement numerical methods with all of their well-
known weaknesses. Sturm's sequence or Sturm's theorems can 
however be applied to this problem to define the number of roots 
existing in a given real range [160]. Dichotomic search algorithms 
can thus be used to find the roots with the desired precision.  

 
Notations: 

Sin(θi)=si, Cos(θi)=ci with i=1 to 3 
Maple symbolic calculations: 

with(Groebner); 
P[1]:=-392*c2*s1-(9475/100)*c2*c3*s1-392*c1*s2-(9475/100)*c1*c3*s2-
(9475/100)*c1*c2*s3+(9475/100)*s2*s3*s1-425*s1-778;  
P[2]:=-(9475/100)*c1*s2*s3-(9475/100)*c3*s1*s2-
(9475/100)*c2*s1*s3+392*c2*c1+(9475/100)*c2*c3*c1+425*c1-
392*s1*s2;  
P[3]:=c1*c2*c3-c1*c2*s3-c1*c3*s2-c1*s2*s3-c2*c3*s1-c2*s1*s3-c3*s1*s2 
+s1*s2*s3;  
P[4]:=-c2*c3*s1-c1*c3*s2+c3*s1*s2-c1*c2*s3+c2*s1*s3+c1*s2*s3-
c1*c2*c3+s1*s2*s3-sqrt(2); 
P[5]:=c1^2+s1^2-1;  
P[6]:=c2^2+s2^2-1;  
P[7]:=c3^2+s3^2-1; 
Eqs:= [P[1], P[2], P[3], P[4], P[5], P[6], P[7]]; 
Base_Eq:= Basis(Eqs, plex(c1, c2, c3, s1, s2, s3)); 

Groebner polynomial basis: 
EQ1:-54258895713987415992*sqrt(2)+388332180977704960809 
+922584152329361887232*s3^2+(874147898398981466624*sqrt(2)-
9930712645324111872)*s3 
EQ2:-6060151255*sqrt(2)+1575385983048+(1662712247616*sqrt(2) 
+6097273168)*s3+894619342400*s2 
EQ3:-493215819*sqrt(2)+4305672952+(-64351168*sqrt(2)-
528392704)*s3+4564384400*s1 
EQ4:-2024917716*sqrt(2)+15578795+(-264196352*sqrt(2)-
2169337856)*s3+2104986688*c3 
EQ5:-4479561+1179448*sqrt(2)+5331200*c2 
EQ6:-493215819*sqrt(2)-4049835432+(-4274324544*sqrt(2)-
528392704)*s3+4564384400*c1 

Figure 39: Symbolic calculation for the example shown in Figure 38 
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The solving of linear equation systems is another classical 
problem treated by computer algebra software. Symbolic calculus 
can also treat nonlinear physical problems that can be modelled 
as a system of multivariate polynomial equations. This is achieved 
by using a Groebner basis. Groebner bases can be seen as the 
generalization of Gaussian elimination algorithm to nonlinear and 
multivariate polynomial systems. 

The Groebner bases were introduced in 1965 by B. Buchberger 
[22,23,24], who proposed a calculation algorithm in his 
dissertation. He gave it the name of his thesis supervisor: W. 
Groebner. To illustrate the power of Groebner bases, the 
approach was applied to inverse kinematic calculations of a 
three-axis robot. Figure 38 shows an example of such an 
application with numerical values. The aim of this study is to 
calibrate a robot using a tracking laser. In the experiment, the 
optical reflector of the tracking laser must always keep a fixed 
orientation (45°), while the robot moves in a straight trajectory 
along the x axis. For each measured x-position (x=778mm in 
Figure 38), the joint angles (θ1, θ2, θ3) of the robot are to be 
calculated. The closures of the geometric and angular loops of the 
robot lead to multivariate polynomial equations of the sines and 
cosines of the three joint angles. These equations are completed 
by the quadratic relation combining the sine and the cosine of the 
same angle. A multivariate polynomial system (P[1], P[2], P[3], 
P[4], P[5], P[6], P[7]) is thus obtained [25]. The set of equations 
are summarised in Figure 39. Groebner based symbolic calculus 
was applied to this multivariate polynomial system using Maple 
software. In the best case, the results are provided in the form of 
a triangular system of univariate polynomials.  For x=778, the 
computation gives 6 equations EQ1, EQ2, EQ3, EQ4, EQ5, EQ6. 
These equations are shown at the bottom of Figure40. The first 
equation EQ1 is a 2nd degree univariate polynomial equation that 
allows the computation of sinθ3. Its solving gives two solutions 
corresponding to two possible configurations of the robot. The 
calculation of sinθ3, step by step, leads to the solutions of the 
other variables. Table 5 shows one of the two geometric 
configurations of the robot that simultaneously reaches the 
position x=778 and respects the orientation angle of the reflector 
(45°).  

