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I. INTRODUCTION

In this chapter, our objective is to review novel developments concerning the
time behavior of relaxation (correlation) functions and their spectral properties as
predicted by the nonlinear Langevin equations governing noise-activated escape
from and relaxation in multistable potentials. One of the most important of these
developments is that the Brownian dynamics of both a particle and a rigid body in
a potential exhibit universal behavior that is common to a whole host of physical
problems irrespective of the precise nature of the particular multistable system
considered. This behavior is universal in the sense that in a multistable potential,
the dynamic susceptibility spectra always exhibit a broad low-frequency relaxation
loss peak due to slow noise-activated escape of the Brownian particles or rotators
over the potential barriers, and so attributable to an activation process. Specific
examples of this universal behavior include the relaxation processes appearing in
the dielectric loss spectra of molecular liquids and solids, in the magnetic suscep-
tibility spectra of magnetic nanoparticles, in the current–voltage characteristics
of point Josephson junctions, and so on. In spite of the very extensive literature
(see, e.g. [1–7]) concerning calculation of the longest relaxation (escape) time of
both classical and quantum Brownian particles regarded as the inverse escape rate
from a potential well, relatively few comparisons with the escape time yielded by
the analytical and numerical solutions of the relevant classical or quantum master
equations exist. The fundamental reason is the lack of an efficient algorithm for
the solution of such master equations. Yet another difficulty has been the rather
abstruse and hidden nature of the calculations surrounding the well-known
Kramers turnover problem. This comprises the asymptotic calculation of the es-
cape rate Ŵ in the underdamped regime where escape over a potential barrier is
predominantly but not absolutely energy diffusion controlled and by extension the
determination of an asymptotic formula for Ŵ irrespective of the dissipation to the
bath. The best-known solution to the Kramers turnover problem is that given by
Mel’nikov [8,9], Mel’nikov and Meshkov [10], and Larkin and Ovchinnikov (in
the quantum case at relatively high temperatures where both thermal activation and
quantum tunneling may coexist, which is the case of interest in this chapter) [11].
The quantum problem was solved by Larkin and Ovchinnikov in the underdamped
regime in a semiclassical sense and extended in ad hoc fashion by Mel’nikov [8,9]
to all values of the dissipation. This (seeming) defect was remedied later by the
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rigorous solution given by Pollak et al. [12] (see also Ref. [4]) based on the math-
ematical description of friction as originating from linear coupling to a bath of
harmonic oscillators. Since the calculations of Mel’nikov [8,9] and Larkin and
Ovchinnikov [11] involving a depopulation factor (see below) are short on detail
particularly in the quantum case and are rather difficult to follow, it is the primary
purpose of this chapter to give (with the beginning graduate student in mind) a rea-
sonably transparent résuméof these. Next, we show how the calculations may be
adapted to a range of commonly encountered physical problems [13,14] involving
the decay of metastable states. The results will then be compared with semianalytic
solutions of the relevant classical or quantum master equation (for relatively high
temperatures) based on the matrix continued fraction method.

The chapter is arranged as follows. Classical transition state theory (TST) for
escape rate of a particle from a one-dimensional potential well and its generaliza-
tion [4] to multidimensional systems is very briefly reviewed. The main results
of including the effect of dissipative coupling to the bath as obtained by Kramers
[15] using as model the phenomenological Langevin equation and its associated
probability density diffusion equation in the phase space of a Brownian particle
namely the Klein–Kramers equation [which is the Fokker–Planck equation (FPE)
for particles or rigid rotators with separable and additive Hamiltonians] are then
briefly given. The Langevin equation for a particle of mass m and momentum
p = mẋ, moving along the x-axis in a potential V(x) is in terms of state variables
(x, p)

ẋ = p/m

ṗ(t) +
ζ

m
p(t) +

dV

dx
[x(t)] = F (t)

(1)

where ζ is the viscous drag coefficient and F(t) is the white noise driving force
imposed by the bath that maintains the Brownian motion so that

F (t) = 0, F (t)F (t′) = 2kBTζδ(t − t′) (2)

Here, kB is the Boltzmann constant, T is the temperature, the overbar means the
statistical average over an ensemble of particles that have all started at time t with
the same initial position x(t) = x and momentum p(t) = p. Equation (1) is inter-
preted here as a stochastic differential equation of the Stratonovich type [16,17].
The corresponding Klein–Kramers equation for the phase space evolution of the
density ρ(x, p, t) of the phase points (x, p) is

∂ρ

∂t
=

dV (x)

dx

∂ρ

∂p
−

p

m

∂ρ

∂x
+

ζ

m

∂

∂p

(

ρp + mkBT
∂ρ

∂p

)

(3)

This comprises the Liouville equation for a single particle augmented by a diffusion
term accounting for the interaction of the particle with the heat bath.
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The results of escape rate calculations [2] are the spatially controlled diffu-

sion or intermediate to high damping (IHD) escape rate and the energy-controlled

diffusion or very low damping (VLD) rate. Furthermore, it is emphasized that
these are obtained using two entirely distinct approaches, namely, in IHD the
escape rate is determined via the oscillator and inverted oscillator approximation
for the potential at the well and at the saddle point and consequent linearization of
the Langevin equation. In contrast for VLD, that is, energy-controlled diffusion,
the noisy motion is simply regarded as a very small perturbation of the classical
undamped librational motion in a well of a particle with energy equal to the barrier
energy. Thus, the overall discussion now refers to particles on energy trajectories
in an energy skin or boundary layer [16] very close to the barrier energy only
such that the deviations from the Maxwell–Boltzmann distribution prevailing in
the depths of the well are very significant. The classical Kramers turnover problem
referring to the turnover of the escape rate from behavior proportional to the dissi-
pation in VLD to the inverse behavior encountered in very high damping (VHD)
is then formulated as a precursor to the calculation of the classical depopulation
factor using the method proposed by Mel’nikov [8,9] and Meshkov and Mel’nikov
[10]. Before explaining the details of their calculations, however, a description of
Langer’s general theory [13] of the decay of metastable states that is inter alia

the generalization of the IHD Kramers rate to a multidegree of freedom system is
given. The importance of this result that holds when energy-controlled diffusion
processes may be neglected is that it is equivalent [2] to a multidimensional TST
rate in which the dissipative motion is modeled in the entire phase space of the sys-
tem. Moreover, Langer’s escape rate formula may be obtained as a particular case
(static friction) of multidimensional TST in the entire phase space of a metastable
system coupled bilinearly to a bath of harmonic oscillators representing the ef-
fect of friction on the metastable system in question as treated by Pollak [18].
Returning now to the calculations of Mel’nikov [8,9] and Mel’nikov–Meshkov
[10] that essentially rely on the original model of Kramers, the transformation
for low damping, of the Klein–Kramers equation, into an energy–action diffusion
equation is described in detail and its Green function is obtained. The Green func-
tion represents g(E|E′) the (Gaussian) transition probability that the energy of the
lightly damped particle alters from E′ to E in one cycle of the periodic motion
infinitesimally close to the separatrix energy at the top of the well. It is in general
sharply peaked since E ≈ E′ meaning of course that the motion is deterministic so
that the Green function becomes a delta function. The Gaussian kernel is then used
(considering at first an isolated well) via the principle of superposition to construct
an integral equation for the probability f (E) per unit time of finding a particle
with energy E in the barrier region near a classical turning point of the trajectory
of the undamped librational motion of a particle in the well with energy equal to
the barrier energy [2,8]. This equation may be solved by the Wiener–Hopf method
ultimately yielding an expression for the underdamped escape rate in terms of a
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depopulation factor expressing the phenomenon of the depletion (via thermal fluc-
tuations [8]) of the population of the upper energy regions of the well occurring
in the underdamped regime. It is then postulated in ad hoc fashion by Mel’nikov
[8] (since the upper bound of both underdamped and IHD escapes is the TST rate)
that the underdamped result may be extended to all values of the dissipation by
simply multiplying it by the IHD escape rate. The trenchant criticisms (whereby
the energy loss per cycle in the unstable normal mode of the combined particle
and bath rather than that in the particle coordinate should be used) of this proce-
dure embodied in Ref. [12] are then briefly reviewed and explained. In conclusion
of the classical treatment (in accordance with the purposes of this chapter), the
asymptotic escape rates calculated via the (asymptotic) turnover approach [8–10]
for a representative number of disparate systems as detailed in the list of contents,
are compared with those yielded by the corresponding classical Fokker–Planck
equation.

In the quantum case (to paraphrase Mel’nikov [8]) in contrast to the escape
rate for the classical regime where one starts from the Fokker–Planck equation
we must instead specify the Hamiltonian of the entire system consisting of the
particle and its heat bath recalling that one is interested in the escape rate for a
system exhibiting viscous friction in the classical regime. In itself this condition
is insufficient to define the entire system in a unique way. However, it is enough to
determine the particle action that is obtained by integrating over the bath variables.
This condition [8] is vital because then all models of the heat bath are equivalent
as far as Ŵ is concerned provided they can reproduce the same Langevin equation
in the classical limit.

Now Mel’nikov [8,9] proceeds in the manner of Kramers by using two different
models of the bath. In the underdamped regime, he includes the interaction of a
particle with a Boson bath by incorporating a term linear in the particle coordinate
describing the effects of the (Johnson–Nyquist) noise (which is Gaussian) on the
Hamiltonian (operator) of the particle. However, each quantum particle by its very
nature now presents a range of possible quantum states as well as the thermal dis-
tribution of a huge assembly of such particles over a range of the possible states.
The classical transition probability in energy space or Green function that forms
the kernel of the integral equation for f (E), therefore, must be replaced by the sta-
tistical density matrix (stemming from the evolution operator for the state vector)
that includes both thermal and quantum effects. Hence, we can no longer calculate
the Green function via the Fokker–Planck equation transformed to energy–action
variables. Nevertheless, to determine the leading quantum corrections to the escape
rate in the underdamped regime we may use the semiclassical approximation based
on the JWKB (Green–Liouville) approximation [8,19] whereby the energy levels
in the vicinity of the barrier are distributed quasicontinuously. Thus, the matrix
elements of both the position x̂ and the evolution 	̂ operators in the interaction
representation may be represented in terms of the Fourier transform of the classical
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trajectory. This is the essence of the method proposed by Larkin and Ovchinnikov.
Their calculations ultimately yield an integral equation for the population of es-
caping quantum particles f (E), where the kernel contains the quantum reflection
factor for an inverted parabolic barrier as well as the Green function that is to be
identified with the statistical density matrix calculated via the evolution operator 	̂

in the appropriate semiclassical approximation. The function f (E) now represents
the quantum probability distribution of the escaping particles and is valid of course
only at temperatures above the critical temperature [20] at which the parabolic ap-
proximation to the barrier fails. The integral equation for f (E) differs from the
classical one in two vital respects because (a) it includes the reflection factor for
the inverted parabolic barrier and (b) the Green function must be calculated in a
semiclassical manner. This was accomplished by Larkin and Ovchinnikov by es-
sentially starting from the expression for the undamped classical trajectory of the
librational motion in the well of a particle with energy equal to the barrier energy.
The amplitude of a quantum transition from a state E′ to E (recall that E ≈ E′)
in one cycle of the periodic motion under the influence of the noise may then be
formally written down using the interaction picture in terms of the matrix elements
of the time ordered system-bath operator 	̂(t) specifying the evolution of the state
vector from state E′ to E. Hence, the Green function may also be formally written
down. Thus, by using the semiclassical approximation for the matrix elements of
	̂ in the presence of the noise and averaging over the thermal distribution using the
centered Gaussian properties of the Johnson–Nyquist quantum noise, we have a
closed integral form for the Green function. This is rendered as the inverse Fourier
transform of the characteristic function of the energy distribution. Now this Green
function unlike the classical one always involves the quantum transition probabil-
ity (Fermi’s Golden Rule) for the position operator in the presence of the noise
in the first order of perturbation theory. Thus, unlike the classical case where the
Green function is canonical in the sense that the sole (Kramers) parameter is the
ratio of the action of the undamped periodic motion at the saddle energy to the
thermal energy, the parameters of the quantum Green function depend on integrals
involving the precise nature of the potential essentially because the semiclassical
matrix elements are always involved.1,2

1 It should be noted that the integral equation for f(E) is still of the Wiener–Hopf type and may be

solved just as the classical case to yield the quantum escape rate in the semiclassical approximation

in terms of a depopulation factor. However, the result is considerably more complicated than in the

classical case because of the calculation of the matrix elements that is required for each particular

potential.
2 Having implicitly determined the population f(E) of escaping particles, the escape rate or inverse

of the lifetime of a quantum particle in the well may then be written down by integrating the energy

distribution function multiplied by the quantum penetration or transmission factor for a parabolic

barrier.
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The most important practical consequence of the latter considerations is that
in the classical case the depopulation factor, irrespective of the potential, is al-
ways essentially rendered in the same integral (or canonical) form. In contrast in
the quantum case although a formal expression for the depopulation factor exists
it must be calculated explicitly for each particular case using the semiclassical
matrix elements giving rise to much more complicated calculations. These con-
siderations of course refer to the underdamped regime. In the overdamped regime,
Mel’nikov [8] assumed that the thermal bath is represented by a string (or trans-
mission line) coupled to the particle and tightened in a direction perpendicular
to the direction of motion of the particle. He then calculates the effective action
of the particle as coupled to the string enabling him to determine the equilibrium
distribution function and the density matrix using path integrals and thus, the IHD
quantum rate at temperatures above the critical temperature where the inverted
oscillator approximation to the barrier potential fails. However, the much simpler
approach to the calculation of the IHD quantum rate due to Pollak [18] that is
based on the recognition that the IHD rate is simply the TST rate in the entire
phase space will be used here. Having determined both the quantum depopulation
factor and the IHD rate, Mel’nikov [8] then used the same ad hoc assumption
concerning the product of the IHD rate and the quantum depopulation factor to
obtain a semiclassical expression for the escape rate that is valid for all values
of the dissipation to the bath for a particle in an isolated well. Simultaneously he
gave a variety of results for particles in periodic potentials and so on. As men-
tioned above, we shall attempt to give the details and an appraisal of the various
high-temperature quantum calculations. Moreover, just as we have accomplished
in the classical case we shall compare the results yielded by the depopulation
factor method with the perturbation solution obtained from quantum master equa-
tions based on Wigner’s phase space representation of quantum mechanics in
the appropriate order of perturbation theory in Planck’s constant and the inverse
temperature.

II. ESCAPE RATE FOR CLASSICAL BROWNIAN MOTION

A. Review of the Kramers’ Results: Escape Rate from a

Single Isolated Well

1. Kramers’ Escape Rate Theory

The origin of modern reaction rate theory stems from the 1880s when Arrhenius
[1–5] proposed, from an analysis of the experimental data, that the rate coefficient
in a chemical reaction should obey the law

Ŵ = ν0 e−�V (4)
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Figure 1. Single-well potential

function as the simplest example of

escape over a barrier. Particles are ini-

tially trapped in the well near the point

A by a high-potential barrier at the

point C. They are thermalized very

rapidly in the well. Due to thermal ag-

itation, however, very few may attain

enough energy to escape over the bar-

rier into region B, from which they

never return (a sink of probability).

The barrier C is assumed large to en-

sure that the rate of escape of particles

is very small.

where �V denotes the dimensionless (i.e., in units of kBT) threshold energy for
activation and v0 is a prefactor [3]. After very many developments summarized
in Ref. [2], this equation led to the concept of chemical reactions, as an assembly
of particles situated at the bottom of a potential well and subjected to thermal
agitation. Rare members of this assembly attain enough energy to escape over the
potential hill due to the shuttling action of the thermal agitation and never return
[2] (see Fig. 1), so constituting a model of a chemical reaction.

The escape over the potential barrier represents the breaking of a chemical
bond [2]. The Arrhenius law for the escape rate Ŵ (reaction velocity in the case of
chemical reactions) of particles that are initially trapped in a potential well at A,
and that may subsequently, under the influence of thermal agitation, escape over
a high barrier of height �V at C and never return to A, may be written using TST
[2,4] as

ŴTST =
ωA

2π
e−�V (5)

Here, the attempt frequency, ωA, is the angular frequency of a particle executing
small oscillations about the bottom of a well. The barrier arises from the potential
function of some external force, which may be electrical, magnetic, gravitational,
and so on. The formula represents an attempt frequency times a Boltzmann factor,
which weighs the escape from the well. We emphasize [4] that ŴTST does not
depend on the coupling between the molecules and their environment and depends

only on the parameters that characterize the equilibrium distribution. A simple
and transparent derivation of Eq. (5) in terms of the forward flux at the transition
state x = xC is given by Nitzan [4] who remarks that Eq. (5) yields the correct TST
rate provided that V(x) is taken as the effective potential of the reaction coordinate.

9



120

In other words, V(x) is the potential of mean force along this coordinate when all
other degrees of freedom are in thermal equilibrium at any given point on it.

Now the generalization of Eq. (5) to an (N + 1)-dimensional system with a
separable and additive Hamiltonian has also been described by Nitzan [4] and is

ŴTST =
1

2π

(

N
∏

i=0

ωA,i

/ N
∏

i=1

ωC,i

)

e−�V (6)

Here, ωA,i are the angular frequencies of the modes that diagonalize the Hessian

of the potential in the vicinity of the well bottom xN+1
A , where xN+1 designates the

collection of coordinates (x0, x1, . . ., xN ) while ωC,i are the angular frequencies of

the modes that diagonalize the Hessian at the saddle point xN+1
C . We emphasize

that the product of frequencies in the denominator of Eq. (6) is over the stable

modes associated with the saddle point C. Thus, the imaginary frequency ωC

associated with the unstable barrier-crossing mode along the reaction coordinate
is excluded so that the TST rate is given [2] in terms of the product of all stable mode
frequencies at the minimum and the inverse product of stable mode frequencies at
the saddle point. Now [4] if the unstable mode associated with this coordinate can
also be identified in the vicinity of the well bottom and has frequency ωA,0 say
then we may write [4]

ŴTST =
ωA,0

2π
e−FC/(kBT ) (7)

where the activation free energy (dxN = dx1, . . ., dxN )

FC = −kBT ln

∫

dxN e
−V
(

xN+1
)

= W(xC,0) = T (kB �V − SC) (8)

and

SC = kB ln

(

N
∏

i=1

ωA,i

ωC,i

)

(9)

where SC is the entropic component of the activation free energy. These conclusions
which emphasize that we are dealing with a free energy surface associated with
a free energy barrier directly follow from writing Eq. (6) in the effective one-
dimensional form of Eq. (7). Equations (6)–(9) are of the upmost importance in
the generalization of the intermediate to high damping Kramers escape rate to
many dimensions due to Langer [13] (see Section II.A.4). Here, the problem is
equivalent to a multidimensional TST where the dissipative motion is modeled in
the complete phase space of the system whereby one treats explicitly the coupling
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to the bath degrees of freedom as accomplished by Pollak [18]. For this purpose
Eq. (6) is commonly rewritten (details in Ref. [2]) in the form

ŴTST =
kBT

2π�

Z#

Z0
e−�V (10)

where

Z0 =
N
∏

i=0

kBT

�ωA,i

, Z# =
N
∏

i=1

kBT

�ωC,i

(11)

are the harmonic approximations to the well and saddle partition functions, re-
spectively. Thus, the (harmonic) TST rate is simply the ratio of partition functions
at the transition state and reactants [21].3

Since a large part of this chapter will be concerned with quantum effects in
reaction rate theory, it is appropriate at this juncture to refer to the quantum gen-
eralization of Eq. (5) (details in Ref. [20]). We have

Ŵ ≈
ωA

2π
� e−�V (12)

where

� =
ωC

ωA

sinh
[

�ωA/(2kBT )
]

sin
[

�ωC/(2kBT )
] = 1 +

1

24

[

(

�ωC

kBT

)2

+
(

�ωA

kBT

)2
]

+ · · · (13)

is the quantum correction to the classical TST result. It should be noted that the
quantum correction factor� represents an effective lowering of the potential barrier
so enhancing the escape rate [20]. An important feature of Eq. (12) is that the
prefactor diverges at a crossover temperature TC given by TC = �ωC/(2πkB). The
divergence occurs because the parabolic (or inverted oscillator) approximation
for the potential is only valid near the top of the barrier. However, at very low
temperatures T ≪ TC, where the particle is near the bottom of the well, the parabolic
approximation to the barrier shape is not sufficient (see [22, Chapter 12]). On the
other hand, for T > TC transitions near the top of the barrier dominate, so that the
parabolic approximation is accurate [20]. Equation (13) was derived [20] using
the Wigner function method. The simplest way of deriving it is, however, to recall
[22] that the escape rate may be written as

Ŵ = Z−1
A

∞
∫

−∞

w(E)e−E/(kBT )dE (14)

3 The foregoing approach is generally referred to as harmonic transition state theory.
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where

w(E) =
[

1 + e2π(VC−E)/�ωC

]−1
(15)

which is the exact quantum transmission (penetration) coefficient (ignoring dissi-
pation) of a parabolic barrier [23]. Hence,

Ŵ =
�ωC

2ZA sin
[

�ωC/(2kBT )
]e−VC/(kBT ) (16)

Furthermore, near the bottom of the well the partition function ZA is approximated
by that of a harmonic oscillator so that

ZA ∼
π�

sinh
[

�ωA/(2kBT )
]e−VA/(kBT ) (17)

Hence, we have Eq. (12). The quantum correction to the exponential factor in
Eq. (12) was essentially obtained by Wigner [24]. The multidimensional gener-
alization of (12) where at the transition state we have N real oscillators with fre-
quencies ωC,j , j = 1, . . ., N and one imaginary frequency oscillator with frequency
ωC,0 is [2]

Ŵ =
ωC,0

2π

sinh
[

�ωA,0/(2kBT )
]

sin
[

�ωC,0/(2kBT )
]

⎛

⎝

N
∏

j=1

sinh
[

�ωA,j/(2kBT )
]

sinh
[

�ωC,j/(2kBT )
]

⎞

⎠ e−�V (18)

Returning to the classical case it seems that a very unsatisfactory feature of TST
is that it predicts escape in the absence of coupling to a heat bath in contradiction
to the fluctuation–dissipation theorem. This is so because TST relies entirely [4]
on the concept of equilibrium flux calculated, for example, on the basis of the
Maxwellian velocity distribution through a carefully chosen surface that often
provides a good approximation to the observed nonequilibrium rate. Moreover, for
high-energy barriers, this procedure is often so successful that dynamical effects
lead to relatively small corrections. Nevertheless, this defect was remedied and
reaction rate theory was firmly set in the framework of nonequilibrium statistical
mechanics by the pioneering work of Kramers [15]. He chose [in order to take
into account nonequilibrium effects in the barrier-crossing process that manifest
themselves as a frictional dependence (i.e., a coupling to the heat bath of the
prefactor in the TST formula)] as a microscopic model of a chemical reaction,
a classical particle moving in a one-dimensional potential (see Fig. 1). The fact
that a typical particle is embedded in a heat bath is modeled by the Brownian
motion. This represents (essentially through a dissipation parameter) in the single-
particle distribution function, all the remaining degrees of freedom of the system
consisting of the selected particle and the heat bath, which is in perpetual thermal
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equilibrium at temperature T. In the Kramers model [1,2,15], the particle coordinate
x represents the reaction coordinate (i.e., the distance between two fragments
of a dissociated molecule—a concept first introduced by Christiansen [1,2] in
1936). The value of this coordinate, xA, at the first minimum of the potential
represents the reaction state, the value, xB, significantly over the summit of the well
at B (i.e., when the particle has crossed over the summit) represents the product

state, and the value, xC, at the saddle point, represents the transition state. We
remark that in his calculations of 1940, Kramers [3,15] assumed that the particles
are initially trapped in a well near the minimum of the potential at the point A.
They then receive energy from the surroundings so that a Maxwell–Boltzmann
distribution is rapidly attained in the well. Over a long period of time, however,
rare particles gain energy in excess of the barrier height �V. Kramers then assumed
that these particles escape over the barrier C (so that there is a perturbation of the
Maxwell–Boltzmann distribution in the well) and reach a minimum at B, which
is of lower energy than A, and once there, never return. We list the assumptions
of Kramers:

(1) The particles are initially trapped in A (which is a source of probability).

(2) The barrier heights are very large compared with kBT (Kramers takes kB to
be 1).

(3) In the well, the number of particles with energy between E and E + dE is
proportional to exp

[

−E/(kBT )
]

dE, that is, a Maxwell–Boltzmann distri-
bution is attained extremely rapidly in the well.

(4) Quantum effects are negligible.

(5) The escape of particles over the barrier is very slow (i.e., is a quasistationary
process) so that the disturbance to the Maxwell–Boltzmann distribution
(postulate 3) is almost negligible at all times.

(6) Once a particle escapes over the barrier it practically never returns (i.e., B

is a sink of probability).

(7) A typical particle of the reacting system may be modeled by the theory of
the Brownian motion, including the inertia of the particles.

It is worth mentioning here that assumption 5 above relies heavily on assumption
2. If the barrier is too low, the particles escape too quickly to allow a Boltzmann
distribution to be set up in the well. On the other hand, if the barrier �V is high,
before many particles can escape, the Boltzmann distribution is set up. As required
by postulate 3, we assume, therefore, that �V is at least of the order, say, 5.

The model, which yields explicit formulas for the escape rate for very low and
intermediate to high dissipative coupling to the bath (so including nonequilib-
rium effects in the TST formula), is ubiquitous in any physical system in which
noise-activated escape from a potential well exists. It has recently attained new
importance in connection with fields as diverse as dielectric relaxation of nematic
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liquid crystals [25], magnetic relaxation of fine ferromagnetic particles [26], laser
physics [27,28], and Josephson junctions [16].

Kramers’ objective was to calculate the (dynamical) prefactor μ in the escape
rate, namely,

Ŵ = μ ŴTST = μ
ωA

2π
e−�V (19)

from a microscopic model of the chemical reaction. Now a microscopic model of
the reacting system incorporating dissipation (namely, an assembly of Brownian
particles in a potential well) is used to determine the nonequilibrium part μ of
the prefactor. Thus, μ indicates that the prefactor is closely associated both with
the stochastic differential equation underlying the Brownian motion, that is, the
Langevin equation for the evolution of the random variables (position and momen-
tum constituting the state vector) and the associated probability density diffusion

equation describing the evolution of the density of the realizations (phase points)
of these random variables in phase space. This as we show is the FPE, which like
the Boltzmann equation, is a closed equation for the single-particle probability
density function (PDF).

Now by considering the quasistationary solution of the Klein–Kramers (FPE)
equation, Kramers discovered two asymptotic formulas for the escape rate out of
a well for the single degree of freedom system governed by the Langevin equation
for a particle moving along the x-axis under the influence of a potential V(x). The
first is the IHD formula (or spatially controlled diffusion rate)

ŴIHD =
{[

1 + β2
/(

4ω2
C

)]1/2 − β/(2ωC)
}

ŴTST (20)

where ωC is the characteristic frequency of the inverted oscillator approximation to
the potential V(x) in the vicinity of the barrier and β = s

m
. In the IHD formula, the

correction μ to the TST results in the prefactor of Eq. (19) is essentially the positive
eigenvalue (characterizing the unstable barrier-crossing mode) of the Langevin
equation associated with the Klein–Kramers equation (however omitting the noise)
linearized about the saddle point of the potential V(x). In the case considered
by Kramers, this is a one-dimensional maximum. A further discussion of this is
given later.

Equation (20) formally holds [3], when the energy loss per cycle of the motion
of a particle librating in the well with energy equal to the barrier energy EC, is
significantly greater than kBT.

The energy loss per cycle of the motion of a barrier-crossing particle is βS(EC),
where EC is the energy contour through the saddle point of the potential and S is
the action evaluated at the barrier energy E = EC. This criterion effectively follows
from the Kramers very low damping result (see below). The IHD asymptotic
formula is derived by supposing
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(i) that the barrier is so high and the dissipative coupling to the bath so strong
that a Maxwell–Boltzmann distribution always holds at the bottom of the
well and

(ii) that the Langevin equation may be linearized in the region very close to
the summit of the potential well, meaning that all the coefficients in the
corresponding Klein–Kramers equation are linear in the positions and ve-
locities.

If these simplifications can be made, then the Klein–Kramers equation, although
it still remains an equation in the two phase variables (x, p), may be integrated by
introducing an independent variable that is a linear combination of x and p so that
it becomes an ordinary differential equation in a single variable.

A particular case of the IHD formula is VHD, where Ŵ from Eq. (20) becomes

ŴVHD =
ωC

β
ŴTST =

ωAωC

2πβ
e−�V (21)

Here, the quasistationary solution may be obtained directly in integral form by
quadratures by using the Smoluchowski equation [3,4] for the evolution of the
configuration space density and the high-barrier limit of the solution (which is
appropriate to the escape rate) may be found by the method of steepest descents.

For small friction β (such that βS(EC) ≪ kBT ), however, the IHD formula fails
predicting just as the TST formula, escape in the absence of coupling to the bath

because [3] the tacit assumption that the particles approaching the barrier from
the depths of the well are in thermal equilibrium (so that the stationary solution
applies) is violated (due to the smallness of the dissipation of energy to the bath).
Thus, the spatial region of significant departure from the Maxwell–Boltzmann
distribution in the well extends far beyond the region, where the potential may be
sensibly approximated by an inverted parabola.

Kramers showed how his second formula valid in the VLD case, where the
energy loss per cycle βS(EC) of a librating particle is very much less than kBT , may
be obtained by again reducing the Klein–Kramers equation to a partial differential
equation in a single spatial variable. This variable is the energy or, equivalently,
the action. Here, the noisy energy trajectories associated with an escaping particle
are almost closed, that is, almost periodic so that they differ but little from those of
the undamped librational motion in a well with energy corresponding to the saddle
energy �V or EC. Kramers then solved the VLD problem by writing the Klein–
Kramers equation in angle–action (or angle–energy) variables (the angle is the
phase or instantaneous state of the system along an energy trajectory) and taking
a time average of the motion along a closed energy trajectory infinitesimally close
to the saddle energy trajectory. Thus, by dint of thermal fluctuations, the (noisy)
trajectory (i.e., during a round trip of the well) may become the separatrix or the
open trajectory on which the particle exits the well. Now the average, being along a
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trajectory, is, of course, equivalent to an average over the fast phase variable. Thus,
a diffusion equation in the slow energy (or action) variable emerges meaning of
course that the purely streaming trajectories characteristic of the undamped motion
that are governed by the single-particle Liouville equation now diffuse in energy
space due to the action of the noise. Now, once again, the time derivative of the
distribution function (when the latter is written as a function of the energy using
the averaging procedure above) is exponentially small at the saddle point. Hence,
the stationary solution in the energy variable may be used [3,4]. This procedure
yields the Kramers’ VLD formula (or energy-controlled diffusion rate)

ŴVLD =
βS(EC)

kBT
ŴTST =

ωA

2π

βS(EC)

kBT
e−�V (22)

This formula holds when in Eq. (19) μ ≪ 1, that is, βS(EC) ≪ kBT and unlike
the TST result vanishes when β → 0, so that escape is impossible without coupling
to the bath. Thus, in all cases, analytical formulas for the escape rate rest on the
fact that, in the relevant damping regimes, the Klein–Kramers equation may be
reduced to an equation in a single coordinate.

In summary, the VLD formula demonstrates that escape is impossible in the
absence of coupling to the bath. Likewise, if the coupling to the bath is very large,
the escape rate vanishes. Kramers made several estimates of the range of validity
of both IHD and VLD formulas and the intermediate (or moderate) damping (ID)
regime where the TST Eq. (5) holds with a high degree of accuracy. He was,
however, unable to give a formula in the underdamped regime lying between
IHD and VLD, as there βS(EC) ≈ kBT so that no small perturbation parameter
now exists. In essence, this problem, known as the Kramers turnover, essentially
represents the interplay between purely energy and purely spatially controlled
diffusion (when neither mechanism wholly dominates) and was solved in intuitive
fashion nearly 50 years later by Mel’nikov [8] and Mel’nikov and Meshkov [10] and
rigorously elaborated upon in Refs [12,29]. They constructed an integral equation
for the evolution of the energy distribution function that they solved using the
Wiener–Hopf method [3,30,31] and so obtained an escape rate formula that is
valid for all values of the friction β, namely,

Ŵ = A (�) ŴIHD (23)

where the Kramers dissipation parameter � = βS(EC)/(kBT ) is the energy loss
per cycle of a particle librating with energy equal to the barrier energy and

A(�) = exp

⎛

⎝

1

2π

∞
∫

−∞

ln

[

1 − e
−�
(

λ2+1/4
)

]

dλ

λ2 + 1/4

⎞

⎠ (24)
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is called the depopulation factor [32] because the flow across the barrier leads to a
depopulation of the upper energy regions in the well. Moreover, such a depletion
effect dominates the escape rate for very weakly damped systems because the small
coupling to the bath ensures substantial deviations from the Boltzmann distribution
in the well [32].

2. Range of Validity of the IHD and VLD Formulas

The IHD escape rate ŴIHD in the limit of vanishing friction becomes the TST result
Eq. (5). Such behavior is, however, inconsistent [3] with the assumptions made
in the derivation of ŴIHD and instead this limit yielding ŴTST should be termed
intermediate damping. The correct formula is Eq. (19). Indeed

ŴVLD =
βS(EC)ωA

2πkBT
e−�V (25)

In order for Eq. (25) to hold, β must be small compared with ωA (underdamp-
ing). If β = 2ωA, we have aperiodic damping, and we might expect that there would
be a plentiful supply of particles near the point C, thus the escape rate would be
described by the IHD formula. Kramers [15], however, confesses (cf. Fig. 2) that
he was unable to extend Eq. (25) to values of β that were not small compared
with 2ωA, that is, in the crossover (turnover) region between VLD and IHD and a

fortiori to the entire underdamped region.
The approximate formula, Eq. (25), for the escape rate in the VLD limit is

useful for the formulation of a criterion in terms of the barrier height for the ranges
of friction in which the VLD and IHD Kramers formulas are valid. Using as an
approximation, the harmonic oscillator action SC = 2π �V/ωA, Eq. (25) becomes

Ŵ = ŴVLD =
β �V

kBT
e−�V (26)
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Figure 2. Diagram of damp-

ing regions for the prefactor μ

in Eq. (19). Three regions exist,

namely, VLD, intermediate damp-

ing (ID) (TST), and VHD, and two

crossovers between them. Kramers’

turnover refers to the underdamped

region between ID and VLD.
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Furthermore, if we define a dimensionless friction parameter α = 2πβ/ωA,
Eq. (26) becomes

Ŵ =
α �V

kBT
ŴTST (27)

so that α �V is approximately the energy loss per cycle. Hence, the condition
for the validity of the VLD Eq. (26) becomes α �V ≪ kBT , while one would
expect the IHD formula to be valid if α �V ≥ kBT . The damping α �V ≈ kBT

defines the crossover region, where neither VLD nor IHD formulas are valid. This
criterion serves to define the Kramers turnover region and is the reason behind
the calculation of Mel’nikov and Meshkov mentioned above. We shall now give a
physical interpretation of the three regions identified above.

We may summarize the existing results as follows. In the mechanical Kramers
problem pertaining to point particles and by extension to rigid bodies, which all
have separable and additive Hamiltonians, three regimes of damping appear:

(i) Intermediate to High Damping or Spatially Controlled Diffusion. The gen-
eral picture here [3] being that inside the well the distribution function is
almost the Maxwell–Boltzmann distribution prevailing in the depths of the
well. However, near the barrier it deviates from that equilibrium distribu-
tion due to the slow draining of particles across the barrier. The barrier
region is so small in extent that one may approximate the potential in this
region by an inverted parabola.

(ii) Very Low Damping or Energy-Controlled Diffusion. Here, the damping
is so small that the assumption involved in (i) namely that the particles
approaching the barrier region have the Maxwell–Boltzmann distribution
completely breaks down. Thus, the region where deviations from it occur
extends far beyond the region where the potential may be approximated
by an inverted parabola. Thus, we may now, by transforming the Klein–
Kramers equation into energy and phase variables [by averaging over the
phase and by supposing that the motion of a particle attempting to cross
the barrier is almost conserved and is the librational motion in the well of a
particle with energy equal to the barrier energy] obtain the escape rate. We
remark that the assumption of almost conservative behavior (meaning that
the energy loss per cycle is almost negligible and is equal to the friction
times the action of the undamped motion at the barrier energy) ensures
that the Liouville (conservative) term in the Klein–Kramers equation van-
ishes by the principle of conservation of density in phase. This is quite
unlike IHD where strong coupling between the diffusion and the Liouville
term exists. Thus, only the diffusion term in the energy variable remains
(the dependence on the phase having been eliminated by averaging the
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distribution in energy-phase variables along a closed trajectory of the en-
ergy since we assume a librational motion in the well).

(iii) An intermediate (crossover) friction region and by extension almost the
entire underdamped region, where neither IHD nor VLD formulas apply.
Thus, none of the above approaches may be used. In contrast to the VLD
case, the Liouville term in the Klein–Kramers equation does not now van-
ish, meaning that one cannot average out the phase dependence of the
distribution function, which is ultimately taken account of by constructing
from the Klein–Kramers equation a diffusion equation for the PDF with
the energy and action as variables. This energy diffusion equation allows
one to express the calculation of the energy distribution function at a given
action, as a Fredholm integral equation that can be converted into one (or
several) Wiener–Hopf equation(s) [3]. This procedure yields an integral
equation for the depopulation factor, the product of which with the IHD
escape rate [cf. Eq. (23)] provides an expression for the escape rate, which
is valid for all values of the damping, so allowing the complete solution
of Kramers’ problem. The depopulation factor derived from the Wiener–
Hopf equation effectively allows for the coupling between the Liouville
term and the dissipative term in the Klein–Kramers equation written in
terms of energy–action variables, which is ignored in the VLD limit.

The Kramers theory may be verified numerically for high potential barriers by
calculating the smallest nonvanishing eigenvalue of the Klein–Kramers equation
[3]. This procedure is possible because of the exponential smallness of the escape
rate, so that, in effect, that eigenvalue is very much smaller than all the higher order
ones, which pertain to the fast motion inside the well. Thus, the Kramers escape
rate is approximately given by the smallest nonvanishing eigenvalue if the barrier
height �V is sufficiently large >5. This method has been extensively used [14,16]
to verify the Kramers theory, in particular its application to magnetic relaxation
of single-domain ferromagnetic particles (see Section II.H). We shall now briefly
summarize the extension of the spatially controlled diffusion Kramers theory to
many dimensions due to Langer [13] as his calculations are fundamental both in the
application of the Kramers theory to superparamagnetism and in the calculation
of the quantum IHD rate.

3. Extension of Kramers’ Theory to Many Dimensions in the IHD Limit

The original IHD treatment of Kramers pertained to a mechanical system of
one degree of freedom specified by the coordinate x with additive Hamiltonian
H = p2/2m + V (x). Thus, the motion is separable and described by a 2D phase
space with state variables (x, p). However, this is not always so. For example,
the motion of the magnetic moment in a single-domain ferromagnetic particle is
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governed by a nonadditive and nonseparable Hamiltonian, which is simply the
magnetocrystalline anisotropy energy of the particle. The Gilbert equation gov-
erning the relaxation process also causes multiplicative noise terms to appear,
which complicates the calculations of the drift and diffusion coefficients in the
Fokker–Planck equation (see [14]).

The phase space (librational) trajectories in the Kramers problem of the under-
damped motion are approximately ellipses. The corresponding trajectories in the
magnetic problem are much more complicated because of the nonseparable form
of the energy. Similar considerations hold in the extension of the Debye theory of
dielectric relaxation (see [14]) to include inertia as then one would usually (albeit
with a separable Hamiltonian) have a six-dimensional phase space corresponding
to the orientations and angular momenta of the rotator. These, and other consider-
ations, suggest that the Kramers theory should be extended to a multidimensional
phase space.

Such generalizations, having been instigated by Brinkman [33], were further
developed by Landauer and Swanson [34]. However, the most complete treatment
is due to Langer in 1969 [13], who considered the IHD limit. As specific examples
of the application of the theory, we shall apply it to the Kramers IHD limit for
particle and later to superparamagnets.

Before proceeding, we remark that a number of other interesting applications
of the theory, which, as the reader will appreciate, is generally concerned with the
nature of metastable states and the rates at which these states decay, have been
mentioned by Langer [13] and we briefly summarize these. Examples are

1. A supersaturated vapor [35] that can be maintained in a metastable state for
a very long time but that will eventually undergo condensation into the more
stable liquid phase.

2. A ferromagnet, which can persist with its magnetization pointing in a direc-
tion opposite to that of an applied magnetic field.

3. In metallurgy, an almost identical problem occurs in the study of alloys whose
components tend to separate on aging or annealing.

4. The final examples quoted by Langer are the theories of superfluidity and
superconductivity, where states of nonzero superflow are metastable and so
may undergo spontaneous transitions to states of lower current and greater
stability.

According to Langer [13], all the phase transitions above take place via the
nucleation and growth of some characteristic disturbance within the metastable
system. Condensation of the supersaturated vapor is initiated by the formation of a
sufficiently large droplet of the liquid. If this droplet is big enough, it will be more
likely to grow than to dissipate and will bring about condensation of the entire
sample. If the nucleating disturbance appears spontaneously as a thermodynamic
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fluctuation it is said to be homogeneous. This is an intrinsic thermodynamic prop-
erty of the system and is the type of disturbance described by Langer [13], which
we shall summarize here. The other type of nucleation is inhomogeneous nucle-

ation and occurs when the disturbance leading to the phase transition is caused by
a foreign object, an irregularity, for example, in the walls of the container or some
agent not part of the system of direct interest.

The above examples have been chosen in order to illustrate the breadth of ap-
plicability of the theory. For example, Langer’s method, since it can be applied to
a multidegree of freedom system, is likely to be of much use in calculating relax-
ation times for fine particle magnetic systems in which other types of interaction,
such as exchange and dipole–dipole coupling, also appear. We also emphasize that
Langer’s treatment of the homogeneous nucleation problem contains within it the
magnetic case of the Kramers’ IHD calculation. The multidimensional Kramers
problem was first solved in the VHD limit by Brinkman [33] and Landauer and
Swanson [34], see also [3]. Also Langer’s treatment constitutes the generalization
of Becker and Döring’s calculation [35] of the rate of condensation of a super-
saturated vapor. A general discussion of this problem is given in Chapter 7 of
Frenkel [36] on the kinetics of phase transitions.

4. Langer’s Treatment of the IHD Limit

For easy comparison with previous work, we shall adopt the notation of Ref. [3].
Thus, we shall consider the Fokker–Planck equation for a multidimensional process
governed by a state vector {�} that is [2,13]

∂

∂t
ρ({�}, t) =

2N
∑

i=1

2N
∑

n=1

∂

∂ηi

Min

[

∂E

∂ηn

+ kBT
∂

∂ηn

]

ρ({�}, t) (28)

In Eq. (28), E({�}) is a Hamiltonian (energy) function having two minima at
points A and B separated by a saddle point C surrounded by two wells. One, say
that at B, is at a much lower energy than the other. The particles have to pass
over the saddle point, which acts as a barrier at C. We again assume that the
dimensionless barrier height �V = (EC − EA)/(kBT ) is very high (at least of the
order of 5) so that the diffusion over the barrier is slow enough to ensure that a
Maxwell–Boltzmann distribution is established and maintained near A at all times.
The high barrier also assures that the contribution to the flux over the saddle point
will come mainly from a small region around C. The 2N state variables {�} =
{η1, η2, . . . , η2N} are parameters, which could be the coordinates and momenta
of a point in phase space or angular coordinates describing the orientation of
the magnetization vector of a single-domain ferromagnetic particle. Generally,
however, the first N of the ηi ’s will be functions of the N coordinates of position [2]

ηi = η(xi), i = 1, 2, . . . , N (29)
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The second N of the ηi ’s will be the conjugate momenta π(xi) taken at the same
points:

ηi+N = π(xi), i = 1, 2, . . . , N (30)

In fact, the ηi ’s will often (although they need not) be the coordinates themselves;
in which case (obviously) ηi = xi, i = 1, 2, . . . , N. Here, when the noise term
in the Langevin equation is ignored, the system evolves in accordance with the
deterministic equation

η̇i = −
∑

n

Min

∂E

∂ηn

(31)

where Mij are the matrix elements of the transport matrix M, which, for simplicity,
we shall assume to be constant. An example of such a system is the translational
Brownian motion of a particle in a potential in the IHD limit.

