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This paper investigates the design of decentralized controllers for a class of large scale switched nonlinear systems under arbitrary switching laws. A global large scale switched system can be split into a set of smaller interconnected switched Takagi-Sugeno fuzzy subsystems. In this context, to stabilize the overall closed-loop system, a set of switched non-PDC output-feedback controllers is considered. The latter is designed based on Linear Matrix Inequalities (LMI) conditions obtained from a multiple switched non-quadratic Lyapunov-like candidate function. The controllers proposed herein are synthesized to satisfy H  performances for disturbance attenuation. Finally, a numerical example is proposed to illustrate the effectiveness of the suggested decentralized switched controller design approach.

I. INTRODUCTION

During the last few decades, several complex systems are appeared to meet the specific needs of the world population. In this context, we can quote as examples the networked power systems, water transportation networks, traffic systems, as well as other systems in various fields. Generally speaking, establish a mathematical model for large scale systems is a complex task, especially when the system is considered as a whole. Hence, to overcome these difficulties, an alternative to the global modelling approach has been explored. It consists in decomposing the overall large-scale system in a finite set of interconnected low-order subsystems [START_REF] Chiou | Stability analysis for a class of switched large-scale time-delay systems via time-switched method[END_REF]. Among these complex systems, switched interconnected large-scale system have attracted considerable attention since they provide a convenient modelling approach for many physical systems that can exhibit both continuous and discrete dynamic behavior. In this context, several studies dealing with the stability analysis and stabilization issues for both linear and nonlinear switched interconnected large-scale systems have been explored [START_REF] Chiou | Stability analysis for a class of switched large-scale time-delay systems via time-switched method[END_REF]- [START_REF] Zhong | Robust decentralized static output-feedback control design for large-scale nonlinear systems using Takagi-Sugeno Fuzzy models[END_REF]. Hence, the main challenge to deal with such problems consists in determining the conditions ensuring the stability of the whole systems with consideration to the interconnections effects between its subsystems. Nevertheless, few works based on the approximation property of Takagi-Sugeno (TS) fuzzy models for nonlinear problems have been achieved to deal with the stabilization of continuous-time large-scale switched nonlinear systems [START_REF] Jabri | Decentralized control of discrete-time large scale switched systems[END_REF], [START_REF] Zhong | Robust decentralized static output-feedback control design for large-scale nonlinear systems using Takagi-Sugeno Fuzzy models[END_REF]- [START_REF] Tong | Observed-based adaptive fuzzy decentralized tracking control for switched uncertain nonlinear large-scale systems with dead zones[END_REF]. For example, by using the PDC design method, an output-feedback decentralized controller has been developed in [START_REF] Yang | Decentralized control of switched nonlinear large-scale systems with actuator dead zone[END_REF] for a class of T-S fuzzy switched large-scale systems. In the same way, the authors of [START_REF] Zhang | Adaptive fuzzy output constrained decentralized control for switched nonlinear large-scale systems with unknown dead zones[END_REF] have studied the design of an adaptive fuzzy output-feedback control for a class of switched uncertain nonlinear large-scale systems with unknown dead zones and immeasurable states. Recently, an observer-based decentralized control scheme was developed in [START_REF] Li | Fuzzy adaptive control design strategy of nonlinear switched large-scale systems[END_REF] for a class switched non-linear largescale systems. In the same context, an adaptive fuzzy decentralized output-feedback tracking control has been explored in [START_REF] Tong | Observed-based adaptive fuzzy decentralized tracking control for switched uncertain nonlinear large-scale systems with dead zones[END_REF] for a class of switched nonlinear largescale systems under the assumption that the large-scale system was composed of subsystems interconnected by their outputs. The stability of the whole closed-loop system and the tracking performance were achieved by using the Lyapunov function and under constrained switching signals with dwell time. This paper presents the design of decentralized robust controllers for a class of switched TS interconnected large-scale systems with external bounded disturbances. More specifically, the primary contribution of this paper consists in proposing a LMI based methodology, in the non-quadratic framework, for the design of robust outputfeedback decentralized switched non-PDC controllers for a class of large scale switched nonlinear systems under arbitrary switching laws.