 
Table 5: Set of computed robot angles  

 (rd) (°) 

θ1 0.9916 56.8183 

θ2 2.1263 121.8286 

θ3 3.4908 200.0103 

 
A. Clement summarized the Groebner bases properties in five 

practical pieces of information: 
- Roots of P[i] with i = 1 to n of variable vi are identical to the 

roots of basis (P[i]), i.e. P[i] and basis (P[i]) show the same affine 
variety. 

- If 1 is an element of basis (P[i]), the equation 1 = 0 results in a 
contradiction and, leads to the conclusion that the polynomial 
system has no roots. 

- P[i] is called (and therefore also basis (P[i])) zero-dimensional 
if a finite number of roots exists. This property can be read 
directly, if each variable is a pure power of a dominant coefficient 
of one of the base polynomials (P[i]). 

- Let a new constraint be represented by the polynomial P[n+1]. 
This new polynomial is redundant with respect to the system P, if 
and only if 1 belongs to the base for the new variable. This means 
that the satisfaction of P [n + 1] is inevitable if the system P[i] for 
i=1 to n is satisfied, so that P [n + 1] can be eliminated. 

- Basis (P[i]) based on the lexicographer order v1>v2>v3> ...>vn 
is a triangular system in the sense that some polynomials contain 
only the variable x1, others only x2, … so that the numerical 

resolution is analogous to the triangular elimination of a linear 
system. Theoretically, Groebner based calculation method is the 
most efficient solver of polynomial equation systems, since it 
provides not only absolutely all algebraic roots of a multivariate 
polynomial system, but also the invariants of the associated 
manifold. The least "efficient" solver is then Newton's algorithm, 
since it, eventually, provides a unique solution. The usual 
numerical method for proving the existence of a root by 
calculating it numerically is insufficient for three reasons: (i) the 
solver used can provide a neighbouring solution, but different 
from the one sought (unstable algorithm), (ii) the algorithm can 
provide a non-existent solution and (iii) the precision of the 
result, with few exceptions, –cannot be certified. 

The advantages and disadvantages of the Groebner bases can be 
summarized as follows: 

- Groebner bases provide absolutely all roots in the form 
of a set of polynomials in "row echelon form”. Each 
polynomial only depends on one independent variable 
and is of minimum degree. This leads to fast and 
"certifiable" numerical solving. 

- However, there is a serious technical disadvantage: 
multivariate polynomial equation systems that can be 
treated on actual desktops or laptops are limited to 12 
variables. Large computing times are also often 
necessary to obtain the results. Since the method 
provides absolutely all the roots, the problem is then to 
eliminate uninteresting solutions as soon as possible 
during the treatment to speed up the procedure. 

- Groebner basis calculations work with complex 
numbers and therefore do not distinguish between real 
or complex roots. Sturm’s theorem must therefore be 
applied to each polynomial basis to verify the existence 
of real roots. 

4. Software validation and traceability 

A significant, and sometimes dominant, contribution to 
measurement uncertainty arises from these numerical 
calculations. Unfortunately, the influence of evaluation software 
is often underestimated or simply ignored. One of the reasons for 
this is that neither developers nor end-users have access to 
validated test data (traceable soft gauges) for validating 
metrological software [79]. 