We may define the matrices D and A by the equations

D = (M + MT)/2 (32)

and

A = (M − MT)/2 (33)

where M = (Mij) is the transport matrix resulting from Eq. (31) and the symbol
T means matrix transposition. The matrix D is called the diffusion matrix, which
characterizes the thermal fluctuations due to the heat bath while the matrix A

describes the motion in the absence of the bath, that is the inertial term in the case
of mechanical particles, and if D is not identically zero, then the dissipation of
energy satisfies [2]

Ė = −
∑

i,n

∂E

∂ηi

Din

∂E

∂ηn

≤ 0 (34)

We consider, as before, a single well and suppose that at finite temperatures a
Maxwell–Boltzmann distribution is set up and the density at equilibrium is

ρeq({�}) =
1

Z
e−E({�})/(kBT ) (35)

where

Z ≡
∞
∫

−∞

...

∞
∫

−∞

e−E/(kBT )dη1 · · · dη2N (36)
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is the partition function. The IHD escape rate for this multivariable problem may
be calculated by the flux over population method.

We make the following assumptions about ρ({�}):

1. It obeys the stationary Fokker–Planck equation (i.e., ρ̇ = 0), which is (on
linearization about the saddle point)

∑

i,n

∂

∂ηi

Min

[

∑

k

enk

(

ηk − ηS
k

)

+ kBT
∂

∂ηn

]

ρ({η}) = 0 (37)

where the ejk are the coefficients in the Taylor expansion of the energy about
the saddle point truncated at the second term, namely the quadratic (form)
approximation

E({�}) = EC − (1/2)
∑

i,n

ein

(

ηi − ηC
i

)(

ηn − ηC
n

)

, {�} ≈ {�C} (38)

and EC is the value of the energy function at the saddle point (compare
Kramers’ method above, there the saddle point is a one-dimensional maxi-
mum). Equation (38) constitutes the paraboloidal approximation to the po-
tential in the vicinity of the saddle point. For example, in magnetic relaxation
in a uniform field with uniaxial anisotropy, the energy surface in the vicinity
of the saddle point will be a hyperbolic paraboloid [37]. Equation (37) is
the multidimensional Fokker–Planck equation linearized in the region of the
saddle point.

2. Due to the high barrier just as in the Kramers high damping problem, a
Maxwell–Boltzmann distribution is set up in the vicinity of the bottom of the
well, that is, at A, so

Ė = −
∑

i,n

∂E

∂ηi

Din

∂E

∂ηn

≤ 0 (39)

ρ({�}) ≈ ρeq({�}), {�} ≈ {�A} (40)

3. Practically, no particles have arrived at the far side of the saddle point so that
we have the sink boundary condition

ρ({�}) = 0, {�} beyond {�C} (41)

This is Kramers’ condition that only rare particles of the assembly cross the
barrier. Just as the Klein–Kramers problem for one degree of freedom, we
make the substitution

ρ({�}) = g({�})ρeq({�}) (42)
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(the function g is known as the crossover function). Thus, we obtain from
Eqs. (35) and (37) an equation for g, namely,

∑

i,n

Mni

[

−
∑

k

enk

(

ηk − ηC
k

)

− kBT
∂

∂ηn

]

∂g

∂ηi

= 0 (43)

where {�} ≈ {�C}. We postulate that g may be written in terms of a single
variable u, namely,

g(u) = (2πkBT )−1

∞
∫

u

e−z2/(2kBT )dz (44)

and we assume that u has the form of the linear combination

u =
∑

i

Ui

(

ηi − ηC
i

)

(45)

This is essentially Kramers’ method of forcing the multidimensional
Fokker–Planck equation into an equation in a single variable u (in his original
case, a linear combination of the two variables, position and velocity, so that
u = p − ax′). We must now determine the coefficients Ui of the linear com-
bination u of the ηj . This is accomplished as follows. We define the matrix
M̃ = −MT. Then we shall have the coefficients Ui of the linear combination
as a solution of the eigenvalue problem

−
∑

i,n

UiM̃inenk = λ+Uk (46)

The eigenvalue λ+ is the deterministic growth rate of a small deviation

from the saddle point, and is the positive eigenvalue of the system matrix
of the noiseless Langevin equations, linearized about the saddle point. It
characterizes the unstable barrier-crossing mode. Thus, in order to calculate
λ+, all that is required is a knowledge of the energy landscape and Eq. (46)
need not in practice be involved. Equation (46) is obtained essentially by
substituting the linear combination u, that is, Eq. (45), into Eq. (43) for the
crossover function and requiring the resulting equation to be a proper ordinary
differential equation in the single variable u with solution given by Eq. (44)
(the details of this are given in Ref. [3]). Equation (46) may also be written
in the matrix form

−UT M̃EC = λ+UT (47)
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(Hänggi et al. [2] describe this equation by stating that UT is a “left eigen-
vector” of the matrix −M̃EC. The usual eigenvalue equation of an arbitrary
matrix A is AX = λX. In the above terminology, X would be a “right eigen-
vector” of A). In Eq. (47), EC ≡ (eij) is the matrix of the second derivatives
of the potential evaluated at the saddle point that is used in the Taylor expan-
sion of the energy near the saddle point. The determinant of this (Hessian)
matrix is the Hessian itself. The normalization of Ui is fixed so that

λ+ =
∑

i,n

UiMinUn (48)

which is equivalent to

∑

i,n

Uie
−1
in Un = −1 (49)

This condition ensures that the crossover function, Eq. (44), retains the form
of an error function and so may describe diffusion over a barrier. Alterna-
tively, one may say that the foregoing conditions require that the entry in
the diffusion matrix in the direction of flow (i.e., the unstable direction) is
nonzero, that is, we have current over the barrier and so particles escape the

well.

Now the Fokker–Planck equation (28) is a continuity equation for the represen-
tative points just as described earlier so that

∂ρ

∂t
+ ∇·J = 0 (50)

Thus by inspection, we find that the current density becomes

ji = −
∑

n

Min

[

∂E

∂ηn

+ kBT
∂

∂ηn

]

ρ (51)

and we obtain, using Eqs. (35), (43) and (44) for the stationary current density,
that is, ∂ρ/∂t = 0,

ji({η}) =
1

√
2π

∑

n

MinUnρeq({�})e−u2/(2kBT ) (52)

We now take advantage of the condition stated above that the flux over the barrier
emanates from a small region around the saddle point C. We integrate the current
density over a plane containing the saddle point but not parallel to the flow of
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particles. The plane u = 0 will suffice here. The total current, that is, the flux of
particles, is

J =
∑

i

∫

u=0

ji({�})dSi (53)

Using Eq. (53) with the quadratic approximation of Eq. (38) for the energy near
the saddle point, the integration for the total flux (current) now yields after a long
calculation [3]:

J ≈
1

2πZ

∑

i,j

UiMijUj

∣

∣

∣

∣

∣

∣

∑

i,j

Uie
−1
ij Ujdet

(

(2πkBT )−1EC
)

∣

∣

∣

∣

∣

∣

−1/2

e−EC/(kBT ) (54)

From Eqs. (48) and (49), we immediately obtain

J =
λ+

2πZ

∣

∣

∣
det
(

(2πkBT )−1EC
)∣

∣

∣

−1/2
e−EC/(kBT ) (55)

Now, we assume that the energy function near the bottom of the well A may
again be written in the quadratic approximation

E = EA +
1

2

∑

i,j

aij

(

ηi − ηA
i

)(

ηj − ηA
j

)

(56)

and we write EA =
(

aij

)

so that the number of particles in the well is [3]

nA =
{

det[(2πkBT )−1EA]
}−1/2

Z−1 (57)

Now the escape rate Ŵ, by the usual flux over population method [1,2], is defined
to be Ŵ = J/nA and so from Eqs. (55) and (57) in terms of the unique positive
eigenvalue λ+ of the set of noiseless Langevin equations linearized about the saddle
point, we have

Ŵ =
λ+
2π

√

det{EA}
∣

∣det{EC}
∣

∣

e−(EC−EA)/(kBT ) = λ+
ωA,0

2π

(

N
∏

i=1

ωA,i

/ N
∏

i=1

ωC,i

)

e−�V

(58)

which is Langer’s [13] expression in terms of the Hessians of the saddle and well
energies for the escape rate for a multidimensional process in the IHD limit. The
result again pertains to this limit because of our postulate that the potential in
the vicinity of the saddle point may be approximated by the first two terms of its
Taylor series. Thus, once again, Eq. (58) fails for very small damping because the
region of deviation from the Maxwell–Boltzmann distribution prevailing in the
depths of the well extends far beyond the narrow region at the top of the barrier
in which the potential may be replaced by its quadratic approximation. In passing,

26



137

we remark that rate theory at weak friction is generally known as “unimolecular
rate theory” [2] the VLD limit of Kramers treated earlier being an example of this.
For a general discussion, see Ref. [2].

In addition with regard to Eq. (58), Langer obtained the imaginary part of the
equilibrium free energy of a metastable state evaluated using steepest descents in
terms of the Hessians of the saddle and well energies, namely,

ImJ

kBT
=

1

2

√

det{EA}
∣

∣det{EC}
∣

∣

e−�V (59)

Hence, we have the important relation

Ŵ =
λ+
π

Im J

kBT
(60)

As well put by Hänggi et al. [2], the generalization of the Kramers rate due to
Langer is then equivalent [cf. Eq. (6)] to a multidimensional TST rate where the
dissipative motion is modeled in the entire phase space of the system, that is,
one treats explicitly the coupling to the bath degrees of freedom as was accom-
plished by Pollak [18]. Thus, Langer’s expression is the TST rate in the complete
phase space, that is, with all degrees of freedom included. We also remark that
λ+ the eigenvalue associated with the unstable barrier-crossing mode effectively
represents a renormalized barrier frequency that is known [2] as the Grote–Hynes
frequency.

5. Kramers’ Formula as a Special Case of Langer’s Formula

As an example of Langer’s method, we shall use it to derive the IHD result of
Kramers. To recover the Kramers formula, Eq. (20), by Langer’s method, we take
N = 1, thus the state variables are the position and momentum so that η1 = x and
η2 = p. The noiseless Langevin equations are

ẋ =
p

m
, ṗ = −βp −

dV

dx
(61)

Here, V denotes the potential energy and β = ζ/m is the friction coefficient.
Because

∂E

∂p
=

p

m
,

∂E

∂x
=

dV

dx
(62)

where E = p2/(2m) + V (x), Eq. (61) can be rewritten as

η̇1 =
∂E

∂η2
, η̇2 = −mβ

∂E

∂η2
−

∂E

∂η1
(63)
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Hence, we have the equation of motion in terms of the state variables (η1, η2) of
the general case of Langer’s method above as

(

η̇1

η̇2

)

= −

(

0 −1

1 mβ

)(

∂E/∂η1

∂E/∂η2

)

(64)

where the transport matrix M is

M =
(

Mij

)

=

(

0 −1

1 mβ

)

(65)

Here, we can take the saddle point C as the origin, so ηC
1 = 0 and EC = 0. The

momentum of a particle just escaping is zero also, so ηC
2 = 0. Thus, we have the

energy in the vicinity of the saddle point

E = −
mω2

Cη2
1

2
+

η2
2

2m
(66)

We now determine λ+. We have from Eqs. (64) and (66) the linearized noiseless
Langevin equation (which will have as general solution a linear combination of an
exponentially growing mode and an exponentially decaying mode)

(

η̇1

η̇2

)

=

(

0 1

−1 −mβ

)(

∂E/∂η1

∂E/∂η2

)

=

(

0 1

−1 −mβ

)(

−mω2
Cη1

η2/m

)

=

(

0 1/m

mω2
C −β

)(

η1

η2

)

(67)

or

�̇ = A�, A =

(

0 1/m

mω2
C −β

)

(68)

with secular equation

det(A − λI) = 0 (69)

We, thus, solve the secular equation, namely, λ(λ + β) − ω2
C = 0, to find

λ± = ±
√

ω2
C + β2/4 − β/2 (70)
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We pick the upper sign so that the solution (which is now always positive) corre-
sponds to the unstable barrier-crossing mode, hence

λ+ =
√

ω2
C + β2/4 − β/2 (71)

Now the Hessian matrices of the saddle and well energies are given by

EC =

(

mω2
C 0

0 −1/m

)

and EA =

(

mω2
A 0

0 1/m

)

(72)

Thus, the Hessians are given by det{EC} = −ω2
C and det{EA} = ω2

A and so

√

det{EA}
/ ∣

∣det{EC}
∣

∣ = ωA/ωC (73)

The escape rate is then

Ŵ =
λ+ωA

2πωC

e−�V =
ωA

2π

[
√

1 +
β2

4ω2
C

−
β

2ωC

]

e−�V (74)

Equation (74) is Kramers’ IHD Eq. (20). We will return to Langer’s method when
we discuss magnetic relaxation in Section II.H.

B. Kramers’ Turnover Problem

We have briefly mentioned that the VLD Eq. (22) is of particular significance in
that it clearly demonstrates that escape is impossible in the absence of coupling
to the bath. Similarly, if the coupling to the bath is very large, the escape rate
becomes zero. Kramers, in his original paper made several estimates of the range
of validity of both IHD and VLD formulas and the region in which the TST the-
ory embodied in Eq. (5) holds with a high degree of accuracy. We saw, however,
that he was unable to give a formula in the Kramers turnover region between
IHD and VLD, as there βS(EC) ≈ kBT so that no small perturbation parameter
now exists. Here, the coupling between the Liouville and dissipative terms in the
Klein–Kramers equation enters so that one may no longer ignore the Liouville
term as was done in the very low damping regime. We also stated that this prob-
lem, named the Kramers turnover, was solved in ad hoc fashion nearly 50 years
later by Mel’nikov and Meshkov [8,10]. They constructed an integral equation for
the evolution of the energy distribution function in the vicinity of the separatrix
that they solved using the Wiener–Hopf method [30,31] and so obtained a simple
integral formula for the escape rate Ŵ bridging the VLD and IHD solutions. Now
both the IHD and the VLD rates, already derived using two completely differ-
ent approaches, are invalid in the Kramers turnover region and almost the entire
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underdamped regime βS(EC) ≤ kBT between ID (TST) and VLD. The nomen-
clature turnover or crossover follows because in IHD the prefactor of the escape
rate is inversely proportional to the damping β while in VLD, where the coupling
between the dissipative and conservative terms in the Fokker–Planck equation is
ignored, it is directly proportional to it (cf. Fig. 2). Thus, it is intuitively clear that
the underdamped case requires its own mathematical technique accounting for the
coupling between these terms [8,10]. This was initiated by Iche and Nozières [38]
who showed that the Klein–Kramers equation can then be reduced to an inte-
gral equation. However, independently of them, Mel’nikov [8] (whose notation
we shall adhere to as far as possible) also proposed the reduction of that equa-
tion to an integral equation in the energy variable with a Gaussian kernel with
sole action parameter � = βS(EC)/kBT . Thus, just as in VLD the underdamped
Brownian particle moves in a potential well in an almost deterministic way, being
only slightly perturbed by the stochastic forces [10]. The total energy of the parti-
cle is again the most slowly varying quantity and we require only the unperturbed
trajectory corresponding to the absolute minimum energy needed to escape the
well. We then consider small perturbations of this undamped trajectory due to
thermal fluctuations.

The solution of the Kramers problem was then described in detail [8,10] both
for single- and double-well potentials (see Hänggi et al. [2] and Coffey et al. [3]
for reviews). For a single isolated well, the escape rate Ŵ is given by

Ŵ ∼ μŴTST (75)

where the prefactor μ is now given by

μ =
[
√

1 + β2/(2ωC)2 − β/(2ωC)

]

A(�) (76)

The Kramers parameter � = βS(EC)/kBT is the ratio of the energy loss per cycle
to the thermal energy of a librating particle with energy equal to the barrier energy,
and A(�) is a depopulation factor interpolating between the VLD and ID damping
regimes defined by Eq. (24). Thus, the coupling to the heat bath is absorbed into
the two factors in μ while ŴTST pertains to equilibrium properties of the system
and does not require knowledge of the dynamics. Here, the depopulation factor
A(�) effectively allows for the coupling between the Liouville and dissipative
terms, which is ignored in the VLD limit. In the VLD limit, � ≪ 1, A(�) → �

and so we regain the VLD escape rate while in the IHD limit A(�) → 1; thus, we
ultimately regain the VHD escape rate using Eq. (75). For a double-well potential
with two nonequivalent wells, the escape rate Ŵ is given by [10]

Ŵ ∼

(
√

1 +
β2

4ω2
C

−
β

2ωC

)

A(�1)A(�2)

A(�1 + �2)

(

ŴTST
1 + ŴTST

2

)

(77)
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where �i is the ratio of the energy loss per cycle to the thermal energy of a librating
particle having the barrier energy of well i and ŴTST

i are the respective TST escape
rates.

Equations (75) and (77) represent a complete solution of the Kramers turnover
problem for an isolated and a double well, respectively. Everywhere they rely
on the facts that one may rewrite the underdamped Klein–Kramers equation as a
diffusion equation with the energy and action as independent variables and that
the Green function is Gaussian. The energy distribution function for particles at
various positions in a potential well can then be found in integral form by su-
perposition. When complemented by boundary conditions, these integral relations
can be converted into an integral equation for the energy distribution function for
(potentially) escaping particles librating in a well at the barrier energy. The re-
sulting one-sided convolution equation with a Gaussian kernel is solved by the
Wiener–Hopf method [30,31] leading to an explicit expression for the escape rate
in the underdamped case. Moreover, the precise shape of the potential well only
enters the result via � that also governs the average energy of the escaping par-
ticles. It is then postulated that Eq. (75) that is valid for all damping regimes can
be written down by simply taking the product of the depopulation factor and the
Kramers IHD result. We remark that subsequently Grabert [29] and Pollak et al.
[12] have presented a more rigorous solution of the Kramers turnover problem
showing that Eq. (75) can be obtained without the ad hoc interpolation between
the VLD and ID regimes (details in Section II.B.4) postulated by Mel’nikov and
Meshkov [10].

Here, we shall indicate briefly how Eq. (75) may be derived and we shall
demonstrate how the VLD result follows naturally from it. Thus, we shall first
describe how the quasistationary Klein–Kramers equation, that is, with ρ̇ = 0,
may for weak damping be transformed into an energy–action diffusion equation.

We again consider the simplest example of the metastable state when the Brow-
nian particles having escaped over the barrier never return. The corresponding
single-well potential V (x) is shown in Fig. 3. We choose the zero of the potential
to be the barrier top (so that EC corresponds to E = 0) and as before the depth
of the well is �V ≫ 1 while the boundary condition limx→∞ρ(p, x, t) = 0 states
that initially no particles exist at the far side of the barrier (cf. Fig. 3). Furthermore,
the current of particles

J = m−1

∞
∫

0

pρ(x, p, t)dp (78)

calculated near the barrier top does not depend on x provided |V (x)|/(kBT ) ≪
�V . As before the conservation of the total number of particles of the ensemble
(continuity equation) Ṅ = −J yields the connection between the lifetime τ = Ŵ−1
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Figure 3. Escape from a single

well.

of a particle in the well and the current. Normalizing the distribution ρ to one
particle in the well, we have

Ŵ = J (79)

which we shall use to calculate Ŵ. In accordance with Kramers, we shall assume
that the flux over the barrier is due only to those particles having energy E in the
neighborhood of the barrier top (i.e., the separatrix region). Moreover, �V ≫ 1
and the friction induced energy loss per cycle � ≤ 1. Hence just as in VLD, the
total energy E = p2/(2m) + V (x) of a particle librating in the well is the most
slowly varying quantity, so we use it as a new variable in the Klein–Kramers
equation instead of the momentum while retaining the (relatively fast) position x

that will later be subsumed in an action variable. Here, the relevant quantity is the
quasistationary energy distribution function f (E) of particles with a possibility of
escaping because the decay rate Ŵ = τ−1 by the flux over population method is

Ŵ = J =
∞
∫

0

f (E)dE (80)

In effect f (E) represents [2] the probability per unit time of finding a particle
with energy E in the barrier region near a classical turning point of the trajectory in
the well. Equation (80) follows from Eqs. (78) and (79) for the number of particles
crossing the barrier in unit time, the fact that dE = p dp/m, and that in order for
a particle to escape its momentum must be positive. Mel’nikov’s method [8] of
calculation of f (E) and Ŵ = τ−1 that relies on the conversion of the quasistationary
Klein–Kramers equation in the barrier region to an equation in a single dependant
variable is as follows.
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1. Green Function of the Energy–Action Diffusion Equation

Mel’nikov’s procedure [8] for the evaluation of f (E) unlike that used by Kramers in
the VLD limit requires one to treat right- and left-going particles with respect to the
barrier, denoted by the suffixes R, L separately. First we note that the quasistationary
equation

dV

dx

∂ρ

∂p
−

p

m

∂ρ

∂x
+ β

∂

∂p

(

ρp + mkBT
∂ρ

∂p

)

= 0 (81)

may be represented in terms of position–energy coordinates {x, E} using the trans-
formations (for a comprehensive discussion of such transformations see [16])

∂

∂p
fR,L(x, p) = ±

√

2 [E − V (x)] /m
∂

∂E
fR,L(x, E) (82)

∂

∂x
fR,L(x, p) =

∂

∂x
fR,L(x, E) +

dV

dx

∂

∂E
fR,L(x, E) (83)

where we define the distribution functions for the right- and left-going particles as

fR = ρ(x, p) = ρ
(

x,
√

2m [E − V (x)]
)

and

fL = ρ(x, −p) = ρ
(

x, −
√

2m [E − V (x)]
)

Furthermore, we can set E = 0 in the relationship

p(x, E) = ±
√

2m [E − V (x)] ≈ p(x, 0) = ±
√

−2mV (x) (84)

because we have chosen the separatrix trajectory to effectively coincide with E = 0
(see Fig. 3) and we suppose that the leading contributions to the escape stem from
particles on trajectories very close to it in a narrow range of energy (skin) of order
kBT. Consider now the dissipative term in Eq. (81), namely,

β
∂

∂p

(

ρp + mkBT
∂ρ

∂p

)

≈
βp2(x, 0)

m

∂

∂E

[

ρ + kBT
∂ρ

∂E

]

(85)

where we have used Eq. (84). Thus, the quasistationary equation (81) becomes

p

m

∂ρ

∂x
−

dV

dx

∂ρ

∂p
=

β

m
p2(x, 0)

∂

∂E

(

ρ + kBT
∂ρ

∂E

)

(86)
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or in terms of fR,L(x, E) we now have the one-dimensional diffusion equation

∂fR,L

∂x
= ±β

√

−2mV (x)
∂

∂E

(

fR,L + kBT
∂fR,L

∂E

)

(87)

Now we define the action S(E) =
∮

E
p dx, where E denotes a closed contour with

energy E, pertaining to librational motion in the well via

dS

dx
= ±
√

2m [E − V (x)] ≈ ±
√

−2mV (x) (88)

recalling that inside the well V(x) is negative since the top of the well corresponds
to the zero of potential. Hence, Eq. (86) can be compactly represented as the
energy–action diffusion equation

∂fR,L

∂S
= β

∂

∂E

(

fR,L + kBT
∂fR,L

∂E

)

(89)

describing diffusion and uniform drift in energy space in the separatrix region
and so governing the noisy motion there. We remark that the notion of diffusion
of energy trajectories as a function of action is already explicit in the work of
Kramers.

The solution of Eq. (89) can be reduced to an integral equation using the prin-
ciple of superposition by first determining the Green function g(E, S|E′, 0) ≡
g(E − E′, S) (the transition probability in energy space). The Green function g is
the solution of the equation

∂g

∂S
= β

∂

∂E

(

g + kBT
∂g

∂E

)

(90)

subject to the initial condition g(E, 0|E′, 0) = δ(E − E′) [here we have dropped
the subscripts R, L, writing fR,L = g]. Defining the characteristic function g̃(λ, S)
by

g̃(λ, S) =
∞
∫

−∞

g(E − E′, S)eiλ(E−E′)/(kBT ) d(E − E′) (91)

where the random variable E − E′ denotes the alteration in energy during a round
trip (cycle) in the well, we have

g̃(λ, S) = exp
[

−βSλ (λ + i) /(kBT )
]

(92)

Furthermore, at λ − i/2, g̃ is real, namely,

g̃ (λ − i/2, S) = exp
[

−βS(λ2 + 1/4)/(kBT )
]

(93)
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Thus, the Green function g that represents the conditional probability that a par-
ticle leaving the barrier region with energy E′ will return to it with energy E is
given by [2]

g(E − E′, S) = (4πβkBTS)−1/2exp

[

−
(

E − E′ + βS
)2

4βkBTS

]

(94)

Equation (94) follows almost from intuitive considerations because for ex-
tremely weak damping the conditional PDF g is strongly peaked around E ∼ E′

due to the small loss of energy on the noisy trajectory infinitesimally close to the
undamped deterministic librational trajectory [2]. The solution of Eq. (89) for an
arbitrary initial distribution of energy f (E′, 0) is then given by the convolution
integral

f (E, S) =
∞
∫

−∞

f (E′, 0)g(E − E′, S) dE′ (95)

2. Integral Equation for the Distribution Function in Energy–Action Variables

Now in order to derive a closed integral equation for the distribution function
(population of escaping particles), we need additional information concerning V(x)
outside the barrier. By hypothesis these particles having surmounted the barrier
never return. Thus, in terms of the functions fR,L(E, x), we have outside the well,
that is, for E > 0 (because E = 0 defines the boundary of the well)

fL(E, 0) = 0 (96)

Conversely, close to the barrier the flux of left-going particles is simply due to
right-going particles with E < 0 reflected from the barrier so that inside the well,
that is, for E < 0

fL[E, x(E)] = fR[E, x(E)] (97)

Here, x(E) is the root of the equation of the separatrix V(x) = E, x1<x<0 cor-
responding of course to the right-hand turning point at a given energy E. Equa-
tions (96) and (97) constitute boundary conditions because (a) they relate fL to
fR for E < 0, (b) no left-going particles exist directly at the barrier top. Clearly
particles with different values of E are reflected at different values of position x(E).
However, for E ≈ kBT (the order of magnitude of a fluctuation), the variation in

the values of x(E) is small in size compared to the overall extent of the well in
other words the separatrix region is thin. Hence, one may assume that all such
particles propagate along (boundary layer) trajectories very close to the separatrix
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E = EC = 0. Thus, they can be described by the Green function (94) with S = S(0)
denoting the action per cycle of a particle librating in the well with energy equal
to the barrier energy, namely,

S(0) ≈
∫

EC

√

−2mV (x)dx = 2

0
∫

x1

√

−2mV (x)dx (98)

where EC now indicates that the line integral is to be taken along the separa-
trix (which of course constitutes [14] an open trajectory rather than the closed
trajectories of the librational motion in the well). The action S(0) is the basic pa-
rameter of the problem and has already appeared in our discussion of the VLD
result. The justification that S(0) may be used can be given as follows. We have if
|E| /(kBT ) ≪ �V (details of the lemma are given in Ref. [3])

S(0) − S(E) = |E/ωC| ln |kBT �V/E|

where ωC is the barrier frequency. This expression tends to zero in the limit of
small E.

We now return to the boundary conditions (96) and (97) and introduce following
Mel’nikov [8] the new function

f (E) = fR(E, 0), E>0, f (E) = fR[E, x(E)], E<0 (99)

with x(E) defined by the separatrix E = EC = 0. Clearly f (E) governs the escape
rate for E > 0 and the rate of reflection at the barrier for E < 0. Now the reflected
particles constitute a distribution of left-going particles fL. They flow to the left-
hand boundary of the well and are then reflected, thus fL becomes fR. They then
flow across the well once more and reproduce the distribution f (E). This is the
condition that must accompany the integral equation (95) in order that it should
become a closed integral equation for f (E). Clearly the evolution of the energy
distribution function in the vicinity of the separatrix is governed by the Green
function

g(E − E′, S) = (4πkBTδ)−1/2e−(E−E′+δ)2
/(4kBTδ) (100)

where δ = βS(0) is the energy loss in one cycle (i.e., per oscillation) of the libra-
tional motion in the well with energy equal to the barrier energy. We can now write
down by superposition our fundamental integral equation for the energy distribu-

36



147

tion function f (E) or population of particles with a possibility of escaping in the
form of the Wiener–Hopf equation [30,31]

f (E) =
0
∫

−∞

g(E − E′)f (E′)dE′ (101)

where g(E − E′) = g(E − E′, S). Note that because the exponential factor in
g(E − E′) decays so quickly we suffer no great error in replacing the lower limit by
−∞. This is important as otherwise the problem could not be posed as a Wiener–
Hopf equation. Furthermore, we have the boundary condition that deep in the well
f (E) must become the Maxwell–Boltzmann distribution, that is,

f (E) = f0(E) =
ωA

2πkBT
e(−E/(kBT ))−�V (102)

(here, we have noted that E ≈ −kBT �V + ω2
A(x − xA)2/2 near xA). Solving

Eq. (101) for f (E) yields from Eq. (80), the escape rate Ŵ effectively reducing to
the calculation of the depopulation factor A(�) expressing the fact that the density
at the barrier is no longer zero.

In order to evaluate A(�), we consider the Fourier transforms ϕ+ (λ) and ϕ− (λ)
defined as (so that λ is dimensionless)

ϕ±(λ) = (2π/ωA) e�V

∞
∫

−∞

U(±E)f (E) e(iλE)/(kBT ) dE (103)

where U(x) is Heaviside’s theta or step function. The functions ϕ+(λ) and ϕ−(λ),
which are the Fourier transforms of f (E) for E>0 and E<0, are analytical in
the upper and lower complex half-planes of λ with the only exception being the
pole of ϕ− (λ) at λ = −i. Using the boundary condition of a Maxwell–Boltzmann
distribution deep in the well, that is, Eq. (102), one may then approximate ϕ− (λ)
for |λ + i| ≪ 1 as

ϕ−(λ) ≈ −i/(λ + i) (104)

Clearly

ϕ+(0) =
2π

ωA

e�V

∞
∫

0

f (E) dE =
2π

ωA

Ŵ e�V (105)
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while by definition, cf. Eq. (80), in the underdamped region, where the prefactor
μ ≈ A, the escape rate Ŵ is given by

Ŵ ≈ A
ωA

2π
e−�V (106)

On comparing Eqs. (105) and (106), the prefactor A is

A = ϕ+(0) (107)

which shows how the depopulation factor may be determined from the character-
istic function of the energy distribution in the upper half-plane.

Now, with Eqs. (101) and (103), we have writing the Green function explicitly
and using the properties of Gaussian integrals

ϕ−(λ) + ϕ+(λ) =
2π

ωA

e�V

0
∫

−∞

∞
∫

−∞

f (E′)
√

4kBTβs
e−((E−E′+βs)2

/(4kBTβs)) e(iλE)/kBT dE dE′

=
2π

ωA

e�V e−((λ(λ+i)βs)/kBT )

0
∫

−∞

f (E′) e(iλE′)/kBT dE′ = g̃ (λ) ϕ− (λ)

(108)

where g̃ (λ) is given by Eq. (92).
In order to illustrate [8] how the Wiener–Hopf method [30,31] may be used to

determine A = ϕ+(0), we rewrite Eq. (108) as

ϕ+(λ) + G(λ)ϕ−(λ) = 0 (109)

where G(λ) = 1 − g̃(λ). The solution of Eq. (109) may now be determined in
terms of G(λ) as follows. We have from Eq. (109)

ln
[

−ϕ+(λ)
]

= ln ϕ−(λ) + ln G(λ) (110)

Next using Cauchy’s integral formula, we define two functions ln G+(λ) and
ln G−(λ) as

ln G±(λ) = ±
1

2πi
lim
ε→0

∞
∫

−∞

ln G(λ′)

λ′ − λ ∓ iε
dλ′ (111)

Both G+(λ) and G−(λ) are entire functions that have no zeros in the corresponding
half-planes Im λ > 0 and Im λ < 0. Moreover, both G+(λ) and G−(λ) → 1 as
λ → ∞ and G(λ) may be decomposed as

ln G(λ) = ln G+(λ) + ln G−(λ) (112)
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or G(λ) = G+(λ)G−(λ), so Eq. (109) may be rewritten as

ln
[

−ϕ+(λ)/G+(λ)
]

= ln
[

ϕ−(λ)G−(λ)
]

(113)

As the functions on both sides of Eq. (113) are analytical in the two different

half-planes of λ, both sides must be equal to an entire function that can be chosen
to satisfy the boundary condition Eq. (104) and that may be taken as ln h(λ) so that

ϕ+(λ) = −h(λ)G+(λ) and ϕ−(λ) = h(λ)/G−(λ) (114)

Now from Eq. (104), we have

h(λ) = −iG−(−i)/ (λ + i) (115)

yielding with Eqs. (114) the solution of the Wiener–Hopf equation (113), namely,

ϕ+(λ) =
iG+(λ)G−(−i)

λ + i
and ϕ−(λ) = −

iG−(−i)

G−(λ) (λ + i)
(116)

Thus, the prefactor A = ϕ+(0) is given by

A = G+(0)G−(−i) =
∣

∣G+(0)
∣

∣

2
(117)

since G−(−i) =
[

G+(0)
]∗

(the asterisk denotes the complex conjugate). This can
be verified by displacement of the contour of integration in Eq. (111) to the straight
line Im λ = −i/2. Thus, we have with the replacement λ′ → λ̄ − i/2 in Eq. (111)

ln G+ (0) =
1

2πi

∞
∫

−∞

ln G
(

λ̄ − i/2
)

λ̄ − i/2
dλ̄ (118)

where the shifted function

G
(

λ̄ − i/2
)

= 1 − g̃(λ̄ − i/2) = 1 − e
−�
(

λ̄2+1/4
)

is real [cf. Eq. (93)]. Thus using Eq. (118), we obtain the depopulation factor
Eq. (24), namely,

A (�) =
∣

∣G+ (0)
∣

∣

2 = e

1
2π

∞
∫

−∞

ln
{

1−exp
[

−�(λ2+1/4)
]}

λ2+1/4
dλ

(119)

One can show (details in Ref. [3]) that

A (�) ∼ � for � ≪ 1 and A (�) → 1 for � ≫ 1 (120)

so regaining the VLD and IHD results, respectively.
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3. Kramers’ VLD Result

Before proceeding, it will be instructive to present a method of regaining the
VLD result, Eq. (22) alternative to that of Kramers. In the VLD limit, the integral
equation (101) reduces to the differential equation

δ ∂E (f + kBT∂Ef ) = 0, δ ≪ kBT (121)

subject to the boundary condition f (0) = 0. The reduction may be accomplished
by noting that the derivative f ′(E) satisfies the same integral Eq. (101) as f (E)
itself [8] (see also [39]).

We now determine f (E) from Eq. (121) and then use it to calculate the VLD
escape rate. We have

f + kBT∂Ef = C′ (122)

where C′ is a constant to be determined. Because deep in the well we have the
Maxwell–Boltzmann distribution (102), the complete solution of Eq. (122) is

f (E) =
ωA

2πkBT
e−�V−E/(kBT ) + C′ (123)

We now stipulate that the boundary condition at the top of the well is f (0) = 0.
Thus, C′ = −(ωA/2πkBT )exp (−�V ) yielding

f (E) =
ωA

2πkBT

[

e−E/(kBT ) − 1
]

e−�V/(kBT ) (124)

The condition that the density of particles vanishes at the top of the barrier
is tantamount (cf. [40]) to ignoring the time to go from the critical or barrier
energy trajectory to the separatrix. Put more succinctly the 50/50 chance of the
particle returning to the well is replaced by zero chance of returning in VLD only.
Thus, in VLD only, all particles are absorbed at the barrier. This condition of
complete depopulation at the barrier is also used by Kramers when he explicitly
imposes (ρ eE/(kBT ))C ≈ 0. It must be justified rigorously as shown by Mel’nikov
[8] who by calculating the average energy of the escaping particles deduced that
f (0) ∼ ωAδ(kBT )−2exp (−�V ) that is negligible only in the VLD case. Now in
order to get the VLD escape rate from Eq. (121), we have to evaluate the current
at the barrier J, which is defined as

fδ + kBTδ ∂Ef = −J (125)

Now at the barrier top E = 0, f (0) = 0 so that J = −kBTδ ∂Ef = Ŵ, since we
have normalized to one particle in the well. Thus noting Eq. (124), we have the
Kramers VLD result, Eq. (22), that is perhaps a more convincing derivation than
that of Kramers.

40



151

4. Criticisms of the Ad Hoc Approach of Mel’nikov and Meshkov

The original calculations of Kramers have the disadvantage that the transmission
factor is determined by essentially two separate approaches that are valid for very
weak and high damping, respectively [29]. The results are then combined in an ad

hoc fashion to yield an interpolation formula valid in the entire range of damping
cf. Eqs. (23) and (24). Thus, it was realized by Grabert [29] and Pollak et al. [12]
that a unified treatment of the Kramers turnover problem was lacking.

Such a unified theory effectively initiated by Grabert is based on a normal mode
approach to dissipative dynamics that has its origin in the generalized Langevin
equation for the coordinate q, namely,

Mq̈ +
t
∫

0

η(t − t′)q̇(t′)dt′ +
∂V

∂q
= F (t) (126)

Here, the system coordinate q of effective mass M moves in a potential V (q),
experiences a friction kernel η(t) and a random force F (t), that originates from the
thermal motion of the liquid. The force F (t) is Gaussian and satisfies the second
fluctuation dissipation theorem

〈F (t)F (0)〉 = kBTη(t)

Kramers treated the problem in the Markovian limit, that is, η(t) = 2Mβδ(t), where
β is the static friction parameter usually taken to be proportional to the viscosity
of the fluid. The unified theory proposed by Grabert [29] and Pollak et al. [12]
is based on the normal mode approach to the dissipative dynamics described by
the generalized Langevin equation that may be described in two steps. The first
of these, as shown by Zwanzig [4,41], is to transform the generalized Langevin
equation into a Hamiltonian where the system is linearly coupled to a bath of
harmonic oscillators, that is, a transmission line. The second step [18,42,43] is
a transformation of the coordinates of the Hamiltonian to normal modes. Then
at a barrier one may uniquely identify the unstable normal mode associated with
the barrier crossing [13]. At energies close to the barrier height the normal mode
dynamics are virtually exact [18,21]. Hence, a multidimensional TST in the normal
mode coordinates can be used and is equivalent to the spatial diffusion limited
or IHD rate. The calculations leading to this result will be given later when we
discuss the quantum IHD rate. The nub of the approach of Pollak [18,21] and
Pollak et al. [12] is that the unstable normal mode decouples from the other modes
very near to the barrier allowing one to describe the problem by a single degree of
freedom stochastic process for the energy loss in the unstable normal mode. This
immediately yields the escape rate that is very similar to that obtained by Mel’nikov
and Meshkov [8,10]. However, two vital differences must be emphasized, namely,
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the theory of Grabert [29] and Pollak et al. [12] deals with the unstable normal

mode energy along the reaction and not the physical configuration coordinate.
Second, the theory is formulated for arbitrary (non-Ohmic) friction, so that it is
identical to that of Mel’nikov and Meshkov [8,10] only in the weak coupling
limit. However, it goes smoothly without any ad hoc assumptions to the correct
spatial diffusion IHD limit that is synonymous with the multidimensional TST
limit and of course with Ohmic damping being assumed. Specifically speaking the
loss of energy �E in the unstable normal mode now determines [2] the conditional
probability g(E|E′)dE (assuming high barriers) that a system leaving the barrier
region E′ in the unstable mode returns to the barrier with an energy lying between
E and E + dE. Hence, as before recalling that all calculations pertain to the barrier
region [2], the probability f (E) of finding the system in a region lying between
energy E and E + dE in the unstable normal mode, near a classical turning point is
given by the integral equation

f (E) =
EC
∫

0

g(E
∣

∣E′ )f (E′)dE′ (127)

Furthermore, as E → ∞, f (E) → 0 so that we may extend the domain of integra-
tion to infinity while deep in the well, that is, E/EC ≪ 1, f (E) has the equilibrium
value (note the difference with Eq. (90) of [10])

feq(E) =
ωAλ+

2πωCkBT
e−E/(kBT ) (128)

where λ+, which denotes the unstable normal mode angular frequency, is given by
(the Grote-Hynes frequency)

λ+ =
(

ω2
C + η̃2/4

)1/2
− η̃/2 (129)

where η̃ represents the Laplace transform of the friction kernel η(t) in the gener-
alized Langevin equation. Thus, in the approach of the unstable normal mode the
TST for linear coupling to a bath of harmonic oscillators [12] and so the dissipation
is essentially involved in the equilibrium distribution for the energy in the unstable

barrier-crossing mode and so in the boundary condition for Eq. (127). The escape
rate in terms of f (E) is as before

Ŵ =
∞
∫

EC

f (E) dE =
∞
∫

0

f (E) dE (130)
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since EC is zero for the isolated well configuration considered by Meshkov and
Mel’nikov. Their procedure then yields in the notation of [12]

Ŵ =
ωA

2π
e−EC/(kBT ) λ

+

ωC

exp

⎛

⎝

1

π

∞
∫

−∞

dy

1 + y2
ln
[

1 − e−�(1+y2)/4
]

⎞

⎠ (131)

where � now denotes the dimensionless energy loss associated with the unstable
normal mode coordinate that unlike in Ref. [10] does not in general coincide with
the energy loss along the physical particle coordinate. For � ≫ 1, Ŵ reduces to the
multidimensional TST value as incorporated in the boundary condition for f (E),
namely,

Ŵ =
ωA

2π

λ+

ωC

e−EC/(kT ) (132)

On the other hand, for � of the order of unity or smaller [2] the probability f (E)
per unit time now contains nonequilibrium effects giving rise to a transmission
factor <1 that is below that of the multidimensional TST value. Moreover, for
very low damping

Ŵ = ŴVLD = ŴTST
�

kBT
(133)

which reduces for the original Kramers model (Ohmic friction) to � = βS(EC),
that is, the energy-controlled diffusion result.

C. Applications of the Theory of Brownian Movement in a Potential

and of the Kramers Theory

Among the physical phenomena to which the theory has been applied are as
follows:

1. Current–voltage characteristics of the Josephson junction.

2. Mobility of superionic conductors.

3. Dielectric and Kerr-effect relaxation in liquids and nematic liquid crystals.

4. Linewidths in nuclear magnetic resonance.

5. Incoherent scattering of slow neutrons.

6. Cycle slips in second-order phase-locked loops.

7. Quantum noise in ring-laser gyroscopes.

8. Thermalization of neutrons in a heavy gas moderator.

9. Photoelectromotive force in semiconductors.

10. Rate coefficient in chemical reactions.
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11. Line shape of single mode semiconductor lasers.