The remainder of the paper is organized as follows. Section 2 presents the considered class of switched TS interconnected large-scale system, followed by the problem statement. The design of the decentralized switched non-PDC controllers is presented in section 3. A numerical example is proposed to illustrate the efficiency of the proposed approach in section 4. The paper ends with conclusions and references.

II. PROBLEM STATEMENT AND PRELIMIARIES

Let us consider the class of nonlinear hybrid systems S composed of n continuous time switched nonlinear subsystem i S represented by switched TS models. The n state equations of the whole interconnected switched fuzzy system S are given as follows; for 1,..., in  :

                          1 1 ,, 1, 1 j i i i j i i i j i i i i w hj i hj i hj i r m n i j s j w j s i hj hj i m i j hj i j A x t B u t B w t x t t h z t F x t B w t y t t C x t                                        (1) 
where

  i i xt   ,   i i yt   ,   i i ut  
represent respectively the state, the measurement (output) and the input vectors associated to the th i subsystem. 

 

i i wt   is an 2 L -norm
    1 1 j i ji i j i r sj s h z t    ;   i j t
 is the switching rules of the th i subsystem, considered arbitrary but assumed to be real time available. These are defined such that the active system in the th i l mode lead to:

    1 if 0 if i i j i i j i i t j l t j l            (2)
Notations: In order to lighten the mathematical expression, one assumes the scalar 1 1

N n  
, the index i associated to the th i subsystem to denote the mode i j . The premise entries i j z will be omitted when there is no ambiguities and the following notation is employed for fuzzy matrices: In the sequel, we will deal with the robust outputfeedback disturbance attenuation for the considered class of large-scale system S . For that purpose, a set of decentralized output-feedback switched non-PDC control laws is proposed as; for 1,..., in  :

        1 9 1 i i i m i j hj hj i j u t t K X y t      (4) 
where the matrices 

  1 9 ,, 1 1, 
i m n i j i i hj hj hj hj hj hj j i x x F x A B K X C                       (5) 
Thus, the problem considered in this study can be resumed as follows:

Problem 1: The objective is to design the controllers ( 4) such that the closed-loop interconnected large-scale switched TS system (6) satisfies a robust H  performance.

Definition 1:

The switched interconnected large-scale system (1) is said to have a robust H  output-feedback performance if the following conditions are satisfied: 


n T T T i i i i i i i J x x dt dt w w w w             (6) 
where

2 i
 is a positive scalars which represents the disturbance attenuation level associated to the th i subsystem.

From the closed-loop dynamics ( 5), it can be seen that several crossing terms among the gain controllers hj K and the system's matrices

    1 hj hj hj hj B K X C  are present.
Hence, in view of the wealth of interconnections characterizing our system, these crossing terms lead surely to very conservative conditions for the design of the proposed controller. In order to decouple the crossing terms

    1 hj hj
hj hj

B K X C

 appearing in the equation ( 5), and to provide LMI conditions, we use an interesting property called the descriptor redundancy [START_REF] Guelton | Robust dynamic output feedback fuzzy Lyapunov stabilization of Takagi-Sugeno systems -A descriptor redundancy approach[END_REF]- [START_REF] Bouarar | Robust nonquadratic static output feedback controller design for Takagi-Sugeno systems using descriptor redundancy[END_REF]. In this context, the closed-loop dynamics ( 6) can be alternatively expressed as follows. First, from (4), we introduce null terms such that, for 1, , in  :

0 i i hj i y y C x    (7) 
and:

 

1 9 0 i hj hj i u K X y   (8) 
Then, by considering the augmented state vectors

T T T T i i i i x x y u    , T T T T x x y u    
   and disturbances , T T T ii w w w     , the closed-loop dynamics of the largescale system (1) under the non-PDC controller (4) can be reformulated as follows, for 1, , in  : Note that the system ( 9) is a large scale switched descriptor. Hence, it is worth pointing out that the outputfeedback stabilization problem of the system (1) can be converted into the stabilization problem of the augmented system [START_REF] Yang | Decentralized control of switched nonlinear large-scale systems with actuator dead zone[END_REF].