 
4.1Computer aims/Standard 

A helpful and detailed vocabulary of information technology 
including terms relating to software testing is given in ISO/IEC 
2382:2015 [109]. There are many standards that give common 
and generic recommendations on the development, design, 
maintenance and validation of software. For example, general 
information is provided in ISO 9001 [108], ISO 20000-1 [105], 
and ISO 27001:05 [107]. However, concrete instructions for 
testing metrological algorithms are still very rare. Specific 
examples are mentioned in the following. ISO 10360-6 [103] 
gives instructions that allow the evaluation of least squares 
approximation algorithms in the field of coordinate metrology. 
ISO 5436-2 [106] describe sets of test data used in roughness 
metrology.  

 
4.2Testing methodologies 

There are two basic approaches to test the correctness of 
software, (i) structural or white box testing, in which the source 
code is reviewed against its design (Figure 40), and (ii) functional 
or black box testing (Figure 41), in which the test data is supplied 
to the software and the results output by the software is 
compared against the expected outputs.  
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Figure 40: White box tests 

 
In the case of black box testing, there is no need to have access 

to the source code, the software is regarded as a “black box”, that 
produces outputs for given inputs. While white box testing is 
required to find errors in coding (“bugs”), there are many reasons 
why correctly coded numerical software will not give perfectly 
accurate answers. First, the computations are performed in finite 
precision and some rounding errors will accrue, as discussed in 
Section 2.2. One of the early (and still current) challenges of 
numerical analysis is to understand how these errors build up. 
Next is to manage how to design algorithms for which the build-
up is controlled such that error bounds can be established for the 
computed solutions [87,176]. Second, nonlinear computational 
tasks require iterative algorithms, for which convergence 
tolerances need to be set (Section 3.3). Determining these 
tolerances in such a way that they cope with different scalings 
(units) associated with the data and parameters can be difficult. It 
is possible that for some tasks the software terminates 
prematurely before an accurate solution has been found. Third, 
for nonlinear optimization tasks, the algorithm may converge 
accurately to a local minimum, but fails to find the global 
minimum (Section 3.3.1). Approximation of geometric elements 
according to the Chebyshev criteria can be prone to this type of 
behaviour. Fourth, the software might implement an 
approximation algorithm that determines for some sets of data a 
sufficiently accurate solution, but an inaccurate one for other data 
sets. Fifth, the user might apply the software incorrectly, for 
example, by assigning the input parameters incorrectly. For these 
and other reasons, well-engineered software could provide 
outputs that are not sufficiently accurate for the user’s 
requirements. These issues can be addressed by black box testing. 
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Figure 41: Black box principle 

 
4.3 Generation of test data 

Black box testing (Figure 41) requires the provision of test data 
and associated test results [117]. The value of a black box test 
using such test data depends on the extent to which the test input 
and output data are aligned with the intended computational aim 
of the software.  It is assumed that the computational aim of the 
software can be expressed as a mathematical function a=f(x)  
relating the input data x to the output data a through a known, 
deterministic function f:m ->n (It is not assumed that f can be 

described in a closed form, only that for any x there is a unique a).  
A numerical artefact for the computational aim f is a finite 
precision pair <x,a> such that nominally a=f(x) . 

 
4.3.1 Forward generation of numerical artefacts 

One method of generating numerical artefacts is to assign input 
data x and then apply a reference software S to evaluate a. 

Reference software is characterized by a high degree of 
confidence: it addresses the true computational intent, uses 
numerically stable algorithms, is implemented in software 
developed using recognized quality assurance methodologies, 
and is subjected to a high level of testing. Further confidence in 
the computed results can be gained by comparing independent 
implementations of the algorithms (analogous to inter-laboratory 
comparisons called round robin tests, common practice in 
metrology). The test results can be validated by comparing 
different independent implementations [80]. Additional 
assurance can be gained by implementing such software in 
extended precision with the expectation that any of the 
unavoidable numerical rounding errors are small enough to be 
negligible, compared to the outputs calculated with standard 
precision rounding. 