12. Dynamics of a charged density wave condensate.

13. Dynamic light scattering.

14. Superparamagnetism (magnetization relaxation of nanoparticles).

15. Magnetic relaxation in ferrofluids.

16. Polymer dynamics.

17. Fluorescence depolarization,

18. Thermal noise in electrical circuits,

19. Diffusion magnetic resonance imaging, and so on.

For illustration, we shall consider below, as particular examples, the rotational
Brownian motion of a single axis rotator in a symmetrical and asymmetrical
double-well potential and the translational Brownian motion of a particle in a
symmetrical double-well and tilted periodic potential. Despite the assumptions
made, these simple models enable one to understand the physics of diffusion,
relaxation, and resonance in nonlinear stochastic systems.

D. Escape Rate for a Fixed Axis Rotator in a Double-Well Potential

1. Turnover Formula for the Escape Rate for Fixed Axis Rotation

The Brownian motion in a periodic potential is of interest in a multitude of physical
problems involving a relaxation process. Among the most prominent of these
are dielectric relaxation and the dynamic Kerr effect of nematic liquid crystals,
magnetic relaxation of single-domain ferromagnetic particles, dynamic response
of Josephson tunneling junctions, transport phenomena in semiconductors, and so
on [14,16,44]

Now this chapter is concerned with one of the most important characteristics
associated with the Brownian motion in a potential well, namely, the longest re-
laxation time or the time required to escape the well. The longest relaxation time is
essentially the inverse of the smallest nonvanishing eigenvalue λ1 of the character-
istic equation or secular determinant of the relevant dynamical system. Moreover,
if the overbarrier mode characterized by λ1 dominates the relaxation process as is
always so for symmetrical potential wells, the escape time (λ−1

1 ) will be closely
approximated in the high-barrier limit by the integral relaxation time. This time
is the area under the relaxation function of the appropriate dynamical variable
[14]. In linear response, the integral relaxation time is identical to the correlation
time of the corresponding autocorrelation function. However, for asymmetrical

potentials such as those arising from the imposition of a strong external field, it is
not always possible to identify the integral relaxation time with the escape time
[14]. As far as the calculation of λ1 is concerned, the secular equation may be
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generated by averaging the appropriate Langevin equation over its realizations
yielding the differential–recurrence equations governing the decay functions of
the system (which is analogous to the use of matrix mechanics in quantum the-
ory). Alternatively, one may expand the solution of the associated probability
density diffusion equation (usually the specialized form of the Fokker–Planck
equation known as the Klein–Kramers equation that applies to separable and addi-
tive Hamiltonians) in Fourier series in the position and velocity variables [14,16].
In each of the two methods, the secular determinant results from truncation of
the set of differential–recurrence relations at a number large enough to achieve
convergence of the resulting set of simultaneous ordinary differential equations.
Alternatively, if the problem is represented in the frequency domain so that the more
powerful continued fraction method may be used (which is very effective from a
computational point of view), many convergents must be taken [16,45]. Thus, the
smallest nonvanishing eigenvalue λ1 is not in general available in closed form as
it is always rendered as the smallest root of a high-order polynomial equation.
Hence, it is difficult to compare λ1 so determined with experimental observations
of the longest relaxation time or the relaxation rate. Fortunately (noting that λ1 for
sufficiently high barriers has exponential dependence on the barrier height), a way
of overcoming this difficulty is to utilize [14] the Kramers escape rate theory (for
reviews of applications of Kramers’ method, see Refs [2,3,37]).

We saw that Eq. (19) for the Kramers escape rate Ŵ (reaction velocity for
chemical reactions) pertains to a model of a chemical reaction where rare members
of an assembly of Brownian particles that are initially trapped in a potential well
at A (see Fig. 1) may subsequently under the influence of thermal agitation escape
over a high (�V ≫ 1) barrier at C and descend to the bottom of a very deep
potential well B and so never return to A. Thus, we model a chemical reaction
(ignoring quantum effects) by introducing a reaction coordinate x such that x = A

in species A and x = B in species B (the product state). The reaction is modeled by
thermally activated diffusion over the boundary C (the transition state) between
the two distinct states. The frequency ωA/2π that is the frequency of oscillation
of a particle in the potential well centered on A is called the attempt frequency.
The original Arrhenius equation that is obtained when μ = 1 (corresponding to
TST) assumes perpetual thermal equilibrium everywhere at temperature T. Thus,
no account is taken of nonequilibrium effects due to the leaking of particles over
the potential barrier at C. In reality the Maxwell–Boltzmann distribution no longer
holds in the vicinity of the transition state C because the fluctuation dissipation
theorem describing the coupling of the reacting particles to their surroundings or
heat bath is violated by the Arrhenius equation.

We also saw that Kramers [15] overcame this difficulty by writing the diffusion
equation (Klein–Kramers equation) in phase space describing the evolution of the
phase space distribution function underlying the Langevin equation for a Brownian
particle. He then obtained asymptotic solutions (the Kramers escape rate) for the

45



156

smallest nonvanishing eigenvalue λ1 of the Klein–Kramers equation in the limits
of very small and intermediate to high dissipative coupling to the bath. These
solutions, which are valid for high barriers (�V ≫ 1) so that the concept of an
escape rate is valid, provide closed form expressions for the reaction rate and its
inverse the longest relaxation time τ ≈ λ−1

1 that may be easily compared with
experiment.

We have mentioned that as far as the verification of the turnover formula of
Mel’nikov and Meshkov is concerned, few examples of exact calculations based
on either the solutions of the Klein–Kramers equation or the numerical simula-
tions of the Brownian dynamics exist. Exceptions include the comparison of the
turnover formula with the numerical results for the escape out of a single well,
which were given in Refs [46,47] (both based on path integrals) and the study
using the matrix continued fraction method of the one-dimensional translational
Brownian motion in a potential undertaken by Zhou [48], Ferrando et al. [49–51],
Coffey et al. [52,53], and so on. Another exception is the turnover treatment of
the same one-dimensional problem and its generalization to diffusion on a surface
that was undertaken by Pollak et al. in Refs [54–56] (where a comparison with
numerical simulation based on the Langevin equation is again given). Examples
of the treatment of rotational Brownian motion problems are even fewer. Coffey
et al. [57,58] have considered the one-dimensional rotational Brownian motion of
a fixed axis rotator in a potential. Moro and Polimeno [59], Pastor and Szabo [60],
and Kalmykov et al. [61,62] tested the Mel’nikov–Meshkov formula for a linear
molecule in a uniaxial potential. Furthermore, Kalmykov et al. [63] estimated the
reversal time of the magnetization of single-domain ferromagnetic particles pos-
sessing nonaxially symmetrical potentials of the magnetocrystalline anisotropy
using the results of Coffey et al. [3,64] who extended the depopulation factor cal-
culation to magnetic systems. (We remark that the magnetic relaxation problem
differs fundamentally from that of mechanical particles because the undamped
equation of motion of the magnetization of a single-domain ferromagnetic particle
is the gyromagnetic equation. Thus, the inertia plays no role; the part played by
inertia in the mechanical system is essentially mimicked in the magnetic system
for nonaxially symmetric potentials by the gyromagnetic term that gives rise to
the coupling or “entanglement” of the transverse and longitudinal modes.)

It is the purpose of this section to demonstrate that the Mel’nikov and Meshkov
turnover applied to the particular problem of the inertial Brownian motion of a
fixed axis rotator in a double-well cosine potential yields an accurate solution
for the longest relaxation time λ−1

1 for high barriers and for all values of the
dissipation. Such a potential allows the flipping of rotators to neighboring wells,
thus permitting both relaxation and oscillatory behavior in the same model. The
detailed description of the model (in the VHD or noninertial limit) is given in
Refs [14,65,66] in connection with site models of dielectric relaxation in molecular
crystals and polar liquids. The first attempts to include inertial effects (which are
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of importance in the rotation in the VLD region) were made in Refs [67–70].
These calculations are, however, only valid in a restricted range of values of the
dissipation parameter and it is only with the advent of the matrix continued fraction
method [57,71] that reliable results have become available for all values of the
dissipation parameter, including the VLD region [14,16]. Here, we calculate the
Kramers escape rate by the Mel’nikov–Meshkov asymptotic (in the sense that it
applies for high barriers) and universal (in the sense that it is valid for all values of
the damping) turnover formula and compare its inverse with the longest relaxation
time predicted by the exact matrix continued fraction solution of the underlying
Langevin equation. In the following section, we shall briefly review the derivation
of a universal formula for the Kramers escape rate as applied to Brownian rotation
in a double-well potential.

Our starting point is the Langevin equation for a dipole μ rotating about a fixed
axis [14]

Iφ̈(t) + Iβφ̇(t) +
dV

dφ
[φ(t)] = F (t) (134)

where I is the moment of inertia of a rotator about the axis of rotation, φ is the
angle specifying its angular position while Iβφ̇(t) and F(t) are the frictional and
white noise torques acting on it due to the Brownian motion arising from the heat
bath. It is assumed that the random torque F(t) has the white noise properties

F (t) = 0, F (t)F (t′) = 2kBTIβδ(t − t′)

Here, the overbar denotes the statistical average over a large number of rotators
that have at time t identical angular velocity φ̇ and identical angular position φ. In
accordance with the notation of Refs [14,16], we shall use the notation φ(t) and
φ̇(t) to denote the random variables while we shall denote their sharp (definite)
values or realizations at time t by φ and φ̇. The internal field due to molecular
interactions is represented by the twofold cosine potential (see Fig. 4)

V (φ) = V0[cos(2φ) − 1] = −2kBTσ sin2 φ (135)

where 2σ = 2V0/kBT is the barrier height parameter. The corresponding Klein–
Kramers (Fokker–Planck) equation for the joint PDF W(φ, φ̇, t) of the angle φ and
angular velocity φ̇ can be written as [14]

∂W

∂t
= LFPW (136)

where the Fokker–Planck operator LFP is given by [70]

LFPW = −φ̇
∂W

∂φ
+

1

I

dV

dφ

∂W

∂φ̇
+ β

(

∂

∂φ̇
(φ̇W) +

kBT

I

∂2W

∂φ̇
2

)

(137)
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Figure 4. Potential function V(φ)

from Eq. (135).

The first two terms on the right-hand side of Eq. (137) comprise the convective or
Liouville term describing in the absence of dissipation the undamped streaming
motion along the energy trajectories in phase space corresponding to Hamilton’s
equations. The last term (the diffusion term) represents the interchange of energy
(dissipative coupling) with the heat bath.

Since escape over the potential barrier generated by Eq. (135) is exponentially
slow for σ ≫ 1 (high barriers), we may consider the quasistationary distribution
W(φ, φ̇) that does not depend explicitly on the time. Thus, Eq. (136) can be rewrit-
ten as LFPW = 0 or

Iφ̇
∂W

∂φ
=

dV

dφ

∂W

∂φ̇
+ Iβ

(

∂

∂φ̇
(φ̇W) +

kBT

I

∂2W

∂φ̇
2

)

(138)

We shall now apply the Mel’nikov–Meshkov method to the potential given
by Eq. (135). Since our problem differs in detail from the translational Brownian
motion considered by them, we shall give a condensed version of the modifications
required in order to apply their method to the present problem. First, we note
that the particular Fokker–Planck equation given above may be represented in
terms of angle–energy (fast and slow variable) coordinates {φ, E} [where E =
Iφ̇

2
/2 + V (φ)] using the transformations [57]

∂

∂φ̇
f R,L(φ, p) = ±

√

2I[E − V (φ)]
∂

∂E
f R,L(φ, E) (139)

∂

∂φ
f R,L(φ, p) =

∂

∂φ
f R,L(φ, E) +

dV (φ)

dφ

∂

∂E
f R,L(φ, E) (140)
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where

f R(φ, E) = W(φ, φ̇) = W(φ,
√

2[E − V (φ)]/I) (141)

f L(φ, E) = W(φ, −φ̇) = W(φ, −
√

2[E − V (φ)]/I) (142)

The function f R gives the distribution of rotators rotating clockwise while the
function f L gives the distribution of rotators rotating anticlockwise. Thus, we
have from Eqs. (138)–(142)

∂f R,L

∂φ
= ±
√

2I[E − V (φ)]β
∂

∂E

[

f R,L + kBT
∂

∂E
f R,L

]

(143)

Furthermore, if we define the action s(φ) in the usual way as [2]

ds

dφ
= ±
√

2I[E − V (φ)] (144)

Equation (143) can compactly be rewritten as the energy–action diffusion equation
[3,57]

∂f R,L

∂s
= β

∂

∂E

[

f R,L + kBT
∂

∂E
f R,L

]

(145)

We emphasize that the solution of Eq. (145) will effectively represent Maxwell–
Boltzmann distributions deep in the wells of the potential given by Eq. (135) and
will differ from those distributions only in a relatively narrow region about the
top of the barrier. The behavior being analogous to the VLD case; however, the
angle (i.e., the fast variable) dependence of the function f given by the left-hand
side of Eq. (145) may not now be neglected near the top of the barrier (compare,
e.g., pages 538, 539 of Ref. [3]). Equation (145) has a formal solution using the
superposition principle as the convolution [3,57]

f R,L(s, E) =
∫

E

∫

s

gR,L(s − s′, E − E′)f R,L(s′, E′)ds′ dE′ (146)

where the kernel g(s, E) is the Green function given by Eq. (94) and the limits of
integration are determined by the boundary conditions for the functions f R(s, E)
and f L(s, E) [3,57]. We proceed as follows. Near the barrier, the flux of the left-
going particles inside the first well arises by reflection from the barrier of the
right-going particles with E < 0 (recall that E ≃ 0 is the barrier energy) and also
from the particles that have crossed over the barrier from the second well with E > 0
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(see Fig. 4). The same conditions hold for the second well yielding the following
relationship between f R

1,2 and f L
1,2 (subscripts 1 and 2 pertain to the wells)

f L
1 [φ′(E), E] = f R

1 [φ′(E), E]

f R
2 [φ′′(E), E] = f L

2 [φ′′(E), E], (E < 0)

f L
1 (0, E) = f L

2 (0, E)

f R
1 (0, E) = f R

2 (0, E), (E > 0)

where φ′(E) and φ′′(E) are the roots of the separatrix equations V1(φ′) = E and
V2(φ′′) = E, respectively. Particles with different energies E are always reflected at
different angles φ. For E ∼ kBT (the order of magnitude of a fluctuation), however,
this difference is small compared to the angular size of the potential well. Thus,
we may assume that such particles propagate along trajectories very close to the
barrier energy trajectory (defined by V1 = V2 = 0) and so can be described by
identical Green functions (94), namely,

gS(E) = g(S, E) =
1

√
4πkBTβS

exp

[

−
(E + βS)2

4kBTβS

]

(147)

where S = Si (i = 1, 2) and Si is the action in the ith well given by

S1 =
0
∫

−π

√

−2IV (φ)dφ = 4
√

IkBTσ, S2 =
π
∫

0

√

−2IV (φ)dφ = 4
√

IkBTσ

(148)
The complete system of integral equations is then

f R
i (E) =

∞
∫

−∞

[gS(E − E′)f L
i (E′)U(−E′) + gS(E − E′)f R

j (E′)U(E′)]dE′

(149)

f L
i (E) =

∞
∫

−∞

[gS(E − E′)f R
i (E′)U(−E′) + gS(E − E′)f L

j (E′)U(E′)]dE′

(150)
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(i, j = 1, 2 and i /= j), where U(x) is the Heaviside unit step function. The system
of four integral Eqs. (149) and (150) can be reduced to two namely

f1(E) =
∞
∫

−∞

[gS(E − E′)f1(E′)U(−E′) + gS(E − E′)f2(E′)U(E′)] dE′ (151)

f2(E) =
∞
∫

−∞

[gS(E − E′)f2(E′)U(−E′) + gS(E − E′)f1(E′)U(E′)] dE′ (152)

where f1(E) = f L
1 (E) + f R

1 (E) and f2(E) = f L
2 (E) + f R

2 (E). Equations (151)
and (152) indicate that two distinct contributions to f1 and f2 exist. One contribution
is from particles reflected from the barrier with distribution f1(E)U(−E) and
f2(E)U(−E) and the other is from particles that have crossed the barrier with
distributions f2(E)U(E) and f1(E)U(E).

Now, the escape rate Ŵ1 from the well 1 is (see Fig. 4)

Ŵ1 =
∞
∫

0

[

f L
1 (E) + f R

1 (E) − f L
2 (E) − f R

2 (E)
]

dE =
∞
∫

0

[

f1(E) − f2(E)
]

dE

(153)

Due to the equivalence of the wells 1 and 2, the escape rate Ŵ2 from the well 2 is
equal to Ŵ1. These escape rates are related to the lifetime τ of a particle by

τ−1 = Ŵ1 + Ŵ2 = 2Ŵ1 = 2

∞
∫

0

[f1(E) − f2(E)] dE (154)

Solving Eqs. (149) and (151) by the Wiener–Hopf method [57], as shown in
Appendix A, and using the solution so obtained to evaluate τ−1 from Eq. (154),
we have

τ−1 =
A2(�)

πηA(2�)

⎡

⎣

√

β′2

4
+

η2

I
|V ′′(0)| −

β′

2

⎤

⎦

[
√

V ′′(φ1)

|V ′′(0)|
eV (φ1)/(kBT )

+

√

V ′′(φ2)

|V ′′(0)|
eV (φ2)/(kBT )

]

(155)

51



162

where η =
√

I/2kBT is a characteristic time of the inertial motion, β′ = βη is the
dimensionless damping parameter,

V (φi)/(kBT ) = −2σ,
∣

∣V ′′(φi)
∣

∣/I =
∣

∣V ′′(0)
∣

∣/I = 2σ/η2

φi = φmini
(i = 1, 2) are the potential minima in the ith well and A(�) is the

depopulation factor defined by Eq. (24) with

� =
βS

kBT
= 4β′√2σ (156)

Thus, the longest relaxation time τ can now be compactly represented via the
turnover formula

τ =
A(2�)

A2(�)
τIHD (157)

where

τIHD =
πη

√

β′2 + 8σ − β′
e2σ (158)

is the longest relaxation time in the IHD limit. The leading factor on the right-hand
side of Eq. (157) is the correction to the IHD result due to Mel’nikov and Meshkov
[10]. If β′ → ∞, we have from Eqs. (120) and (157) the VHD formula

τVHD =
πηβ′

4σ
e2σ (159)

which is the result of Lauritzen and Zwanzig [65,66] (in our notation). In like
manner, in the VLD limit, β′ → 0, we have

τVLD =
πη

8β′σ
e2σ (160)

Since the potential is symmetrical, the longest relaxation time τ, Eq. (157),
can also be used to estimate the correlation time τ‖ of the equilibrium correlation
function C(t) of the longitudinal component of the dipole moment that for the
potential given by Eq. (135) is

C(t) =
〈sin φ(0)sin φ(t)〉0
〈

sin2φ(0)
〉

0

(161)
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(the angular brackets denote the equilibrium ensemble average). The correlation
time τ‖ is defined as the area under the curve of C(t), namely,

τ‖ =
∞
∫

0

C(t) dt (162)

The time τ‖ may equivalently be defined in terms of the eigenvalues (λk) of the
Fokker–Planck operator LFP from Eq. (137) because C(t) may be formally written
as the discrete set of relaxation modes

C(t) =
∑

k

ck e−λk t (163)

Thus, from Eqs. (162) and (163)

τ‖ =
∑

k

ck/λk (164)

where
∑

kck = 1. The correlation time τ‖ unlike the escape rate clearly contains
contributions from all the eigenvalues λk. In general, in order to evaluate C(t)
and τ‖, a knowledge of all the λk and ck is required. However, in the high-barrier

limit (σ ≫ 1), λ1 ∼ e−2σ ≪ λk and for symmetrical potentials c1 ≈ 1 ≫ ck(k /= 1)
[14,16] so that the approximation τ‖ ≈ 1/λ1 can be used. In other words, the
inverse of the smallest nonvanishing eigenvalue, that is, the longest relaxation
time closely approximates the correlation time for symmetrical potentials in the
low-temperature (high-barrier) limit.

2. Exact Matrix Continued Fraction Solution of the Langevin Equation

In order to calculate τ‖, we shall use matrix continued fractions as developed in
Ref. [57]. As shown there we can derive from the Langevin equation (134) the
following recurrence relation for the correlation functions cn,q(t), namely,

ηċn,q(t) + nβ′cn,q(t) +
iq

2

[

cn+1,q(t) + 2ncn−1,q(t)
]

− inσ
[

cn−1,q+2(t) − cn−1,q−2(t)
]

= 0 (165)

where

cn,q(t) =
〈

sin φ(0)Hn[ηφ̇(t)]e−iqφ(t)
〉

, (n ≥ 0, −∞<q<∞) (166)
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so that Im[c0,1(t)]/Im[c0,1(0)] = C(t), and Hn are the Hermite polynomials [72].
By Laplace transformation, we have from Eq. (165)

[

ηs + nβ′] c̃n,q(s) +
iq

2

[

c̃n+1,q(s) + 2nc̃n−1,q(s)
]

− inσ
[

c̃n−1,q+2(s) − c̃n−1,q−2(s)
]

= ηc0,q(0)δn0 (167)

because the initial conditions for cn,q(0) are c0,2q(0) = 0 and

c0,2q+1(0) =
〈

sin φ e−i(2q+1)φ
〉

=
∫ 2π

0 sin φ e−i(2q+1)φ e−σcos 2φ dφ
∫ 2π

0 e−σ cos 2φ dφ

= i(−1)q+1 Iq(σ) + Iq+1(σ)

2I0(σ)

where the In are the modified Bessel functions of the first kind of order n [72]; the
other cn,q(0) = 0 for n ≥ 1 because

〈

sin φHn(φ̇) e−iqφ
〉

= 0 for the equilibrium
Maxwell–Boltzmann distribution.

In order to solve Eq. (167), we introduce the column vectors

C̃1(s) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

...

c̃0,−2(s)

c̃0,−1(s)

c̃0,1(s)

c̃0,2(s)

...

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

and C̃n(s) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

...

c̃n−1,−2(s)

c̃n−1,−1(s)

c̃n−1,0(s)

c̃n−1,1(s)

c̃n−1,2(s)

...

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (n ≥ 2)

Now, Eq. (167) can be rearranged as the set of matrix three-term recurrence
equations

[

ηs + β′(n − 1)
]

C̃n(s) − Q+
n C̃n+1(s) − Q−

n C̃n−1(s) = ηδn1C1(0), (n ≥ 1)
(168)

where the column vector C1(0) and the matrices Q+
n and Q−

n are given in
Appendix B.1. By invoking the general method for solving the matrix recurrence
equation (168) [14], we have the exact solution for the spectrum C̃1(s) as a matrix
continued fraction, namely,

C̃1(s) = η�1(s)C1(0) (169)
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�n(s) is defined by the recurrence equation

�n(s) =
{[

ηs + β′(n − 1)
]

I − Q+
n �n+1(s)Q−

n+1

}−1

and I is the unit matrix. Having determined C̃1(s), we can evaluate

τ‖ = C̃(0) =
c̃0,−1(0) − c̃0,1(0)

c0,−1(0) − c0,1(0)
(170)

as well as the spectrum of the longitudinal correlation function C̃(ω)

C̃(ω) =
c̃0,−1(iω) − c̃0,1(iω)

c0,−1(0) − c0,1(0)
(171)

The matrix continued fraction solution [Eq. (168)] we have obtained is easily
computed. As far as practical calculations of the infinite matrix continued fraction
are concerned, we approximate it by a matrix continued fraction of finite order (by
putting �n+1 = 0 at some n = N). Simultaneously, we confine the dimensions of
the infinite matrices Q−

n , Q+
n , and I to a finite value M × M. Both N and M depend

on the dimensionless barrier (σ) and damping (β′) parameters and must be chosen
taking into account the desired degree of accuracy of the calculation. Both N and M

increase with decreasing β′ and increasing σ. For example, for σ = 6 (a relatively
high barrier = 12 kBT), N = 50 and M = 60 allows us to obtain six significant digits
for τ/η = 8.88490 × 104 at β′ = 1 (intermediate damping), while N = 2300 and
M = 300 are required to obtain six significant digits for τ/η = 1.47885 × 106 at
β′ = 0.01 (low damping). For very low damping and low temperatures, however, the
method is difficult to apply because the matrices involved become ill conditioned
so that numerical inversions are no longer possible. The problem of convergence
of matrix continued fractions is discussed in detail by Risken [16].

We remark that for free Brownian rotation of plane rotators (σ = 0), the ex-
act analytical solution for C̃(ω) may be expressed [73] in terms of the confluent
hypergeometric (Kummer’s) function M(a, b, z) [72] (in our notation)

C̃(ω) =
2β′η

1 + iω2β′η
M
[

1, 1 + 2β′−2
(1 + iω2β′η), 2β′−2]

(172)

In the VLD and VHD limits, the correlation time τ‖ = C̃(0) from Eq. (172) yields

τ‖ → η
√

π and τ‖ → 2ηβ′ (173)

respectively. Equations (172) and (173) provide very useful relations for the pur-
pose of testing the results of numerical calculations.
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Figure 5. τ/η versus β′ for 2σ = 3, 6, 12, and 18. Solid lines 1: exact matrix continued fraction

solution for the correlation time τ‖, Eq. (170); dashed lines 2: the VHD Eq. (159); dotted line 3: the

IHD Eq. (158); dashed-dotted lines 4: the VLD Eq. (160); filled circles: the turnover equation (157).

3. Comparison of Exact Matrix Solution with Approximate Analytical Formula

The longest relaxation time τ predicted by the Mel’nikov and Meshkov [10]
method, that is, [Eq. (157)] and the correlation time τ‖ calculated numerically
by matrix continued fraction methods from Eqs. (169) and (170) are shown in
Figs. 5 and 6 as functions of β′ and σ, respectively. Here, the VHD [Eq. (159)],
IHD [Eq. (158)], and VLD [Eq. (160)] asymptotes are also shown for comparison.
Apparently in the high-barrier limit, Eq. (157) provides a good approximation of
the correlation time τ‖ for all values of the damping parameter β′ including the
VHD, VLD, and crossover regions.

Furthermore, Eq. (157) yields a reasonable estimate for τ‖ even for low bar-
riers, σ ∼ 1 (see Fig. 6). However, a marked difference (of the order of 10–40%)
between numerical and analytical results exists in the VLD region especially at
moderate barriers (this difference decreases with increasing σ and decreasing β′,
see Fig. 5). Such behavior occurs for many other systems (see, e.g., Refs [47,50]).
Thus in order to improve the accuracy of the turnover formula, Mel’nikov [74]
suggested a systematic way of accounting for finite-barrier corrections. Analysis
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Figure 6. τ/η versus

σ for β′ = 0.001 (a; very

low damping), β′ = 0.01

(b) and β′ = 10 (c; high

damping). Solid lines: exact

matrix continued fraction

solution for the correlation

time τ‖, Eq. (170), dashed-

dotted lines: the VLD Eq.

(160); dashed lines: the VHD

Eq. (159) for β′ = 10;

filled circles: the turnover

equation (157); crosses: the

VHD Eq. (176); stars: the

VLD Eq. (180).

of the translational Brownian motion in a cosine potential demonstrates that if
these are included, the accuracy of the turnover formula is considerably improved
[51,75]. His method may also be applied here.

We remark that in principle the accurate calculation of τ‖ is a much more com-
plicated problem than the evaluation of the smallest nonvanishing eigenvalue alone
since all the other eigenvalues give a contribution to τ‖ (see Eq. (164)). Fortunately,
for the problem at hand, an accurate method of estimating τ‖ in the VHD and VLD
limits exists. This method based on a one-dimensional Fokker–Planck equation
was first suggested by Szabo [76] in the context of the theory of polarized fluo-
rescent emission in uniaxial liquid crystals. However, it may be used for all other
systems with dynamics governed by single variable Fokker–Planck equations.
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Namely, one may calculate in intergral form the correlation time τA of a dynamic
variable A(x) defined as the area under the curve of the normalized autocorrelation
function CA(t) = 〈A[x(0)] A[x(t)]〉0. Here, 〈 〉0 designates the statistical averages
over the stationary (equilibrium) distribution function Wst[x(0)] with x(0) defined
in the range x1 ≤ x(0) ≤ x2 and it is assumed that 〈A〉0 = 0. The pertinent feature
of these is that an exact formula for τA, may be expressed in terms of the diffusion
coefficient D(2)(x) and Wst(x) only (see, e.g., Ref. [14], Chapter 2, Sections 2.10,
and 16, S.9, for details), namely,

τA =
1
〈

A2
〉

0

x2
∫

x1

1

Wst(x)D(2)(x)

⎡

⎣

x
∫

x1

A(z)Wst(z) dz

⎤

⎦

2

dx (174)

The merit of Eq. (174) is that it yields VHD and VLD asymptotes, valid for all

barrier heights including very low barriers, where the Mel’nikov–Meshkov method
is not applicable.

Since the dynamics of the system of planar rotators in the VHD and VLD limits
are governed by a single variable, we can obtain accurate VHD and VLD asymp-
totes by applying Eq. (174). In the high damping limit (β′ ≫ 1), the appropriate
single variable Fokker–Planck (Smoluchowski) equation for the PDF W(φ, t) of
the orientations of rotators is [14,65]

∂W

∂t
=

1

2β′η

∂

∂φ

(

∂

∂φ
− 2σ sin 2φ

)

W (175)

Because D(2)(φ) = 1/(2β′η) and A = sin φ, the correlation time τ‖ of the longi-
tudinal dipole moment autocorrelation function C(t) = 〈sin φ(0)sin φ(t)〉0 is then
given by

τ‖ ∼ τVHD
‖ =

2β′η
〈

sin2φ
〉

0

π
∫

−π

1

Wst(φ)

⎛

⎝

φ
∫

0

sin xWst(x) dx

⎞

⎠

2

dφ

=
β′ ηe2σ

σ [I1(σ) + I0(σ)]

π/2
∫

0

eσ cos 2φerf2
(
√

2σ cos φ
)

dφ

(176)

Here, Wst(φ) = e−σ+2σ sin2 φ/[2πI0(σ)] is the equilibrium Boltzmann distribution
function [which is a stationary solution of Eq. (175)], erf (z) is the error function
[72], and

〈

sin2φ
〉

0
=

I0(σ) + I1(σ)

2I0(σ)
(177)
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In the opposite low damping limit (β′ ≪ 1), one may in order to obtain a single
variable Fokker–Planck equation introduce the energy of the dipole

ε = η2φ̇
2 − 2σ sin2φ (178)

and the time w (phase) measured along a closed trajectory in phase space as action–
angle variables [69]. The energy ε varies very slowly with time. Consequently, it
is a slow variable in comparison to the phase w. By averaging the Fokker–Planck
equation (136) over the fast phase variable w, Praestgaard and van Kampen [69]
derived a single variable Fokker–Planck equation for the PDF W(ε, t) in energy
space (in our notation)

∂

∂t
W =

2β′

η

[

∂

∂ε

(

η2φ̇2(ε) −
1

2

)

+ η2 ∂2

∂ε2
φ̇2(ε)

]

W (179)

where the double overbar denotes averaging over the fast phase variable. Since

D(2)(ε) = 2β′ηφ̇2(ε) =
2β′

η

(

ε + 2σsin φ2 (ε)
)

the correlation time τ‖ is then given by [57]

τ‖ ∼ τVLD
‖ =

η

2β′
〈

sin2φ
〉

0

∞
∫

−2σ

1
[

ε + 2σsin φ2(ε)
]

Wst(ε)

⎡

⎣

ε
∫

−2σ

sin φ(x)Wst(x) dx

⎤

⎦

2

dε + η
√

π

≈
η
√

πeσ

β′
√

2σ [I0(σ) + I1(σ)]

1
∫

0

[cosh(2σm) − 1] dm

(m − 1)K(m) + E(m)
+ η

√
π (180)

where K(m) and E(m) are complete elliptic integrals of the first and second kind,
respectively [77]. The calculation of τ‖ is described in Appendix C. The term η

√
π

in Eq. (180) is due to the contribution of the free rotation to the correlation time
(it is independent of β′, and may be obtained from the solution of the undamped
equation Ẇ = 0, see also Appendix C).

The regions of applicability of the VHD and VLD asymptotes from Eqs. (176)
and (180) are the same as for the corresponding Fokker–Planck equations (175)
and (179), namely, the VHD and VLD regions, respectively; in practice,
Eqs. (176) and (180) may be used for β′ > 5 and β′ < 0.1. These VHD and VLD
asymptotes are shown in Fig. 6. Apparently they yield a much better estimate for
the correlation time than those provided by the turnover formula (the maximum
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Mel’nikov–Meshkov equa-
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relative deviation between the corresponding curves is less then 25% in the worst
cases, usually at the limits of applicability β′ ∼ 5 [for Eq. (176)] and β′ ∼ 0.1 [for
Eq. (180); that is shown in Fig. 6]). In Fig. 7, we compare (176) and (180) with
the exact numerical solution for the correlation time at small barriers, where the
Mel’nikov–Meshkov turnover formula is not applicable. Here, the simple ad hoc

extrapolating equation [2]

τ‖ ∼ τVLD
‖ + τVHD

‖ (181)

provides a satisfactory estimate of τ‖ for all damping. We emphasize that
Eqs. (176), (180) and (181) can be used for all barrier heights σ (see Figs. 6
and 7).

As we shall see later Mel’nikov [8,9] and Pollak et al. [54,78] have also extended
the depopulation factor concept to take into account quantum effects. They attempt
to generalize the classical formulas given by Kramers for the various escape rate
regimes and the depopulation factor by incorporating in their integral equation for
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the energy distribution function the quantum reflection factor for a parabolic bar-
rier. We remark that the subject of tunneling in the context of the Kramers escape
rate for rotational diffusion problems is of particular relevance in superparamag-
netism [14]. Here, the Kramers theory as adapted to nonseparable Hamiltonians
has been extensively used [14] to study the reversal of the magnetization in single-
domain ferromagnetic particles. Here, the magnetization may be considered as a
macroscopic object since 104–105 spins are collectively involved. A very important
question first posed by Bean and Livingston [79] is Does reversal of magnetization
by tunneling occur in such particles? If this reversal mechanism occurs then one
would have an important example of macroscopic quantum tunneling. It follows,
therefore, that the development of an accurate analytical formula for the Kramers
escape rate incorporating tunneling effects is vital for the study of magnetiza-
tion reversal mechanisms in superparamagnets and the possible existence of the
macroscopic tunneling phenomenon in such systems. Here, the calculations of
Mel’nikov and Meshkov [8,10] may be confirmed as an accurate approximation
to the exact escape rate because of the existence of the Klein–Kramers equation
describing the evolution of the distribution function in phase space. For single-
domain ferromagnetic particles, the corresponding evolution equation is Brown’s
Fokker–Planck equation for the distribution of the orientations of the magnetic
moments on the unit sphere. Thus, in order to verify formulas for the Kramers
escape rate that incorporate tunneling effects, it is necessary to define the quantum
mechanical master equation that underlies the relaxation process and to solve it
numerically. This is accomplished using the Wigner representation of the quantum
mechanical master equation [22,80–82] that in the classical limit goes over into the
Klein–Kramers equation or Brown’s Fokker–Planck equation that we shall discuss
in later sections. Such a representation of the quantum mechanical problem as we
shall presently see lends itself to solution by the continued fraction method we
have described.

E. Escape Rate for a Fixed Axis Rotator in an Asymmetrical

Double-Well Potential

1. The Langevin Equation and Differential–Recurrence Equations

for Statistical Moments

The Brownian motion in an asymmetrical periodic potential also occurs in many
physical problems involving a relaxation process including dielectric relaxation
and the dynamic Kerr effect of nematic liquid crystals, magnetic relaxation of
single-domain ferromagnetic particles, dynamic response of Josephson tunneling
junctions, transport phenomena in semiconductors, and so on [14,16,44].

As before one of the most important characteristics associated with the
Brownian motion in any asymmetrical multiwell potential is the dependence of
the longest relaxation time and the integral relaxation time on the asymmetry
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parameter. Thus taking longitudinal dielectric relaxation in a symmetrical double-
well potential as an example, the longest relaxation time that is the time required
to escape the well or the relaxation time of the longest lived relaxation mode is
accurately approximated by the integral relaxation time τ‖. The integral relaxation
time is the area under the decay curve of the electric polarization following the
removal of a steady field and corresponds in linear response to the correlation
time of the dipole moment. However, in an asymmetrical double-well potential
for values of the asymmetry parameter well below that required to destroy the
double-well nature of the potential, the integral relaxation time may diverge ex-
ponentially from the longest relaxation time with consequent suppression of the
overbarrier relaxation mode. Thus, the low-frequency dielectric loss associated
with this mode effectively disappears. This phenomenon of course does not occur
in symmetrical potentials. Hence, it is of some importance to establish the effect
of the asymmetry parameter on the relaxation behavior. The dynamical behavior
as a function of that parameter has been studied both numerically and analytically
when the inertia of a dipole is ignored [83,84]. However, no calculations have been
carried out for asymmetrical potentials when inertial effects are included so that
the very high-frequency modes associated with the librational motion in the wells
of the potential have been excluded.

The longest relaxation time is again essentially the inverse of the smallest non-
vanishing eigenvalue λ1 of the characteristic equation or secular determinant of
the relevant dynamical system. However, the longest relaxation time may also be
obtained by calculating the mean first passage times (MFPTs) from each of the
wells of the potential [85]. As far as λ1 is concerned, the secular equation may be
generated by averaging the appropriate Langevin equation over its realizations in
phase space yielding the hierarchy of differential–recurrence equations governing
the decay functions of the system. Alternatively, one may expand the solution of
the associated probability density diffusion equation (usually the specialized form
of the Fokker–Planck equation applicable to separable and additive Hamiltonians
comprising the sum of the potential and kinetic energies known as the Klein–
Kramers equation) in Fourier series in the position and velocity variables [14,16].
In each of the two methods, the secular determinant results from truncation of
the set of differential–recurrence relations at a number large enough to achieve
convergence of the resulting set of simultaneous ordinary differential equations.
Alternatively, if the problem is represented in the frequency domain so that the
more powerful continued fraction method may be used (more powerful in the
sense that it is very effective from a computational point of view), many conver-
gents must be taken [16,45]. Thus, λ1 is not in general available in closed form
as it is always rendered as the smallest root of a high-order polynomial equation.
Hence, it is difficult to compare λ1 so determined with experimental observations
of the longest relaxation time or the relaxation rate. Fortunately (noting that λ1

for sufficiently high barriers has exponential dependence on the barrier height),
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we again can use the Kramers method [15] in connection with thermally activated
escape of particles out of a potential well and also the turnover formula.

Now we saw that most published results have been obtained for potentials with
equivalent wells. There the symmetry of the potential masks interesting effects,
for example, the exponential divergence of the integral relaxation time and the
longest relaxation time that may appear for potentials with nonequivalent wells
so that the asymmetry of the potential can radically alter the characteristics of the
relaxation process [14]. Exact numerical and accurate analytical solutions of this
problem have been obtained in the very high damping limit when the inertial effects
associated with the relaxing population at short times may be ignored. However,
it appears that solutions valid for all values of the damping for an asymmetri-
cal potential have not yet been obtained. Here, we demonstrate that the turnover
formula when applied to the inertial Brownian motion of a fixed axis rotator in
a asymmetrical double-well potential yields an accurate solution for the longest
relaxation time λ−1

1 for high barriers and for all values of the dissipation. Such a
potential allows the flipping of rotators to neighboring wells, thus permitting both
relaxation and oscillatory behavior in the same model and so may simultaneously
explain both the low-frequency relaxation and the far-infrared absorption spec-
tra of dipolar systems [14,70]. Various applications of this model are discussed
in detail in Refs [14,70]. The detailed description of the model for a symmetrical

double-well potential is given in Ref. [57]. Here, we calculate the escape rate by the
Mel’nikov–Meshkov asymptotic (in the sense that it applies for high barriers) and
universal (in the sense that it is valid for all values of the damping) formula for an
asymmetrical potential. Then we compare the inverse escape rate with the longest
relaxation time evaluated from the exact matrix continued fraction solution of the
appropriate Langevin equation. Applications of the Mel’nikov–Meshkov asymp-
tote to the estimation of the integral relaxation time (in the present context where
linear response is assumed, the correlation time) of the longitudinal relaxation
function, the complex susceptibility, and so on, are also discussed and exact solu-
tions for the electric susceptibility valid in all frequency ranges are presented. Here
essentially three relaxation time processes exist: (i) a slow overbarrier relaxation
process with relaxation time given by λ−1

1 that gives rise to low-frequency ab-
sorption with an Arrhenius-like relaxation time; (ii) relatively fast near degenerate
decay modes in the wells of the potential that may be approximated by a single
decay mode and give rise in the frequency domain to weak intermediate frequency
absorption, and (iii) high-frequency oscillatory modes that produce absorption in
the far-infrared band of frequencies and that are ultimately linked to the Kramers
concept of oscillations in a potential well before escape. These three relaxation
modes are obviously present in asymmetrical potentials also. However, introducing
asymmetry will cause (at a certain critical value of the asymmetry parameter) the
overbarrier mode to become so weak that it will be almost completely suppressed
while both intrawell and oscillatory modes remain.
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Just as with a symmetrical potential, our starting point is again the Langevin
equation (134) for a dipole � rotating about an axis normal to the plane of rotation
with the only modification that now the internal field due to molecular interactions
and the external field are represented by the (periodic) double-well potential (see
Fig. 8)

V (φ)/(kBT ) = −2σ cos2 φ − ξ cos φ − ξ2/(8σ) = −2σ(cos φ + h)2 (182)

where σ = V0/(kBT ) is the barrier height parameter, ξ = μE/(kBT ) is the external
field parameter, E is the external field, and h = ξ/(4σ). The corresponding Klein–
Kramers (Fokker–Planck) equation for the joint distribution function W(φ, φ̇, t) is
given by Eq. (136).

In orientational relaxation, we see that the quantity of greatest interest is the
equilibrium correlation function C(t) of the longitudinal component of the dipole
moment defined as

C(t) =
〈cos φ(0)cos φ(t)〉0 − 〈cos φ(0)〉2

0
〈

cos2φ(0)
〉

0
− 〈cos φ(0)〉2

0

(183)

(the angular brackets denote the equilibrium ensemble average). This allows one to
calculate the longitudinal complex susceptibility χ(ω) = χ′(ω) − iχ′′(ω) defined
as [14]

χ(ω)

χ′(0)
= 1 − iωC̃(ω) (184)

where χ′(0) =
(

μ2N0/kT
)(〈

cos2φ(0)
〉

0
−
〈

cos φ(0)
〉2

0

)

is the static susceptibil-
ity and N0 is the number of dipoles per unit volume. Moreover, one can also

64



175

calculate the correlation time τ‖ = C̃(0) Eq. (162). As before τ‖ may equivalently
be defined by Eq. (164) in terms of the eigenvalues (λk) of the Fokker–Planck
operator LFP from Eq. (137). In general, for nonequivalent wells above a critical
value of the asymmetry parameter h, τ‖ may differ exponentially from the inverse

of the smallest nonvanishing eigenvalue λ−1
1 , which is the longest relaxation time

τ of the system [14,83]. In the frequency domain representation of the relaxation
process, λ1 corresponds to the half-width of the spectrum C̃(ω) or, equivalently,
to the low-frequency maximum of the dielectric loss spectra χ′′(ω).

First, we briefly present an exact method of solution of the Langevin equa-
tion (134) with the potential Eq. (182) based on matrix continued fractions and
so an exact evaluation of C̃(ω), τ‖ and λ−1

1 . Then we show how, λ−1
1 and the

low-frequency part of C̃(ω) can be evaluated in the low-temperature (high-barrier)
limit from the Mel’nikov–Meshkov turnover equation.