  , , , , 1, 
n w i hj hj i i hj hj i i x x x E A F B w           (9 
Remark: It may be hard to work with the first formulation of the closed-loop dynamics [START_REF] Thanh | Decentralized stability for switched nonlinear large-scale systems with interval timevarying delays in interconnections[END_REF], due to the large number of crossing terms. However, the goal of our study can now be achieved by considering the augmented closed-loop dynamics (9) expressed in the descriptor form. In this context, the second condition of the definition 1, given by equation ( 6), can be reformulated as follows: To conclude the preliminaries, let us introduce the following lemma, which will be used in the sequel.

Lemma [START_REF] Zhou | Robust Stabilization of linear systems with norm-bounded time-varying uncertainty[END_REF]: Let us consider two matrices A and B with appropriate dimensions and a positive scalar  , the following inequality is always satisfied:

1 T T T T A B B A A A B B      (11) 

III. LMI Based Decentralized Controller Design

In this section, the main result for the design of a robust H  decentralized switched non-PDC controller (4) ensuring the closed-loop stability of (5) and the H  disturbance rejection performance [START_REF] Zhang | Adaptive fuzzy output constrained decentralized control for switched nonlinear large-scale systems with unknown dead zones[END_REF] is presented. It is summarized by the following theorem.

Theorem : Assume that for each subsystem i of (1), the active mode is denoted by i j and, for 

 , … 1, ii   , 1, ii   ,…, , ni  (excepted , ii  which don't exist
since there is no interaction between a subsystem and himself), such that the LMIs described by ( 12), ( 12), ( 14) and ( 15) are satisfied.

1 '   * 0

0 j j j j i i i i k s k l XW  (12) 
j j j i i i j i s l k k X I           (14) 
  

j j j i i i j j j i i i j i s l k s l k k X I                  , 0 0 00 w kj ww kj kj NB BB        ,   1 '' 1 j i j j j j j j j j j i i i i i i i i i j i r s l k k l l s k k l XW       , 1 5 
9 0 0 0 0 0 0 j i j j i i j i k k k k X X X X              , 1 , 1, 1, 
, i i i i i n i I I I I I diag             , j j j j i i i i j i k k k k k X X X X X    ,                 1 , , , , , ' 5 9 9 1 
** 0 * jj ii jj ii j j j j i i i i j j j i i i

j i j j j j j j i i i i i i T ks T i i s i s s l k k s l k k T T k k s s k l XA sym FF X sym X X B C X K sym                                
.

Proof: The present proof is divided in two parts corresponding to the condition 1 and 2 given in definition 1.

Part 

    12 11 
, ,..., 0

i ii i m n n j j i ij V x x x v x     (16) 
where

1 1 1 j i i j j ii j i r TT j i hj i i s s i s v x E X x x E h X x and with 0 hj hj EX X E  , 1 5 9 hj hj hj hj X diag X X X    , 11 T
hj hj XX  .

The augmented system (9), and implicitly the closed-loop interconnected switched system [START_REF] Sun | Decentralized control for a class of uncertain switched interconnected large-scale systems[END_REF] 

      1 1 1 0 n T T i hj i i hj i i sym x E X x x E X x         (22)
Substituting ( 9) into (22), we can write,

jj tt    :           1 1 , 1 1 ,, 1, 0 T i hj i hj hj hj n n TT i i hj hj i i x x sym x sym E X XA F X x                               (23) 
From ( 11), the inequality (23) can be bounded by,

jj tt    :           1 1 , 1 , 1 1 1 1, , , , , , 1, 
0 hj hj hj hj n n T T n i i i T i i i hj i hj i hj hj i x x x x sym E X X A X F F X                                                    (24) Moreover, since 11 ,, 1 1, 1 1 
, 

n n n n TT i i i i i i i i x x x x                      , i x  , (
          1 1 , 1 1 1 , , , , , , 1, 
0 hj hj hj hj n T i hj i hj i hj hj i i sym E X XA X F F X I                       (25)
Note that 0

hj hj EX X E  , left and right multiplying the inequalities (25) respectively by hj X , the inequality (25) can be rewritten as:

    1 1 , , , , , , , 1, 
0 n T hj hj hj i i hj i hj i hj hj hj hj hj i sym EX X X F F X X AX                     (26)
Now, the aim is to obtain the inequality ( 14) from ( 26). This can be achieved with usual mathematical developments.