 
4.3.2 Inverse generation of numerical artefacts 
A second method for generating test data is to start with the 

“solution” a and then generate data x such that a=f(x) [26,61]. In 

practice, finding such x can be a much easier problem than 

determining the solution a for a given x. For example, for 
nonlinear least square problems, the generation of input data x 
for a given solution involves determining the null space of the 
associated Jacobian matrix, a standard problem in numerical 
linear algebra, which can be solved using the QR factorization 
[73]. Thus, the forward generation of data requires the solution of 
a nonlinear problem, while the inverse generation involves only 
the solution of a linear problem. Similarly, it is possible to 
generate data for Chebyshev approximation problems using of 
solutions in terms of points, at which the maximum error is 
attained [61, 98].  Again, the inverse data generation can be 
performed in extended precision to provide very high confidence 
in the accuracy of the numerical artefacts. 

 
4.3.3 Numerical accuracy of numerical artefacts and numerical 

standards 
A numerical artefact can be assumed as the digital equivalent of 

a physical artefact, used to check the performance of an 
instrument: the numerical artefact is used to check the 
performance of software addressing a computational aim – a 
“digital instrument”. For a numerical artefact <x,a>, the very fact 
that <x,a> is represented in finite precision means that only 
under very special circumstances the relationship a=f(x) will hold 
exactly.  A numerical standard is a numerical artefact, for which a 
quantitative measure (accuracy bounds, uncertainty) is known 
stating how far <x,a> is apart from a pair <x*,a*>, for which 
a*=f(x*) is given mathematically. Once the uncertainty associated 
with a numerical standard has been assessed, the numerical 
standard can be used to assess the accuracy of a digital 
instrument since it is possible to distinguish (in principle) the 
uncertainty contribution of the digital instrument from that 
associated with the standard.  

[x] also denotes those elements of m
 that are rounded to x in 

the implemented finite precision arithmetic, and [a] etc. is 
defined, similarly. The best that can be expected is that there exist 
a x* in [x] and an a* in[a] such that a*=f(x*). This situation arises 
in generating numerical artefacts using extended precision. 
Assuming that the extended precision artefacts are sufficiently 
accurate, the standard precision artefacts will represent the finite 
precision representation of a mathematically exact <x*,a*>. More 
generally, there will be a Vm

 and Wm  such that x,x*V and 
a, a*W and a*=f(x*) exactly. The diameters V and W specify the 
numerical accuracy bounds associated with the numerical 
artefact. The diameters of V and W (or similar measures) provide 
a statement of the accuracy of the numerical artefact. It is 
possible to evaluate V and W with V={x}. In this case, the diameter 
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of W is a measure of how far a is apart from f(x), the 
mathematically exact solution for the input x, which represents 
an assessment of the forward accuracy of the numerical artefact. 
Alternatively, for V and V={x}, the diameter of V is a measure of 
how much we  the input x has to be modified in order to find an 
x* such that a=f(x*), that is, a set of input data for which the 
stated a is the mathematically exact solution. Thus, the diameter 
of V in this case is a measure of the inverse or backward accuracy 
of the numerical artefact. The concepts of forward and backward 
accuracy here are directly related to those discussed in Section 
2.2.3.3. The term backward accuracy reflects the practice in 
numerical analysis of assessing the accuracy of the computed 
solution in terms of perturbations of the input data – backward 
error analysis [26,61]. For metrology applications, the input x 
usually represents measurement data, and the inverse accuracy 
of a numerical artefact can be compared directly with the 
probable measurement uncertainty associated with the data. 

 
4.3.4 Required accuracy of numerical standards in dimensional 
metrology 

If it is assumed that the best practice in dimensional metrology 
operates at a numerical accuracy of one part in 10n, then a 
minimal requirement is that software should be accurate in one 
part in 10n+1. Consequently, in order to assess such software, the 
numerical standards should be accurate in one part in 10n+2 or 
better. For IEEE double precision arithmetic, numerical standards 
will not be more accurate than one part in 106 but since n  is in the 

region of 7 for dimensional metrology, providing numerical 
standard accurate to 1 part in 109 or better is easily achievable. 