Just as with ξ = 0, the Langevin equation (134) allows us (details in Ref. [58]) to
derive a hierarchy of recurrence equations for the equilibrium correlation functions
cn,q(t) defined as

cn,q(t) =
〈

cos φ(0)Hn[ηφ̇(t)]e−iqφ(t)
〉

0
−
〈

cos φ(0)
〉

0

〈

Hn[ηφ̇(0)]e−iqφ(0)
〉

0
(185)

where φ(0) is the initial value of φ(t) and η =
√

I/(2kBT ). These differential–
recurrence equations for cn,q(t) are given by [58]

η
d

dt
cn,q(t) = −nβ′cn,q(t) −

iq

2

[

cn+1,q(t) + 2ncn−1,q(t)
]

− inσ
[

cn−1,q+2(t) − cn−1,q−2(t)
]

−2inσh
[

cn−1,q+1(t) − cn−1,q−1(t)
]

(186)

The solution of the recurrence equation (186) can be obtained by a matrix contin-
ued fraction method [58]. We remark that exactly the same hierarchy may be ob-
tained by first calculating the Green function of the Fokker–Planck equation (136)
and then averaging the hierarchy over the equilibrium Maxwell–Boltzmann
distribution.

By Laplace transformation, we have from Eq. (186)

[

ηs + nβ′] c̃n,q(s) = ηc0,q(0)δn0 −
iq

2

[

c̃n+1,q(s) + 2nc̃n−1,q(s)
]

− inσ
[

c̃n−1,q+2(s) − c̃n−1,q−2(s)
]

− 2inσh
[

c̃n−1,q+1(s) − c̃n−1,q−1(s)
]

(187)
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Here all other cn,q(0) = 0 for n ≥ 1 because
〈

cos φHn(φ̇)
〉

0
= 0 for the equilib-

rium Maxwell–Boltzmann distribution. In order to solve Eq. (187), we introduce
the column vectors

C̃1(s) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

...

c̃0,−2(s)

c̃0,−1(s)

c̃0,1(s)

c̃0,2(s)

...

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

and C̃n(s) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

...

c̃n−1,−2(s)

c̃n−1,−1(s)

c̃n−1,0(s)

c̃n−1,1(s)

c̃n−1,2(s)

...

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (n ≥ 2)

Now, Eq. (187) can be rearranged as the set of matrix three-term recurrence equa-
tions

[

ηs + β′(n − 1)
]

C̃n(s) − Q+
n C̃n+1(s) − Q−

n C̃n−1(s) = ηδn1C1(0) (188)

where the column vector C1(0) and the matrices Q+
n and Q−

n are given in
Appendix B. By invoking the general method for solving the matrix recurrence
Eq. (188) [14], we have the exact solution for the spectrum C̃1(s) in terms of a
matrix continued fraction, namely [58]

C̃1(s) = η�1(s)C1(0) (189)

where �n(s) is defined by the recurrence equation

�n(s) =
{[

ηs + β′(n − 1)
]

I − Q+
n �n+1(s)Q−

n+1

}−1

and I is the unit matrix.
Having determined C̃1(s), we can evaluate the spectrum

C̃(ω) =
c̃0,−1(iω) + c̃0,1(iω)

c0,−1(0) + c0,1(0)
(190)

of the equilibrium correlation function C(t), the longitudinal complex susceptibility
χ(ω) = χ′(ω) − iχ′′(ω) and the correlation time τ‖. By using matrix continued
fractions, one can also estimate the smallest nonvanishing eigenvalue λ1 of the
Fokker–Planck operator [that is λ1 of the hierarchy of Eq. (186)], Eq. (137), from
the secular equation [14,16]

det
[

λ1τNI + Q1 + Q+
1 �2(−λ1)Q−

2

]

= 0 (191)
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We remark that λ1 can also be evaluated from the half-width of the spectrum
C̃(ω) or, equivalently, from the low-frequency maximum of the dielectric loss
spectra χ′′(ω). By utilizing general properties of Fourier transforms, we may also
obtain simple asymptotic equations for χ(ω) in the low- and high-frequency limits.
We have

χ′′(ω)

χ′(0)
= ω

∞
∫

0

C(t) dt + · · · = ωτ‖ (192)

for ω → 0, and

χ′′(ω)

χ′(0)
∼ −

Ċ(0)

ω
+

...
C(0)

ω3
+ · · · (193)

for ω → ∞. Here Ċ(0) = 0 and

...
C(0) =

...
c0,−1(0) + ...

c0,1(0)

c0,−1(0) + c0,1(0)
=

β′

2η3

[

1 − σ + 2σh
c0,2(0)

c0,1(0)
+ σ

c0,3(0)

c0,1(0)

]

(194)

We remark that for free Brownian rotation of planar rotators (σ = 0 and h = 0),
λ1 becomes in the VLD and VHD limits

λ1 → 1/η
√

π and λ1 → 1/2ηβ′ (195)

respectively. Equation (195) provides bounds for the purpose of testing the results
of numerical calculations. Moreover, for σ = 0 and h = 0, the calculation shows
that the matrix continued fraction algorithm yields the same numerical results for
C̃(ω) as the exact analytical solution, Eq. (172), for the free rotational diffusion.

2. Turnover Formula for λ1

By solving the Fokker–Planck equation, converted to an energy–action diffusion
equation, by the Wiener–Hopf method, Mel’nikov and Meshkov have evaluated
the inverse of the longest relaxation time τ−1 = λ1 for the translational motion of
a Brownian particle of mass M in a double-well potential V (x) with nonequivalent
wells as [10]

τ =
A
[

β(S1 + S2)/kBT
]

A(βS1/kBT )A(βS2/kBT )
τIHD (196)

Here, τIHD is the longest relaxation time in the IHD limit that can be estimated as

τ−1
IHD = ŴIHD

1 + ŴIHD
2 (197)

67



178

where ŴIHD
1 and ŴIHD

2 are the Kramers IHD escape rates from the wells 1 and 2,
respectively, β is a damping coefficient for rotational motion, S1 and S2 are the
corresponding action variables, and A(�) is given by Eq. (24). The leading factor
on the right-hand side of Eq. (196) is the correction to the IHD escape rate due
to Mel’nikov and Meshkov (the depopulation factor). The escape rates ŴIHD

1 and
ŴIHD

2 are evaluated from the Kramers IHD formula [15]

Ŵi ∼
ωi

A

2π

(
√

1 +
β2

4ωi2
C

−
β

2ωi
C

)

e−�Vi/kT

where ωi
A =

√
V ′′(Ai)/M and ωi

C =
√

|V ′′(C)|/M are the angular frequencies of
oscillation of a particle in the potential well i at minimum Ci and at the barrier
coordinate C, the double prime denotes the second derivative with respect to x,
and �Vi = [V (C) − V (Ai)] /(kBT ) is the dimensionless potential barrier.

The detailed derivation of the turnover formula for orientational relaxation of
a planar rotator in two equivalent wells has been given in the previous section.
This derivation is easily generalized to the calculation of the longest relaxation
time of the orientational relaxation in the potential with two nonequivalent wells,
Eq. (182), yielding the turnover formula, Eq. (196), where τ−1

IHD is now given
by [58]

τ−1
IHD =

1

πη

⎡

⎣

√

β′2

4
+

η2

I
|V ′′(φ0)| −

β′

2

⎤

⎦

[
√

V ′′(0)

|V ′′(φ0)|
e�V1 +

√

V ′′(π)

|V ′′(φ0)|
e�V2

]

=
e−2σ(1−h)2

2πη

[
√

β′2 + 8σ(1 − h2) − β′
] [

1
√

1 − h
e−8σh +

1
√

1 + h

]

(198)

φ1 = 0 and φ2 = π are the potential minima in wells 1 and 2, φ0 = π − arccos h

is the barrier coordinate found from the condition V (φ0) = 0 (see Fig. 8),

�V1,2 = −2σ(1 ± h)2,
η2

I
|V ′′(φ0)| = 2σ(1 − h2)

η2

I
V ′′(0) = 2σ (1 + h) ,

η2

I
V ′′(π) = 2σ (1 − h)

βS1

kBT
=

β

kBT

φ0
∫

−φ0

√

−2IV (φ) dφ = 4β′√2σ(
√

1 − h2 + hπ − h arccos h)

βS2

kBT
=

β

kBT

2π−φ0
∫

φ0

√

−2IV (φ) dφ = 4β′√2σ(
√

1 − h2 − h arccos h)

68



179

If β′ → ∞, we have from Eqs. (120), (196) and (198) the VHD formula [58]

τVHD =
πηβ′ e2σ(1−h)2

2σ
(√

1 − h +
√

1 + h e−8σh
) (199)

In like manner, in the VLD limit, β′ → 0, we obtain [58]

τVLD =
πη e2σ(1−h)2 (

πh/2 +
√

1 − h2 − h arccos h
)

4β′σ
(√

1 − h +
√

1 + h e−8σh
) (

hπ +
√

1 − h2 − h arccos h
) (√

1 − h2 − h arccos h
)

(200)

For h = 0, the relaxation times from Eqs. (198)–(200) reduce to Eqs. (158)–(160)
for equivalent wells [57].

3. The VHD and VLD Asymptotes for τ‖

As far as the calculation of the longitudinal correlation time τ‖ is concerned, we
saw that an accurate analytical estimation of τ‖ from Eq. (162) poses a much more
complicated problem than the evaluation of the smallest nonvanishing eigenvalue
alone since all the other eigenvalues contribute to τ‖. Fortunately, as we saw an
estimate τ‖ in the VHD and VLD limits that can be given using Eq. (174).

As before in the high damping limit (β′ ≫ 1), the appropriate single variable
Fokker–Planck (Smoluchowski) equation for the PDF W(φ, t) of the orientations
of rotators is [58]

∂W

∂t
=

σ

β′η

∂

∂φ
[(sin 2φ + 2h sin φ) W] +

1

2β′η

∂2W

∂φ2
(201)

Because the diffusion coefficient D(2) = (2β′η)−1, the correlation time of the
longitudinal dipole moment autocorrelation function in the VHD limit is given
by [58]

τ‖ ∼ τVHD
‖ =

2β′η
〈

cos2 φ
〉

0
− 〈cos φ〉2

0

2π
∫

0

1

W0(φ)

⎡

⎣

φ
∫

0

(

cos φ′ −
〈

cos φ′〉

0

)

W0(φ′) dφ′

⎤

⎦

2

dφ

(202)

where W0(φ) is the equilibrium Boltzmann distribution function given by

W0(φ) =
∫

W0(φ̇, φ) dφ̇ = e2σ cos2 φ+4σh cos φ

/ 2π
∫

0

e2σ cos2 φ+4σh cos φdφ (203)
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[this function is a stationary solution of Eq. (201)];
〈

cos2 φ
〉

0
and 〈cos φ〉0 can be

calculated as described in Appendix B.2.
In the opposite low damping limit (β′ ≪ 1), in order to obtain a single variable

Fokker–Planck equation, one may introduce as variables the energy of the dipole

ε = η2φ̇
2 − 2σ cos2 φ − 4σh cos φ (204)

and the time w (phase) measured along a closed trajectory in phase space as action–
angle variables [69]. The energy ε varies very slowly with time. Consequently, it
is a slow variable in comparison to the phase w. Now we saw that averaging the
Fokker–Planck equation (136) over the fast phase variable w, Praestgaard and van
Kampen [69] have derived a single variable Fokker–Planck equation for the PDF
W(ε, t) in energy space (in our notation)

∂

∂t
W =

2β′

η

[

∂

∂ε

(

η2φ̇2(ε) −
1

2

)

+ η2 ∂2

∂ε2
φ̇2(ε)

]

W (205)

where the double overbar denotes averaging over the fast phase variable. Be-

cause the diffusion coefficient D(2) = 2β′ηφ̇2(ε), the correlation time τ‖ is then
given by [58]

τ‖ ∼ τVLD
‖ = η

√
π + τ+ + τ− (206)

where

τ± =
1

(〈

cos2 φ
〉

0
− 〈cos φ〉2

0

)

∞
∫

−2σ(1±2h)

×

(∫ ε

−2σ(1±2h)

(

cos φ(ε′) − 〈cos φ〉0

)

W0(ε′) dε′
)2

2β′ηφ̇2(ε)W0(ε)
dε (207)

and η2φ̇2(ε) = ε + 2σ cos φ2(ε) + 4σhcos φ(ε). The calculation of W0(ε),

cos φ2(ε), cos φ(ε), and the integrals in Eqs. (207) are described in Appendix C.2.
As already mentioned, the term η

√
π in Eq. (206) represents the contribution of

the free rotation to the correlation time.
The regions of applicability of the asymptotes from Eqs. (202) and (206) are the

same as for the corresponding Fokker–Planck equations (201) and (205), namely,
the VHD (β′ ≫ 1) and VLD (β′ ≪ 1) regions, respectively; in practice, Eqs. (202)
and (206) may be used for β′ > 5 and β′ < 0.1.
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Figure 9. Dielectric loss spectra (solid lines) for various values of σ, β′ and h. The Debye spectra

[Eq. (208)] are shown by dotted lines with crosses. The high-frequency asymptotes [Eq. (193)] are

shown by dashed lines.

4. Comparison of the Exact Matrix Solution with Analytical Approximations

The imaginary χ′′(ω) part of the complex susceptibility for various values of the
anisotropy parameter σ, the asymmetry parameter h, and the friction coefficient
β′ are shown in Fig. 9 [the calculations were carried out for μ2N0/(kBT ) = 1].
In general, three bands again appear in the dielectric loss χ′′(ω) spectra. One
relaxation band dominates the low-frequency part of the spectra and is due to
the slow overbarrier relaxation of the dipoles in the double-well potential. The
characteristic frequency ωR ≈ λ1 of this low-frequency band strongly depends on
σ and h as well as on the friction parameter β′. Regarding the barrier height or σ

dependence, the frequency ωR decreases exponentially as σ is raised. This behavior
occurs because the probability of escape of a dipole from one well to another
over the potential barrier exponentially decreases with increasing σ. As far as the
dependence of the low-frequency part of the spectrum for large friction (small
inertial effects) β′>10 is concerned, the frequency ωR decreases as β′ increases
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as is apparent by inspection of curves in Fig. 9c. For small friction (large inertial
effects) β′<0.1, the frequency ωR decreases with decreasing β′ for given values
of σ and h (cf. curves 1–3 in Figs. 9c). This low-frequency part of the spectrum
may be approximated by the Debye equation

χ(ω)

χ′(0)
=

1 − �1

1 + iωτ
+ �1 (208)

where the longest relaxation time τ = 1/λ1 is given by Eq. (157) and �1 now rep-
resents a parameter accounting for the contribution of the high-frequency modes.
As h increases, the magnitude of the low-frequency band decreases and this band
disappears entirely for h > 1 (see Fig. 9a) where the double-well nature of the
potential is destroyed.

A very high-frequency band is visible in all the figures due to the fast inertial
librations of the dipoles in the potential wells. This band corresponds to the tera-
hertz (far-infrared) range of frequencies and is usually associated with the Poley
absorption [86] and again is a manifestation of the Kramers oscillations giving rise
inter alia to the VLD escape rate. For σ ≫ 1 and h ≈ 0, the characteristic frequency
of librations ωL increases as ∼ η−1√σ. As far as the behavior as a function of β′

is concerned, the amplitude of the high-frequency band decreases progressively
with increasing β′, as one would intuitively expect. While for small friction (large
inertial effects) β′ ≪ 1, a fine structure appears in the high-frequency part of the
spectra [due to resonances at the fundamental and its higher harmonic frequen-
cies of the almost free motion in the (anharmonic) potential]. We remark that the
high-frequency (ω ≫ ωL) behavior of χ′′(ω) is entirely determined by the inertia
of the system and is described by Eq. (193) (these high-frequency asymptotes are
also shown in Fig. 9 for comparison). Again it is apparent that between the low-
frequency and very high-frequency bands, a third band exists in the dielectric loss
spectra. This band is due to the high-frequency relaxation or decay modes of the
dipoles in the potential wells, which will always exist in the spectra even in the
noninertial limit [14]. Such relaxation modes are generally termed the intrawell

modes.
Thus, one may conclude that the asymmetrical double-well potential gives rise

to three distinct relaxation processes: (i) a slow low-frequency overbarrier mode,
(ii) relatively fast intermediate frequency modes due to the near degenerate expo-
nential decays in the wells of the potential, and (iii) fast high-frequency oscillatory
(librational) modes in the wells of the potential. If the asymmetry parameter that
is strongly dependent on the precise details of the potential [14] is regarded as
a structural relaxation parameter in the sense used by Gilroy and Philips [87], it
appears that the structural parameter can effectively destroy the low-frequency
relaxation mode due to the overbarrier relaxation. Thus, above the critical value
of that parameter the system is no longer effectively a multiwell system as the
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Figure 10. Longest relaxation time τ = 1/λ1 versus β′ for σ = 1.5 and 6, and h = 0.0, 0.1, and

0.2. Solid lines 1: the universal equation (196); dashed-dotted lines 4: the VHD Eq. (199); dashed lines

line 3: the IHD Eq. (198); dotted 4: the VLD Eq. (200); filled circles: exact matrix continued fraction

solution.

population behaves like that of a single-well potential. Hence, we are left with fast
near degenerate exponential decays in the well accompanied by high-frequency
oscillatory modes arising from inertial effects due to the small oscillations in the
well (cf. Fig. 9a).

The longest relaxation time τ predicted by the turnover [10] method [Eq. (196)]
and the smallest nonvanishing eigenvalue λ1 calculated numerically by matrix
continued fraction methods as the low-frequency maximum of the dielectric loss
spectra χ′′(ω) are shown in Fig. 10 as functions of β′ for various values of h and
σ. Here, the VHD [Eq. (199)], IHD [Eq. (198)], and VLD [Eq. (200)] asymptotes
are also shown for comparison. Apparently in the high-barrier limit, Eq. (196)
provides a good approximation to λ1 for all β′ including the VHD, VLD, and
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turnover regions. Furthermore, Eq. (196) yields a reasonable estimate for λ1 even
for σ ≈ 1.

The quantitative agreement in damping behavior may be explained as follows.
The escape rate as a function of the barrier height parameter σ for large σ is
approximately Arrhenius in character and arises from an equilibrium property of
the system (namely the Boltzmann distribution at the bottom of the well). On the
other hand, the damping dependence of the escape rate is due to nonequilibrium

(dynamical) properties of the system and so is contained in the prefactor A only,
the detailed nature of which depends on the behavior of the energy distribution
function at the barrier points [3]. The Mel’nikov–Meshkov approach [8] yields
the distribution function at the saddle point for all values of the damping allowing
one to evaluate the damping dependence of the prefactor μ ∼ A in Eq. (19). We
remark that as emphasized by Kramers, it is hardly ever of any practical importance
to improve on the accuracy of the IHD or VLD formulas themselves because in
experimental situations where relaxation is studied, one has only estimates of
the prefactor within a certain degree of accuracy that is difficult to evaluate. For
example, little detailed information about the value of β′ exists. Nevertheless, it is
important to predict the behavior of the relaxation times and spectra as a function
of β′ using analytical methods such as the ones used here because of the detailed
information they yield about the various mechanisms, for example, overbarrier,
intrawell, and resonance modes underlying the relaxation process. The description
of the relaxation processes in the context of Eq. (196) neglects quantum effects
that are important at very low temperatures and necessitate an appropriate quantum
mechanical treatment. Mel’nikov [10] and Rips and Pollak [78] have extended the
turnover formula for mechanical particles to account for quantum effects in a
semiclassical way (see Section III).

The VHD and VLD asymptotes for τ‖ are shown in Figs. 11 and 12. In Fig. 11,
we compare Eqs. (202) and (206) with the exact numerical solution for the cor-
relation time τ‖ and the Mel’nikov–Meshkov turnover formula. Here, we see the
asymmetry effect alluded to in the Introduction where for a certain value of h,
namely, hc ≈ 0.18, the Arrhenius behavior (exponential increase with increasing
barrier height) of the correlation time τ‖ disappears. Such an effect occurs at a crit-
ical value hc of the ratio h, that is, bias field parameter/anisotropy barrier height
parameter, far less than the nucleation field, which is the value needed to destroy
the bistable nature of the potential. Thus in the low-temperature limit, the overall
relaxation process is no longer dominated by the slow decay or interwell mode
associated with the barrier crossing at values of h in excess of the critical value.
The phenomenon was first discovered (numerical methods) by Coffey et al. [83]
and later explained by Garanin [84] for the very similar problem of the magnetiza-
tion relaxation of a uniaxial superparamagnetic particle subjected to a dc magnetic
field. Garanin [84] showed that this effect is a natural consequence of the popula-
tion depletion of the shallower of the two potential wells (which are involved in
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the barrier crossing) by the uniform field. Essentially when a significant part of
the population of the shallow well has descended to the deeper well the enhanced
population in that well cannot escape because of the high-potential barrier that
it must overcome. Further in Ref. [88], it has been shown that this depletion ef-
fect always exists in relaxation in bistable potentials and it has also been asserted
[14] that such an effect is a general feature of relaxation in biased double-well
potentials. In the particular application here, the long time behavior of C(t) at low
temperatures (σ, ξ ≫ 1) may be approximated by two exponentials corresponding
to overbarrier and intrawell relaxation processes (on neglecting the contribution
of librational modes)

C(t) ≈ (1 − �1) e−tλ1 + �1 e−t/τwell (209)

where τwell is the effective relaxation time in the deep well and so has a weak
temperature dependence. According to Eqs. (162) and (209),

τ‖ ≈ (1 − �1)λ−1
1 + �1τwell (210)

If h < hc, the quantity (1 − �1)λ−1
1 increases exponentially as the temperature T

decreases and so (1 − �1)λ−1
1 determines completely the temperature dependence

of the correlation time τ‖. While with h > hc, the quantity (1 − �1)λ−1
1 decreases

exponentially as T decreases (due to the depletion effect (1 − �1)λ−1
1 is exponen-

tially small in spite of the fact that λ−1
1 is exponentially large), thus τ‖ no longer

has Arrhenius behavior and now differs exponentially from λ−1
1 . Thus for h = hc,

the relaxation switches from being dominated by the behavior of the longest lived
relaxation mode associated with λ−1

1 that is the inverse Kramers escape rate to
being dominated by the fast relaxation processes in the deep well of the potential
because of the depletion of the upper (shallow) well at low temperatures [84,88].

In Fig. 12, we compare the VHD and VLD correlation time equations (202)
and (206) with the exact numerical solution for the correlation time at small bar-
riers. Here, the simple ad hoc extrapolating Eq. (181) [2] provides a satisfactory
estimate of the correlation time τ‖ for all damping and also the longest relaxation

time provided h < hc because then τ‖ ≈ λ−1
1 . We emphasize that Eqs. (202), (206),

and (181) can be used for all barrier heights σ, where the turnover formula is not
applicable.

Thus, the turnover formula [8,10], Eq. (196), for the longest relaxation time
bridging the VLD and IHD escape rates as a function of the dissipation parameter
β′ yields satisfactory agreement with the numerical results for fixed axis rotators in
an asymmetrical double-well potential for all values of β′. Equation (196) allows
one also to accurately estimate the damping dependence of the low-frequency part
of the spectra of the equilibrium correlation function C(t) and of the longitudinal

76



187

complex susceptibility χ(ω). Moreover, one may estimate the contribution of the
overbarrier relaxation mode to the correlation time τ‖.

F. Escape Rate for a Translational Brownian Particle in a

Double-Well Potential

1. Langevin Equation Approach

The translational Brownian motion in a (2–4) double-well potential

V (x) =
1

2
ax2 +

1

4
bx4, − ∞ < x <∞ (211)

where a and b are constants, is almost invariably used to describe the noise driven
motion in bistable physical and chemical systems. Examples are fields as di-
verse as simple isometrization processes [89–93], chemical reaction rate theory
[15,33,94–100], bistable nonlinear oscillators [101–103], second-order phase tran-
sitions [104], nuclear fission and fusion [105,106]. The number of papers devoted
to the problem is enormous and many methods of solution have been presented
because the stochastic dynamics of barrier-crossing transitions is of fundamental
significance in physics [62,70,107–110].

Here, we apply the turnover formula to the analysis of the dynamics of a
Brownian particle in the double-well potential given by Eq. (211). The dynam-
ics of this system in the VHD limit, where the inertia of the particle may be
neglected, have been extensively studied either by using the Kramers escape rate
theory [2,15] or by solution of the appropriate Smoluchowski equation (see, e.g.
[111–114] and references cited therein). In the VHD limit, the analysis has habitu-
ally proceeded from the Smoluchowski equation either by converting the solution
of that equation to a Sturm–Liouville problem (e.g. [111,112]) or by the solution
of an infinite hierarchy of linear differential–recurrence relations for statistical
moments (e.g. [113,114]). However, we saw that Coffey and coworkers [113]
(see also [14]) have formulated an analytical method of finding exact solutions of
differential–recurrence relations for statistical moments by using continued frac-
tions. The method allows us to calculate in closed form the correlation times,
the spectra of the correlation functions and the generalized susceptibilities for
the relevant dynamical variables [14,113]. Yet another method of solution has
been proposed by Perico et al. [114]. They used the mean first passage time to
derive an integral expression for the correlation time defined, as usual, as the
area under the curve of the positional autocorrelation function. By applying the
Mori memory function formalism, they were also able to calculate the position
correlation function and to compare it with various approximate formulas and
computer simulations. If the inertial effects are taken into account, a large number
of special solutions exist mostly for particular observables. For example, in the
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low-temperature limit, the transition rate from one well to another is of special
interest and can be given analytically while some results for the longest relaxation
time have been obtained via escape rate theory, for example, in Refs [48,115,116].
The position correlation function C(t) = 〈x(0)x(t)〉0/

〈

x2(0)
〉

0
(the symbol 〈 〉0

denotes the equilibrium ensemble averages) and its spectra for both low and very
low damping were treated in Refs [102,117–119]. Fourier transforms of correla-
tion functions have also been obtained in Refs [120,121] by a projection operator
method. Furthermore, Voigtlaender and Risken [122] calculated eigenvalues and
eigenfunctions of the Klein–Kramers (Fokker–Planck) equation for a Brownian
particle in the double-well potential Eq. (211) and evaluated the Fourier transforms
of various correlation functions using matrix continued fractions [16]. The method
is as follows. First the distribution function is expanded in Hermite functions with
respect to the velocity as originally done by Brinkman [33] and then in Hermite
functions with respect to position. Next by inserting the distribution function in
this basis into the Fokker–Planck equation they obtain a recursion relation for the
expansion coefficients. By introducing a suitable vector and matrix notation, this
recurrence relation is then cast into a tridiagonal vector recurrence relation that
is solved via matrix continued fractions. Using this method, Coffey et al. [52]
have presented a detailed comparison of the turnover formula results with a matrix
continued fraction solution for the position correlation function and its correlation
time, the smallest nonvanishing eigenvalue of the corresponding Fokker–Planck
equation, and generalized dynamic susceptibility. Their matrix continued fraction
solution owes much to the work of Voigtlaender and Risken [122]. However, the
algorithm for the matrix continued fraction solution is simplified and optimized (it
is about 10 times faster and may be applied for higher barriers and smaller damping
constants than those of the original paper of Voigtlaender and Risken [122]).

We consider the one-dimensional translational Brownian motion of a particle in
the double-well potential Eq. (211). The governing nonlinear Langevin equation
is [122]

mẍ(t) + ζẋ(t) +
dV

dx
[x(t)] = F (t) (212)

In Eq. (212), x(t) specifies the position of the particle at time t, m is the mass of
the particle, ζẋ is the viscous drag experienced by it, and F(t) is the white noise
driving force so that

F (t) = 0, F (t)F (t′) = 2kBTζδ(t − t′) (213)

Here, the overbar means the statistical average over an ensemble of particles that
have all started at time t with the same initial position x(t) = x and velocity ẋ(t) =
ẋ. Equation (212) is interpreted here as a stochastic differential equation of the
Stratonovich type [14,16]. Though the nonlinearity alters the motion of x(t), many
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features of the linear equation with a > 0 and b = 0 still remain for b > 0 a > 0 [now
the potential Eq. (211) has only one minimum]. For b > 0 and a < 0, Eq. (211)
(representing a Duffing oscillator potential) has two minima at x1,2 = ±

√
−a/b

separated by a maximum at x0 = 0 and the motion x(t) strongly deviates from the
linear case. Thus for small energies, the particle oscillates either in the left or in the
right well. However even weak noise ensures that the particles do not stay in the
same well, they now have a chance to go in the opposite direction, so that particles
from the left well may finally reach the right well and vice versa.

The appropriate Klein–Kramers (Fokker–Planck) equation for the joint PDF
W(x, ẋ, t) of the phase space variables x and ẋ may be written [122]

∂W

∂t
= LFPW (214)

where the Fokker–Planck operator LFP is given by

LFPW = −ẋ
∂W

∂x
+

1

m

dV

dx

∂W

∂ẋ
+

ζ

m

(

∂

∂ẋ
(ẋW) +

kBT

m

∂2W

∂ẋ2

)

(215)

By introducing dimensionless variables and parameters as in [14,114]

y =
x

〈x2〉1/2
0

, A =
a〈x2〉0

2kBT
, B =

b〈x2〉2
0

4kBT
, β′ = η

ζ

m
(216)

where η =
√

m〈x2〉0/(2kBT ) is a characteristic time, Eq. (212) now becomes

η2ÿ(t) + ηβ′ẏ(t) + Ay(t) + 2By3(t) =
η

√
2mkBT

λ(t) (217)

The normalization condition 〈y2〉0 = 1 implies that the constants A and B are not
independent [114]

B = B(Q) =
1

8

[

D−3/2

(

sgn(A)
√

2Q
)

D−1/2

(

sgn(A)
√

2Q
)

]2

(218)

where Q = A2/4B and the Dv(z) are parabolic cylinder functions of order v [72].
For A < 0 (which is the case of greatest interest), Q is equal to the barrier height
for the potential V (y) = Ay2 + By4 (see Fig. 13). For A < 0 and small Q [123]

B = 0.1142 + 0.1835
√

Q + · · ·

while for A < 0 and Q ≫ 1, B ∼ Q.
Now the relevant quantities are the position autocorrelation function

C(t) = 〈y(0)y(t)〉0 (219)
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and the correlation time Tc, which is again a global characteristic of the relaxation
process involved and is defined as the area under the curve of C(t), namely [14,16]

Tc =
∞
∫

0

C(t) dt (220)

because C(0) = 1 due to the normalization conditions. According to linear response
theory (see, e.g. [14,16] having determined the one-sided Fourier transform C̃(ω)
[the spectrum of the equilibrium correlation function C(t)], one can calculate the
normalized dynamic susceptibility χ(ω) = χ′(ω) − iχ′′(ω) [122]

χ(ω) = 1 − iωC̃(ω) (221)

Once again by utilizing general properties of Fourier transforms, we may also
obtain simple asymptotic equations for χ(ω) in the low- and high-frequency limits.
We have

χ′′(ω) ∼ ω

∞
∫

0

C(t) dt + · · · = ωTc (222)

for ω → 0, and

χ′′(ω)

χ′(0)
∼

...
C(0)

ω3
+ · · · (223)

for ω → ∞ (because Ċ‖(0) = 0).
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The correlation time Tc may also be defined in terms of the eigenvalues (λk) of
the Fokker–Planck operator LFP [cf. Eq. (164)]

Tc =
∑

k

ck/λk (224)

where
∑

k ck = 1, which again contains contributions from all the eigenvalues

λk. As we have seen, for equivalent wells, the approximation Tc ≈ λ−1
1 can be

used. In other words, the inverse of the smallest nonvanishing eigenvalue, that
is, the longest relaxation time, closely approximates the correlation time Tc for
symmetrical potentials in the low-temperature (high-barrier) limit.

As shown in Ref. [52], by applying the general method of solution of nonlinear
Langevin equations developed by Coffey et al. [14] one may recast Eq. (217)
as a hierarchy of differential–recurrence equations for the correlation functions
(observables) cn,q(t) defined as

cn,q(t) =
1

√

2n+qn!q!

〈

y(0)Hq

[

αB1/4y(t)
]

Hn

[

ηẏ(t)
]

e[−α2B1/2y2(t)+Ay2(t)+By4(t)]/2
〉

0

(225)

where y(0) is the initial value of y(t), and α is a scaling factor with value chosen
so as to ensure convergence of the continued fractions involved as suggested by
Voigtlaender and Risken [122] (all results for the observables such as λ1 and Tc

are independent of α). The hierarchy has the form [52]

d

dt′
cn,q(t) + β′ncn,q(t) =

√
n + 1

[

eqcn+1,q+3(t) + d−
q cn+1,q+1(t)

+ d+
q−1cn+1,q−1(t) + eq−3cn+1,q−3(t)

]

−
√

n
[

eqcn−1,q+3(t) + d+
q cn−1,q+1(t)

+ d−
q−1cn−1,q−1(t) + eq−3cn−1,q−3(t)

]

(226)

where

d±
q =

B1/4

2α3

√

q + 1
[

3(q + 1) − 2α2
√

Q ± α4
]

(227)

eq =
B1/4

2α3

√

(q + 3)(q + 2)(q + 1) (228)
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The initial conditions for cn,q(t) are given by

c0,2q−1(0) = 1√
22q−1(2q−1)!

〈

yH2q−1(αB1/4y)e(−α2B1/2y2+Ay2+By4)/2
〉

0

= 1

Z
√

22q−1(2q−1)!B

∞
∫

−∞

ξH2q−1(αξ)e−(α2ξ2−2
√

Qξ2+ξ4)/2 dξ
(229)

where the partition function Z is given by [114]

Z =
∞
∫

−∞

e−Ay2−By4
dy =

√
π(2B)−1/4eQ/2D−1/2

(

−
√

2Q
)

(230)

Note that cn,q(0) = 0 for n ≥ 1 and c0,2q(0) = 0 for the equilibrium Maxwell–
Boltzmann distribution. Equation (226) (originally derived by Voigtlaender and
Risken [122] from the Fokker–Planck equation) is the desired recurrence equation
for the statistical moments that can be solved by the matrix continued fraction
method [14,16].

Here, we briefly describe an algorithm for the continued fraction solution that is
faster (by a factor of about 10) and more stable [52] than that used by Voigtlaender
and Risken [122]. First we note that the recurrence equation (226) may be separated
in two independent systems with q + n even and odd. In order to solve Eq. (226)
for q + n even, we introduce the column vectors

C2n−1(t) =

⎛

⎜

⎜

⎝

c2n−2,1(t)

c2n−2,3(t)

...

⎞

⎟

⎟

⎠

, C2n(t) =

⎛

⎜

⎜

⎝

c2n−1,0(t)

c2n−1,2(t)

...

⎞

⎟

⎟

⎠

, (n ≥ 1) (231)

Now, Eq. (226) can be rearranged as usual as the set of matrix three-term recurrence
equations

η
d

dt
Cn(t) = Q−

n Cn−1(t) − β′(n − 1)Cn(t) + Q+
n Cn+1(t) (232)

where the matrices Q+
n and Q−

n are infinite four-diagonal matrices. Their matrix
elements are given by

[

Q±
2n−m

]

p,q
= ±
√

2n − m −
1 ∓ 1

2

(

δpq+2−me2p−5+m + δpq+1−md±
2p−3+m

+ δpq−md∓
2p−2+m + δpq−1−me2p−2+m

)

(233)
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(p, q ≥ 1). By one-sided Fourier transformation, we have from Eq. (226)

[

iηω + β′(n − 1)
]

C̃n(ω) − Q+
n C̃n+1(ω) − Q−

n C̃n−1(ω) = ηδn1C1(0) (234)

where the elements of the column vector C1(0) are defined by Eq. (226).
Again invoking the general method [14] for solving the matrix recurrence equa-

tion (234), we have the exact solution for C̃1(s) in terms of a matrix continued
fraction, namely,

C̃1(ω) = η�1(iω)C1(0) (235)

where �n(s) is defined by the recurrence equation

�n(iω) =
{[

iηω + β′(n − 1)
]

I − Q+
n �n+1(s)Q−

n+1

}−1
(236)

where I is the unit matrix. Having determined C̃1(ω), we can evaluate the spec-
trum of the position correlation function C(t) = 〈y(0)y(t)〉0, Eq. (219), in terms of
c0,q(t) via

C(t) =
∞
∑

q=0

aqc0,q(t)

=
∞
∑

q=0

aq

1
√

2qq!

〈

y(0)Hq

[

αB1/4y(t)
]

e[−α2B1/2y2(t)+Ay2(t)+By4(t)]/2
〉

0

(237)

where, due to the orthogonality properties of the Hermite polynomials, a2q = 0
and

a2q−1 =
αB1/4

√

π22q−1(2q − 1)!

∞
∫

−∞

yH2q−1

(

αB1/4y
)

e−(α2B1/2y2+Ay2+By4)/2 dy

= c0,2q−1(0)
αZB1/4

√
π

Thus, the one-sided Fourier transform of C(t) is given by

C̃(ω) =
ηαZB1/4

√
π

CT
1 (0)�1(iω)C1(0) (238)
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where the sign “T” (transpose) designates transformation of a column vector to a
row vector. According to Eq. (220), the correlation time Tc is now given by

Tc = C̃(0) =
ηαZB1/4

√
π

CT
1 (0)�1(0)C1(0) (239)

Noting Eq. (232) and that Cn(0) = 0 for n > 1, one can show that
...
C1(0) =

−β′η−3Q+
1 Q−

2 C1(0) so that the third derivative of the correlation function C(t) =
(

αZB1/4/
√

π
)

CT
1 (0)C1(t) is

...
C(0) = 〈y(0)

...
y(0)〉0 =

αZB1/4

√
π

CT
1 (0)

...
C1(0) = −

β′αZB1/4

η3
√

π
CT

1 (0)Q+
1 Q−

2 C1(0)

(240)

Equation (240) allows one to estimate the high-frequency behavior of the sus-
ceptibility χ(ω) from the expansion given by Eq. (223). The smallest nonvanish-
ing eigenvalue λ1 of the Fokker–Planck operator [that is λ1 of the hierarchy of
Eq. (226)] can also be estimated by using matrix continued fractions from the
secular equation [14,16,122]

det
[

λ1ηI + Q1 + Q+
1 �2(−λ1)Q−

2

]

= 0 (241)

The exact matrix continued fraction solution is again easily computed. Again as far
as practical calculations of the infinite matrix continued fraction are concerned, we
approximate it by a matrix continued fraction of finite order (by putting �n+1 = 0

at some n = N); simultaneously, we confine the dimensions of the infinite matrices
Q−

n , Q+
n , and I to a finite value M × M. N and M were determined in such way that a

further increase of N and M did not change the results. Both N and M depend on the
dimensionless barrier (Q) and damping (β′) parameters and must be chosen taking
into account the desired degree of accuracy of the calculation. The final results are
independent of the scaling factor α. The advantage of choosing an optimum value
of α is, however, that the dimensions N and M can then be minimized [122]. Both
N and M increase with decreasing β′ and increasing Q.

The relaxation times Tc and 1/λ1 yielded by the matrix continued fraction
method will now be compared with those obtained by the turnover formula.

2. Turnover Formula

The turnover formula for the potential of Eq. (211) yields [52]

τ =
A(2�)

A2(�)
τIHD (242)
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where the depopulation factor A(�) is given by Eq. (24) with � = β′S/(ηkBT ),
where S =

∮

well

√
−2mV (x) dx is the action in the well that can be calculated as

S = 2

0
∫

x′
2

√

−2mV (x) dx = 2

x′
1
∫

0

√

−2mV (x) dx = kBTη
8
√

2Q3/4

3B1/4

Here, x′
1,2 = ±

(

4〈x2〉2
0Q/B

)1/4
are the solutions of the equation V (x) = 0. For

Q ≫ 1, S ∼ (8/3)kBTη
√

2Q. The time τIHD is the longest relaxation time for
IHD damping (β′ ≥ 1) defined as τ−1

IHD = ŴIHD
1 + ŴIHD

2 = 2ŴIHD
1 , where ŴIHD

1 and
ŴIHD

2 are the Kramers escape rates from the wells 1 and 2, respectively (due to the
equivalence of the wells 1 and 2, ŴIHD

1 = ŴIHD
2 ), so that

τ−1
IHD =

1

2πη

[
√

β′2

4
+

η2

m
|V ′′(0)| −

β′

2

]

[
√

V ′′(x1)

|V ′′(0)|
eV (x1)/(kBT ) +

√

V ′′(x2)

|V ′′(0)|
eV (x2)/(kBT )

]

=
e−Q

√
2πη

(

√

β′2 + 8
√

QB − β′
)

(243)

where x1,2 = ±
√

−a/b are coordinates of the minima and we have noted that
V (xi)/(kBT ) = −Q, (η2/m)

∣

∣V ′′(0)
∣

∣ = 2
√

QB, and (η2/m)V ′′(xi) = 4
√

QB.
The leading factor on the right-hand side of Eq. (242) is the correction to the
IHD result due to Mel’nikov and Meshkov (the depopulation factor).

If β′ → ∞, we have from Eqs. (120) and (242) the VHD formula

τVHD =
πηβ′

2
√

2Q
eQ (244)

which is the result of Larsson and Kostin [107] (in our notation). In like manner,
in the VLD limit (β′ → 0), we have

τVLD =
3πη

8
√

2β′Q
eQ (245)

The longest relaxation time τ yielded by the asymptotic Eqs. (242), (243)–(245)
will be compared with that evaluated from the matrix continued fraction solution
below.

3. Correlation Time in the VHD and VLD Limits

As before the correlation time Tc can be calculated from Eq. (174) so that we can
again obtain accurate VHD and VLD asymptotes from Eq. (174). In the VHD
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limit (β′ ≫ 1), the appropriate single variable Smoluchowski equation for the PDF
W(y, t) is [114]

∂W

∂t
=

1

2β′η

∂

∂y

(

∂

∂y
+ 2Ay + 4By3

)

W (246)

Because D(2)(y) = 1/(2β′η), the correlation time Tc of the position autocorrelation
function C(t) is given by the general equation (174), so that [114]

Tc = T VHD = 2ηβ′
∞
∫

−∞

1

Wst(y)

⎡

⎣

y
∫

−∞

y′Wst(y
′) dy′

⎤

⎦

2

dy (247)

Here, Wst(y) = e−Ay2−By4
/Z is the equilibrium Boltzmann distribution function

[which is a stationary solution of Eq. (246)]. For A < 0, we have by changing the
variables in Eq. (247)

Tc

η
= β′ 2

1/4√πeQ/2D−1/2(−
√

2Q)
[

D−3/2(−
√

2Q)
]2

∞
∫

−
√

Q

ex2
[1 − erf(x)]2

√

x +
√

Q
dx (248)

where we have used

y
∫

−∞

y′ e−Ay′2−By′4
dy′ =

√
π/B

4
eA2/4B

[

erf
(
√

By2 + A/2
√

B
)

− 1
]

In the opposite low damping limit (β′ ≪ 1), one may in order to obtain a single
variable Fokker–Planck equation introduce the energy of the dipole

ε = η2ẏ2 + Ay2 + By4 (249)

and the time w (phase) measured along a closed trajectory in phase space as action–
angle variables [2,15]. The energy ε varies very slowly with time. Consequently,
it is a slow variable in comparison to the phase w. Again by using the method
of Praestgaard and van Kampen [69], that is, averaging the Fokker–Planck equa-
tion (214) over the fast phase variable w, we have a single variable Fokker–Planck
equation for the PDF W(ε, t) in energy space

∂W

∂t
=

2β′

η

[

∂

∂ε

(

η2ẏ2(ε) −
1

2

)

+ η2 ∂2

∂ε2
ẏ2(ε)

]

W (250)
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where the double overbar denotes averaging over the fast phase variable. Now Tc

is given by

Tc ≈ T VLD =
∞
∫

−Q

1

D(2)(ε)Wst(ε)

⎡

⎢

⎣

ε
∫

−Q

y(ε′)Wst(ε
′) dε′

⎤

⎥

⎦

2

dε (251)

where the diffusion coefficient D(2)(ε) is given by

D(2)(ε) = 2β′ηẏ2(ε) = 2β′η−1
[

ε − Ay2(ε) − By4(ε)
]

By calculating the integrals in Eq. (251) as described in Appendix C.3, we
obtain

T VLD =
3πη27/4eQ/2Q1/4

β′D−3/2(−
√

2Q)

1
∫

0

x sinh2
(

Qx2/2
)

√
1 + x {E[2x/(1 + x)] − (1 − x)K[2x/(1 + x)]}

dx

(252)

where K(m) and E(m) are complete elliptic integrals of the first and second kind,
respectively [72].