First, note that

      1 1 1 ' j j j j i i i i hj hj hj hj s l k k E X E X X X       
(see [START_REF] Guelton | Robust dynamic output feedback fuzzy Lyapunov stabilization of Takagi-Sugeno systems -A descriptor redundancy approach[END_REF] for more details on similar developments). Then, to deals with the term

hj hj XX, one applies the Schur complement. This ends that part of the proof.

Part 2 (Robustness condition 2):

For all non-zero   2 , 0 i wL   , under zero initial condition   0 0 i xt , it holds for 1, , iN  : 2 ,, 1 1, 
0 nN T T T i i i i i i ii v x Qx w w               (27)
wich is equivalent to:

        1 1 2 1 ,, 1; 0 T T ii i hj i hj n N T i i i i i sym x x x E X x E X Q ww                           (28)
Substituting ( 9) into (28), we can write,

jj tt    :                 1 1 , 1 2 , , ,, 1 1 1, , 0 
T T i hj i hj hj hj n T TT n i i i i hj hj i i T T w i i hj hj i x x sym x sym sym Q E X AX ww F X x w B X x                                                      (29) 
From ( 11), the inequality (23) can be bounded by,

jj tt    :                   1 1 1 1 , , , , , 1, 1 , 1 1, 1 2 , , , 1 0 hj hj hjhj T n i i T i hj i hj i hj hj i n n T T w i hj hj i i i n T T i i i i i x x xx sym Q E X XA X F F X sym w B X x ww                                                                (30) Since 1 1 , , 1 1, 1 1, n n n n T T i i i i i i i i x x x x                        , i x  and jj tt    , (24) is satisfied if:                 1 1 1 1 1 , , , , , , 1 1, 1 2 , , , , , 0 j 
j j j i i i i j j i i hj hj hjhj T nn i i T i h i h i h h i i i TT T i w h h i i i i x x N sym Q E X XA X F F X I w B X x sym w w                                                       (31) 
The previous equation can be rewritten as follow:

    ,, 1 2 , , 
* 0

T hj hj hj i i T w i i hj hj i x x w w BX                             (32) 
With:

            1 1 ,, , 1 1 1 , , , , , , 
hj hj hj hj hj hj hj

T i hj i hj i hj hj i N sym Q E X XA X F F X I                 
Left and right multiplying the inequalities (25) respectively by 0

0 hj X I  
, it yields for 1,...,

 with i   :           1 1 , , in  and 1,..., n  
i hj hj hj hj hj hjhj hj T i i hj i hj i hj hj T w h hj i N sym X QX EX X X AX F F X X XB                               , , , , 2 * 0 j 
Finally, to obtain the LMI condition [START_REF] Jabri | Decentralized stabilization of continuous time large scale switched descriptors[END_REF], similarly to the first part of this proof, from the property 

      1 1 1 hj hj hj hj E X E X X X      ,

IV. Numerical example

This section is dedicated to illustrate the effectiveness of the proposed LMI conditions. We consider the following system composed of two interconnected switched TS subsystems given by: Subsystem 1: . Moreover, Fig. 3 and Fig. 4 shows the control signals as well as the switching modes' evolution. As expected, the synthesized decentralized switched controller stabilizes the overall large scale switched system composed of (33) and (34). 

2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 22 1 1 1 1 1,2, 2 2 1 1 22 1 1 1 1 j j j j j j j j j j w w j s s s s s s js j s s js x h A x B u B w F x B w y h C x                          ( 
x h A x B u B w F x B w y h C x                          (35) with   2 21 22 23 T x x x x  , 2 -2 0 0 0 0 .1 -1.1 j sj sj Ab A Aa            , 2

V. CONCLUSIONS

This study has focused on large scale switched nonlinear systems where each nonlinear mode has been represented by a fuzzy TS system. To ensure the stability of the whole system in closed-loop, a set of decentralized switched non-PDC controllers has been considered. Therefore, LMI based conditions for the design of decentralized controllers have been proposed through the consideration of a multiple switched non-quadratic Lyapunov-like function candidate and by using the descriptor redundancy formulation. Finally, a numerical example has been proposed to show the effectiveness of the proposed approach. An extension of the proposed approach to general switched systems under asynchronous switches will be the focus of our future works.
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 123 Fig. 1. Closed-loop state responses of the interconnected switched Takagi-Sugeno systems.