 
4.4Performance metrics 

Numerical standards can be used to assess the performance of 
software, the digital instrument. In a metrology context, the 
uncertainty contribution associated with the software needs to be 
assessed, along with all other uncertainty contributions. 
Performance metrics are a way of assessing the uncertainty 
contribution of software relative to a set of criteria. In general, 
there are two types of performance metrics: (i) those metrics 
assessing the accuracy of the computed results relative to the best 
possible accuracy given the conditioning of the numerical 
problem (Section 2.2.3.3), and (ii) those metrics assessing the 
accuracy relative to pre-assigned tolerances derived from user 
requirements.  

 
4.4.1 Performance metrics relating to numerical accuracy 

Suppose a numerical standard <x,a> has accuracy bounds V and 
W so that there is an x*V and a*W such that a*=f(x*). Thus, a* 
must lie in the image f(V)={f(y: yV)}. The diameter of f(V) 
depends on the sensitivity of the solution to perturbations in the 
input data. It is also known that the distance of a* from a is 
specified by the diameter of W, such that the distance of a* from a 
is bounded by a combination of the diameter of f(V) and the 
diameter of W, reflecting both the accuracy of the numerical 
standard and the sensitivity or conditioning of the computational 
problem. The combined bound represents the best possible 
accuracy that can be expected of a computed solution.  

One approach, based on the GUM [76,77] to derive a 
performance metric base for this type of analysis is as follows. For 
numerical bounds V and W, let VV  and VW be the variance matrices 
associated with the uniform distributions defined on V and W, 
respectively. Here, x can be regarded as a best estimate of x* with 
associated variance matrix VV and a as best estimate of a* with 
associated variance matrix VW. If f is a sufficiently smooth function 
of x, the sensitivity matrix C of a can be calculated with respect to 
x.  
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The exact solution for x is perturbed from a by (a-a*)+C(x- x*), 
where the first term has an associated variance matrix VW

 
and the 

second term has a variance matrix CVvCT. The best estimate of f(x) 
is a, and the variance matrix associated with this estimate is 
Va=VW+CVvCT. A computed solution can be assessed based on its 
distance from a, relative to the probabilistic distance derived 
from Va. A similar approach can be used to derive performance 
metrics relating to inverse numerical accuracy. 

 
4.4.2 Performance metrics relating to user requirements 

While it is preferable to have software that provides maximum 
achievable accuracy, in practice such software may be difficult to 
implement and/or computationally expensive to run. Under these 
circumstances, software calculating an approximate solution is 
developed instead, and it is necessary to assess whether the 
computed solution is sufficiently accurate for the user’s 
requirements. A pragmatic approach is to say that a software is 
suitable for a given purpose if the uncertainty contribution 
associated with the software is small compared to other 
uncertainty contributions. Thus, in coordinate metrology 
involving measurement uncertainties of the order of 1 
micrometer, an uncertainty contribution from software in the 
order of 10 nanometres will have no practical impact.  

The user requirements may be specified in terms of the 
accuracy (or maximum permissible error) of the computed 
solution, for example, the accuracy in the computed diameter of a 
cylindrical shaft. Such a specification does not take into account 
the numerical sensitivity associated with the computational aim. 
If the data on the cylinder lies on a small arc of the cylinder 
surface, the diameter of the approximated cylinder is poorly 
determined and the computed solution will be unavoidably less 
accurate than for data distributed more uniformly on the cylinder 
surface.  

Alternatively, the user requirements may be specified in terms 
of an equivalent measurement uncertainty derived using an 
inverse measure of accuracy: the computed solution must be the 
exact solution corresponding to a perturbation of the input data, 
where the perturbation is smaller than some pre-assigned 
tolerance. For the example of a cylinder approximation, the user 
may require that the computed diameter is exact as long as to the 
data differ from the input data by no more than 10 nanometres. 
These inverse types of user requirements automatically take into 
account the sensitivity of the computational task. 