The merit of Eqs. (248) and (252) is that as before they yield VHD and VLD
asymptotes for Tc valid for all barrier heights including low barriers (Q ≤ 1), where
asymptotic methods (like the turnover equation) are not applicable.

4. Comparison of the Exact and Approximate Approaches

The longest relaxation time τ predicted by the turnover equation (242) and the
smallest nonvanishing eigenvalue λ1 calculated numerically by matrix continued
fraction methods are shown in Fig. 14 as functions of β′ for relatively high values
of the barrier height parameter Q = 5 and 10. Here, the VHD [Eq. (244)], IHD
[Eq. (243)], and VLD [Eq. (245)] asymptotes for τ are also shown for comparison.
Apparently in the high-barrier limit, Eq. (242) provides a good approximation to
λ1 for all β′ including the VHD, VLD, and turnover regions. The quantitative
agreement in damping behavior may be explained as follows. The behavior of
the escape rate as a function of the barrier height parameter Q for large Q is
again approximately Arrhenius-like and arises from an equilibrium property of the
system (namely the Boltzmann distribution at the bottom of the well). On the other
hand, the damping dependence of the escape rate is again due to nonequilibrium

(dynamical) properties of the system and so is contained in the prefactor A only,
the detailed nature of which depends on the behavior of the energy distribution
function at the barrier points [3].
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Figure 14. τ/η versus β′ for

Q = 5 and 10. Solid line: ex-

act solution, Eq. (239); dashed

line: the Mel’nikov–Meshkov

equation (242); dotted line 1:

the IHD Eq. (243); dotted

line 2: the VHD Eq. (244);

dashed-dotted line 3: the VLD

Eq. (245); stars: (ηλ1)−1 from

Eq. (241).

In Fig. 15, we compare the VLD and VHD asymptotes of Tc, Eqs. (245)
and (244), with the turnover equation (242) and numerical solutions for Tc and
the inverse of the smallest nonvanishing eigenvalue λ1 for low (β′ = 0.001) and
high (β′ = 10.0) values of damping. Clearly, the turnover formula provides a good
approximation both for Tc and 1/λ1 at Q > 2. In Fig. 16, we compare the VHD and
VLD correlation times, Eqs. (248) and (252), with the exact numerical solution for
Tc and 1/λ1 at small barriers, Q = 0.5, where the turnover formula is inapplicable.
Equations (248) and (252) may be used to estimate Tc for β′ ≫ 1 and β′ ≪ 1,
respectively, and for all barrier heights Q including very low barriers. We also
remark that for intermediate and high damping, β′ ≥ 1, the numerical values of
1/λ1 and Tc are very close to each other while for low damping, β′ ≪ 1, 1/λ1

differs considerably from Tc.
The imaginary χ′′(ω) part of the dynamic susceptibility for various values of

the barrier height Q and the friction coefficient β′ are shown in Fig. 17. The
low- and high-frequency asymptotes [Eqs. (222) and (223)] are also shown in
Fig. 17 for comparison. One relaxation band dominates the low-frequency part
of the spectra and is due to the slow overbarrier relaxation of the particles in the
double-well potential. As seen in Fig. 17, the low-frequency part of the spectrum
may by approximated by the Debye equation, Eq. (208). Here, the characteristic
frequency ωR = λ1 = τ−1 of the low-frequency band strongly depends on Q as
well as on the friction parameter β′ according to Eq. (242). Regarding the barrier
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Figure 15. τ/η versus Q for

β′ = 10−3 (a; low damping)

and β′ = 10 (b; high damping).

Solid lines: the correlation time

Tc; dashed lines: the turnover

equation (242); filled circles: the

VLD Eq. (245); triangles: the

VHD Eq. (244); stars: (ηλ1)−1

from Eq. (241).

height dependence, the frequency ωR decreases exponentially as Q is raised. This
behavior occurs because the probability of escape of a dipole from one well to
another over the potential barrier exponentially decreases with increasing Q. As
far as the dependence of the low-frequency part of the spectrum for large friction
(small inertial effects) β′ > 10 is concerned, the frequency ωR decreases as β′
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Figure 16. Tc/η ver-

sus β′ for Q = 0.5. Solid

line 1: matrix continued

fraction solution; dashed

line 2: the Mel’nikov–

Meshkov equation (242);

dashed-dotted line 3: the

correlation time from the

VLD Eq. (252); dotted line

4: the correlation time from

the VHD Eq. (248); stars:

(ηλ1)−1 from Eq. (241).
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Figure 17. χ′′ versus ηω for various values of β′ and Q. Solid lines are the continued fraction

solution. The Debye equation (208) with τ from Eq. (242) are shown by dotted lines with asterisks.

Dotted and dashed lines: the low- and high-frequency asymptotes [Eqs. (222) and (223)].

increases as is apparent by inspection of curves in Fig. 17a. For small friction
(large inertial effects) β′ < 0.1, the frequency ωR decreases with decreasing β′ for
given values of Q (cf. Fig. 17b). A very high-frequency band is visible in all the
figures due to the fast inertial oscillations of the particles in the potential wells.
For Q ≫ 1, the characteristic frequency of oscillation ωL increases as ∼2Q3/4η−1

with increasing Q. As far as the behavior as a function of β′ is concerned, the
amplitude of the high-frequency band decreases progressively with increasing β′,
as one would intuitively expect. On the other hand, for small friction (large inertial
effects) β′ ≪ 1, a family of sharp resonance peaks appear in the high-frequency
part of the spectra [due to resonances at the fundamental and higher harmonic
frequencies of the almost free motion in the (anharmonic) potential].

Thus, we have demonstrated how the matrix continued fraction approach to the
solution of nonlinear Langevin equations [14] may be successfully applied to the
nonlinear Brownian oscillator in a double-well potential, Eq. (211) for wide ranges
of the barrier height parameter Q and the damping parameter β′. We have shown
that in the low-temperature limit, the turnover formula, Eq. (242), for the longest
relaxation time bridging the VLD and IHD escape rates as a function of β′ yields
satisfactory agreement with the numerical results for all values of damping. More-
over, the turnover equation (242) allows one to estimate accurately the damping
dependence of the low-frequency parts of the spectra of the equilibrium correlation
function C(t) and the complex susceptibility χ(ω) and to evaluate the contribution
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of the overbarrier relaxation mode to the correlation time Tc of the position cor-
relation function C(t). We have given an exact as well as a simple approximate
analytical formula for the correlation time Tc and the dynamic susceptibility χ(ω).

G. The Brownian Particle in a Tilted Periodic Potential

1. Applications of the Model of a Brownian Particle in a

Tilted Periodic Potential

The translational Brownian motion in the tilted washboard potential

V (x) = −V0cos(2πx/a) − Kx + const (253)

where x is the position and a is a characteristic length with the constant field
driving potentialKx superimposed on the periodic potential−V0cos(2πx/a), arises
in a number of important physical applications involving noise and relaxation
processes in phase-locked loops. We mention the current–voltage characteristics
of the Josephson junction [44,124], mobility of superionic conductors [125], a laser
with injected signal [126], phase-locking techniques in radio engineering [127],
dielectric relaxation (when K = 0) of molecular crystals [128], the dynamics of a
charged density wave condensate in an electric field [129], ring-laser gyroscopes
[130], stochastic resonance [109,131], and so on. A comprehensive discussion of
the model is given in Refs [14,16,44]. Moreover, a concise method of numerical
treatment (in terms of infinite continued fractions) in the VHD limit, where the
inertia of the particle may be neglected, has been suggested by Cresser et al. [132].
This has particular application to a ring-laser gyroscope and has been summarized
by Risken [16] (see also references cited therein). Further development of the
continued fraction approach has been given by Coffey et al. [14,133].

However, the continued fraction method by its very nature precludes one from
obtaining analytical expressions for important physical characteristics of the model
such as the jump rate (due to thermal fluctuations) from a given well of the po-
tential to another well arbitrarily far along the tilted washboard. Here, we shall
demonstrate that the approximate solution of the Kramers escape rate problem
as adopted to the potential of Eq. (253) provides in the low-temperature limit an
accurate approximation for all values of the dissipation parameters to the exact
jump rate (inverse jump time) yielded by the continued fraction method.

Here, we use the escape rate calculated by Mel’nikov in Refs [8,9] to analyze
the dynamics of a Brownian particle in the context of the Josephson junction in
the tilted periodic potential of Eq. (253) and to compare the results to the exact
solutions yielded by the continued fraction method. In this way, the range of validity
of the approximate analytical solution may be ascertained. Here, we recall that
the Kramers problem in a tilted periodic potential is qualitatively different from
the escape problem from a metastable well because the tilted periodic potential
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is multistable. Thus, the particle having escaped a particular well may again be
trapped due to the thermal fluctuations in another well. Moreover, jumps of either
a single lattice spacing or of many lattice spacings are possible. Thus, the escape
rate in a periodic potential is called the jump rate [50]. Thus from a mathematical
point of view, we have to take into account the nonperiodic or running solution of
the Fokker–Planck equation. Hence, the structure factor is used as described by
Risken [16] to generate an additional parameter k in the Fokker–Planck equation.
That parameter is then averaged over all possible jumps. Yet another difference
from the conventional Kramers problem is that the stationary distribution is no
longer the Maxwell–Boltzmann distribution.

In the VHD limit, the analysis of the problem usually starts from the
Smoluchowski equation by either converting the solution of that equation to
a Sturm–Liouville problem or to the solution of an infinite hierarchy of linear
differential–recurrence relations for statistical moments [16]. We have mentioned
that a concise method of numerical treatment (using infinite scalar continued frac-
tions) of the periodic solution of model in the VHD limit, where the inertia of
the particle may be neglected, has been suggested by Cresser et al. [132] with
applications to a ring-laser gyroscope as summarized by Risken [16] (see also ref-
erences cited therein). Further development of the continued fraction approach has
been given by Coffey et al. [14,133]. In the opposite VLD limit, the calculation of
the escape rate by Kramer’s method was accomplished in Refs [134,135]. Finally
a general method of solution of the problem for all values of dissipation based
on a matrix continued fraction representation of the Klein–Kramers equation has
been suggested by Risken [16]. This method allows one to calculate eigenvalues
and eigenfunctions of the Klein–Kramers (Fokker–Planck) equation for the tilted
periodic potential and so evaluate the Fourier transforms of various correlation
functions in virtually all cases for vanishing small damping. By applying this
method, Ferrando et al. [49,50] have studied the one-dimensional translational
Brownian motion in a pure periodic potential (253) with K = 0. These authors
have evaluated numerically the longest relaxation time τ from the dynamic struc-
ture factor. Moreover, the friction dependence of τ so obtained completely agrees
with that yielded by the Mel’nikov turnover formula [8,9]. The treatment of the
same one-dimensional problem and its generalization to diffusion on a surface has
been given by Pollak et al. in Refs [54–56]. However, neither Ferrando et al. nor
Pollak et al. extended their comparisons of the turnover formula with the exact
solution to the tilted cosine potential that we shall now do.

We consider the one-dimensional translational Brownian motion of a particle of
mass m in a tilted periodic potential (253). On introducing the normalized variable
x, time t′, tilt y and barrier g parameters as

2π

a
x → x, y =

aK

2πV0
, g =

V0

kBT
, t →

t

η
, η =

a

2π

√

m

2kBT
(254)
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the potential equation (253) takes the form

V (x) = −g(cos x + yx) (255)

and the Langevin equation (212) describing the dynamics of the Brownian particle
becomes

ẍ(t) + β′ẋ(t) + g[sin x(t) − y]/2 = F (t) · η/
√

2mkBT (256)

where β′ = ηζ/m is the dimensionless friction parameter, and the white noise force
F(t′) satisfies

F (t) = 0, F (t1)F (t2) = ηβ′δ(t1 − t2) (257)

Typical examples of physical systems modeled by Brownian motion in a tilted
periodic potential and described by the Langevin equation (256) are presented in
Table I.

The corresponding Klein–Kramers (Fokker–Planck) equation for the joint PDF
W(x, ẋ, t) of the phase space variables x and ẋ may be written [16]

∂W

∂t
= LFPW (258)

where the Fokker–Planck operator LFP is given in our dimensionless variables by

LFPW = −ẋ
∂W

∂x
+

1

2

∂V

∂x

∂W

∂ẋ
+ β′

(

∂(ẋW)

∂ẋ
+

1

2

∂2W

∂ẋ2

)

(259)

Now the periodic solutions of Eq. (256) or (258) cannot describe escape of the
particle from the well because the period 2π of the potential wincides with the
domain of the well. Hence, to investigate the escape process across the multiwell
potential generated by Eq. (253), one has to obtain a nonperiodic or running

solution of Eq. (256) or (258) [16]. In order to obtain a nonperiodic solution of the
Klein–Kramers equation (258), we make the Ansatz [16]

W(x, ẋ, t) =
1/2
∫

−1/2

W̃(k, x, ẋ, t)eikx dk (260)

where W̃ is periodic in x with period 2π and it is assumed that k is restricted
to the first Brillouin zone, −1/2 ≤ k ≤ 1/2. The periodic function W̃ can then
be expanded in a truncated Fourier series in x and in orthogonal Hermite func-
tions in ẋ [16]. A similar approach may be used for the solution of the Langevin
equation (256).
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Following [53] we calculate the dynamic structure factor S̃(k, ω), which is
the Fourier transform over time of the equilibrium translational correlation func-
tion S(k, t) =

〈

eik[x(t)−x(0)]
〉

0
, where x(0) the initial value of x(t) and the angular

brackets denote a stationary averaging. Thus, we introduce the set of stationary
correlation functions cn,p(k, t) defined as

cn,p(k, t) =
1

√
2nn!

〈

eik[x(t)−x(0)] eipx(t)+V [x(t)]/2Hn[ẋ(t)]
〉

0
(261)

Equation (256) now may be recast as a hierarchy of equations for the correlation
functions cn,p(k, t), namely [53]

d

dt′
cn,p(k, t) = −nβ′cn,p(k, t)

+
√

n + 1

2

{

[

i(p + k) −
gy

2

]

cn+1,p(k, t) −
ig

4

[

cn+1,p+1(k, t) − cn+1,p−1(k, t)
]

}

+
√

n

2

{

[

i(p + k) +
gy

2

]

cn−1,p(k, t) +
ig

4

[

cn−1,p+1(k, t) − cn−1,p−1(k, t)
]

}

(262)

Having determined the c0,p(k, t) from Eq. (262), the function S(k, t) can be eval-
uated in series form as [16] (see also Section III.C)

S(k, t) =
∞
∑

p=0

apc0,p(k, t) = (2π)−1Z

∞
∑

p=0

c∗
0,p(k, 0)c0,p(k, t) (263)

where the initial conditions c0,p(k, 0) for c0,p(k, t) are given by [16]

c0,p(k, 0) = Z−1

2π
∫

0

eipx−V (x)/2 dx, Z =
2π
∫

0

e−V (x) dx (264)

(the asterisk denotes the complex conjugation). Here, we have written

eikx(t′) = eV [x(t′)]/2
∞
∑

p=0

ap ei(p+k)x(t′)

ap =
1

2π

2π
∫

0

dx e−ipx−V (x)/2 =
1

2π
Zc∗

0,p(k, 0)

Equation (262) (equivalent to that derived by Risken [16] from the Fokker–Planck
equation) is the desired recurrence equation for the statistical moments. This equa-
tion can be solved by the matrix continued fraction method to yield the one-sided
Fourier transform of the dynamic structure factor S̃(k, ω) =

∫∞
0 S(k, t)e−iωt dt

(see Appendix B.4). Having determined S̃(k, ω), the longest relaxation time τ
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and decay rate Ŵ ≈ τ−1 can be evaluated as follows. Defining the decay rate
Ŵ ≈ τ−1 as

τ−1 =
1/2
∫

−1/2

τ−1(k) dk (265)

where the time τ(k) is a characteristic time associated with the long-time behavior
of the function S(k, t′) that can be approximated as t → ∞ by an exponential
S(k, t′) ∼ h(k)e−t/τ(k) [50]. In the frequency domain as ω → 0, this approximation
corresponds to

S̃(k, ω) =
h(k)

iω + τ−1(k)
(266)

Thus, τ−1(k) can be extracted as [50]

τ−1(k) = lim
ω→0

iω

[

S̃(k, 0)

S̃(k, ω)
− 1

]−1

(267)

The dynamic structure factor S̃(k, ω) can be calculated exactly by solving the
differential–recurrence equation (262) using matrix continued fractions [16] (as
described in Appendix B) and may be compared with the characteristic time τ(k)
and the decay rate Ŵ ≈ τ−1 evaluated from Eqs. (265) and (267).

2. Turnover Equation

An analytical approximation to the decay rate τ−1 in a tilted periodic potential has
also been obtained by Mel’nikov [8,9] by again reducing the underdamped Klein–
Kramers equation to an integral equation of Wiener–Hopf type. The Mel’nikov
expression for the longest relaxation time τM is [8,9]

τM = τIHD/A(�, gy) (268)

where τIHD is the longest relaxation time in the IHD limit, which is given by the
Kramers IHD formula [8,9]

τIHD = 4πη

(
√

β′2 + 2g − β′
)−1

e�V (269)

�V is the height of the lowest barrier (see Fig. 18), namely,

�V = 2g

(

√

1 − y2 + y arcsin y − πy/2

)

(270)

The function A (which now takes into account the periodic nature of the potential)
in Eq. (268) is defined as [8,9]

A(�, f ) =
1/2
∫

−1/2

w(k, �, f )dk (271)

96



207

0

−Vc−V/2

V = 2 πγ y
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x
0

Figure 18. Potential V (x) =
−g(cos x + yx) + C with C = πy −
yarcsiny−(1−y2)

1/2
, V = 2πgy, and

Vc = 2g
(
√

1 − y2 + y arcsin y
)

.

where

w(k, �, f ) = 4 sin(πk)sin[π(k + if )]e−πf+�(k,�,f )−�(0,2�,0)/2 (272)

� (k, �, f ) =
∞
∑

n=1

n−1cos[πn(2k + if )]

×
{

erfc

[√
n�

(

1

2
+

πf

�

)]

enπf

+erfc

[√
n�

(

1

2
−

πf

�

)]

e−nπf

}

(273)

and erfc(x) is the complementary error function defined as erfc(x) =
(2/

√
π)
∫∞
x

e−t2 dt [72]. (Alternative forms of the function A are given in Ref.
[8].) For zero tilt (y = 0), Eq. (272) can be simplified to yield [50]

w(k, �, 0) = 4 sin2(πk)e�(k,�,0)−�(0,2�,0)/2 (274)

where � (k, �, 0) = 2
∑∞

n=1 n−1erfc
(√

n�/2
)

cos (2πnk). The dimensionless

Kramers parameter � is related to the action associated with the path along the
top of the lowest barrier given by

� = 2β′
−arcsin y
∫

x0

√

−V (x) dx = 2β′√g

−arcsin y
∫

x0

√

√

1 − y2 − cos x + y(x + arcsin y)dx

(275)
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where x0 is an appropriate solution of the equation V (x0) = 0. On this path, a
particle starts with zero velocity at the top of the barrier and, having descended
into the well, returns again to the top of the barrier [135]. For small tilt y ≪ 1,
� has the following behavior

�

δ0
= 1 −

1

32

{

π
[

9 − 4 log(πy/4)
]

y +
√

πy3/2
}

+ · · · (276)

where δ0 = 8β′√2g is the action for zero tilt. If y approaches 1, � can be approx-
imated as [135]

� ≈ 3�0

[

2 (1 − y)
]5/4

/5 (277)

The normalized action �/δ0 evaluated from Eqs. (275)–(277) is shown in Fig. 19.
Now A(�) → 1 as � → ∞ and A(�)/� → 2 as � → 0. Thus, for very high

damping, β′ → ∞, Eq. (268) yields the VHD asymptote

τVHD = 4πηβ′g−1 e�V (278)

In the VLD limit (β′ → 0), one has from Eq. (268)

τVLD =
πη

β′δ
√

g/2
e�V (279)

which is the result of Büttiker and Landauer [135] (in our notation).
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Figure 19. The normal-

ized action �/δ0 versus

the tilt parameter y. Solid

line: Eq. (275). Dashed line:

Eq. (276). Dashed-dotted

line: Eq. (277).
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The Mel’nikov method (just as other asymptotic methods) is valid in the high-
barrier (low-temperature) limit only. In order to accurately estimate τ for a low
barrier, one should use alternative methods such as the MFPT [2]. The MFPT
may be easily calculated for all systems with dynamics governed by single vari-
able Fokker–Planck equations in terms of the equilibrium (stationary) distribution
function W0 and diffusion coefficient D(2) only. The merit of this method is that
it again allows us to obtain VHD and VLD solutions, valid for all barrier heights

including very low barriers, where asymptotic methods (like that of Mel’nikov)
fail. In the next section, we use the MFPT to evaluate the decay rate τ−1 in the
VHD and VLD limits at zero tilt y = 0. Here, the results can be given in closed
form.

3. The Mean First Passage Time Asymptotes for the Decay Rate at Zero Tilt

In the VHD limit (β′ ≫ 1), the appropriate single variable Fokker–Planck (Smolu-
chowski) equation for the PDF W(x, t) is [16]

∂

∂t
W =

1

2β

{

∂

∂x
(g sin xW) +

∂2

∂x2
W

}

(280)

Since the diffusion coefficient D(2) = (2β′)−1, the longest relaxation time τ can
be estimated via the mean first passage time [2] and is thus given by [68]

τ ∼ τMFPT
VHD = 2β′η

π
∫

−π

1

W0(x)

x
∫

−π

W0(φ)dφ dx = 2β′η

π
∫

−π

x
∫

−π

eg(cos φ−cos x)dφ dx

(281)
where the equilibrium Boltzmann distribution function W0(x) is given by

W0(x) =
eg cos x

2πI0(g)
(282)

and I0(z) is the modified Bessel function [72] of the first kind. The time τMFPT
VHD is

the time needed for the Brownian particle starting at the top of the barrier x = −π

to attain, having reached the bottom of a well, the neighboring top at x = π.
In the opposite low damping limit (β′ ≪ 1), in order to obtain a single variable

Fokker–Planck equation, we again introduce as variables the energy of the particle

ε = ẋ2 − g cos x (283)

and the time w (phase) measured along a closed trajectory in phase space. These
comprise the action–angle variables [2] of the problem. The energy ε varies very
slowly with time. Consequently, it is a slow variable in comparison to the phase
w. By using the method of Praestgaard and van Kampen [69], that is, averaging
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the Fokker–Planck equation (258) over the fast phase variable w, we again have a
single variable Fokker–Planck equation for the PDF W(ε, t) in energy space

∂W

∂t
= 2β′

[

∂

∂ε

(

ẋ2(ε) −
1

2

)

+
∂2

∂ε2
ẋ2(ε)

]

W (284)

where the double overbar denotes averaging over the fast phase variable. Because
the diffusion coefficient is

D(2) = 2β′ẋ2(ε) = 2β′[ε + gcos x(ε)
]

(285)

the time τ is then given by

τ ∼ τMFPT
VLD =

η

2β′

g
∫

−g

1
[

ε + gcos x(ε)
]

W0(ε)

ε
∫

−g

W0(x)dx dε (286)

The calculation of W0(ε) and the integrals in Eq. (286) is described in
Appendix C.4. The ranges of applicability of the VHD and VLD MFPTS
[Eqs. (281) and (286)] are the same as those of the corresponding Fokker–Planck
equations (280) and (284), namely, the VHD and VLD limits, respectively. In
practice, Eqs. (281) and (286) may be used for β′ > 5 and β′ < 0.01.

4. Asymptotic Formula and Matrix Solution: Comparison of the Results

The longest relaxation time predicted by the turnover formula, Eq. (268), and the
inverse decay rate calculated numerically by matrix continued fraction methods
are shown in Figs. 20 and 21 as functions of β′ for different values of the bar-
rier height and tilt parameters. Here, the IHD [Eq. (269)], VHD [Eq. (278)], and
VLD [Eq. (279)] asymptotes for τ are also shown for comparison. Apparently
in the high-barrier limit Eq. (268) provides a good approximation to the decay
rate for all values of the friction parameter β′ including the VHD, VLD, and the
Kramers turnover regions. The quantitative agreement in damping behavior may
be explained as follows. The behavior of the escape rate as a function of the barrier
height parameter g for large g is as before approximately Arrhenius-like and arises
from an equilibrium property of the system (namely the Boltzmann distribution at
the bottom of the well). In contrast, the damping dependence of the escape rate is
due to nonequilibrium (dynamical) properties of the system and so is contained in
the prefactor A only, the detailed nature of which depends on the behavior of the
energy distribution function at the barrier points [74]. The Mel’nikov–Meshkov
approach [12,78] yields the distribution function at the barrier point for all values
of the damping allowing one to evaluate the damping dependence of the prefactor
μ ∼ A in Eq. (19).
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Figure 20. The longest

relaxation time τ/η versus

the friction parameter β′

for a tilt parameter y = 0.3

and different values of the

barrier parameter g = 5, 10,

and 15. Solid line: the

Mel’nikov Eq. (268); dashed

line: the VHD Eq. (278);

dashed-dotted line: the IHD

Eq. (269); dotted line: the

VLD Eq. (279); filled cir-

cles: exact numerical solu-

tion, Eq. (265).

In spite of very good overall agreement between numerical results and the
universal equation (268), a marked difference (on the order of 10–40%) between
numerical and analytical results exists in the VLD region at moderate barriers (this
difference decreases with increasing g, see Fig. 20) Such a difference has already
been noted for other systems (see, e.g., Refs [47,49]). Thus, in order to improve
the accuracy of the turnover formula, Mel’nikov [74] suggested a systematic way
of accounting for finite-barrier corrections. Analysis of the translational Brownian
motion in a periodic cosine potential has demonstrated [51] that if such corrections
are included, the accuracy of the turnover formula is considerably improved for
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Figure 21. τ/η versus the

friction parameter β′ for the
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0.6. Solid line: the Mel’nikov

equation (268); dashed line:

the VHD Eq. (278); the IHD

Eq. (269); dotted line: the

VLD Eq. (279); filled circles:

exact solution, Eq. (265).
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Brownian motion in a periodic potential with zero tilt, that is, y = 0. One would
expect a similar improvement for nonzero tilt.

For zero tilt, y = 0, the longest relaxation time τ predicted by the turnover
equation (268) and the inverse decay rate calculated numerically by matrix con-
tinued fraction methods are shown in Figs. 22 as functions of β′ for various barrier
heights including the very low barrier g = 0.1. Here, the VHD [Eq. (281)] and
VLD [Eq. (286)] asymptotes for τ calculated from the MFPT are also shown for
comparison. In the VHD and VLD limits, these asymptotes may be used to es-
timate τ for all barrier heights. For small barriers g = 0.1, the turnover formula
is obviously invalid. However, for small barriers the simple ad hoc extrapolating
equation [2]

τ ∼ τMFPT
VHD + τMFPT

VLD (287)

provides a satisfactory estimate of the longest relaxation time τ for all damping.
The real and imaginary parts of the normalized dynamic structure factor

S̃(k, ω)/S̃(k, 0), for various values of the tilt parameter y are shown in Fig. 23
with barrier parameter g = 10, the friction coefficient is β′ = 10, and k = 0.2. For
comparison, we also show in these figures the pure Lorentzian spectra

S̃L(k, ω)

S̃(k, 0)
=

1

1 + iωτk

(288)
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Figure 23. The real and

imaginary parts of the normal-

ized dynamic structure factor

S̃(k, ω)/S̃(k, 0) versus ωη for

various values of the tilt pa-

rameter y and for the barrier

parameter g = 10, the fric-

tion coefficient β′ = 10 and

k = 0.2. Solid lines: numer-

ical calculation. Asterisks:

Eq. (288).

where the relaxation time τk = 1/Re
[

τ−1
M (k)

]

is related to the τM from the universal

equation (268) via τ−1
M = 2

∫ 1/2
0 Re

[

τ−1
M (k)

]

dk. Apparently, the simple Lorentzian
equation (288) describes perfectly the low-frequency part of the dynamic structure
factor S̃(k, ω)/S̃(k, 0).

Thus, we have demonstrated how the matrix continued fraction method of so-
lution of nonlinear Langevin equations [14] may be successfully applied to a
Brownian particle moving in the tilted periodic potential, Eq. (253) for wide ranges
of the barrier parameter g, tilt parameter y, and the damping parameter β′. We have
shown that in the low-temperature limit, the Mel’nikov formula for the longest re-
laxation time, Eq. (268), yields satisfactory agreement with the numerical results
for all values of damping. In practical calculations, Eq. (268) may be used for g ≥ 1,
5 and 0.8 ≥ y ≥ 0. For 1.0 ≥ y > 0.8 (where a parabolic approximation of the barrier
top is no longer valid), the matrix continued fraction solution must be used. For
small g (where asymptotic methods like that of Mel’nikov are not applicable) and
y = 0, Eqs. (281), (286), and (287) yield a good estimate for the longest relaxation
time. Moreover, the Mel’nikov equation (268) allows one to accurately estimate
the damping dependence of the low-frequency parts of the dynamic structure factor
S̃(k, ω) via the simple approximate analytical formula, Eq. (288).

We have shown that the turnover formula for evaluating the longest relaxation
time τ as a function of the dissipation parameter for Brownian particles in a tilted
periodic potential provides in the low-temperature limit excellent agreement with
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the exact continued fraction solution for all values of the dissipation parameter in-
cluding the VLD, VHD, and turnover regions. A similar conclusion may be drawn
[48,57,58,60,64,136] for diverse stochastic systems modeled by Brownian motion
in multiwell potentials with equivalent and nonequivalent wells, where the validity
of the turnover equation for τ ∼ Ŵ−1 (Ŵ is the escape rate) has been verified by
comparison with numerical solutions of the governing Langevin or Fokker–Planck
equations. Thus, the turnover equation for the escape rate appears to yield an ef-
fective and powerful tool for evaluating the damping dependence of the prefactor
A for a wide class of nonlinear stochastic systems even in the tilted cosine potential
problem where the stationary solution differs from the Maxwell–Boltzmann dis-
tribution. It is obvious that the description of the relaxation processes in terms of
either the Fokker–Planck or Langevin equations neglects quantum effects. These
effects become important at very low temperatures and necessitate an appropri-
ate quantum mechanical treatment so that Mel’nikov [8,9] and Rips and Pollak
[78] have extended the turnover formula for mechanical particles to account for
quantum tunneling in a semiclassical way. We have seen that the classical turnover
formula for the escape rate may be confirmed as an accurate approximation to
the exact escape rate of a mechanical Brownian particle because one may exactly
solve the corresponding Fokker–Planck equation describing the evolution of the
distribution function in phase space using matrix continued fractions. In order to
verify formulas for the escape rate that incorporate quantum effects, it is neces-
sary to identify the appropriate quantum mechanical master equation [137,138]
underlying the relaxation process, which becomes the Fokker–Planck equation
in the classical limit. A promising candidate seems to be the Caldeira–Leggett
[80] quantum master equation for the time evolution of the Wigner transform of
the reduced density operator (here the relationship between the quantum density
operator and the semiclassical distribution function is given by the Wigner trans-
formation [139]). The Caldeira–Leggett approach may be used for all values of
damping. In the VHD limit, one can use the quantum Smoluchowski equation,
which to leading order coincides in form with the classical Smoluchowski equa-
tion, nevertheless containing essential quantum corrections [140–142]. Such an
approach to the quantum mechanical problem also lends itself to solution by the
continued fraction methods we have described [137,138] so that the turnover quan-
tum escape rate equations can be tested in a similar manner to that which we have
described here, a subject that will occupy the final part of our chapter.

H. Escape Rate Formulas for Superparamagnets

The application of Kramers’ escape theory to superparamagnetic relaxation in
the IHD limit has been given in detail by Smith and de Rozario [143], Brown
[144], Klik and Gunther [145], and Geoghegan et al. [37] (all this work is de-
scribed in Ref. [3]). Klik and Gunther [145] used Langer’s method (described in
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Section II.A.5) and realized that the various Kramers damping regimes also applied
to magnetic relaxation of single-domain ferromagnetic particles.

The starting point of Brown’s treatment of the dynamical behavior of the magne-
tization M for a single-domain particle is Gilbert’s equation [146], which without
thermal agitation is

Ṁ = γM ×
(

H − ηṀ
)

(289)

In Eq. (289), γ is the gyromagnetic ratio, η is a phenomenological damping con-
stant,

H = −
∂V

∂M
= −

(

i
∂V

∂MX

+ j
∂V

∂MY

+ k
∂V

∂MZ

)

(290)

and V is the Gibbs free energy density (the total free energy is vV , v is the
volume of the particle). In general, H represents the conservative part and ηṀ

the dissipative part of an “effective field.” Brown now supposes that in the pres-
ence of thermal agitation, the dissipative “effective field” −ηṀ describes only the
statistical average of the rapidly fluctuating random forces due to thermal agitation,
and that for an individual particle, this term must become −ηṀ + h(t), where the
Gaussian white noise random field h(t) has the properties

hi(t) = 0, hi(t1)hj(t2) = (2kBTη/v)δijδ(t2 − t1) (291)

Here, the indices i, j = 1, 2, 3 correspond to the Cartesian axes X, Y, Z of the
laboratory coordinate system. The overbars denote the statistical averages over
a large number of moments, which have all started with the same orientation
(ϑ, ϕ) (here we use spherical polar coordinates, see Fig. 24). On assuming that
the hi (t) obey Isserlis’s theorem [14], Brown was then able to derive after a long
and tedious calculation using the methods of Wang and Uhlenbeck [146–148], the
Fokker–Planck equation for the density of magnetization orientations W(ϑ, ϕ, t)
on a sphere of constant radius Ms. This procedure may be circumvented, however,
using an alternative approach given by Brown [146].

In order to illustrate this, we first write (by cross multiplying vectorially by M

and using the triple vector product formula) Gilbert’s equation in the absence of
thermal agitation (noiseless equation) as an explicit equation for Ṁ, namely,

Ṁ = α−1h′MS(M × H) + h′(M × H) × M (292)

where α = γηMS is a dimensionless damping coefficient and

h′ =
αγ

(1 + α2)MS
(293)
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Figure 24. Spherical polar coor-

dinate system.

Equation (293) has the mathematical form of the earlier Landau–Lifshitz equa-
tion, where precessional and alignment terms are distinguished namely,

Ṁ = γ(M × H) +
αγ

MS
(M × H) × M (294)

which may be written from Eq. (293) by taking the low damping limit, α ≪ 1
(usually, α lies in the range 0.01–1). On writing M = uMs, Eq. (293) becomes

u̇ = −
h′

α

(

u ×
∂V

∂u

)

+ h′u ×
(

u ×
∂V

∂u

)

(295)

Here instead of M we use the unit vector u, where the Cartesian coordinates are the
direction cosines ui of M so that ∂/∂M may be replaced by M−1

S ∂/∂u, where ∂/∂u

means the gradient on the surface of the unit sphere [146] so that in the spherical
coordinate system (Fig. 24), the operator ∂/∂u is

∂

∂u
=

∂

∂ϑ
eϑ +

1

sin ϑ

∂

∂ϕ
eϕ (296)

We show in detail how Langer’s method may be used in superparamagnetic
relaxation. Again, we deal with an energy (or Hamiltonian) function, E = V(ϑ, ϕ),
with minima at points A and B separated by a barrier (saddle point) at C, see Fig. 1.
We use spherical polar coordinates (ϑ, ϕ), where ϑ is the polar angle and ϕ is the
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azimuthal angle as usual. The noiseless Gilbert equation (295) takes the form in
the coordinates (p = cos ϑ, ϕ) [144]

ṗ = −h′(1 − p2)Vp − h′α−1Vϕ, ϕ̇ = h′α−1Vp − h′(1 − p2)Vϕ (297)

where subscripts denote the partial derivatives. We linearize these equations about
the saddle point and determine λ+ from the transition matrix as in the Klein–
Kramers case of Section II.A.5. Thus, expanding the Hamiltonian V(p, ϕ) as a
Taylor series about the saddle point (pC = cos ϑC , ϕC ), we obtain

V = V0 +
1

2

[

V (0)
pp (p − pC)2 + 2V (0)

pϕ (p − pC)(ϕ − ϕC) + V (0)
ϕϕ (ϕ − ϕC)2

]

(298)

where the superscript denotes the value of the relevant function at the saddle point.
We remark, following Klik and Gunther [145], that the Hamiltonian is defined on
a phase space that is a closed manifold [the space (ϑ, ϕ) is the surface of a unit
sphere] and thus a local energy minimum is surrounded by two or more saddle
points, depending on the symmetry of the problem. The total probability flux out of
the metastable minimum equals the sum of the fluxes through all the saddle points.
In asymmetrical cases, for example, when an external field is applied, some of
these fluxes become exponentially small and may safely be neglected. The total
flux out of the metastable minimum is then dominated by the energetically most
favorable path. Now, if the coordinates of the saddle point are (pC ,ϕC ), we have

∂V

∂p
= (p − pC)V (0)

pp + (ϕ − ϕC)V (0)
pϕ ,

∂V

∂ϕ
= (p − pC)V (0)

pϕ + (ϕ − ϕC)V (0)
ϕϕ

(299)

Now, let the saddle point C of interest lie on the equator p = 0 and make the
transformation ϕ − ϕC → ϕ. Equations (297) then yield

ϕ̇ = h′α−1 ∂V

∂p
− h′ ∂V

∂ϕ
, ṗ = −h′ ∂V

∂p
− h′α−1 ∂V

∂ϕ
(300)

Thus, the noiseless equation of motion in terms of the state variables is

(

ϕ̇

ṗ

)

= h′

(

−1 α−1

−α−1 −1

)(

∂V/∂ϕ

∂V/∂p

)

(301)

Thus, the linearized Eq. (301) has the form of the canonical Eqs. (31) and so
Langer’s equation (58) may be used to calculate the IHD escape rate. In particular,
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the transport matrix M and the matrix M̃ (see Section II.A.4) are given by

M = h′

(

1 −α−1

α−1 1

)

, M̃ = h′

(

−1 α−1

−α−1 −1

)

(302)

Now, the equations of motion (297) linearized at the saddle point become [145]

ϕ̇ = h′α−1
[

V (0)
pp p + V (0)

pϕ ϕ
]

− h′
[

V (0)
pϕ p + V (0)

ϕϕ ϕ
]

(303)

ṗ = −h′
[

V (0)
pp p + V (0)

pϕ ϕ
]

− h′α−1
[

V (0)
pϕ p + V (0)

ϕϕ ϕ
]

(304)

or, in matrix notation,

(

ϕ̇

ṗ

)

= h′

(

α−1V
(0)
pϕ − V

(0)
ϕϕ α−1V (0)

pp − V
(0)
pϕ

−V
(0)
pϕ − α−1V

(0)
ϕϕ −V (0)

pp − α−1V
(0)
pϕ

)(

ϕ

p

)

(305)

[the superscript (0) denoting evaluation at the saddle point]. Equations (303)
and (304) are the noiseless Langevin equations linearized at the saddle point given
by Klik and Gunther [[145], Eq. (3.2)]. The secular equation of Eq. (305) then
yields (as in Section II.A.4, 5)

λ± =
h′

2

{

−
[

V (0)
pp + V (0)

ϕϕ

]

±
√

[

V
(0)
pp + V

(0)
ϕϕ

]2
− 4(1 + α−2)

[

V
(0)
pp V

(0)
ϕϕ −

(

V
(0)
pϕ

)2]
}

(306)

The Hessian matrix of the system is

(

Vϕϕ Vpϕ

Vpϕ Vpp

)

(307)

and the Hessian itself is negative at the saddle point, thus, to ensure a growing
disturbance at the saddle point, we must again take the positive sign in Eq. (306).
The square of the well angular frequency is [the superscript (i) denoting evaluation
at the minimum of well i]

ω2
i = (γ/MS)2

[

V (i)
ppV (i)

ϕϕ −
(

V (i)
pϕ

)2
]

(308)

while the squared saddle angular frequency is

ω2
0 = (γ/MS)2

[

V (0)
pp V (0)

ϕϕ −
(

V (0)
pϕ

)2
]

(309)
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which, with Langer’s equation (58), leads to the Klik and Gunther result for the
escape rate [145]

Ŵi =
λ+ωi

2πω0
e−�Vi (310)

where �Vi = v(V0 − Vi)/(kBT ).
This formula demonstrates the wide-ranging uses of Langer’s method and shows

clearly how, once the potential landscape is known, all quantities relating to the
IHD escape rate may be calculated. We now choose a system of local coordinates,
(ϕ, p), in the vicinity of the saddle point, where Vpϕ = 0. Then we obtain a more
compact expression for λ+, namely,

λ+ ≡
h′

2

{

−
[

V (0)
pp + V (0)

ϕϕ

]

+
√

[

V
(0)
pp − V

(0)
ϕϕ

]2
− 4α−2V

(0)
pp V

(0)
ϕϕ

}

(311)

where we observe that the α−2 term represents the effect of the precessional term
in the Gilbert equation on the longitudinal relaxation. This mode coupling effect

is always present in a nonaxially symmetrical potential as the smallest eigenvalue
of the Fokker–Planck equation will always intrinsically depend on the damping
unlike in axial symmetry where the damping only enters via the free diffusion
time.

Equations (310) and (311) were also derived from first principles directly using
the Kramers escape rate theory without recourse to Langer’s work by Smith and
de Rozario [143] and Brown [144] and have been reviewed by Geoghegan et al.
[37]. In Brown’s calculation [144], the free energy density is diagonalized so that
in the vicinity of the saddle point and minimum, respectively, we have [37]

V = V0 +
[

c
(0)
1 ϕ2 + c

(0)
2 p2
]/

2 and V = Vi +
[

c
(i)
1 ϕ2 + c

(i)
2 p2
]/

2,

where c
(0)
1 and c

(0)
2 are the coefficients of the second-order term of the Taylor series

of the expansion of V at the saddle point and c
(0)
1 and c

(0)
2 are the coefficients of the

second-order term in the Taylor series expansion of the energy in the well. Thus,
Brown’s IHD result for the escape rate [144] reads [cf. Eq. (5.60) of Geoghegan
et al. [37], where a detailed derivation is given]

Ŵi =
�0ωi

2πω0
e−�Vi (312)

where

�0 =
h′

2

[

−c
(0)
1 − c

(0)
2 +

√

(

c
(0)
2 − c

(0)
1

)2
− 4α−2c

(0)
1 c

(0)
2

]
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is the damped saddle angular frequency. Obviously Brown’s equation (312) coin-
cides with Eq. (310).