Fig. 4 .

 4 Fig. 4. Control signal and switched laws' evolutions of the second subsystem.

sd TS switched sub-controller:

  

													Let us assume that each subsystem switches under within
													the	frontier	defined	by	11  	11 0.9xx 12 	,
													12  	-0.2	11 xx 12 9 	,	21  	21 -xx 22 	and
													22 	21 xx 22 -2	. The external disturbances 1 w and 2 w
													are considered as white noise sequences.
													A set of decentralized switched controllers (4) is
													synthesized based on theorem 1 via the Matlab LMI
													toolbox. To do so, the lower bounds of the derivatives of
													the	membership	functions	are	prefixed	as
													1 1 1 		2 1 1 		1 2 1 		2 2 1 	6   , and the disturbance attenuation
													level by 2 1  	1.7	and 2 2  	1.5	. The solution of the
													proposed theorem leads to the synthesis of two
													decentralized non-PDC switched TS controllers (4) with
													the following gain matrices:
													1 rst TS switched sub-controller:
													11 11 12 KK 	2 10 * 	-9.04 -0.72 -0.72 -4.21   	,
													22 11 12 KK 	2 10 * 	-15.37 5.90 5.90 -14.14   	,
													X	1 1 9 1	0.2427 -0.1589 -0.1589 0.1892    	,	X	1 1 9 2	0.2494 -0.1589 -0.1589 0.1936    	,
													X	2 1 9 1	0.2449 -0.1056 -0.1056 0.3855    	,	X	2 1 9 2	0.2826 -0.125 -0.125 0.42    	.
	sj B	     	-.1 .5 -.01 .5 .01 .1 -.01 .1 sj Ba     	,	C	2 sj	.01 -1 .1  .1 .1 1 .1 .1 sj Ca     	,	0.1389 0.0853 -1.0686   -0.7586 0.3474 0.1388  0.3475 -0.6394 0.0852    2 11 22 12 KK	,
	2 sj F	.01 .001 .01 .01  sj j Fa Fb   	,	1 Bw	2 sj	.05 .001 .001 .001 .001 .001 .001 j sj ba       	,	-0.8513 0.1899 0.0906  0.0906 0.0661 -0.9930   0.1899 -0.8347 0.0661    22 22 12 KK	,
	2 sj Bw	.05 .001 .001 .001 .001 .001 .001 j sj wb wa      	.	X	1 2 9 1	2.0615 -1.4032 -0.9036  -0.9036 -0.0925 4.035   -1.4032 1.4636 -0.0925   	,
	In the mode 1, the variables values is given by
	1 Ab  , 11 2 Aa  , 1 11 .1 Ca  , 12 Ca  21 Aa  , 11 .01 1.1 Ba  .2 , 1 0.1 Fb  ,	,	21 Ba  11 Fa 	.02 .2	, ,	X	1 2 9 2	2.0064 -1.361 -0.7552  -1.361 1.5038 -0.0975   	,
	21 Fa 	.02	,			1 wb  0.01	,	11 wa 	.01	,	21 wa 	.001	,	-0.7552 -0.0975 3.7587  
	1 b   , .01	11 a   , 12 .001 .01 a  	.	2.1295 -0.8043 -0.2885 
	In the mode 2, the variables values is given by: 2 1 Ab  , 12 2 Aa  , 22 3 Aa  , 12 0.03 Ba  , 22 0.04 Ba  , 21 .4 Ca  , 22 .3 Ca  , 2 0.2 Fb  , 21 22 .4 Fa Fa  ,	X	2 2 9 1	-0.8043 2.1742 -0.1705    -0.2885 -0.1705 2.9487  
	2 wb 	0.01	,		12 wa 	.02	,	22 wa 	.05	,	2 b  	.01	,
	21 a   , .02	22 a  	.05
	and the membership functions	  2 h x 1 2 1		sin	2	  21 x	,
	  2 h x 1 2 2		sin	2	  22 x	,	  21 22 ii 22 1   h x h x 	.
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