  
4.5 National Metrology Laboratories works 

One of the first areas of metrology to become aware of the 
potentially large influence of numerical software was that of 
coordinate metrology. The diversity of evaluation algorithms and 
their different implementations led to inconsistent results when 
evaluating prismatic 2D and 3D objects consisting of lines, planes, 
cylinders, circles and cones. As a consequence, the National 
Physical Laboratory (NPL, UK) and the Physikalisch-Technische-
Bundesanstalt (PTB, Germany) cooperated in some European 
projects to provide test data [47,77] and reference algorithms 
[62,9]. 

As a result of these and other initiatives, PTB provides a 
commercial offline software test for prismatic objects since 1995. 
To date it has been used by more than 200 companies for 
validating their evaluation software systems. In 2012, the design 
of this offline test became basis of the online test TraCIM (see 
below).  
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The National Institute of Standards and Technology (NIST, USA) 
provides algorithms testing the least-squares approximation of 
elementary geometries used in coordinate metrology. Specifically, 
the geometries for which testing is available include lines (2d and 
3d data), planes, circles (2d and 3d data), spheres, cylinders, and 
cones. Testing is modelled after the ASME B89.4.10-2000 
standard, Methods for Performance Evaluation of Coordinate 
Measuring System Software. 

The NIST Algorithm Testing System computes with a precision 
much greater than the double precision normally applied in 
scientific computing. In fact, 60 digits of working precision are 
used to compute the reference fits. Because of this, the 
uncertainty of the reference least-squares approximations is 
limited only by the accuracy of the input data. For ASME B89.4.10 
default test data sets, which are theoretically exact (i.e., data 
values are assumed to have infinite trailing zeros) the expanded 
uncertainty U (k = 2) is much less than 10-14 m for distances and 
10-15 radians for angles. 

NPL, NIST and PTB also provide test data and reference 
software in the field of roughness measurement according to ISO 
5436-2 (2001) [101]. Since 2014, an established realization of the 
online validation is named Traceability for Computationally-
Intensive Metrology (TraCIM) [81]. It allows service users to 
validate their software at the point of application. The service is 
operated by European national metrology institutes (NMIs). It is a 
fundamental principle that the TraCIM service is provided and 
hosted only by a NMI or an authorized organization (Figure 43). 
These institutions assume delcredere liability and finally 
guarantee for the correctness of the results.  

TraCIM is registered as a word mark. It is operated as a legal 
non-profit association under German law and allows NMIs and 
designated institutes (DIs) to become members. The TraCIM 
association has been established with its main mission to provide 
quality rules for the TraCIM service [165]. The business concept 
and the income of the TraCIM service are strictly uncoupled from 
the TraCIM association. In association with and under the 
supervision of European metrology institutes, TraCIM aims to 
validate analysis algorithms in the field of metrology. In the 
following, they will be referred to as "algorithm tests" or simply 
"tests". Similar to the well-known calibration chain, which is 
related to physical standards, the NMIs transfer the numerical 
accuracy of evaluation algorithms from the highest metrological 
authority to the individual application. Computations are 
addressed, which are used to analyze measurands of the 
International System of Units (SI) and their derived units. The 
medium of choice for communication between the service 
provider and the user is the Internet. The principle is shown in 
Figure 42. On the left, the service provider is represented as the 
network of metrology institutes. This is of paramount 
importance, since the algorithm tests are to be carried out – or at 
least monitored – by the supreme metrological authority of a 
country. The metrology institutes are linked with each other 
under the umbrella of the TraCIM association. TraCIM's main task 
consists of describing quality guidelines and defining the 
technical infrastructure, under which the algorithm tests are to be 
performed. Each service provider is, however, solely responsible 
– and therefore held liable – for the extent of the algorithm tests 
provided, for the business workflow, for the maintenance of the 
datasets, for consultation upon installation as well as for running 
the tests. For this reason, each metrology institute runs its own 
server, i.e. each server has to be addressed individually, which 
leads to a different extent of services depending on each 
metrology institute. The metrology institutes, however, have the 
possibility of mutually providing algorithm tests as 
subcontractors, which allows a service provider to enhance the 
extent of services provided. The service users are essentially 
manufacturers of analysis software or measuring instruments. 