We remark that the magnetization reversal time problem differs fundamentally
from that of point particles because (i) the magnetic system has two degrees of
freedom, the polar ϑ and azimuthal ϕ angles, (ii) the undamped equation of motion
of the magnetization of a single-domain ferromagnetic particle is the gyromag-
netic equation, (iii) the Hamiltonian is nonseparable, and (iv) the inertial effects
play no role. Notwithstanding, the role of inertia in the mechanical system is es-
sentially mimicked in the magnetic system for nonaxially symmetrical potentials
by the gyromagnetic term causing coupling or entanglement of the transverse and
longitudinal modes. Hence, in order to derive escape rate formulas for superpara-
magnetic particles equivalent to those for mechanical particles, one has to consider
in Brown’s Fokker–Planck equation a nonaxially symmetrical free energy density
V (ϑ, ϕ), where explicit coupling between the two degrees of freedom exists. Thus,
both regimes of damping (IHD and VLD) can now occur reflecting the fact that
the dynamics of the transverse response affect the dynamics of the longitudinal
response and vice versa. This was first realized in 1990 by Klik and Gunther [145].
They showed that the various Kramers damping regimes also apply to magnetic
relaxation of single-domain ferromagnetic particles and derived the corresponding
VLD formula. Furthermore, they also realized that the magnetic IHD calculations
[143,144] are, as described above a special case of Langer’s general treatment
of the decay of metastable states of systems with many degrees of freedom
[13]. Thus, they could understand why Eq. (312) derived for a nonseparable

Hamiltonian, which is the free energy, applies like the separable Hamiltonian
result Eq. (20) when the energy loss per cycle of the almost periodic noise-perturbed
motion at the saddle point energy αSi ≫ 1. If αSi ≪ 1, then one may prove using
first passage times (details in [3]) that for the escape from a single well

Ŵi = ŴVLD
i ∼

αSiωi

2π
e−�Vi (313)

where

Si =
v

kBT

∮

EC

[

(1 − p2)
∂V

∂p
dϕ −

1

1 − p2

∂V

∂ϕ
dp

]

(314)

is the dimensionless action. Equation (313) is effectively the same as the corre-
sponding Kramers result for point particles, Eq. (22). The conditions of applica-
bility of the IHD and VLD solutions for superparamagnets are defined by α ≥ 1
and α ≪ 1, respectively.

In the turnover region, 0.01 < α < 1, Coffey et al. [3,64] have shown that
the Mel’nikov–Meshkov formalism connecting the VLD and IHD Kramers es-
cape rates as a function of the dissipation parameter for mechanical particles,
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can be extended to include magnetization relaxation of single-domain ferromag-
netic particles having nonaxially symmetrical potentials of the magnetocrystalline
anisotropy. The turnover equation bridging the VLD and IHD escape rates is given
by [3,64]

Ŵi = A(αSi)Ŵ
IHD
i (315)

where A(�) is the depopulation factor, Eq. (119), which interpolates between the
VLD and ID regimes. One may show that Eq. (315) reduces in the IHD and VLD
limits to Eqs. (312) and (313), respectively.

We remark that Eqs. (312), (313), and (315) may be used to verify experimen-
tally the Kramers theory for magnetic particles. This has been accomplished using
the sophisticated single-particle measurement techniques developed by Werns-
dorfer [26]. We further remark that a second interpolation problem arises in the
magnetic version of the Kramers escape rate, namely, how to join axially symmet-
rical and nonaxially symmetrical asymptotic expressions for the longest relaxation
time in the limit of small departures from axial symmetry. This problem has been
described in detail in Refs [3,149]. Thus, we emphasize that in the derivation of all
these formulas it is assumed that the potential is nonaxially symmetrical. If the
departures from axial symmetry become small the nonaxially symmetric asymp-
totic formulas for the escape rate may be smoothly connected to the axially sym-
metric ones by means of suitable interpolation integrals [3].

Two other important effects occur in bistable potentials. These are (i) the effect
of a uniform bias force on the relaxation time and (ii) the stochastic resonance
phenomenon. The formulas developed in this section may also be applied to fer-
rofluids.

III. QUANTUM BROWNIAN MOTION IN A POTENTIAL

A. Escape Rate for Quantum Brownian Motion

1. Escape Rate in the IHD Region

Following Mel’nikov [8], we recall that in the classical regime one starts with
the Langevin equation or the corresponding Fokker–Planck equation. However,
in the quantum regime one must start by specifying the Hamiltonian of the prob-
lem. Now we wish to study the decay rate for particles that experience viscous
friction in the classical regime. This condition is insufficient to define the system
consisting of particle and heat bath in a unique way. Nevertheless, it is still enough
to uniquely determine the effective action of the particle obtained by integration
over the variables describing the bath. According to Mel’nikov [8], this conclu-
sion is very important because all models of the heat bath are then equivalent as
far as the results for the escape rate are concerned provided they reproduce the
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same Langevin equation in the classical limit. Mel’nikov [8] considered two dif-
ferent models of the heat bath. In the underdamped regime he accounted for the
interaction of a particle with the bath by adding a term describing the effects of
the Johnston–Nyquist noise due to the bath to the Hamiltonian of the particle.
In contrast in the overdamped regime he assumed that the effect of the bath is
mimicked by a string (transmission line) coupled to the particle and tightened in a
direction perpendicular to the direction of motion of the particle. Ultimately these
procedures lead via a quantum depopulation factor to a high-temperature quantum
escape rate valid for all values of the dissipation in the same ad hoc manner as the
classical case.

We reiterate that in considering the classical case Kramers [15] effectively
proceeded using what are essentially two separate theories. In energy-controlled
diffusion it is assumed that the dynamics of the particle are almost Newtonian
because of the very weak coupling to the bath and the noisy motion is then treated
simply as a small perturbation of the noiseless undamped librational motion at the
barrier energy governed by Newton’s equation. On the other hand, in the IHD or
spatially controlled diffusion limit the problem is treated by approximating the
potential in the vicinity of the well and saddle by a (hyper) paraboloid and inverted
(hyper) paraboloid, respectively. The corresponding linearized multidimensional
Fokker–Planck equation is then solved in the vicinity of the barrier in the man-
ner described above. The two approaches are then combined as in the classical
Meshkov–Mel’nikov approach via a depopulation factor to yield a formula for the
escape rate valid for all values of the dissipative coupling to the bath.

However, as we have mentioned the first systematic (i.e., without ad hoc as-
sumptions) solution of the classical Kramers turnover problem was given by
Grabert [29] and Pollak et al. [12]. This solution was based on two observations.
The first being that escape does not occur along the original system coordinate but
along the unstable normal mode of the combined system and bath [2]. The second
was a systematic perturbative treatment [29] of the nonlinear part of the potential
that couples the unstable mode with the bath of stable modes. This treatment was
extended by Rips and Pollak [78] to provide a consistent solution of the quantum
Kramers turnover problem. Their method represents a synthesis of the treatment of
the well and barrier dynamics of Mel’nikov [8] and Larkin and Ovchinnikov [11]
and the normal mode approach to the classical Kramers turnover problem of Pollak
et al. In reviewing and simplifying the work of Mel’nikov we shall first give the
derivation of the IHD quantum rate in the transparent manner proposed by Pollak
[18], as this constitutes the most transparent method of attack on the problem that
was originally solved by Wolynes [150] in 1981 using path integrals. Pollak [18]
started from the equivalence of the generalized Langevin equation for a Brownian
particle to the equation of motion of a particle moving in a potential and bilinearly
coupled to a bath of harmonic oscillators. This procedure (which demonstrates
using normal mode analysis that classically the IHD Kramers rate is equivalent
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to a harmonic multidimensional TST rate) may be extended to the quantum case
by quantizing the system plus bath Hamiltonian consisting at the transition state
of an assembly of real oscillators and one with imaginary frequency of oscillation
representing the unstable barrier-crossing mode. It leads to the result of Wolynes
without using path integrals. Alternative calculations [3] based on extensions of
Langer’s imaginary part of the free energy method to include quantum effects also
yield that result. The string-particle model in its essentials goes back to Lamb’s
(1900) attempt to explain radiation damping in classical electrodynamics [20].

In this section, we use the notation of Pollak’s paper [18], namely, q is a coordi-
nate, V(q) is the potential, V# is barrier height, and η(t) is a time-dependent friction
related to the zero-mean Gaussian random force F(t) by the fluctuation–dissipation
relation, that is,

〈F (0) F (t)〉 = kBTη (t) (316)

The generalized Langevin equation (for the classical particle) is Eq. (126), namely,

Mq̈ +
t
∫

0

η(t − t′)q̇(t′)dt′ +
∂V

∂q
= F (t) (317)

This equation may be derived from a Hamiltonian with a harmonic oscillator bath
[151], that is,

H =
p2

q

2M
+ V (q) +

N
∑

j=1

[

p2
j

2mj

+
1

2
mj

(

ωjxj +
Cj

mjωj

q

)2
]

(318)

(See also [152].) Here,
(

pj, xj

)

are the momenta and coordinates of the jth bath
oscillator whose mass and frequency are mj and ωj , respectively. Cj couples the
jth bath oscillator to the system. By assuming that at time t = 0, the bath is in
thermal equilibrium, it can be shown [151] that q(t) is governed by Eq. (317) [and
Eq. (316)], where the time-dependent friction η (t) is

η(t) =
N
∑

j=1

C2
j

mjω
2
j

cos ωjt (319)

The spectral density of the bath J (ω) is defined as [152]

J (ω) ≡
π

2

N
∑

j=1

C2
j

mjωj

δ
(

ω − ωj

)

(320)
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Hence using Eq. (319), the time-dependent friction η(t) can be expressed in terms
of the inverse Fourier cosine transform of the spectral density J(ω) as

η(t) =
2

π

∞
∫

−∞

J(ω)

ω
cos ωt dω (321)

Now it is possible to obtain the continuum limit for the dynamics by defining J(ω)
as a continuous function instead of defining each amplitude Cj separately [22]. We
now take the Laplace transform of η(t), that is,

η̃(s) =
∞
∫

0

e−stη(t) dt (322)

so that with Eq. (321)

η̃(s) =
2

π

∞
∫

0

e−st

∞
∫

−∞

J (ω)

ω
cos ωt dω dt =

2

π

∞
∫

−∞

s

ω
(

s2 + ω2
) J (ω) dω (323)

By using Eq. (319), the Laplace transform η̃(s) may be written as

η̃(s) =
N
∑

j=1

C2
j

mjω
2
j

(

s

s2 + ω2
j

)

(324)

We wish to calculate the quantum escape rate and do so as follows. First, the
Hamiltonian given in Eq. (318) may be regarded as a quantum Hamiltonian. For
a finite discrete set of oscillators one may then evaluate the thermal decay rate
using harmonic quantum TST as mentioned in the Introduction. Having obtained
the TST expression one may take the continuum limit, so yielding an estimate for
the quantum IHD escape rate of particles governed by the generalized Langevin
equation.

To implement this, we must according to harmonic TST Eqs. (6) and (18), and
the generalized Kramers–Langer–Grote–Hynes expression (58) evaluate the quan-
tum partition functions at the well (q = 0) and the barrier (q = q# ). The partition
functions may be evaluated via a normal mode analysis at the barrier and the well.
To derive the rate expression essentially using Eq. (58), we first undertake the
normal mode analysis. We assume that the potential may be approximated as

V (q) ≈
1

2
Mω2

0q
2 (325)
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in the vicinity of the well and as

V (q) ≈ V # −
1

2
Mω2

#(q − q#)2 (326)

at the barrier. Here,ω0 is the frequency at the well andω# is the imaginary frequency
at the barrier. The harmonic approximations embodied in Eqs. (325) and (326)
imply that the Hamiltonian in the vicinity of the well and barrier may be written
in separable form like in Eq. (6) as that of a sum of N + 1 harmonic oscillators.
This is achieved [153] by first transforming to mass-weighted coordinates

q′ = M1/2q, x′
j = m

1/2
j xj (327)

and then diagonalizing the (N + 1) × (N + 1) force constant (Hessian) matrix
defined by the second derivatives of the potential at the well and the barrier (cf.
Section II.A.4).

The Hamiltonian equation (318) with Eq. (325) becomes

H =
p2

q

2M
+

Mω2
0q

2

2
+

N
∑

j=1

⎡

⎣

p2
j

2mj

+
1

2

(

m
1/2
j ωjxj +

Cj

m
1/2
j ωj

q

)2
⎤

⎦ (328)

and with Eq. (327) it is now

H =
p2

q

2M
+

1

2
ω2

0q
′2 +

N
∑

j=1

⎡

⎣

p2
j

2mj

+
1

2

(

x′
jωj +

Cj

m
1/2
j M1/2ωj

q′

)2
⎤

⎦ (329)

From this equation and Eq. (325) it is clear that the well is located at q′ = x′
j = 0;

j = 1, . . ., N.
The second-derivative (Hessian) matrix of the potential (with respect to the

mass-weighted coordinates) at the well is denoted by K and has the following
structure

K =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

H ′′
q′,q′ H ′′

q′,x′
1

H ′′
q′,x′

2
· · · H ′′

q′,x′
N

H ′′
x′

1,q
′ H ′′

x′
1,x

′
1

H ′′
x′

1,x
′
2

· · · H ′′
x′

1,x
′
N

H ′′
x′

2,q
′ H ′′

x′
2,x

′
1

H ′′
x′

2,x
′
2

· · · H ′′
x′

2,x
′
N

...
...

...
. . .

...

H ′′
x′
N

,q′ H ′′
x′
N

,x′
1

H ′′
x′
N

,x′
2

· · · H ′′
x′
N

,x′
N

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(330)
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where the derivatives of H are

H ′′
q′,q′ = ω2

0 +
N
∑

j=1

C2
j

Mmjω
2
j

(331)

H ′′
x′
j
,q′ = H ′′

q′,x′
j
=

Cj

M1/2m
1/2
j

, j = 1, 2, . . . , N (332)

and

H ′′
x′
i
,x′

j
= ω2

jδij, i, j = 1, 2, . . . , N (333)

Thus, we have the Hessian matrix

K =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

ω2
0 +

N
∑

j=1

C2
j

Mmjω
2
j

C1

(Mm1)1/2

C2

(Mm2)1/2
· · ·

CN

(MmN )1/2

C1

(Mm1)1/2
ω2

1 0 · · · 0

C2

(Mm2)1/2
0 ω2

2 · · · 0

...
...

...
. . .

...

CN

(MmN )1/2
0 0 · · · ω2

N

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(334)

We have N + 1 equations and the N + 1 eigenvalues of K are denoted by λ2
i ;

i = 0, 1, . . . , N. The λi are the normal mode frequencies in the well. The matrix
K reads in the diagonal basis

K′ =

⎛

⎜

⎜

⎜

⎜

⎝

λ2
0 0 · · · 0

0 λ2
1 · · · 0

...
...

. . .
...

0 0 · · · λ2
N

⎞

⎟

⎟

⎟

⎟

⎠

(335)

Now in accordance with Eq. (58), consider the determinants of the matrices K′ +
s2 I and K + s2I (I is the (N + 1) × (N + 1) identity matrix) that are

det[K′ + s2I] =
(

λ2
0 + s2

)

N
∏

j=1

(

λ2
j + s2

)

(336)
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det[K + s2I]

=

⎛

⎝ω2
0 + s2 +

N
∑

j=1

C2
j

Mmjω
2
j

−
N
∑

j=1

C2
j

Mmj

(

ω2
j + s2

)

⎞

⎠

N
∏

j=1

(

ω2
j + s2

)

(337)

Using Eq. (324), we then have

det[K + s2I] =

⎛

⎝ω2
0 + s2 +

s

M

N
∑

j=1

C2
j s

mjω
2
j

(

ω2
j + s2

)

⎞

⎠

∏N
j=1

(

ω2
j + s2

)

=
(

ω2
0 + s2 + sη̃ (s) /M

)

N
∏

j=1

(

ω2
j + s2

)

(338)
We derive from Eqs. (336) and (338) and since det[K′ + s2I] = det[K + s2I] (the
matrix K′ is the matrix K in the diagonal basis)

det[K + s2I] =
(

λ2
0 + s2

)

N
∏

j=1

(

λ2
j + s2

)

=
(

ω2
0 + s2 + sη̃(s)/M

)

N
∏

j=1

(

ω2
j + s2

)

(339)

This is Pollak’s equation (13) [18a].
Now the saddle point is located at q′ = q′

# and x′
j = −

[

Cj/(mjM)1/2ω2
j

]

q′
#;

j = 1, 2, . . . , N. The second-derivative matrix at the saddle point, denoted as K#

is of the same structure as K, the only difference is that ω2
0 is replaced by −ω2

0.
The eigenvalues of K# are denoted by −λ#2

0 , λ#2
j ; j = 1, 2, . . . , N. The lowest

eigenvalue is as usual (Section II) associated with the unstable mode and is negative
[18a]. Using reasoning similar to that used to obtain Eq. (339), we have

det[K# + s2I] =
(

−λ#2
0 + s2

)

N
∏

j=1

(

λ#2
j + s2

)

=
(

−ω2
# + s2 + sη̃(s)/M

)

N
∏

j=1

(

ω2
j + s2

)

(340)

Dividing Eq. (339) by Eq. (340) as required by Eq. (58), we get

λ2
0 + s2

−λ#2
0 + s2

N
∏

j=1

λ2
j + s2

λ#2
j + s2

=
ω2

0 + s2 + sη̃(s)/M

−ω2
# + s2 + sη̃(s)/M
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Rearranging we have

N
∏

j=1

λ2
j + s2

λ#2
j + s2

=

(

−λ#2
0 + s2

λ2
0 + s2

)

ω2
0 + s2 + sη̃(s)/M

−ω2
# + s2 + sη̃(s)/M

(341)

This is Pollak’s equation (15) [18b].
So far the calculation is entirely classical. Now recalling that in the classical

case, the IHD rate is simply the TST rate in the complete phase space of the system
we may [cf. Eq. (58)] use a similar argument to calculate the IHD quantum rate
from quantum TST.

2. Quantum Transition State Theory

The harmonic transition state theory expression for the rate of decay Ŵ as mentioned
in Section II.A (for detailed proof see [4,154]) is well known:

Ŵ =
(

kBT

2π�

)

Z#

Z0
(342)

Here, Z# and Z0 are the partition functions at the transition state and at reactants.
At the transition state we have N real oscillators with frequencies λ#

j ; j = 1, . . . , N

and one imaginary frequency oscillator with imaginary frequency λ#
0. Therefore,

the quantum partition function is at the saddle

Z# =
�λ#

0/(2kBT )

sin
(

�λ#
0/(2kBT )

)e−V #/(kBT )
N
∏

j=1

1

2 sinh
(

�λ#
j/(2kBT )

) (343)

Note the well-known divergence of Z# at low temperatures [18]. The quantum
partition function at the well is

Z0 =
1

2 sinh (�λ0/(2kBT ))
e−V 0/(kBT )

N
∏

j=1

1

2 sinh
(

�λj/(2kBT )
) (344)

Therefore, the thermal decay rate, that is, Eq. (342), becomes

Ŵ =
λ#

0

2π

sinh (�λ0/(2kBT ))

sin
(

�λ#
0/(2kBT )

) e
−
(

V #−V 0
)

/(kBT )
N
∏

j=1

sinh
(

�λj/(2kBT )
)

sinh
(

�λ#
j/(2kBT )

) (345)
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We can write this as the classical TST rate times a quantum correction factor �,
namely,

Ŵ =
ω0

2π

(

λ#
0

ω#

)

e
−
(

V #−V 0
)

/(kBT )
� (346)

where

� =
(

ω#

ω0

)

sinh (�λ0/(2kBT ))

sin
(

�λ#
0/(2kBT )

)

N
∏

j=1

sinh
(

�λj/(2kBT )
)

sinh
(

�λ#
j/(2kBT )

) (347)

Now at very high temperatures we can use the following approximations: sinhx ≈ x

and sin x ≈ x for small values of x. Therefore in this limit

� ≈
ω#λ0

ω0λ
#
0

N
∏

j=1

λj

λ#
j

(348)

Also from Eq. (341) with s = 0 we have

N
∏

j=1

(

λj

λ#
j

)2

=
(

ω0λ
#
0

ω#λ0

)2

Rearranging we then have

ω#λ0

ω0λ
#
0

N
∏

j=1

λj

λ#
j

= 1 (349)

Thus in the very high-temperature limit, we recover the classical IHD rate in
the complete phase space of the particle–bath system, that is, the Kramers–Grote–
Hynes rate expression [2] for general memory friction. To evaluate � in the general
case, Pollak used the following identities [77]

sinhx = x

∞
∏

k=1

(

1 +
x2

k2π2

)

, sin x = x

∞
∏

k=1

(

1 −
x2

k2π2

)

Using these, we then have

sinh
(

�λj/(2kBT )
)

sinh
(

�λ#
j/(2kBT )

) =
λj

λ#
j

∞
∏

k=1

k2ν2 + λ2
j

k2ν2 + λ#2
j
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where ν = 2πkBT/�, Eq. (347) may now be written as

� =
ω#

ω0

(

λ0

λ#
0

∞
∏

k=1

k2ν2 + λ2
0

k2ν2 − λ#2
0

)

N
∏

j=1

(

λj

λ#
j

∞
∏

k=1

k2ν2 + λ2
j

k2ν2 + λ#2
j

)

=
ω#λ0

ω0λ
#
0

⎛

⎝

N
∏

j=1

λj

λ#
j

⎞

⎠

( ∞
∏

k=1

k2ν2 + λ2
0

k2ν2 − λ#2
0

)

N
∏

j=1

( ∞
∏

k=1

k2ν2 + λ2
j

k2ν2 + λ#2
j

)

(350)

Insertion of Eq. (349) in Eq. (350) yields

� =
∞
∏

k=1

⎡

⎣

k2ν2 + λ2
0

k2ν2 − λ#2
0

N
∏

j=1

(

k2ν2 + λ2
j

k2ν2 + λ#2
j

)

⎤

⎦ (351)

Using Eq. (341) with s = kv, where the kv are called the Matsubara (bosonic)
frequencies, we have

N
∏

j=1

k2ν2 + λ2
j

k2ν2 + λ#2
j

=
ω2

0 + k2ν2 + (kν/M)η̃(kν)

−ω2
# + k2ν2 + (kν/M)η̃(kν)

(

−λ#2
0 + k2ν2

λ2
0 + k2ν2

)

(352)

Substituting the right-hand side of Eq. (352) in Eq. (351), we finally have the
quantum correction factor

� =
∞
∏

k=1

ω2
0 + k2ν2 + (kν/M)η̃(kν)

−ω2
# + k2ν2 + (kν/M)η̃(kν)

(353)

3. Transition Probability (Semiclassical Green Function)

To consider the quantum problem in the underdamped regime, we essentially
follow the route described in the classical case. Our task, mirroring the classical
one, is the derivation of the statistical density matrix associated with the evolution
operator 	̂(t) in the well in the presence of quantum noise, which is the quantum
analog of the Green function (94) describing the alteration in energy in one cycle of
the periodic motion in the well on trajectories infinitesimally close to the separatrix
trajectory. In like manner the operator 	̂(t) describes the evolution of the (noisy)
state vector, in the interaction representation, in one cycle of the periodic motion
in the well on trajectories infinitesimally close to the separatrix trajectory. The
density matrix that is determined by the matrix elements of 	̂(t) will then be
rendered in semiclassical fashion in terms of Fourier transforms as the inverse
Fourier transform of a characteristic function using the properties of the noise. We
proceed in the systematic way proposed by Larkin and Ovchinnikov [11]. Thus,
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we suppose that the Hamiltonian of a quantum particle, interacting with a thermal
bath, may be represented as

Ĥ(t) = Ĥ0(x) + x̂η̂ (354)

where Ĥ0(x) = p̂2/2m + V (x) is the unperturbed Hamiltonian of the particle with
coordinate x, executing classically a librational trajectory with energy equal to the
barrier energy in the well potential that we denote by V(x), the term x̂η̂ describes
an interaction with the heat bath that is supposed linear in the particle coordinate
x. It is assumed that the noise operator η̂ is centered Gaussian with spectral density
given by (we are dealing with Johnson–Nyquist noise so that we have a Boson
bath)

D(�) =
∞
∫

−∞

〈η̂(t)η̂(t + τ)〉T ei�τ dτ = mβ��[coth(��/(2kBT )) − 1] (355)

and 〈η̂(t)〉T = 0, where the subscript T denotes averaging over the heat bath states.
In the classical limit �→ 0, this becomes the usual white noise spectral density
D = 2mβkBT .

The first step in the calculation of the density matrix is to determine the solution
ψ(t) of the time-dependent Schrödinger equation pertaining to the noise-perturbed
librational motion in the well, namely

i�
∂ψ

∂t
=
(

Ĥ0(x) + x̂η̂
)

ψ (356)

using time-dependent perturbation theory. Consider the Hamiltonian Ĥ given by

Ĥ = Ĥ0 + ξx̂′η̂′, x̂′η̂′ = x̂η̂/ξ (357)

Here, Ĥ is the sum of the unperturbed Hamiltonian Ĥ0 and the (weak) noise
perturbation ξx̂′η̂′. The effect of ξx̂′η̂′ is to perturb the time evolution of Ĥ0. Let
ψ(t) denote the solution of the Schrödinger equation (356)

i�
∂ψ

∂t
=
(

Ĥ0(x) + ξx̂′η̂′)ψ (358)

with ξ ≪ 1. We assume that we can expand the perturbed wave function ψ(t) as a
power series in ξ

ψ(t) = ψ0(t) + ξψ1(t) + ξ2ψ2(t) + · · · (359)

Thus, we have the system

i�
∂ψ0

∂t
= Ĥ0ψ0 (360)

i�
∂ψi

∂t
= Ĥ0ψi + x̂′η̂′ψi−1, i = 1, 2, . . . (361)
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with successive approximation solution

ψ0(t) = e−(i/�)Ĥ0tψ0(0) (362)

ψ1(t) = e−(i/�)Ĥ0tψ1(0) −
i

�
e−(i/�)Ĥ0t

t
∫

0

x̂′(t1)η̂′(t1) dt1ψ0(0) (363)

ψ2(t) = e−(i/�)Ĥ0tψ2(0) −
i

�
e−(i/�)Ĥ0t

t
∫

0

x̂′(t1)η̂′(t1) dt1ψ1(0)

−
1

�2
e−(i/�)Ĥ0t

t
∫

0

x̂′(t1)η̂′(t1)

t1
∫

0

x̂′(t2)η̂′(t2) dt2 dt1ψ0(0) (364)

where x̂′(t) = eiH0t/�x̂′e−iH0t/� and η̂′(t) = eiH0t/�η̂′e−iH0t/� are operators in the
interaction representation.

Thus, the general solution of Eq. (358) is the series

ψ(t) = e−(i/�)Ĥ0t
[

ψ0(0) + ξψ1(0) + ξ2ψ2(0) + · · ·
]

− ξ
i

�
e−(i/�)Ĥ0t

t
∫

0

x̂′(t1)η̂′(t1) dt1 [ψ0(0) + ξψ1(0) + · · · ] (365)

− ξ2 1

�2
e−(i/�)Ĥ0t

t
∫

0

x̂′(t1)η̂′(t1)

t1
∫

0

x̂′(t2)η̂′(t2) dt1 dt2[ψ0(0) + · · · ]

or, equivalently,

ψ(t) = e−(i/�)Ĥ0t

⎛

⎝1 −
i

�

t
∫

0

x̂(t1)η̂(t1) dt1

−
1

�2

t
∫

0

x̂(t1)η̂(t1)

t1
∫

0

x̂(t2)η̂(t2) dt2 dt1 + · · ·

⎞

⎠ψ(0) (366)

= e−(i/�)Ĥ0t
{

T̂ e
−(i/�)

∫ t

0
x̂(t1)η̂(t1)dt1

}

ψ(0)
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Here, T̂ is the time ordering operator and T̂ e
−(i/�)

∫ t

0
x̂(t1)η̂(t1)dt1 is defined as

T̂ e
−(i/�)

∫ t

0
x̂(t1)η̂(t1) dt1 =

⎛

⎝1 −
i

�

t
∫

0

x̂(t1)η̂(t1) dt1

−
1

�2

t
∫

0

x̂(t1)η̂(t1)

t1
∫

0

x̂(t2)η̂(t2) dt2 dt1 + · · ·

⎞

⎠ (367)

In Dirac notation, we have in terms of the evolution of the state vector |ψ〉

|ψ(t)〉 = e−(i/�)Ĥ0t	̂(t) |ψ(0)〉 (368)

If ψj(x, t) denotes the wavefunction of the unperturbed state j, then the matrix
elements, Ajf = 〈f | 	̂(t) |j〉, of the evolution operator 	̂(t) in the basis

{

ψj(x, t)
}

of the unperturbed states represent the amplitudes of noise-induced transitions from
energy state Ej to energy state Ef , namely,

Ajf = 〈f |

⎛

⎝1 −
i

�

t
∫

0

x̂(t1)η̂(t1) dt1 −
1

�2

t
∫

0

x̂(t1)η̂(t1)

t1
∫

0

x̂(t2)η̂(t2) dt2 dt1 + · · ·

⎞

⎠ |j〉

=

⎛

⎝δjf −
i

�

t
∫

0

〈f | x̂(t1) |j〉 η(t1)dt1 −
1

�2

∑

n

t
∫

0

〈f | x̂(t1) |n〉 η̂(t1)

×
t1
∫

0

〈n| x̂(t2) |j〉 η̂(t2) dt2 dt1 + · · ·

⎞

⎠ (369)

where we have used
∑

n|n〉〈n| = Î, the identity operator to write

〈f | x̂(t1)x̂(t2) |j〉 =
∑

n

〈f | x̂(t1) |n〉 〈n| x̂(t2) |j〉

In order to simplify Eq. (369) via semiclassical approximation we first recall
that since the (upper) energy levels in the well near a classical turning point such as
the barrier energy of the potential are quasicontinuous, the matrix elements of the
position operator x̂(t) are given by the semiclassical formula [8,11,19] essentially
based on the JWKB approximation (for an elementary justification see Appendix E)

〈f | x̂ (t) |j〉 =
ω

2π

∮

xj (τ) e−(i/�)(Ef −Ej)(τ−t)dτ (370)
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Here, the appropriate domain of integration is over a cycle of the classical libra-
tional motion of the particle with energy equal to the barrier energy and angular
frequency ω. Therefore, Eq. (370) simply represents the Fourier coefficients of
the Fourier series representation of the (periodic) classical trajectories in terms of
the matrix elements of the operator x̂(t) that we shall make more use of below. In
addition, the semiclassical representation of the matrix elements of x̂(t) suggests
because the motion of the particle in the well is periodic that we can also regard
the amplitudes Ajf = 〈f | 	̂(t) |j〉 of the noise-induced transitions (or matrix ele-
ments of 	̂(t)) that are given by Eq. (369) as simply the Fourier coefficients in the
Fourier series representation of yet another periodic function A(u), namely,

A(u) =
∑

f

Ajf e(i/�)(Ef −Ej)u (371)

Ajf =
ω

2π

∮

A(u)e−(i/�)(Ef −Ej)udu (372)

Furthermore, the classical librational motion with energy equal to the barrier energy
represents the slowest librational motion in the well (period–amplitude dependence
of an anharmonic oscillator) so that for many purposes [8] a particle executing this
slow cycle may be regarded (see Fig. 3) as starting from the point x = 0 at t = −∞
and returning to that point as t → ∞. The importance of this observation is that
Fourier series like Eq. (371) in the present context go smoothly over into Fourier
integrals.

Now our immediate objective is to derive in semiclassical fashion a closed form
expression for A(u) analogous to the closed form Eq. (367) that will then be used to
calculate the Green function (statistical density matrix) using the properties of the
Gaussian noise operator η̂ (t). First we substitute expansion (369) into Eq. (371).
We then have the series

A(u) =
∑

f

e(i/�)(Ef −Ej)u

⎧

⎨

⎩

δjf −
i

�

t
∫

0

〈f | x̂(t1) |j〉 η̂(t1) dt1

−
1

�2

∑

n

t
∫

0

〈f | x̂(t1) |n〉 η̂(t1)

t1
∫

0

〈n| x̂(t2) |j〉 η̂(t2) dt2 dt1 + · · ·

⎫

⎬

⎭

(373)

Our objective will now be accomplished if we can find (in the semiclassical sense)
the sum of this series. This is done as follows using the semiclassical representation
of the matrix elements 〈f | x̂(t) |j〉 of the position operator x̂(t) as the Fourier
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transform of the classical librational trajectory equation (370). First we rewrite
Eq. (373) as

A(u) =
∑

f

e(i/�)(Ef −Ej)u

⎧

⎨

⎩

δjf −
i

�

ω

2π

t
∫

0

η̂(t1)

∮

xj (τ) e−(i/�)(Ef −Ej)(τ−t1)dτ dt1

−
1

�2

( ω

2π

)2∑

n

t
∫

0

∮

xn (τ1) e−(i/�)(Ef −En)(τ1−t1)dτ1η̂(t1)

×
t1
∫

0

∮

xj (τ2) e−(i/�)(En−Ej)(τ2−t2)dτ2η̂(t2) dt2 dt1 + · · ·

⎫

⎬

⎭

(374)

However, due to the elementary shifting properties

e(i/�)(Ef −Ei)uδif = δif (375)

e(i/�)(Ef −Ei)ue−(i/�)(Ef −Ei)(τ−t1) = e−(i/�)(Ef −Ei)(τ−t1−u) (376)

e(i/�)(Ef −Ei)ue−(i/�)(Ef −En)(τ1−t1)e−(i/�)(En−Ei)(τ2−t2)

= e−(i/�)(Ef −En)(τ1−t1−u)e−(i/�)(En−Ei)(τ2−t2−u) (377)

Equation (374) can also be rewritten as

A(u) =
∑

f

⎧

⎨

⎩

δjf −
i

�

ω

2π

t
∫

0

η̂(t1)

∮

xj (τ) e−(i/�)(Ef −Ej)(τ−t1−u)dτ dt1

−
1

�2

( ω

2π

)2∑

n

t
∫

0

η̂(t1)

∮

xn (τ1) e−(i/�)(Ef −En)(τ1−t1−u)dτ1 (378)

×
t1
∫

0

η̂(t2)

∮

xj (τ2) e−(i/�)(En−Ej)(τ2−t2−u)dτ2 dt2 dt1 + · · ·

⎫

⎬

⎭

Next in order to sum this series, we note that the semiclassical matrix elements
decrease rapidly with the energy difference Ef − Ej . Moreover, they are smooth
functions of the energy Ej of the unperturbed state [11] meaning that En ∼Ej
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so that we may substitute xj for xn in the third term on the right-hand side of Eq.
(378). Hence that equation can now be rewritten as the time ordered exponential

A (u) =
∑

f

⎛

⎝δjf −
i

�

t
∫

0

〈f | x̂(t1 + u) |j〉 η̂(t1) dt1

−
1

�2

∑

n

t
∫

0

〈f | x̂(t1 + u) |n〉 η̂(t1)

t1
∫

0

〈n| x̂(t2 + u) |j〉 η̂(t2) dt2 dt1 + · · ·

⎞

⎠

=
∑

f

⎛

⎝δjf −
i

�

t
∫

0

xj(t1 + u)〈f |j〉η̂(t1) dt1

−
1

�2

∑

n

t
∫

0

xn(t1 + u)〈f |n〉η̂(t1)

t1
∫

0

xj(t2 + u)〈n|j〉η̂(t2) dt2 dt1 + · · ·

⎞

⎠

=

⎛

⎝1 −
i

�

t
∫

0

xj(t1 + u)η̂(t1) dt1 −
1

�2

t
∫

0

xj(t1 + u)η̂(t1)

×
t1
∫

0

xj(t2 + u)η̂(t2) dt2 dt1 + · · ·

⎞

⎠ (379)

that is, the sum becomes

A(u) = T̂ e
−(i/�)

∫ t

0
xj(u+t1)η(t1)dt1 (380)

which is the desired closed integral form expression for the Fourier expansion
of the periodic function A(u). Now the Fourier coefficients Ajf simply represent
the matrix elements of the evolution operator 	̂ for the state vector. Hence, the
probability of a transition from state j to state f during a time interval t described
by 	̂ and averaged over the bath states denoted by 〈 〉T that is the statistical density
matrix, can be represented in terms of probability amplitudes as

Wjf =
〈

∣

∣Ajf

∣

∣

2
〉

T
=
〈

Ajf A∗
jf

〉

T
(381)
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where Ajf is given by Eq. (372). However using the Fourier coefficients, Eq. (372),
we may also rewrite the density matrix Eq. (381) in terms of the Fourier expansion
A(u) as follows

Wjf =
〈

( ω

2π

)2
∮

A (u1) e−(i/�)(Ef −Ej)u1 du1

∮

A∗ (u2) e(i/�)(Ef −Ej)u2 du2

〉

T

=
〈

( ω

2π

)2
∮ ∮

e−(i/�)(Ef −Ej)(u1−u2)A (u1) A∗ (u2) du2 du1

〉

T

(382)

Hence, we have the key equation for the density matrix (Green function)

Wjf =
( ω

2π

)2
∮

du1

∮

du2 e−(i/�)(Ef −Ej)(u1−u2)
〈

A (u1) A∗ (u2)
〉

T
(383)

which formally represents the semiclassical transition probability associated with
the evolution operator 	̂. Next to find the correlation function 〈A(u1)A∗(u2)〉T
explicitly, we use the sum, Eq. (380), to substitute for A(u) in Eq. (383) so that
formally

〈

A (u1) A∗ (u2)
〉

T
=

〈

T̂ exp

⎡

⎣−
i

�

⎛

⎝

t
∫

0

xj

(

u1 + t′
)

η̂
(

t′
)

dt′

⎞

⎠

⎤

⎦

× T̂ exp

⎡

⎣

i

�

⎛

⎝

t
∫

0

xj

(

u2 + t′′
)

η̂
(

t′′
)

dt′′

⎞

⎠

⎤

⎦

〉

T

(384)

Now we have assumed that the Johnson–Nyquist noise is zero-mean Gaussian.
Hence to simplify Eq. (384), we can utilize (remembering that linear transforma-
tions of Gaussian random variables are themselves Gaussian) the characteristic
function of the centered Gaussian random variables z1 and z2, namely,

〈

ei(z2−z1)
〉

T
= e(1/2)

(〈

z2
1

〉

T
+
〈

z2
2

〉

T
−
〈

z1z2

〉

T
−
〈

z2z1

〉

T

)

(385)

where

z1,2 =
1

�

⎛

⎝

t
∫

0

xj

(

u1,2 + t′
)

η̂
(

t′
)

dt′

⎞

⎠
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We have

〈

⎡

⎣

1

�

⎛

⎝

t
∫

0

xj

(

u1 + t′
)

η̂
(

t′
)

dt′

⎞

⎠

⎤

⎦

2
〉

T

=
1

�2

⎛

⎝

t
∫

0

t
∫

0

xj (u1 + t1) xj (u1 + t2)
〈

T̂ η̂ (t1) η̂ (t2)
〉

T
dt1dt2

⎞

⎠ (386)

where the time-ordering operator T̂ ensures that integration with respect to t1 is
carried out first. In like manner

〈

⎡

⎣

1

�

⎛

⎝

t
∫

0

xj

(

u2 + t′′
)

η̂
(

t′′
)

dt′′

⎞

⎠

⎤

⎦

2
〉

T

=
1

�2

⎛

⎝

t
∫

0

t
∫

0

xj (u2 + t1) xj (u2 + t2)
〈

T̂ η̂ (t1) η̂ (t2)
〉

T
dt1 dt2

⎞

⎠ (387)

=
1

�2

⎛

⎝

t
∫

0

t
∫

0

xj (u2 + t1) xj (u2 + t2)
〈

T̂
−1

η̂ (t2) η̂ (t1)
〉

T
dt1 dt2

⎞

⎠

where T̂
−1

ensures that the integration with respect to t2 is now carried out first.
Likewise

〈

1

�2

⎛

⎝

t
∫

0

xj

(

u1 + t′
)

η̂
(

t′
)

dt′

⎞

⎠

⎛

⎝

t
∫

0

xj

(

u2 + t′′
)

η̂
(

t′′
)

dt′′

⎞

⎠

〉

T

=
1

�2

⎛

⎝

t
∫

0

t
∫

0

xj (u1 + t1) xj (u2 + t2) 〈η̂ (t1) η̂ (t2)〉T dt1 dt2

⎞

⎠, (388)

〈

1

�2

⎛

⎝

t
∫

0

xj

(

u2 + t′′
)

η̂
(

t′′
)

dt′′

⎞

⎠

⎛

⎝

t
∫

0

xj

(

u1 + t′
)

η̂
(

t′
)

dt′

⎞

⎠

〉

T

=
1

�2

⎛

⎝

t
∫

0

t
∫

0

xj (u2 + t2) xj (u1 + t1) 〈η̂ (t2) η̂ (t1)〉T dt1 dt2

⎞

⎠ (389)
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Hence, Eq. (383) now reduces to the explicit form [note thatWjf = Wjf (Ef − Ej)]

Wjf =
( ω

2π

)2
∮ ∮

e−(i/�)(u1−u2)(Ef −Ej)

× exp

⎧

⎨

⎩

−
1

2�2

⎧

⎨

⎩

t
∫

0

t
∫

0

[xj(u1 + t1)xj(u1 + t2)h11(t1, t2) (390)

+ xj(u2 + t1)xj(u2 + t2)h22(t1, t2) − xj(u1 + t1)xj(u2 + t2)h12(t1, t2)

− xj(u2 + t1)xj(u1 + t2)h21(t1, t2)] dt1 dt2

⎫

⎬

⎭

du2 du1

⎫

⎬

⎭

where the noise correlation functions hrs(t1, t2) are given by

h11(t1, t2) =
〈

T̂ η̂(t1)η̂(t2)
〉

T
, h22(t1, t2) =

〈

T̂
−1

η̂(t2)η̂(t1)
〉

T
(391)

h12(t1, t2) = 〈η̂(t1)η̂(t2)〉T , h21(t1, t2) = 〈η̂(t2)η̂(t1)〉T (392)

The expression for the statistical density matrix (390) may now be reduced to
the inverse Fourier transform of a characteristic function essentially because the
correlation functions h depend only on the time difference t1 − t2 and vanish
outside a narrow region |t1 − t2| ∼ �/(kBT ), that is, they resemble delta functions.
These properties will be used to simplify Eq. (390) but first we must consider
the matrix elements of the position operator products in the form in which they
occur in Eq. (390). The matrix elements of x̂(t) will be given by the semiclassical
expression (370) so that as consistent with the Fourier series expansion embodied
in Eqs. (371) and (372) [see in particular the note immediately following Eq. (372)]
we may write the products of the trajectories occurring in Eq. (390) as the Fourier
series

xj (u1 + t1) xj (u1 + t2) =
∑

fm

〈f | x̂ |j〉 〈m| x̂|j〉∗e(i/�)(Ef −Ej)(u1+t1)

× e−(i/�)(Em−Ej)(u1+t2)

=
∑

fm

〈f | x̂ |j〉 〈m| x̂|j〉∗e(i/�)(Ef −Ej)(t1−t2)

× e(i/�)(Ef −Em)(u1+t2) (393)

xj (u2 + t1) xj (u2 + t2)

=
∑

fm

〈f | x̂ |j〉 〈m| x̂|j〉∗e(i/�)(Ef −Ej)(t1−t2)e(i/�)(Ef −Em)(u2+t2) (394)
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xj (u1 + t1) xj (u2 + t2) =
∑

fm

〈f | x̂ |j〉 〈m| x̂|j〉∗e(i/�)(Ef −Ej)(u1+t1)

× e−(i/�)(Em−Ej)(u2+t2) (395)

=
∑

fm

〈f | x̂ |j〉 〈m| x̂|j〉∗

× e(i/�)(Ef −Ej)(u1−u2+t1−t2)e(i/�)(Ef −Em)(u2+t2)

and

xj (u2 + t1) xj (u1 + t2)

=
∑

fm

〈f | x̂|j〉∗ 〈m| x̂ |j〉 e(i/�)(Ef −Ej)(u1−u2+t2−t1)e(i/�)(Ef −Em)(u2+t1) (396)

Since we have reverted from representations as trajectories to quantum operator
representations here we must use the complex conjugate [cf. Eq. (384)]. Next, we
substitute Eqs. (393)–(396) in Eq. (390) noting that by orthogonality

∮

e(i/�)(Ef −Em)tdt =
2π

ω
δfm

This fact coupled with the anticipated (cf. Eq. (355) and its classical limit) rapid
decrease of the noise correlation functions h enables us to extend the integrations
over the time difference t1 − t2 in the exponent of formula (390) to infinite limits
so that the exponent in formula (390) is now only a function of the difference
u = u2 − u1. Because [11]

h11(t1 − t2) + h22(t1 − t2) = h12(t1 − t2) + h21(t1 − t2) (397)

Equation (390) for the Green function can then be rewritten as

Wjf =
ω

2π

∮

e(i/�)(Ef −Ej)uexp

⎧

⎨

⎩

2π

ω

∑

f

|〈f | x̂ |j〉|2
⎡

⎣

∞
∫

−∞

e(i/�)(Ef −Ej)(−u+t1−t2)

×
h21(t1 − t2) + h12(t1 − t2)

2�2
d(t1 − t2) (398)

−
∞
∫

−∞

e(i/�)(Ef −Ej)(t1−t2) h11(t1 − t2) + h22(t1 − t2)

2�2
d(t1 − t2)

⎤

⎦

⎫

⎬

⎭

du

We have again exploited the rapid decrease of h to extend the limits to infinity in the
integration with respect to t1 − t2. By introducing the (time–frequency domain)
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Fourier transform of the noise correlation functions hk,l(t)

h̃k,l

(

Ej − Ef

)

=
∞
∫

−∞

e(i/�)(Ef −Ej)thk,l(t)dt (399)

we can write

∞
∫

−∞

e(i/�)(Ef −Ej)t h21(t) + h12(t)

2�
dt =

h̃21(Ef − Ej) + h̃12(Ej − Ef )

2�

= D(Ef − Ej) (400)

with D(Ef − Ei) given by Eq. (355). Using Eq. (400) in Eq. (398), we finally have
exactly analogous to Eqs. (92)–(94); the Green function rendered as the inverse
Fourier transform of a characteristic function, namely,

Wjf =
ω

2π

∮

e(i/�)(Ef −Ej)uexp{℘(u) − ℘(0)}du = g
(

Ef − Ej

)

(401)

where the argument ℘(u) is defined by

℘(u) =
∑

f

wjf e−(i/�)(Ef −Ej)u =
2π

�ω

∑

f

|〈f | x̂ |j〉|2e−(i/�)(Ef −Ej)uD(Ef −Ej)

(402)
which by definition is simply the Fourier transform of wjf , where

wjf =
2π

�ω
|〈f | x̂ |j〉|2D(Ef − Ej) (403)

represents the quantum probability per cycle (period) of transitions from state j

to state f associated with the position operator x̂ in the presence of the noise in
accordance with first-order perturbation theory (Fermi’s Golden Rule) [23]. Note
that the Golden Rule probability wjf effectively represents the output spectral
density if the Johnson–Nyquist noise is regarded as being passed through a filter
with transfer function given by the Fourier transform over the classical trajectories,
that is, the matrix elements of the position operator. This concludes our appraisal
of the calculation of Larkin and Ovchinnikov [11].