This algorithm test service allows them to have their analysis 
algorithms validated by an independent metrology institute. This 
mainly serves to increase confidence in the products they offer on 
the market. In principle, they can have this service unlocked for 
their customers in order to have, for example, updates validated 
directly. Software engineers can already test their algorithms 
during the development phase to be on the safe side and, thus, 
make development faster. Each registered user, which supports 
the specifications of the client-server interface, can access 
individual tests via the internet. The service is available 24 hours 
a day on every day of the year at each location on the globe to 
which internet is provided.  

Furthermore, the response times are considerably shorter than 
with the existing validation capabilities. A full test dataset 
includes test data as input quantities of an algorithm test, 
reference results and their assigned numerical uncertainties. 
Hereby, the test data are defined as being error-free. In contrast, 
the indication of the reference results, by analogy with the 
indication of measurement results, is defective in the case of 
geometrical measurements [115]. Hereby, it is up to the 
metrology institutes to develop procedures as long as these meet 
the requirements. The following is a description of the approach 
followed by PTB. To this end, all test datasets are computed, 
tested and archived in a database when setting up an algorithm.  

This database – also called "golden dataset" – thus contains all 
sensitive test data and must therefore be protected from 
unauthorized access. Contrary to a reference software, for which 
test data can be specified externally, PTB's approach, consisting 
in the one-time computation of test datasets, is far more secure, 
since the correctness of a software component can never be 
guaranteed.  
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Figure 42: TraCIM service providing to industry and scientific institutes 

 
In addition, specified datasets are practically not subject to 

ageing. Reference algorithms, in contrast, depend on the state of 
the art of the programming language, of the operating system, of 
the processor properties and, thus, need maintenance and are 
short-lived. Yet, the test data do not represent an inflexible 
system. They can be adapted to an individual application without 
losing their accuracy. This can mean, for example, that an SI unit 
or a derived unit is indicated. In the case of geometrical 
measurands, the test data can be represented with additional SI 
prefixes such as "nano-", "micro-", "milli-" etc. This does not affect 
the numerical presentation – and, thus, the accuracy. The same 
applies to the scaling of measuring ranges, which may only be 
realized in the form of decimal powers (i.e. ×10; ×100, etc.). The 
error bars of the reference results are yielded by means of 
comparative computations. Thus, the reference results of at least 
three independent software implementations are computed and 
compared with each other. The numerical accuracy is determined 
by varying the test data by means of a Monte Carlo simulation. 
For this purpose, the last decimal digits of the test data are 
randomly varied, and the dispersion of the corresponding 
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reference results is determined. After ignoring another decimal 
for safety's sake, this value is deemed the assigned numerical 
uncertainty. The presentation of the test datasets is adapted to 
the technical applications in question – and not to what is 
mathematically feasible. The test datasets are supposed to 
simulate frequent technical situations. Exceptions, which require 
a high degree of development and consultation effort should, as a 
rule, be avoided. TraCIM's IT architecture consists of four central 
modules. These are represented in Figure 43. The server is the 
core module. As a management module, it is operated by a 
competent metrology institute. It manages all of the operating 
data and controls the data flow to the other modules. The expert 
modules are developed by experts responsible for a particular 
individual test. Each expert module operates basically 
autonomously and deals with all logical processes in connection 
with a test. It makes the test datasets available on request, 
compares the test results computed by the users with its own 
reference results and, finally, issues the test report. Since the 
individual tests may vary significantly from one application to 
another, only few input parameters have been defined by TraCIM 
for the data traffic. This applies, for instance, to the support of a 
software interface in JAVA, which allows the expert system to be 
logged into the server system. Indispensable operating data such 
as the order number must also be transmitted via this interface. 
Since the formats of the test data can be freely selected, the 
expert is, to a large extent, free to design the test according to his 
needs. Furthermore, existing tests and test data structures can 
easily be integrated into the TraCIM system. 
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Figure 43: TraCIM's IT architecture 

 
The formal specifications of the TraCIM server with regard to 

the user are, in contrast, more restrictive. The server-client 
communication runs via a REST interface. Hereby, the data are 
embedded into an XML structure. Then again, within this 
structure, free formats of test data (such as binary formats or 
established test data structures) can be defined, depending on the 
application. The expert is solely responsible for the test data 
format, the test data and the test results. The interface is available 
externally via a web shop, which is also connected to the server 
module. At the current implementation stage of the system, this 
interface is, however, not yet available. Similar to online 
shopping, interested users will be able to register via the internet 
and to order individual tests [166]. The precondition for running 
the test is, however, that the REST interface is supported. Until 
the web shop has been set up, interested users can contact an 
individual service provider or the TraCIM secretariat in order to 
register. In the current state of implementation, PTB offers the so-
called "Gaussian test". This test is used in the field of length 
measurement. It is used to check the correct determination of the 
parameters for the adjustment of geometrical elements like 2D 
straight line, 3D straight line, 3D circle, 3D plane, cylinder, cone 
and sphere, according to the least-square approximation. Two 

other tests, comparison of measurement data [82] and Chebyshev 
approximation [98], are offered as well. During the last years, 
many users from all over the world gained certificates for their 
metrological algorithms. 

5. Conclusion 

Traceability of intensive computation is needed due to the 
evolution of industrial systems towards a cybernetic industry. In 
metrology and precision engineering fields, the geometry of parts 
or mechanical assemblies to be checked becomes more complex 
in terms of topology and quantity of data to be processed.  

In the near future, current processors will be replaced by new 
technologies such as quantum, DNA or optical processors. These 
advances on the hardware should make it possible to question 
the binary coding massively used in the computation of the 
current computers. However, the implementation of these new 
technologies in office computers will not be available 
immediately. Consequently, the use of floating point numbers, 
imposed by current hardware technology, will require 
precautions in the development of metrology and precision 
engineering software. 

Software tools and methods are available to validate and trace 
the numerical results of metrology or precision engineering 
software. With actual computer technology, a multiple precision 
module or software and a calculation using decimal floating-point 
allow compensating the numerical degeneracy, which limits the 
numerical calculation accuracy. Standards have included, in their 
texts, the computation with quadruple precision and a great 
number of recommendations to reduce the numerical 
disturbances present within the current technology of computers. 
However, the software solutions offered today are not up-to-date 
in including these new recommendations.  

When an algebraic expression of metrology or precision 
problems is well conditioned, one can always find a stable 
process to evaluate it. When the algebraic expression is very 
poorly conditioned, it is difficult to find a stable process to 
evaluate it. Combining an improperly conditioned algebraic 
expression with an unstable process, the obtained result will be 
poor. Over the past decade, the National Metrology Institutes 
have developed numerous methods to validate test data, like 
traceable soft gauges for validating metrological software. 
Symbolic computation is another way to realize high-precision 
calculation and to obtain certified solutions. To estimate the 
behaviour of the algorithms, research work on arithmetic or ball 
intervals provides computer solutions that determine the interval 
of numerical error. Probabilistic approaches are developed to 
certify the numerical calculation. In the future, new sets of 
reference data for software development and new hardware 
paradigms, e.g. survey implementation in line, are the best ways 
to check the traceability of computer calculations in metrology 
and precision engineering software. To help the software 
developers to validate their software at the point of use, online 
solution was proposed by National Metrology Institutes. 

By managing in the implementation phase, the stability and 
conditioning of the computation, metrology or precision 
engineering software should be suitable to perform high-
precision calculations. This is the new challenge for a new cyber 
industry. 
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