131



242

Now in order to compare with Mel’nikov’s [8] calculation, we first prove that
Eq. (401) yields the first-order perturbation contribution to g

(

Ef − Ej

)

, we have
on expansion of that equation

g1

(

Ef − Ej

)

=
ω

2π

∮

e(i/�)(Ef −Ej)u
[

1 + ℘(u) − ℘(0)
]

du

=
ω

2π

∮

e(i/�)(Ef −Ej)u

⎛

⎝1 +
∑

f ′

wjf ′e
−(i/�)

(

Ef ′−Ej

)

u −
∑

f ′

wjf ′

⎞

⎠ du

= δfj + wjf − δfj

∑

f ′

wjf ′ (404)

Equation (404) should now be compared with Eq. (3.6) of Ref. [8]. Using
Mel’nikov’s notation in Eq. (403), we make the replacements Ef → ε, Ej → ε′,
wjf → w(ε − ε′) and substitute the Johnson–Nyquist spectral density D(ε − ε′)
rendered by Eq. (355). Then we can rewrite the Golden Rule quantum probability
as

w(ε − ε′) =
2π

�

∣

∣〈ε| x̂
∣

∣ε′〉∣
∣

2
mγ(ε − ε′)

[

coth
[

(ε − ε′)/(2kBT )
]

− 1
]

(405)

The expression for semiclassical Green function g(ε − ε′) associated with the
change in energy in one cycle then becomes [8,9]

g(ε − ε′) = e
−
∫ ∞

−∞w(ε)dε

{

w(ε − ε′) +
1

2

∫ ∞

−∞
w(ε − ε′′)w(ε′′ − ε′) dε′′ + · · ·

}

(406)

which is Mel’nikov’s equation (3.9). Now following Mel’nikov [8] we define the
Fourier transform via

f (λ) =
∞
∫

−∞

f (ε)eiλε/(kBT )dε (407)

Thus as shown in Ref. [8], the Fourier transform of the Green function g
(

Ef − Ej

)

is

g(λ) = exp{w(λ) − w(0)} (408)

where w(λ) is the Fourier transform of w(ε) rendered by Eq. (405) that is the
quantum analog of the classical characteristic function derived earlier, Eqs. (92)
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and (93) and reduces to these equations at high temperatures as shown by Larkin
and Ovchinnikov.

4. Integral Equation and its Solution

In order to write down an integral equation similar to Eq. (101) for the popula-
tion of escaping particles we recall that in a quantum situation the penetration
of a potential barrier becomes a random process specified by the penetra-
tion coefficient [23]. The energies of the escaping particles are distributed in
a narrow range |ε| /(kBT ) ∼ 1 ≪ �V near the barrier top so that the poten-
tial (as in the classical case) can be approximated by the inverted parabola
V (x) ≈ VC − mω2

C(x − xC)2/2. The penetration coefficient through the parabolic

potential barrier is given by Eq. (15), namely,
(

1 + exp
[

−2πε/(�ωC)
])−1

[23].
The reflected particles on executing a cycle of the motion in the potential well will
reproduce the distribution function f(ε). By using the Green function (401) and

the reflection coefficient
(

1 + exp
[

2πε/(�ωC)
])−1

, we obtain, using Melnikov’s
notation, the integral equation for f(ε) [8]

f (ε) =
∞
∫

−∞

g(ε − ε′)f (ε′)

1 + exp (2πε′/�ωC)
dε′ (409)

In order to solve Eq. (409) in a manner similar to the classical case, we write

f (ε) = ϕ(ε)
[

1 + exp (2πε/�ωC)
]

(410)

By substituting Eq. (410) into Eq. (409) and taking Fourier transforms via (407),
we have in the λ domain

ϕ(λ) + ϕ(λ − i/y) = g(λ)ϕ(λ) (411)

or

ϕ(λ − i/y) = −G(λ)ϕ(λ) (412)

where G(λ) = 1 − g(λ) and the quantum parameter is

y = �ωC/(2πkBT ) (413)

Equation (412) has to be solved subject to the boundary condition

ϕ(λ) =
ikBT

π�(λ + i)
sinh

(

�ωA

2kBT

)

e−�V , |λ + i| ≪ 1 (414)
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which follows from the normalized distribution function for the harmonic potential
in the vicinity of the well bottom that is (cf. our Introduction)

f (ε) ≈
e−�V−ε/(kBT )

2π�
∑∞

n=0e−�ωA(n+1/2)/(kBT )
=

sinh[�ωA/(2kBT )]

π�
e−�V−ε/(kBT )

(415)

In order to solve Eq. (412), we must factorize G(λ) into a product of the functions
G±(λ) according to Eqs. (111) and (112).

Now by introducing the auxiliary function

ψ(λ) =
1

G−(λ)

∞
∏

n=1

G+(λ + in/y)

G−(λ − in/y)
(416)

we see by direct substitution that it satisfies the relation

ψ(λ − i/y) = G(λ)ψ(λ) (417)

Then by substituting Cauchy’s integral representation of G(λ) Eq. (111) into
Eq. (416) and performing the summation, we have

ψ(λ) = exp

⎡

⎣

1

2πi

∞
∫

−∞

{

1

λ′ − λ
+ 2

∞
∑

n=1

(

λ′ − λ

(λ′ − λ)2 − (in/y)2

)

}

lnG(λ′)dλ′

⎤

⎦

= exp

⎡

⎣

y

2i

∞
∫

−∞

lnG(λ′)

tanh
[

y(λ′ − λ)
] dλ′

⎤

⎦ (418)

Comparison of Eqs. (412), (417), and (415) shows that ϕ(λ) differs from the aux-
iliary function ψ(λ) only by a function that changes its sign upon shifting its
argument by in/y and has a pole at λ = −i. It is obvious that this function is sim-
ply given by 1/sinh

[

πy(λ + i)
]

. Thus, the solution of Eq. (412) with the boundary
condition (414) is given in terms of the auxiliary function by

ϕ(λ) =
iωC

2π

ψ(λ)

ψ(−i)

sinh
[

�ωA/(2kBT )
]

sinh
[

�ωC(λ + i)/(2kBT )
]e−�V (419)

5. Escape Rate in the Underdamped Quantum Region

Now we also saw in our Introduction that the lifetime τ of a Brownian particle in
a deep potential well can be expressed via Eq. (12) [8]. However, like the classical
case, the TST Eq. (12) in the quantum case applies only in the intermediate damping
regime and so does not explicitly contain any dependence on the friction. Thus,
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in the underdamped regime, Eq. (12) must again be modified by introducing the
depopulation factor, namely, A so that

τ−1 = A (�, y)
ωC

2π

sinh
[

�ωA/(2kBT )
]

sin[�ωC/(2kBT )]
e−�V (420)

In the quantum case the depopulation factor A(�, y) takes into account the inter-
action of the Brownian particle with the heat bath via the dissipation parameter �

and also includes the high-temperature quantum tunneling effects near the top of
the barrier via the quantum parameter y.

Now we know that as far as quantum effects are concerned only those particles
that penetrate the classically opaque potential barrier via tunneling contribute to
the escape rate so that the rate is given by the following equation involving the
penetration coefficient [cf. Eq. (15) with VC = 0] [8]

τ−1 =
∞
∫

−∞

f (ε)dε

1 + exp (−2πε/�ωC)
=

∞
∫

−∞

ϕ(ε)e2πε/�ωC dε = ϕ(−i/y) (421)

From Eqs. (418)–(421), we then have the general expression for A valid in the
underdamped regime

A (�, y) = exp

⎡

⎣

y

2i

∞
∫

−∞

lnG(λ′)

{

1

tanh
[

π(yλ′ + i)
] −

1

tanh
[

πy(λ′ + i)
]

}

dλ′

⎤

⎦

= exp

⎡

⎣

∞
∫

−∞

y sin(πy)

cosh
[

2πy(λ′ + i/2)
]

− cos(πy)

× ln
[

1 − exp{w(λ′) − w(0)}
]

dλ′

⎤

⎦

= exp

⎡

⎣

∞
∫

−∞

y sin(πy) ln
[

1 − e−�R(λ,y)
]

cosh(2πyλ) − cos(πy)
dλ

⎤

⎦ (422)

Here, we have written �R (λ, y) = w(0) − w(λ − i/2), where w(λ) is the Fourier
transform of the quantum transition probability in the first order of perturbation
theory w(ε) given by Eq. (405) that replaces the classical argument �(λ2 + 1/4)
from Eq. (119).
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In the extremely undamped regime (� ≪ 1), the inner exponent in Eq. (422)
can be expanded yielding

A(�, y) ≈ exp

⎧

⎨

⎩

∞
∫

−∞

y sin πy(ln
[

R(λ, y)
]

+ ln �)

cosh 2πλy − cos πy
dλ

⎫

⎬

⎭

= a(y)�

∞
∫

−∞

y sin πy
cosh 2πλy−cos πy

dλ

(423)
where

a(y) = exp

⎧

⎨

⎩

∞
∫

−∞

y sin πy ln R(λ, y)

cosh 2πλy − cos πy
dλ

⎫

⎬

⎭

(424)

In order to evaluate the integral occurring in the exponent of Eq. (423), we write
y = 1 − z so that

y sin πy

cosh 2πλy − cos πy
=

(1 − z)sin π(1 − z)

cosh 2πλ(1 − z) − cos π(1 − z)

≈
πz

1 + cosh 2πλ
+

πz2(2πλ sinh 2πλ − cos 2πλ − 1)

(1 + cosh 2πλ)3
+ o(z3)

Now since

∞
∫

−∞

πz

1 + cosh 2πλ
dλ = z

∞
∫

−∞

πz2(2πλ sinh 2πλ − cos 2πλ − 1)

(1 + cosh 2πλ)3
dλ = 0

We have ultimately the quantum VLD depopulation factor as a product of a purely
quantum and a classical factor with quantum modifications, namely,

A(�, y) ≈ a(y)�z = a(y)�1−y = a(y)�1−�ωC/(2πkBT ) (425)

The condition of applicability is y < 1, that is, relatively high temperatures. The ex-
pression (425) shows that with decreasing temperature T, the contribution of quan-
tum tunneling predominates over the effect of depletion of the distribution function.
Therefore, the escape rate extrapolated to low temperatures kBT0 = �ωC/(2π) be-
comes independent of dissipation. For high temperatures (kBT ≫ �ωC) Eq. (425)
yields the classical VLD result A ≈ �.

We saw [Eq. (370)] that in the semiclassical approximation the matrix ele-
ments 〈ε| x̂(t)

∣

∣ε′〉 of a quantum transition from the state ε′ to the state ε can be
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expressed via the Fourier components of the classical trajectory x(t) in Melnikov’s
notation

〈ε| x̂(t)
∣

∣ε′〉 =
1

2π�

∞
∫

−∞

x(t)ei(ε−ε′)t/�dt (426)

Since the separatrix energy coincides with ε = 0, in order to evaluate the Fourier
transform we need only the classical trajectory x(t) corresponding to energy ε = 0.
It is defined by the implicit relation

t(x) = ±
x
∫

x1

dx′
√

−2V (x′)/m
(427)

where x1 is the classical turning point at t = 0 and the signs + and − correspond
to positive and negative velocities of the particle, respectively. The particle starts
from x = 0 at t = −∞ and returns to this point for t → ∞. Further progress and
derivation of the expression for the quantum argument R(λ, y) is only possible for
explicit potentials V(x). Here, we give examples of the calculation of the matrix
elements 〈ε| x(t)

∣

∣ε′〉 for cubic, double-well, and periodic potentials.
We commence with the cubic potential that is

V (x) = −
1

2
mω2x2

(

1 −
x

x1

)

(428)

We have for this potential

t(x) =
1

ω

x
∫

x1

dx′

x′√1 − x′/x1
= −

2i

ω
arccos

(

√

x/x1

)

(429)

so that the classical trajectory is given by

x(t) =
x1

cosh2(ωt/2)
(430)

The matrix elements 〈ε| x̂(t)
∣

∣ε′〉 for the cubic potential are then given, recalling Eq.
(426), by the Fourier transform over the time variables in the classical trajectories

〈ε| x̂(t)
∣

∣ε′〉 =
x1

2π�

∞
∫

−∞

ei(ε−ε′)t/�dt

cosh2(ω t/2)
=

2x1(ε − ε′)

�2ω2 sinh[π(ε − ε′)/�ω]
(431)
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The quantum transition (Golden Rule) probability is then recalling Eq. (405)

w(ε) =
8πmβx2

1ε
3

�5ω4 sinh2[πε/�ω]
(coth[ε/(2kBT )] − 1) (432)

The Fourier transform of the quantum transition probability in the λ-domain, where
we have shifted the argument as in the classical case is

w(λ − i/2) − w(0) =
∞
∫

−∞

8πmβx2
1ε

3 (coth[ε/(2kBT )] − 1)

�5ω4 sinh2[πε/�ω]
(ei(λ−i/2)ε/(kBT ) − 1) dε

=
8βωmx2

1

15kBT

∞
∫

−∞

15x3

2π4y5

(cosh x − cosh 2λx)

sinh x sinh2[x/y]
dx = R (λ, y) �

(433)

where y = �ω/2πkBT , x = ε/(2kBT ),

R (λ, y) =
15

2π4y5

∞
∫

−∞

x3 (cosh x − cosh 2λx)

sinh x sinh2[x/y]
dx (434)

and the dissipation parameter is

� =

∣

∣

∣

∣

∣

∣

0
∫

x1

√

−2V (x′)/m dx′

∣

∣

∣

∣

∣

∣

=
8βωmx2

1

15kBT

In like manner, we evaluate R (λ, y) for a double-well potential that can be
represented as

V (x) = −
1

2
mω2x2

(

1 −
x2

x2
1

)

(435)

Here, the trajectory is determined by

t(x) =
1

ω

x
∫

x1

dx′

x

√

1 − x2/x2
1

= −
i

ω
arccos(x/x1) (436)

that is,

x(t) =
x1

cosh(ωt)
(437)
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The matrix elements 〈ε| x̂(t)
∣

∣ε′〉 for the double-well potential are then given by

〈ε| x̂(t)
∣

∣ε′〉 =
x1

2π�

∞
∫

−∞

ei(ε−ε′)t/�dt

cosh(ω t)
=

x1

2�ω cosh[π(ε − ε′)/2�ω]
(438)

Thus, the quantum transition probability in this case is

w(ε) =
πmβx2

1ε

2�3ω2 cosh2[πε/2�ω]
(coth[ε/(2kBT )] − 1) (439)

so that

w(λ − i/2) − w(0) =
∞
∫

−∞

w(ε)(ei(λ−i/2)ε/(kBT ) − 1)dε

=
2ωβmx2

1

3kBT

∞
∫

−∞

3πx (cosh yx − cos 2λyx)

8y sinh yx cosh2(πx/2)
dx = R (λ, y) �

(440)

where the dissipation parameter is

� =
2β

kBT

x1
∫

0

√

−2mV (x)dx =
2βωmx2

1

3kBT
, y = �ω/(2kBT ), x = ε/(2ykBT )

and the quantum argument is

R (λ, y) =
3π

8y

∞
∫

−∞

x (cosh yx − cos 2λyx)

sinh yx cosh2(πx/2)
dx (441)

In the classical limit because

lim
�→0

cosh yx − cos 2λyx

y sinh(yx)
= lim

y→0

cosh yx − cos 2λyx

y sinh(yx)
=

x

2
(1 + 4λ2) (442)

we have

lim
�→0

R (λ, y) =
3π

4

(

λ2 +
1

4

)

∞
∫

−∞

x2 dx

cosh2(πx/2)
= λ2 +

1

4
(443)

which is the (canonical) classical form. The foregoing classical expression has
been used by Hänggi et al. [2] to simplify calculation of quantum escape rates.
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In like manner for the periodic potential

V (x) =
mω2x2

1

2π2
cos2(πx/x1) (444)

we obtain

x(t) =
2x1

π
arctan

(

eωt
)

(445)

and

〈ε| x̂(t)
∣

∣ε′〉 =
x1

π2�

∞
∫

−∞

arctan
(

eωt
)

ei(ε−ε′)t/�dt =
ix1

2(ε − ε′)cosh[π(ε − ε′)/(2�ω)]

(446)

R (λ, y) =
1

8y

∞
∫

−∞

cosh x − cos(2λx)

x sinh x cosh2[x/(2y)]
dx (447)

The detailed calculation of the argument R (λ, y) for this periodic potential and
others is given in Ref. [8].

B. Translational Motion of a Quantum Brownian Particle in a

Double-Well Potential

1. Master Equation in Phase Space and its Solution

We saw that dissipation and fluctuation of an assembly of particles in a potential
under the influence of a heat bath is very often modeled [14,16] by the Brown-
ian motion that is a particular Stosszahlansatz (essentially collisions are frequent
but weak) for the Boltzmann equation describing the time evolution of the single-
particle distribution function in phase space. Moreover, we also saw that the Brow-
nian motion in a potential is ubiquitous in physics and chemistry, particularly to
do with the nature of metastable states and the rates at which these states decay.
Typical examples are current–voltage characteristics of Josephson junctions, the
rate of condensation of a supersaturated vapor, dielectric and Kerr-effect relaxation
in liquids and nematic liquid crystals, dynamic light scattering, chemical reaction
rate theory in condensed phases, superparamagnetic relaxation, polymer dynam-
ics, nuclear fission and fusion, and so on [2,13,14,155]. Now the classical theory of
the Brownian motion is well established and is based either on the Langevin equa-
tion for evolution of the state vector [14] or on its accompanying Fokker–Planck
equation [16]. However, we saw that a theory of dissipation based on the classi-
cal Brownian motion is often inadequate particularly at low temperatures because
it ignores quantum effects. Quantum noise arising from quantum fluctuations is
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also important in nanoscale and biological systems. We mention [155] the noise-
assisted tunneling and transfer of electrons and quasiparticles. The characteristics
of such quantum noise vary strongly with temperature and at high temperatures a
crossover to Johnson–Nyquist noise essentially governed by the classical Brow-
nian motion takes place. Yet another aspect of the subject that has come to the
forefront in recent years is the quantum mechanics of macroscopic quantum vari-
ables such as the decay of a zero voltage state in a biased Josephson junction, flux
quantum transitions in a SQUID [2], and the possible reversal by quantum tun-
neling, of the magnetization of a single-domain ferromagnetic particle. All these
considerations necessitate a theory of quantum Brownian motion particularly one
that addresses directly the issue of the quantum–classical correspondence [156]
via a quantum analog of the classical Fokker–Planck equation. Such an evolution
equation will allow dynamical parameters such as escape rates, correlation times,
susceptibilities, and so on, to be calculated from the eigensolutions of that equation
in a manner analogous to those of the Fokker–Planck equation. The availability
of a master equation is a crucial factor for the purposes of this chapter because
it then becomes possible to compare asymptotic solutions for parameters such
as escape rates yielded by reaction rate theory with those calculated from such
an equation.

If one wishes to include quantum effects in a diffusion equation treatment,
however, a difficulty immediately arises, namely, one cannot speak, because of the
uncertainty principle [139,157], of a particle having simultaneously a well-defined
position and momentum, that is, the concept of a sharp phase point has no mean-
ing in the quantum world. Therefore, one cannot define as in classical statistical
mechanics a probability that the particle has a particular position and a particular

momentum. Hence, one cannot define a true phase space probability distribution
for a quantum mechanical particle. Nevertheless, functions bearing some resem-
blance to phase space distribution functions namely quasiprobability distribution

functions have proven [139,157–160] very useful in quantum mechanical systems
as they provide insights into the connection between classical and quantum me-
chanics allowing one to express quantum mechanical averages in a form that is
very similar to that of classical averages. Thus, they are ideally suited to the study
of the quantum–classical correspondence.

The description of quantum mechanics via phase space distributions advanced
by Wigner [139] is an ideal starting point for the formulation of semiclassical quan-
tum master equations. The Wigner phase space formalism [139,157] in quantum
mechanics allows one to employ tools of classical physics in the quantum realm.
For closed quantum systems, the time behavior of the Wigner function is governed
by an evolution equation equivalent to the Schrödinger equation, which in the
limit �→ 0 becomes Liouville’s equation for the phase space distribution func-
tion in classical mechanics. Therefore, the Wigner formalism provides a natural
quantum–classical connection.
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We should remark that the quantum Brownian motion in a potential may also be
treated using many other methods such as numerical simulations [46,54,161,162],
the reduced density matrix [163,164], path integrals [165], and so on. In general,
these permit a deep understanding of the dynamics of dissipative quantum systems.
Moreover, many problems concerning quantum effects on diffusive transport pro-
perties, activated barrier crossing, and so on, have been solved. However, in spite
of the progress achieved such methods possess certain practical disadvantages. For
example, a simple time evolution equation for the reduced density matrix does not
exist [22]. Moreover, path integrals have been usually confined to harmonic oscil-
lator models since in general it is difficult or indeed impossible to evaluate them
for any other potentials [165]. In spite of the formal power of numerical simulation
methods, yielding numerically exact solutions, the understanding and interpreta-
tion of the qualitative behavior of the relevant physical quantities, is sometimes
not at all obvious from them. One would, therefore, essentially expect that only a
combined use of the latter complementary approaches may yield a comprehensive
understanding of the quantum dynamics of the Brownian particle in a potential.

Hitherto little in the nature of detailed solutions of semiclassical master equa-
tions for the quantum phase space distribution functions describing quantum Brow-
nian motion in an arbitrary external potential V(x) has appeared in the literature
(see, e.g., Refs [166–168]) hindering investigations of the range of validity of
asymptotic expressions for escape rates, and so on, based on, for example, the
turnover formula. In fact theoretical developments have usually been undertaken
only for a quantum Brownian harmonic oscillator as treated by Agarwal [169] and
others (see, e.g., Refs [170–173] and references cited therein). However, recently
García-Palacios and Zueco [137,138] have proposed an effective method of solving
the master equation for the quantum Brownian motion in an anharmonic potential
V(x). Their ideas suggest how Brinkman’s representation of the classical Fokker–
Planck equation as a partial differential–recurrence relation in configuration space
[33] and its associated solution methods based on matrix continued fractions via
a suitable spatial basis for the observables [14,16] could be naturally extended to
the quantum regime.

Inspired by these ideas, we have recently proposed a quantum master equation
for the Brownian motion of a particle in a potential V(x) [174,175]. Specifically
we have demonstrated how the Wigner stationary distribution for closed systems
can be used to formally establish a semiclassical master equation allowing one to
study the quantum–classical correspondence. The dissipative barrier-crossing pro-
cess is characterized by the (Kramers) escape rate Ŵ and by the quantum Mel’nikov
turnover formula. In the classical case, Mel’nikov’s turnover formula has been ex-
haustively verified for the double-well potential by calculating the smallest nonva-
nishing eigenvalue of the Klein–Kramers equation for the phase space distribution
function W(x, p, t) by continued fraction methods [114,122,123,176]. The quan-
tum Mel’nikov turnover formula for the double-well potential has also been tested
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by a comparison with numerical simulation results for quantum rate constants by
Topaler and Makri [46,161] (by using the path integral approach) and Barik et al.
[177] (by solving numerically the quantum Langevin equation), the latter being
based on the Wigner phase space distribution function.

Proceeding we now consider the semiclassical master equation for the quantum
Brownian dynamics in the double-well potential. Specifically we shall apply the
matrix continued fraction method of Voigtlaender and Risken [122] and Coffey
et al. [123] (developed for the solution of the corresponding classical problem) to
ascertain how quantum effects modify the behavior of the quantum equilibrium

position correlation function C(t) = kBT
〈∫ (kBT )−1

0 x̂(−iλ�)x̂(t)dλ
〉

0
, its spectrum,

and correlation time, which essentially yields the escape rate. Here, the symbol 〈 〉0

denotes the equilibrium ensemble averages. This calculation will illustrate how to
evaluate observables in the familiar classical manner. Moreover, the continued
fraction results for the damping dependence of the quantum escape rate Ŵ will be
compared with those yielded by the Mel’nikov quantum turnover equation for Ŵ

so that the range of validity of the semiclassical master equation approach may be
ascertained.

Now Wigner [139] showed that quantum mechanics can be reformulated using
a phase space (x, p) quasiprobability distribution function

W(x, p, t) =
1

2π�

∞
∫

−∞

ρ

(

x +
1

2
y, x −

1

2
y

)

e−ipy/�dy

where ρ(x, x′) = 〈x| ρ̂
∣

∣x′〉 is the density matrix. Thus, the Wigner distribution
function establishes a connection between the density matrix and a quasiprobabil-
ity distribution in classical phase space. Moreover, one can calculate all quantum
mechanical averages by pure c-number procedures, that is, by evaluation of av-
erages just as in classical statistical mechanics. A detailed discussion of Wigner
distribution functions is given in Refs [157–160].

Now the semiclassical master equation for the translational Brownian motion
of a particle in a potential V(x) based on Wigner’s phase space formulation can
be derived postulating a truncated Kramers–Moyal expansion by proceeding to
the high-temperature limit and using the approximation of frequency independent
damping, the resulting equation to order �2 is [20,174,175]

∂

∂t
W +

p

m

∂W

∂x
−

∂V

∂x

∂W

∂p
+
�2

24

∂3V

∂x3

∂3W

∂p3
+ · · ·

= β
∂

∂p

[

pW + kBTm

{

1 +
�2

12m(kBT )2

∂2V

∂x2
+ · · ·

}

∂W

∂p

]

(448)
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where m is the mass of the particle, β is a friction parameter measuring the strength
of the coupling to the heat bath. The left-hand side of Eq. (448) is the quantum ana-
log of the classical Liouville equation for the closed system while the right-hand
side accounts for effects due to the coupling to the bath, that is, dissipation and
fluctuations being the analog of the collision kernel (Stosszahlansatz) in kinetic
theory. Equation (448) is a partial differential equation for the evolution of the
quasiprobability distribution W in phase space akin to the Fokker–Planck equation
immediately suggesting how the familiar powerful computational techniques de-
veloped for that equation [16] may be extended to the quantum domain as we have
previously demonstrated for a cosine periodic potential [20]. The master equation
(448) is written down explicitly to o(�2) and higher order quantum correction terms
to it may be calculated in like manner [20,171,175]. For example, the explicit form
of the master equation up to o(�4) is given in Refs [20,174,175]. That equation
can be given, in principle, to any desired degree r of �2r.

We recall in passing that the corresponding master equation for the quantum
Brownian oscillator in the weak coupling limit, �β/(kBT ) ≪ 1, originally studied
by Agarwal [20,169] is

∂W

∂t
+

p

m

∂W

∂x
− mω2

0x
∂W

∂p
= β

∂

∂p

[

pW +
〈

p2
〉

0

∂W

∂p

]

(449)

where ω0 is the oscillator frequency and
〈

p2
〉

0
= (m�ω0/2)coth

[

�ω0/(2kBT )
]

.
Now Eq. (449) has the same mathematical form as the Fokker–Planck equa-
tion for a classical Brownian oscillator [16]; however, the diffusion coefficient
Dpp = β

〈

p2
〉

0
is altered so as to include the quantum effects. This simple re-

sult essentially arises because the dynamical equation for the Wigner function for
a quadratic Hamiltonian Ĥ = p̂2/2m + mω2

0x̂
2/2 in the absence of dissipation

(β = 0) coincides with the corresponding classical Liouville equation [20].
In order to solve the master equation for the double-well potential given by

Eq. (211) (which is accomplished following Wigner by perturbation theory in �2

with the perturbation expansion truncated at the terms linear in �2), we begin by
introducing dimensionless variables as in the classical model [123]

x′ =
x

√

〈x2〉cl
0

, p′ =
ηp

m

√

〈x2〉cl
0

, t′ = t/η, � =
�2

48(ηkBT )2

β′ = ηβ, V (x′) = Ax′2 + Bx′4, A =
a〈x2〉cl

0

2kBT
, B =

b
(

〈x2〉cl
0

)2

4kBT

where η =
√

m〈x2〉cl
0 /(2kBT ) is a characteristic time and 〈x2〉cl

0 is the classical
value (�→ 0) of the mean squared displacement. For A > 0 and B > 0, the potential
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V(x′) has only one minimum. For A < 0 and B > 0 (which is the case of interest,
that is, distinct double wells), the potential V(x′) has two minima separated by a
maximum at x′ = 0 with potential barrier �V = Q = A2/4B. The normalization

condition 〈x′2〉
cl

0 = 1 implies that the constants A and B are not independent and are
related via Eq. (218) [14,114,123]. For A < 0 and Q ≫ 1, B ≈ Q due to asymptotic
properties of Dv(z) [72]. Thus, Eq. (448) becomes

∂

∂t′
W + p′ ∂W

∂x′ −
1

2

∂W

∂p′
∂V

∂x′ +
�

4

∂3W

∂p′3
∂3V

∂x′3

= β′ ∂

∂p′

{

p′W +
[

1

2
+ �

∂2V

∂x′2

]

∂W

∂p′

}

+ · · · (450)

The stationary solution of Eq. (450) is the equilibrium Wigner distribution
function W0

st(x
′, p′) restricted to the term linear in the quantum parameter � and

given by [139,174,175]

W0
st(x

′, p′) =
e−p′2−V (x′)

√
πZ

{

1 + �

[

(

2p′2 − 3
) ∂2V (x′)

∂x′2
+
(

∂V (x′)

∂x′

)2
]

+ · · ·

}

(451)

where Z is the partition function in accordance with our first-order perturbation
Ansatz and is given by

Z =
∞
∫

−∞

∞
∫

−∞

W0
st(x

′, p′)dx′ dp′ = Zcl + �Z1 + · · ·

Zcl =
∫∞

−∞e−V (x′)dx′ is the classical partition function in configuration space and

Z1 =
∞
∫

−∞

[

V ′(x′)
2 − 2V ′′(x′)

]

e−V (x′)dx′

According to linear response theory [178], in order to calculate a position cor-
relation function C(t), one must evaluate the decay transient of the system of
Brownian particles following instantaneous switch-off of an external field of small
magnitude ε. Thus, when the field is suddenly switched off at time t = 0, we shall
be interested in the relaxation of a system starting from an equilibrium state I with
the potential V (x′) − εx′ and the distribution function Wε

st (t ≤ 0) to a new equi-
librium state II with the potential V (x′) and the distribution function W0

st (t → ∞)
given by Eq. (451). In linear response, the distribution function Wε

st is given by

Wε
st(x

′, p′) = W0
st(x

′, p′) + εW0
1 (x′, p′) + · · · (452)
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where

W0
1 (x′, p′) = x′W0

st(x
′, p′) − 2�

e−p′2−V (x′)

√
πZcl

∂

∂x′ V (x′) + · · · (453)

Note that the transient response so formulated is truly linear because the change
in amplitude ε of the external field is assumed to be very small, ε → 0. Hence, we
seek a general solution of Eq. (450) in the form

W(x′, p′, t′) = W0
st(x

′, p′) + εW1(x′, p′, t′) + · · · (454)

where W1(x′, p′, t′) can be represented as the Fourier series just as the classical
case [122,123]

W1(x′, p′, t′) = κ e−p′2−[κ2x′2+V (x′)]/2
∞
∑

n=0

∞
∑

q=0

Hq(κx′)Hn(p′)

π
√

2n+qn!q!
cn,q(t′) (455)

κ = αB1/4, and α is a scaling factor chosen to ensure optimum convergence
of the continued fractions involved as suggested by Voigtlaender and Risken
[122] (all results for the observables are independent of α). The initial condition
for W(x′, p′, t′) at t′ = 0 is W(x′, p′, 0) = Wε

st(x
′, p′), which in linear response

becomes

W1(x′, p′, 0) = W0
1 (x′, p′) (456)

By substituting Eq. (454) into Eq. (450), we have the differential–recurrence rela-
tions for the Fourier coefficients cn,q(t)

d

dt′
cn,q(t′) + γ ′

[

ncn,q(t′) − �
√

n(n − 1)

×
(

hq−2cn−2,q−2 + gqcn−2,q + hqcn−2,q+2

)

]

=
√

n + 1
[

eqcn+1,q+3(t′) + d−
q cn+1,q+1(t′)

+ d+
q−1cn+1,q−1(t′) + eq−3cn+1,q−3(t′)

]

−
√

n
[

eqcn−1,q+3(t′) + d+
q cn−1,q+1(t′)

+ d−
q−1cn−1,q−1(t′) + eq−3cn−1,q−3(t′)

]

+�
√

n(n − 1)(n − 2)
[

fq−1cn−3,q−1 + fqcn−3,q+1

]

(457)

where all the coefficients d±
p , eq, fq, gq, hq are defined in Appendix B.4. Now

Eq. (457) reduces by first-order perturbation treatment in � to a matrix three-term
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differential–recurrence relation forced by the quantum term. Thus, by invoking the
familiar general matrix continued fraction method for solving classical recurrence
relations generated by the Fokker–Planck equation [14,16], we have in like manner
the solution of the quantum differential–recurrence equation (457) (details of this
solution are given in Appendix B.4).

2. Calculation of Observables

We recall now that the expectation value of a quantum operator Q̂ may be calcu-
lated using the Wigner function W(x, p, t) in conjunction with the corresponding
classical variable (Weyl symbol) Q(x, p) as [179]

〈

Q̂
〉

(t) =
∫

W(x, p, t)Q(x, p)dx dp

Noting that x′ corresponds to the operator x̂′ [179], we have the averaged displace-
ment 〈x̂′〉(t′) as

〈x̂′〉(t′) =
∞
∫

−∞

∞
∫

−∞

x′W(x′, p′, t′)dx′ dp′ = ε

∞
∫

−∞

∞
∫

−∞

x′W1(x′, p′, t′)dx′ dp′ (458)

By using the orthogonality properties of the Hermite polynomials, we have from
Eqs. (455) and (458) 〈x̂′〉(t′) in terms of the Fourier coefficients c2q−1(t)

〈x̂′〉(t′) = ε
αZclB

1/4

√
π

∞
∑

q=1

c0,2q−1(0)c0,2q−1(t) (459)

According to linear response theory [178], 〈x̂′〉(t′) is related to the linear response

after-effect function C(t) = kBT
〈

∫ (kBT )−1

0 x̂′(−iλ�)x̂′(t)dλ
〉

0
via

〈x̂′〉(t′) = εC(t) (460)

This may be verified in the quantum case by independently calculating both the
after-effect function and the autocorrelation function from the Fourier coefficients.
As before the one-sided Fourier transform C̃(ω) =

∫∞
0 C(t)e−iωtdt, that is, the

spectrum of the equilibrium correlation function C(t) is related to the dynamic
susceptibility χ(ω) = χ′(ω) − iχ′′(ω) via

χ(ω) = C(0) − iω C̃(ω) (461)

147



258

One may also determine the correlation time Tc, which is a global characteristic of
the relaxation process involved and is defined as usual as the area under the curve
of C(t)/C(0), because [14]

Tc =
1

C(0)

∞
∫

0

C(t)dt =
C̃(0)

C(0)
(462)

In the high-barrier limit (Q ≫ 1), the correlation time Tc closely approximates the
inverse Kramers escape rate, that is, the longest relaxation time for the double-well
potential [16].

3. Mel’nikov’s Turnover Formula for the Escape Rate

We saw in detail how Mel’nikov [8,9] extended his solution of the classical Kramers
turnover problem to include quantum effects in a semiclassical way by deriving a
(universal) formula valid for all values of damping for the quantum rate ŴM above
the crossover temperature between tunneling and thermal activation, namely,

ŴM = ϒŴIHD (463)

Here, ϒ is the quantum depopulation factor, ŴIHD is the quantum escape rate for
the double-well potential in the IHD region where β′ ≥ 1 and [137,138]

ŴIHD = �ŴIHD
cl (464)

Here, ŴIHD
cl is the classical IHD escape rate for the double-well potential given by

[123]

ŴIHD
cl =

�ωC

πωA

e�V (465)

�V = Q is the normalized barrier height, ωA =
√

2η−1(QB)1/4 and ωC =
2η−1(QB)1/4 are, respectively, the well and barrier angular frequencies, � =
η−1
(
√

β′2/4 + η2ω2
A − β′/2

)

is the eigenvalue associated with the unstable

barrier-crossing mode, and the quantum correction factor � is given by Eq. (13).
The quantum depopulation factor ϒ for a symmetrical double-well potential

can be written as [8,9]

ϒ(�, y) =
A2(�, y)

A(2�, y)
(466)

Here, A is the quantum depopulation factor for a single well, y = 2
√

6�
√

QB

is a dimensionless parameter, depending on the ratio of the quantum parameter
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� to the barrier height parameter, and � is the loss parameter as defined in the
Introduction, namely,

� =
β′S

ηkBT
(467)

where S =
∮

well

√
−2mV (x)dx is the action associated with the path along the top

of barrier given by

S = 2

x1
∫

0

√

−2mV (x)dx =
8
√

2

3
ηkBT

(

Q3

B

)1/4

(468)

[x1 =
√

−2a/b is one of the roots of the equation V(x) = 0]. On this path, a particle
starts with zero velocity at the top of the barrier and, having descended into the well,
returns again to the top of the barrier. For Q ≫ 1, S ∼ 8ηkT

√
2Q/3. The quantum

depopulation factor for a single well A (�, y) is given by [8,9] (see Section III.A.5)

A (�, y) = exp

⎧

⎨

⎩

y sin y

π

∞
∫

−∞

ln
[

1 − e−�R(λ,y)
]

dλ

cosh(2yλ) − cos y

⎫

⎬

⎭

(469)

where R (λ, y) is given by Eq. (441). Thus, one may evaluate the escape rate [from
Eqs. (463)–(469) and Eq. (441), where ω =

√
−a/m] that may then be compared

with the semiclassical solution obtained from Eq. (457) using matrix continued
fractions. It should be noted that the universal equation (463) for the escape rate
can be used only for high barriers (say Q ≥ 3) with, however, no limitation on the
quantum parameter �.

4. Comparison of the Numerical and Analytical Approaches

In Figs. 25 and 26, we show the spectrum of Im
[

C̃(ω)
]

and Re[C̃(ω)] as calculated
from the series of Fourier coefficients, Eq. (459), by the matrix continued fraction
method for barrier height parameters Q = 5 and 10 and various values of β′ = 1, 10,
and 100. The low-frequency part of the spectra C̃(ω) is due to the slow overbarrier
relaxation of the particles in the double-well potential. Just as the classical case
[123], this low-frequency part may be approximated by a simple Lorentzian

C̃(ω) ≈
1

ŴM + iω
(470)

where ŴM is the escape rate rendered by Mel’nikov’s universal quantum rate,
Eq. (463). It is apparent from Figs. 25 and 26 that the simple Eq. (470) accurately
describes the quantum effects in the relaxation phenomenon at low frequencies
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(ω ≤ ŴM). It is also apparent from Fig. 25 particularly in the high-barrier case
that tunneling near the top of the barrier increases the frequency of the maximum
ωR = ŴM of the low-frequency peak in Im

[

C̃(ω)
]

and decreases the low-frequency

side of Im
[

C̃(ω)
]

; a phenomenon that can be ascribed to effective lowering of the
potential barrier due to the tunneling that increases the escape rate as identified by
Wigner [24]. Furthermore, the quantum effects decrease as the frequency increases
above the peak frequency, where barrier crossing is no longer the dominant relax-
ation process. As far as the dependence of the low-frequency part of the spectrum is
concerned, the frequency ωR decreases as the damping parameter β′ increases. For
small damping (β′ < 0.1), the frequency ωR decreases with decreasing β′ for given
values of Q. A very high-frequency band is visible in the spectrum of Re[C̃(ω)] in
Fig. 26 at moderate damping (β′ = 1) due to the fast oscillations of the particles
in the potential wells. For smaller damping, β′ ≪ 1, two sharp peaks appear in the
high-frequency part of the spectra Re[C̃(ω)] signifying the existence of a family of
peaks that occur just as in the classical case [123]. These peaks occur at the funda-
mental and second harmonic frequencies, and so on, of the almost free periodic mo-
tion of the particle in the double-well potential V(x). We should remark that the de-
scription of the quantum effects in the high-frequency response in the double-well
potential via the Wigner formalism applies only when the conditions η�E/� ≤ β′,
and �E/� ≤ ωA are satisfied. Here, �E is the energy difference between the two
lowest energy levels in the potential well and ωA ∼

√
2Q3/4/η is the characteristic

frequency of the nonlinear oscillator. Under these conditions, the discrete spectral
lines corresponding to the transitions between the energy levels in the wells are
indistinguishable in the spectrum Re[C̃(ω)]. For moderate barriers, the inequality
η �E/� ≤ β′ breaks down only for very small damping. Moreover, the classical
limit holds if the conditions �E/(kBT ) ≪ 1 and η �E/�≪ β′ are satisfied.

The longest relaxation time τ predicted by Mel’nikov’s formula τ = Ŵ−1
M

[Eq. (463)] that we recall has been verified by computer simulation [46] and the
relaxation time Tc/η from Eq. (462) calculated via matrix continued fractions is
shown in Figs. 27 and 28 for barrier heights Q = 5 and 10, respectively, as a func-
tion of the (dimensionless) damping parameter β′ characterizing the coupling to
the heat bath. In relation to the matrix continued fraction calculations of the escape
rate, we recall that the (normalized) time Tc/η being of exponential order accurately
approximates the inverse escape rate for symmetrical potentials for all significant
barrier heights. We further remark that the inverse of the universal quantum rate
provides a reasonably good approximation to Tc/η for almost all β′ values with a
deviation of some of 20% for small friction β′ and relatively low barriers, for exam-
ple, Q = 5, as � increases. The agreement between the numerically calculated τ

and the quantum rate result, however, improves as the barrier height increases (see
Fig. 27). The results of the calculations suggest that in applying quantum rate theory
to relatively low barriers that the theory should be modified to incorporate finite-
barrier effects as in the classical case as envisaged by Mel’nikov [74]. In order
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the quantum parameter �. The

IHD relaxation times τIHD/η =
(
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)−1

[Eq. (465), dot-
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comparison.

to improve the accuracy of the universal turnover formula, we have mentioned
that Mel’nikov [74] suggested a systematic way of accounting for finite-barrier
corrections. Analysis of the translational Brownian motion in a cosine potential
demonstrates that if such corrections are included, the accuracy of the universal
formula is considerably improved [51,75]. This method may also be applied here.

By way of further illustration, we show in Fig. 28 the correlation time Tc/η and
the inverse of universal quantum rate (η ŴM)−1 as functions of barrier height Q

for large and small damping parameters β′ = 10 and 0.1, respectively. Clearly the
correspondence between both results is very good for all relevant values of Q, for
example, Q > 3. The discrepancy for Q < 2 arises simply because the assumption
of a high barrier (Q ≫ 1) is always used in the derivation of asymptotic escape
rate formulas. The largest quantum effects obviously occur for the highest barriers
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as is obvious by inspection of Fig. 28. Moreover, they manifest themselves even
for very small values of �.

In conclusion of this section, we have shown how quantum effects in the
Brownian motion of a particle in a double-well potential may be studied using
a semiclassical master equation based on the extension of Wigner’s phase space
formulation of quantum mechanics to an open system. Our treatment allows one
to use all the solution techniques previously developed for the classical Fokker–
Planck equation [14,16] rendering a transparent treatment of the quantum problem.
Moreover, our results are in agreement with those of quantum reaction rate theory
that constitutes a benchmark solution verified by quantum mechanical simulations
[46,161,177]. The most significant manifestation of the quantum effects above the
crossover temperature between tunneling and thermal activation appears to be in
connection with the low-frequency relaxation via transitions across the potential
barrier. In this frequency range, the relaxation process is accurately described by
a single Lorentzian with relaxation time given by the inverse of Mel’nikov’s uni-
versal quantum rate so providing a very simple picture of the quantum relaxation.
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Our matrix continued fraction solution is valid only for small values of the quan-
tum parameter � (� ≪ 1) as in our perturbation procedure we have neglected all
terms of the order of �2 and higher. In order to improve the accuracy of ma-
trix continued fraction calculations for larger values of �, additional terms of the
order of �2, and so on, should be included in the master equation (448). These
higher order quantum correction terms to the master equation, may be calculated,
in principle, to any desired degree r of �2r [174,175]. Finally, we should remark
in the context of our semiclassical solution that hitherto the quantum Brown-
ian motion in a double-well potential has usually been treated only by means of
numerical simulations (see, e.g., Refs [46,161,168,177,180]). These methods in
general allow one to understand quantum effects on diffusive transport proper-
ties, activated barrier crossing, and so on. However, in spite of their great power
they possess certain practical disadvantages because the qualitative behavior of the
simulated physical quantities, is not always obvious from them. In general, there-
fore, one may expect that only a combined use of the complementary approaches
of numerical simulation and the analytical methods described here is capable of
yielding a comprehensive understanding of the quantum Brownian dynamics in
a potential.

C. Translational Motion of a Quantum Brownian Particle

in a Periodic Potential

1. Solution of the Master Equation in Phase Space

Here, we show how to solve the master equation for a quantum particle moving in
the periodic potential

V (x) = −V0cos(x/x0) (471)

where x is the position of the particle and x0 is a characteristic length. Both the
classical and the quantum Brownian motion in periodic potentials have been used,
for example, to model the diffusion in solids, premelting films, and surfaces (see,
e.g., Refs [54,181,182]). Furthermore, Brownian motion in periodic potentials
arises in a number of other important physical applications (see Section II.G).

Now we saw that the analytical approaches to the problem are based on Kramers
escape rate theory [15]. However, we recall that the Kramers escape rate problem
in a periodic potential is qualitatively different from that for a metastable well
because the periodic potential is multistable [53]. Thus, the particle having escaped
a particular well may again be trapped due to the thermal fluctuations in another
well. Moreover, jumps of either a single lattice spacing or of many lattice spacings
are possible. Thus, the escape rate in a periodic potential is called the jump rate
[50]. Moreover, we also saw that in order to estimate the quantum decay rate for all
values of damping, Mel’nikov [8,9] extended the classical method of evaluation
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of the escape rate Ŵ to account for quantum tunneling in a semiclassical way
(see also Rips and Pollak [78]). By applying this approach to a cosine periodic
potential, Georgievskii and Pollak [183] have obtained a universal expression for
the quantum rate Ŵ above the crossover temperature between tunneling and thermal
activation for the quantum Brownian dynamics in that potential.

Here, we solve the semiclassical master equation for the quantum Brownian
dynamics in a periodic potential Eq. (471). In particular, we evaluate the dynamic
structure factor. This factor allows one to evaluate various physical parameters
[16,50]. Another of the most important characteristics associated with the Brow-
nian motion in either a single-well or a multiwell potential is the friction and
temperature dependence of the longest (overbarrier) relaxation time τ (or the in-
verse of the escape rate). The results of exact solutions yielded by the continued
fraction method for the damping dependence of τ will be compared here with
those of the Mel’nikov turnover equation for the quantum Kramers rate. Thus, the
validity of the semiclassical approach may be ascertained.

We again use the semiclassical master equation [Eq. (448)] for the Wigner
distribution function W(x, p, t) [80,137,138,171,184]. Our present objective is
to understand qualitatively how quantum effects treated in semiclassical fashion
alter the classical Brownian motion in a periodic potential such as Eq. (471). Thus,
now we shall apply matrix continued fractions to calculate various parameters
and observables such as the dynamic structure function, the escape rate, and so
on, directly from Eq. (448) and compare the results so obtained with available
analytical solutions.

In order to represent the quantum master equation as a differential–recurrence
relation for the statistical moments, we make the following rescaling in
Eq. (448)

x′ = x/x0, p′ = pη/(mx0), t′ = t/η

U(x′) = −g cos x′, � = �2/
(

48(ηkBT )2
)

g = V0/(kBT ), β′ = ηβ, η =
√

mx2
0/(2kBT )

We then have

∂W

∂t′
+ p′ ∂W

∂x′ −
1

2

∂U

∂x′
∂W

∂p′ +
�

4

∂3U

∂x′3
∂3W

∂p′3

=
β′

2

∂

∂p′

[

2p′W +
(

1 + 2�
∂2U

∂x′2

)

∂W

∂p′

]

(472)
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To investigate the process whereby the particle traverses the periodic potential
Eq. (471), we must obtain the nonperiodic (running) solution of Eq. (472) [16].
Thus, we make the Ansatz [16]

W(x′, p′, t′) =
1/2
∫

−1/2

w(k, x′, p′, t′)e−ikx′
dk (473)

where w is periodic in x′ with period 2π and it is assumed that k is restricted to
the first Brillouin zone, −1/2 ≤ k ≤ 1/2. The periodic function w can then be
expanded in a Fourier series in x and in orthogonal Hermite functions Hn(p′) in
p′ [16,50], namely,

w(k, x′, p′, t′) =
e−p′2−U(x′)/2

2π3/2

∞
∑

n=0

∞
∑

q=−∞

cn,q(k, t′)
√

2nn!
Hn(p′)e−iqx′

(474)

By substituting Eq. (474) into Eq. (473), we see from Eq. (472) after some algebra
that the Fourier coefficients cn,q(k, t′) satisfy the 11-term differential–recurrence
relation

d

dt′
cn,q + β′

[

ncn,q − �g
√

n(n − 1)
(

cn−2,q+1 + cn−2,q−1

)

]

= i
√

n/2
[

(q + k) cn−1,q + g
(

cn−1,q+1 − cn−1,q−1

)

/4
]

+ i
√

(n + 1)/2
[

(q + k) cn+1,q − g
(

cn+1,q+1 − cn+1,q−1

)

/4
]

(475)

+ i�g
√

n(n − 1)(n − 2)/8
(

cn−3,q+1 − cn−3,q−1

)

By invoking the general method for solving matrix differential–recurrence equa-
tions [14,16,166,167], we have the solution of Eq. (475) for the spectra c̃n,q(k, ω) =
∫∞

0 cn,q(k, t) e−iωtdt in terms of matrix continued fractions (details of this solution
are given in Appendix B.5).

2. Calculation of Observables

Just as in the classical case, having determined cn,q(k, t), we can evaluate the
dynamic structure factor S̃(k, ω) defined as

S̃(k, ω) =
∞
∫

0

S(k, t)e−iωtdt (476)

where S(k, t) =
〈

eik[x(t)−x(0)]
〉

0
is the characteristic function of the random vari-

able x(t) − x(0), that is, the displacement of the particle as it wanders through the
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wells, and the angular brackets 〈 〉0 mean equilibrium ensemble averaging. The
dynamic structure factor plays a major role in neutron and light scattering exper-
iments [16]. Here, various physical parameters such as the escape rate, diffusion
coefficient, and so on, can be evaluated from S̃(k, ω). The characteristic function
S(k, t′) is calculated in a manner analogous to the classical case [16,50]

S(k, t′) =
〈

eik[x′(t′)−x′(0)]
〉

0

=
∞
∫

−∞

∞
∫

−∞

∞
∫

−∞

∞
∫

−∞

eik(x′−x′
0)W(x′, p′, x′

0, p
′
0, t)dx′ dx′

0 dp′ dp′
0

=
∞
∫

−∞

∞
∫

−∞

∞
∫

−∞

∞
∫

−∞

eik(x′−x′
0)

1/2
∫

−1/2

e−ik1(x′−x′
0)w(k1, x

′, p′, x′
0, p

′
0, t)

× dk1dx′dx′
0 dp′ dp′

0

(here x′(0) = x′
0, x′(t) = x′). The function W(x′, p′, x′

0, p
′
0, t) =

∫ 1/2
−1/2e−ik(x′−x′

0)

w(k, x′, p′, x′
0, p

′
0, t)dk satisfies Eq. (472) with the initial condition

W(x′, p′, x′
0, p

′
0, 0) = Wst(x

′
0, p

′
0) (477)

where Wst(x
′
0, p

′
0) is the equilibrium Wigner distribution function (which is a

stationary solution of the master equation (448) [16,175]; see Appendix B]. Noting
that for a periodic function f (x) and −1/2 ≤ k, k1 ≤ 1/2 [16]

∞
∫

−∞

ei(k−k1)xf (x)dx = δ(k − k1)

2π
∫

0

f (x)dx

and utilizing Eq. (474) and the orthogonality properties of the Hermite functions
Hn, the characteristic function S(k, t′) becomes a series of the Fourier coefficients
c0,q(k, t′) as [16]

S(k, t′) =
2π
∫

0

2π
∫

0

∞
∫

−∞

∞
∫

−∞

w(k, x′, p′, x′
0, p

′
0, t)dx′ dx′

0 dp′ dp′
0

=
2π
∫

0

∞
∫

−∞

w(k, x′, p′, t′)dx′ dp′ =
∞
∑

q=−∞
aqc0,q(k, t′)
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where

aq = (2π)−1

2π
∫

0

e−iqx−U(x′)/2dx′

and

w(k, x′, p′, t′) =
2π
∫

0

∞
∫

−∞

w(k, x′, p′, x′
0, p

′
0, t)dx′

0 dp′
0

Thus, the dynamic structure factor S̃(k, ω) then becomes a series of the c̃0,q(k, ω),
namely,

S̃(k, ω) =
∞
∑

q=−∞
aqc̃0,q(k, ω) (478)

Thus having calculated S̃(k, ω), we may evaluate the escape (jump) rate Ŵ from
Eq. (265) just as the classical case, namely,

Ŵ ≈ 2

1/2
∫

0

τ−1(k)dk (479)

where

τ(k) = lim
ω→0

S̃(k, 0) − S̃(k, ω)

iω S̃(k, ω)

The escape (jump) rate Ŵ allows one to estimate using Eq. (479) the average longest
relaxation time of the system since τ ∼ Ŵ−1. Now τ−1(k) can be expressed in terms
of the jump rate Ŵ and the jump-length probabilities Pn (the probability of a jump
of length |n| x0/2π) as the trigonometric series [50]

τ−1(k) = Ŵ

∞
∑

n=1

Pn [1 − cos(2πnk)] (480)

with the result that the jump-length probabilities Pn may then be obtained in
integral form as the Fourier coefficients of the Fourier expansion of τ−1(k) as
detailed in [50]

Pn = −2Ŵ−1

1/2
∫

0

τ−1(k)cos(2πnk)dk (481)
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Moreover, for high-potential barriers, in the jump diffusion limit, the jump-length
probabilities Pn allow one to evaluate both the mean-square jump length

〈

l2
〉

and
the diffusion coefficient D as [50]

〈

l2
〉

= 4π2x2
0

∞
∑

n=1

n2Pn (482)

D ≈ (Ŵ/2)
〈

l2
〉

(483)

The above equations describe in detail the diffusion process in the periodic
potential.

3. Mel’nikov’s Turnover Equation

As already mentioned, Mel’nikov [9] extended his solution of the classical Kramers
turnover problem to include quantum effects in a semiclassical way. He did this
initially by simply inserting the quantum mechanical transmission factor for a
parabolic barrier into the classical integral equation for the energy distribution
function yielded by the Wiener–Hopf method in the Kramers turnover region.
In the approximation of Ohmic damping, he derived a universal formula for the
quantum rate ŴM [see Eq. (463)] valid for all values of damping above the crossover
temperature between tunneling and thermal activation

ŴM = ŴIHDϒ (484)

Later as we saw in detail in Section III.A, he improved upon this initial result
following Larkin and Ovchinnikov [11] by generalizing it to a system coupled to
a bath with Johnson–Nyquist quantum thermal noise spectrum. Now Mel’nikov
and Sütö [185] have applied the latter development to quantum Brownian motion
in a tilted cosine potential [the zero tilt case corresponds to Eq. (471)]. Further-
more, Rips and Pollak [78] gave a consistent solution of the quantum Kramers
turnover problem demonstrating how the Mel’nikov equation (484) can be ob-
tained without his ad hoc interpolation between the weak and strong damping
regimes. Finally, Georgievskii and Pollak [183] treated the escape rate problem
in a periodic cosine potential showing that the quantum depopulation factor ϒ in
Eq. (484) is

ϒ = 4

1
∫

0

sin2(πk)F (k)dk (485)
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The function F(k) is (in our notation)

F (k) = exp

⎧

⎨

⎩

a sin a

π

∞
∫

−∞

ln

[

1 − e−2R(x)

1 + e−2R(x) − 2 e−R(x)cos(2πk)

]

dx

cosh(2ax) − cos a

⎫

⎬

⎭

(486)
where

R(x) =
πβ′

√
3�

∞
∫

−∞

cosh(
√

�y) − cos(2
√

�xy)

y sinh(
√

�y)cosh2[πy/(2
√

6g)]
dy (487)

and a =
√

3�

(

√

β′2 + 2g − β′
)

. If absolute precision is unnecessary, the func-

tion R(x) from Eq. (487) can be replaced by its classical limit R(x) ≈ �(x2 + 1/4),
where � = 8β′√2g. We may now estimate using the Wigner function method the
quantum escape rate ŴIHD [and thus ŴM via Eq. (484)] by adapting results of the
classical Kramers escape rate theory [15] (see Appendix D). The quantum escape
rate ŴIHD is then

ŴIHD =
�

2πη

(
√

β′2 + 2g − β′
)

e−2g (488)

where the quantum correction factor is given by Eq. (13), namely,

� =
ωCsinh

[

�ωA/(2kT )
]

ωAsin
[

�ωC/(2kT )
] = 1 + 2g� + · · · (489)

is or (in full agreement with quantum TST [22]), ωC =
√

|V ′′(xC)| /m =
ωA =

√
V ′′(xA)/m. The form of Eq. (488) appears to be consistent with our

(Section III.B) conception of a quantum Brownian particle as being embedded
in a classical bath with the quantum effects in the bath–particle interaction arising
via the dependence of the diffusion coefficient on the derivatives of the potential
in the quantum master equation. The simple result follows from the exact solution
for the Wigner equilibrium distribution function for the harmonic oscillator given
in Refs [157,158].

In the context of the determination of the IHD quantum Kramers rate, we
remark that the analysis of Wolynes [150] as well as that of Pollak [18] (which
we have explained in detail) involve quantization of both bath and particle just
as do methods [7] based on Langer’s analytical continuation of the free energy.
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Moreover, we showed that the quantum mechanical enhancement factor � yielded
by all these calculations is for Ohmic friction [22,150]

�W =
∞
∏

n=1

(�ωA)2 + (2πnkBT )2 + 2πn�βkBT

−(�ωC)2 + (2πnkBT )2 + 2πn�βkBT
(490)

If the condition �β/(kBT ) ≪ 2π is fulfilled, we have the TST result as
lim�γ/(kT )→0 �W = � [22]. Thus recovering the result embodied in Eq. (488).
The damping independent � is then a fair approximation to �W suggesting that
replacement of the equilibrium distribution function by that of the closed system
may ultimately yield reasonable semiclassical approximations to the actual time
dependent quantum distribution. A comprehensive analysis of Eq. (490) has been
made by Hänggi et al. [186] and also by Weiss [22]. They show how the product
involving the Matsubara frequencies in Eq. (490) may be written as gamma func-
tions consequently Wigner’s original quantum correction [24] is recovered when
T ≫ (β/ωC)2Tc.

Finally the jump-length probabilities can be estimated as [50]

PM
n = −

∫ 1/2
0 sin2(πk) F (k)cos(2πnk)dk
∫ 1/2

0 sin2(πk) F (k)dk
(491)

where F (k) is defined by Eq. (486) and the superscript M denotes analytical cal-
culation (as in Ref. [50]).

The results yielded by the analytical theory may now be compared with the
matrix continued fraction solution.

4. Comparison of Exact Matrix Solution with Approximate Analytical Formula

The real and imaginary parts of the normalized dynamic structure factor
S̃(k, ω)/S̃(k, 0) are shown in Fig. 29 for various barrier heights g with the damping
parameter β′ = 10, and wave number k = 0.2. For comparison, we also show in
this figure the pure Lorentzian spectra

S̃(k, ω)

S̃(k, 0)
=

1

1 + iωτk

(492)

where the relaxation time τk = τM(k) is related to the escape ŴM from Eq. (484)

via ŴM = 2
∫ 1/2

0 τ−1
M (k)dk. Apparently the simple Eq. (492) perfectly describes the

low-frequency part of the normalized dynamic structure factor S̃(k, ω)/S̃(k, 0).
The longest relaxation time τ = Ŵ−1 predicted by the turnover formula,

Eq. (484), and the inverse decay rate calculated numerically by matrix contin-
ued fractions are shown in Fig. 30 as functions of the damping parameter γ ′ for
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Figure 29. The real and

imaginary parts of the normal-

ized dynamic structure factor

S̃(k, ω)/S̃(k, 0) versus ωη for

various values of barrier pa-

rameter g = 5, 7, 9, and 11;

the damping coefficient β′ = 10

and k = 0.2. Solid and dashed

lines: the matrix continued frac-

tion solution with � = 0.02

and � = 0 (classical case), re-

spectively. Stars and open dia-

monds: Eq. (492) with � = 0.02

and � = 0, respectively.

various values of the quantum parameter � (the curves and open circles corre-
sponding to � = 0 are the classical results). The IHD [Eq. (488)], asymptotes for
τ are also shown for comparison. Using the Wigner stationary distribution Wst and
imposing the condition M̂DWst = 0 gives the correct dependence of the escape

rate (τ decreases with increasing �). If the condition M̂DWst = 0 is not fulfilled
(e.g., the diffusion coefficient Dpp is regarded as a constant), the behavior of the

decay rate is not reproduced at all (see Fig. 30). The quantitative agreement in
damping behavior may be explained as follows. As we saw for many other systems
the escape rate as a function of the barrier height parameter g for large g is ap-
proximately Arrhenius-like and arises from an equilibrium property of the system
(namely the stationary distribution at the bottom of the well). On the other hand,
the damping dependence of the escape rate is due to nonequilibrium (dynamical)
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of the master equation (472).
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fraction solution of Eq. (472)

with the constant diffusion co-

efficient Dpp = βmkBT .

properties of the system so that the Mel’nikov approach [8,9] should yield the re-
laxation time for all values of the damping. The longest relaxation time τ predicted
by the Mel’nikov turnover equation (484) and the inverse decay rate calculated
numerically via matrix continued fractions are shown in Fig. 31 as functions of β′

for various barrier heights. The IHD [Eq. (488)] asymptotes for τ are also shown
for comparison. The higher the barrier parameter g the more pronounced is the
quantum correction.

The results of calculations of the jump-length probabilities Pn and PM
n from

Eqs. (481) and (491) are shown in Fig. 32 for � = 0 (classical case) and � = 0.02.
The numerical results are consistent with an asymptotic exponential decay of the
PM

n . However, for large n and small friction parameter β′, deviations from the
exponential behavior may appear [50].
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In spite of the very good agreement between the numerical results and the
turnover equation (484) for � < 0.03, a difference between numerical and ana-
lytical results exists in the IHD region for larger values of �. The disagreement
indicates that in order to improve the accuracy for these values of �, additional
terms of the order of �2, and on, should be included in the master equation. These
higher order quantum correction terms to the master Eq. (448), may be calculated,
in principle, to any desired degree r of �2r. However, with increasing r, the correc-
tion terms become more complicated. In particular, the explicit form of the master
equation (448) containing the terms up to o

(

�4
)

is

∂W

∂t
+

p

m

∂W

∂x
−

∂V

∂x

∂W

∂p
+
�2

24

∂3V

∂x3

∂3W

∂p3
−
�4

1920

∂5V

∂x5

∂5W

∂p5
+ · · ·

= β
∂

∂p

[

pW + mkBT

{

1 +
[

�/(kBT )
]2

12m
V ′′ −

[

�/(kBT )
]4

1440m2

×
[

6V ′′′V ′ + 2V ′′2 + 3V (4)

(

p2

m
− 5kBT

)]}

∂W

∂p

]

+ · · ·

We emphasize that we use the equilibrium Wigner function Wst(x, p) for vanish-
ing damping (β → 0). In quantum systems, however, the equilibrium distribution
Wβ(x, p) is damping dependent [22]. The damping dependence of Wβ(x, p) is
unknown for arbitrary V(x). However, Wβ(x, p) always reduces to Wst(x, p) in the
high-temperature limit. Moreover, the difference between Wβ(x, p) and Wst(x, p)
may be negligible in a large range of variation of the model parameters. Thus,
one would expect that the evolution equation (448) is a reasonable approxima-
tion for the kinetics of a quantum Brownian particle in a potential V (x) when
�β/(kBT ) ≤ 1.
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The justification of the master equation (448) for the quantum Brownian mo-
tion of a particle in a periodic (cosine) potential (by showing that the solution of
that equation for the longest relaxation time is in agreement with that predicted
by quantum rate theory) and the successful extension to the quantum case of the
matrix continued fraction methods associated with the classical Fokker–Planck
equation are our main results. In particular, the dependence of the diffusion coeffi-
cient on the derivatives of the potential (with consequent lowering of the potential
barrier) arising from the Ansatz of a Wigner stationary distribution for the equilib-
rium solution of the open system successfully reproduces escape rates predicted
by the quantum generalization of the Kramers escape rate theory and its various
extensions to the turnover region as applied to the cosine potential. Furthermore,
the successful extension of the classical matrix continued fraction method [14,16]
to the semiclassical quantum master equation allows one to accurately calculate
in semiclassical fashion, quantum corrections to the appropriate dynamical quan-
tities such as correlation functions and susceptibilities (cf. the calculation of the
dynamic structure factor). This is in general impossible using quantum reaction
rate theory since that theory as presently formulated does not involve an explicit
master equation. We further remark that the agreement obtained between escape
rates calculated from quantum reaction rate theory in the manner of Georgievskii
and Pollak [183] and those from the master equation (448) (cf. Figs. 30 and 31)
also constitutes a verification of quantum rate theory for the potential in question.
We reiterate that the dependence of the diffusion coefficient on the derivatives of
the potential arising from the imposition of the Wigner stationary distribution is
crucial. If this dependence is not taken into account, for example, considering the
diffusion coefficient as constant, the characteristic lowering of the barrier produced
by the quantum tunneling near the top of the barrier cannot be reproduced neither
can one regain the results of quantum reaction rate theory.

Our calculations that have been outlined for mechanical systems with separable
and additive Hamiltonians may possibly be extended to particular (nonseparable)
spin systems such as a single-domain ferromagnetic particle since the giant spin
Hamiltonian of the particle may be mapped onto an equivalent single mechanical
particle Hamiltonian. This transformation is of particular importance concerning
the existence of macroscopic quantum tunneling phenomena in such ferromagnetic
particles and also in the discussion of the crossover region between reversal of
magnetization by thermal agitation and reversal by macroscopic quantum tunneling
that is of current topical interest [26].

IV. CONCLUSION

In this chapter, we have attempted to summarize, with the needs of the gradu-
ate student in mind and in accordance with the stated aims of the advances, the
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main features of the calculation of the Kramers escape rate for all values of the
damping in both the classical and the semiclassical cases. The inverse escape rate
of course yields the lifetime of a particle in a potential well. By way of a check
on the veracity of our analytical calculations, we have also compared the ana-
lytical escape rates with those numerically determined in the classical case from
the appropriate Fokker–Planck equation and in the quantum case from the appro-
priate semiclassical master equation. The latter equation is derived by extending
Wigner’s phase space formulation of quantum mechanics of closed systems to the
open system pertaining to quantum Brownian particles, by postulating (as in the
classical Brownian motion) a truncated Kramers–Moyal expansion for the colli-
sion integral. This accounts for the bath–particle dissipation in the single-particle
distribution function. However, a marked difference from the classical case is that
in the semiclassical equation for the evolution of the single-particle or reduced
Wigner function in phase space the diffusion coefficients are in general functions
of the derivatives of the potential. The master equation is solved in the manner of
Wigner [139] by means of a high-temperature perturbation expansion in Planck’s
constant. This procedure then yields a hierarchy of perturbed equations with the
zero order of perturbation being the classical Fokker–Planck equation. The first
order of perturbation equation stems from the classical Fokker–Planck operator
(which represents the transition matrix) forced by quantum terms involving the
zero-order solution and so on in the usual manner of perturbation theory. This
prescription then allows one to apply all the quasianalytical numerical methods,
notably the matrix continued fractions developed for the Fokker–Planck equation,
to the quantum master equation. Thus, all characteristic times, escape rates, and
susceptibilities may be calculated just as the corresponding classical quantities.
In general, the escape rates or lifetimes numerically calculated from either the
Fokker–Planck or the master equation as the case may be, are in good agreement
with the classical and semiclassical Kramers rates.

Regarding the analytical expressions for the escape rates based on the Kramers
theory taking first the classical case and considering for simplicity an isolated well,
the vital concept in the underdamped case is the undamped librational motion of
a particle in the well with energy equal to the barrier energy. The noisy motion
due to dissipation and fluctuations arising from the bath then causes the determin-
istic librational motion couched in terms of the closed librational trajectory and
governed by Newtonian dynamics to become stochastic, that is, the trajectories dif-
fuse in energy space as a function of action (a notion originally due to Kramers).
Thus, a thermal fluctuation may cause a hitherto closed trajectory to become open,
which then constitutes a separatrix traveling on which a particle exits the well.
The first step in the calculation of the escape rate in the classical underdamped
case is then the determination of the Green function or transition probability that
governs the diffusion of energy of a particle due to thermal agitation in one cycle
of the librational motion in the well. The population or energy distribution of the
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escaping particles may then be written down by the principle of superposition as
the solution of an integral equation of the Wiener–Hopf type. This equation may
be solved subject to appropriate boundary conditions as we have exhaustively de-
scribed, yielding the classical escape rate in the entire underdamped region (lying
between zero damping and intermediate damping corresponding to TST) in terms
of a depopulation factor. That factor describes the depopulation of the upper re-
gions of the well due to escape (i.e., a loss of particles causing a disturbance to
the Maxwell–Boltzmann distribution in the well) over the barrier. Moreover, the
depopulation factor is universal in the sense that it retains the same integral form
for all well-behaved potentials. Furthermore, the only parameter is that introduced
initially by Kramers in his discussion of the very low damping rate, namely, �, the
ratio of the energy loss per cycle of a particle librating in the well with energy equal
to the barrier energy to the thermal energy. A formula for the escape rate valid for
all values of the dissipation to the bath is then written down using Mel’nikov’s
[8–10] ad hoc assumption that the prefactor of this rate is simply the underdamped
prefactor multiplied by the Kramers IHD prefactor. We have extensively reviewed
the criticism of this assumption by Pollak et al. [12] based on treating the Brownian
particle as an entity bilinearly coupled to a string that plays the role of friction with
the motion of the particle being determined by a generalized Langevin equation.

Turning now to the quantum case where we confine ourselves to relatively
high temperatures as detailed in the text, we first treat the IHD quantum rate by
recognizing that the multidimensional Kramers rate is simply the TST rate in the
complete phase space of the particle plus bath system as described by Langer [13],
Grote and Hynes [2], Pollak [12,18], and so on. Thus given an appropriate model
for the bath–particle coupling and a suitable generalized Langevin equation, one
may simply calculate the IHD rate from harmonic quantum TST. This calculation
is accomplished using Pollak’s model of a particle governed by a generalized
Langevin equation and bilinearly coupled to a bath of harmonic oscillators. In
doing this, we have eschewed the path integral methods of Wolynes [150] and
Mel’nikov [8] as in general the calculations involving these are less transparent
than those of Pollak [18].

In the underdamped quantum case our primary objective as before is to calculate
the Green function that now describes as well as the thermal diffusion of energy
in one cycle of the librational motion, the change in energy per cycle due to high-
temperature tunneling in the separatrix region infinitesimally close to the top of the
barrier. Now in the classical case, we calculated the Green function by transforming
the Fokker–Planck equation into (slow) energy–(fast) position variables ultimately
leading to an energy–action diffusion equation that is valid in the vicinity of the
barrier where it describes the nonequilibrium events occurring there. This equation
may be solved using Fourier transforms to yield the probability distribution of the
change in energy per cycle due to thermal fluctuations given a sharp distribution
of energy at the beginning of the cycle. The Green function represents a relatively
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sharply peaked Gaussian distribution with variance given by the Kramers loss
parameter, namely, the energy loss per cycle divided by the thermal energy. The
distribution is sharply peaked because the diffusion of energy in one cycle is very
small by hypothesis.

In the quantum case, however, no such procedure is available to us as we can
no longer use the Fokker–Planck equation. Rather the Green function that still
forms the kernel of the integral equation for the population of escaping particles
must be represented by the statistical density matrix that now includes both ther-
mal and quantum tunneling effects describing the (quantized) change of energy in
one cycle near the barrier top. Mindful of the semiclassical nature of our treatment
we may then use the JWKB method whereby the energy levels in the vicinity of the
barrier, of a librational trajectory with energy equal to the barrier energy may be
regarded as quasicontinuous. This procedure allows one to calculate in the interac-
tion representation in the first order of perturbation theory the quantum transition
probability via (Fermi’s Golden Rule) associated with the position operator in the
presence of the Boson bath, that is, Eq. (403). The JWKB approximation in effect
permits one to calculate the matrix elements associated with the position operator
in terms of the Fourier transform over time of the classical librational trajectory.
The quantum transition probability per cycle of transition from energy state j to
energy state f is then effectively the output spectral density if the Johnson–Nyquist
noise is regarded as being passed through a filter with the transfer function given
by the Fourier transform over time of the classical trajectories, that is, the matrix
elements of the position operator. This is essentially the first step in the calcula-
tion of the quantum Green function. The next step is to again make use of the
matrix elements of the position operator in terms of the Fourier transform of the
classical trajectory. This step ultimately allows one starting from the Hamiltonian
of the particle as perturbed by the noise to formally write via the Schrödinger
equation in the interaction picture the probability amplitude of the evolution op-
erator 	̂ for the state vector of the noise-induced energy transitions in a cycle
of the motion in the form of a (quasicontinuous) Fourier transform pair after an
involved calculation as detailed in the text. Next by taking a thermal average in
the presence of the noise and using the Gaussian properties of the noise, one may
prove that the statistical density matrix that is the Green function is the inverse
Fourier transform over an exponential characteristic function in the λ domain. This
characteristic function is entirely analogous to that of the Gaussian distribution of
the classical case. However, unlike the latter where the argument of the exponent
in the characteristic function in the λ domain, namely, �(λ2 + 1/4), is always
known explicitly, the argument in the quantum case must be calculated by taking
the Fourier transform in the λ domain of the (Golden Rule) quantum transition
probability equation (403). Hence, the expression for the quantum Green function
leads to much more complicated calculations than in the classical one as the matrix
elements, and so on, must be explicitly determined in any particular case. Thus,
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supposing that the potential in the vicinity of the barrier may be represented by
an inverted parabola, then dividing the Green function by the reflection coefficient
for the parabolic barrier and finally using the principle of superposition we have
the integral equation for the population of escaping particles. Once more this is
an equation of the Wiener–Hopf type and may be solved to yield the escape rate
in the entire underdamped region at temperatures above the critical temperature
at which the parabolic approximation to the barrier potential fails. We emphasize
that unlike the classical case where the dynamical prefactor is a function only of
the Kramers dissipation parameter � the prefactor is now also a function of the
quantum parameter �ωC/(2πkBT ), where ωC is the frequency associated with the
barrier. The escape rate in the entire range of damping is then determined using the
same ad hoc assumption as before namely the quantum rate is determined by the
product of the IHD and underdamped rates. This assumption has been examined
in detail by Rips and Pollak again using the model of a particle coupled bilinearly
to a harmonic oscillator bath. Recalling the beginning of these conclusions, the
quantum escape rate calculated analytically by the procedures we have outlined
exibits good agreement in general with the Wigner phase space master equation.

This concludes our long discussion of the classical and quantum treatment of
the Kramers turnover problem and its application to the calculation of the lifetime
of a particle in a potential well that we hope will serve as an introduction to the
subject for the beginner.
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APPENDIX A: WIENER–HOPF METHOD

Following [8–10], we can solve the integral equations (149) and (151) by the
Wiener–Hopf method by introducing the Fourier transforms [8,30]

ϕ±
i (λ) = τTST(φi)

∞
∫

−∞

fi(E)U(±E)e−(iλ+1/2)E/(kBT )dE (A1)

where

τ−1
TST(φi) =

√
V ′′(φi)/I

2π
eV (φi)/(kBT ) (A2)
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and φi = φmini
are the potential minima in the ith well (recalling that V(φi ) is

negative, see Fig. 4). The prefactor τTST(φi) of the Fourier transformation that
is introduced for notational convenience is suggested by Eq. (19). Applying this
transformation to the integral equations (149) and (151), we have

ϕ+
1 (λ) + ϕ−

1 (λ) = [1 − G1(λ)][ϕ−
1 (λ) + ϕ+

2 (λ)] (A3)

ϕ+
2 (λ) + ϕ−

2 (λ) = [1 − G2(λ)][ϕ−
2 (λ) + ϕ+

1 (λ)] (A4)

where Gi (λ) is related to the Fourier transform of the Green function g̃i(λ) via

Gi(λ) = 1 − g̃i(λ) = e
−�i

(

λ2+1/4
)

(A5)

and �i = βSi/(kBT ). Now, Eq. (154) in turn can be represented as

τ−1 =
2A(�1, �2)
√

|V ′′(0)| /I

⎡

⎣

√

β2

4
+ |V ′′(0)/I| −

β

2

⎤

⎦

[

τ−1
TST(φ1) + τ−1

TST(φ2)
]

(A6)

where

A(�1, �2) = ϕ+
1 (i/2) − ϕ+

2 (i/2) = ϕ+(i/2) (A7)

Here, we have introduced the function ϕ(λ) = ϕ1(λ) − ϕ2(λ). An equation for ϕ(λ)
can be obtained by subtracting Eq. (A4) from Eq. (A3). We have

ϕ+(λ) +
G1(λ)G2(λ)

G12(λ)
ϕ−(λ) = 0 (A8)

where

G12(λ) = G1(λ) + G2(λ) − G1(λ)G2(λ) = 1 − e−(�1+�2)(λ2+1/4) (A9)

Equation (A8) is now in a form where one may apply the Wiener–Hopf method.
In order to use it we rewrite Eq. (A8) as

ln[−ϕ+(λ)] = ln G1(λ) + ln G2(λ) − ln G12(λ) + ln ϕ−(λ) (A10)
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The function Gi (λ) may now be decomposed as

Gi(λ) = G+
i (λ)G−

i (λ) (A11)

where by Cauchy’s theorem

G±
i (λ) = exp

⎡

⎣±
1

2πi

∞
∫

−∞

ln Gi(λ
′)

λ′ − λ ∓ i0
dλ′

⎤

⎦ (A12)

Equation (A10), thus, has the form

ln[−ϕ+(λ)] − ln G+
1 (λ) − ln G+

2 (λ) + ln G+
12(λ)

= ln G−
1 (λ) + ln G−

2 (λ) − ln G−
12(λ) + ln ϕ−(λ)

(A13)

The functions f1 and f2 must satisfy the boundary conditions that deep in the wells
they both become Maxwell–Boltzmann distributions so that

fi(E) ∼
√

V ′′(φi)/I

2πkBT
e−[E−V (φi)]/(kBT ), −E ≫ kBT (A14)

As a consequence, the functions ϕ±
i (λ) from Eq. (A1) have poles (the choice of

the prefactor in that equation should now be evident)

ϕ±
i (λ) =

−i

λ ± i/2
, |λ + i/2| ≪ 1 (A15)

As the functions on the left-hand and on the right-hand side of Eq. (A13) are ana-
lytical in different half-planes for complex λ they should equal an entire function,
which satisfies Eq. (A15) [8]

ϕ+(λ) = i
G−

1 (−i/2)G−
2 (−i/2)G+

1 (λ)G+
2 (λ)

(λ + i/2)G+
12(−i/2)G−

12(λ)
(A16)

Hence in Eq. (A6)

A(�1, �2) =
A(�1)A(�2)

A(�1 + �2)
(A17)
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where

A(Si) =
∣

∣G+
i (i/2)

∣

∣

2
(A18)

Substituting G+
i from Eq. (A12) into Eq. (A18) and noting Eqs. (148) and (156),

one obtains the depopulation factor A(�) in Eq. (119) bridging the VLD and TST
results.

APPENDIX B: MATRICES AND VECTORS INVOLVED IN THE

MATRIX CONTINUED FRACTION SOLUTIONS

B.1. Fixed Axis Rotator in a Symmetrical Double-Well Potential

The column vector C1(0) and the matrix elements of the infinite square matrices
Q−

n (n > 2) and Q+
n (n > 1) are

C1(0) =
i

2I0(σ)

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

...

I2(σ) + I3(σ)

0

−I2(σ) − I1(σ)

0

I0(σ) + I1(σ)

−I0(σ) − I1(σ)

0

I2(σ) + I1(σ)

0

−I2(σ) − I3(σ)

...

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(B1)

(

Q+
n

)

p,q
= −(i/2)pδpq (B2)

(

Q−
n

)

p,q
= −i (n − 1)

(

δpq+2σ + pδpq − δpq−2σ
)

(B3)

where −∞<p, q< +∞. The matrices Q−
2 and Q+

1 are again obtained by omitting
the column corresponding to q = 0 from Q−

n for n = 2 and by omitting the row
corresponding to p = 0 from Q+

n for n = 1, respectively.
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B.2. Fixed Axis Rotator in an Asymmetrical Double-Well Potential

The column vector C1(0) and the matrix elements of the infinite square matrices
Q−

n (n > 2) and Q+
n (n > 1) are

C1(0) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

...

c0,−2(0)

c0,−1(0)

c0,1(0)

c0,2(0)

...

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(

Q+
n

)

pq
= −

i

2
pδpq

(

Q−
n

)

p,q
= −i (n − 1)

(

δpq−2σ + δpq−12hσ + pδpq − δpq+12hσ − δpq+2σ
)

where −∞<p, q< +∞. The matrices Q−
2 and Q+

1 are not square and are again
obtained by omitting the column corresponding to q = 0 from Q−

n for n = 2 and
by omitting the row corresponding to p = 0 from Q+

n for n = 1, respectively.
The initial conditions c0,q(0)

c0,q(0) =
〈

e−iqφcos φ
〉

0
− 〈cos φ〉0

〈

e−iqφ
〉

0

=
2π
∫

0

cos φ e−iqφW0(φ)dφ −
2π
∫

0

cos φW0(φ)dφ

2π
∫

0

e−iqφW0(φ)dφ

where W0(φ) is the equilibrium distribution in configuration space defined by
Eq. (203), can be evaluated analytically in terms of the modified Bessel functions
of the first kind In [72] because

〈

e−iqφcos φ
〉

0
=
∑∞

m=−∞Im(σ)
[

I−2m+q+1(4σh) + I−2m+q−1(4σh)
]

2
∑∞

m=−∞Im(σ)I−2m(4σh)

〈

e−iqφ
〉

0
=
∑∞

m=−∞Im(σ)I−2m+q(4σh)
∑∞

m=−∞Im(σ)I−2m(4σh)

and

〈cos φ〉0 =
∑∞

m=−∞Im(σ)
[

I−2m+1(4σh) + I−2m−1(4σh)
]

2
∑∞

m=−∞Im(σ)I−2m(4σh)
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B.3. Brownian Particle in a Tilted Periodic Potential

By introducing the column vectors Cn(k, t′) defined as [14,16]

Cn(k, t′) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

...

cn−1,−1(k, t′)

cn−1,0(k, t′)

cn−1,1(k, t′)

...

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, n = 1, 2, 3, . . .

Equation (262) can be written in the vector tridiagonal form

d

dt′
Cn(k, t′) = Q−

n (k)Cn−1(k, t′) − β′(n − 1)Cn(k, t′) + Q+
n (k)Cn+1(k, t′)

(B4)

where the matrix elements of the infinite tridiagonal matrices Q−
n and Q+

n are
given by

[

Q±
n

]

q,p
= i

√

2n − 1 ± 1

4

[

(q + k)δqp ∓
g

4

(

δqp−1 − δqp+1

)

]

(−∞ < p, r< +∞). By Laplace transformation, Eq. (B4) can be rearranged as
the set of matrix three-term recurrence equations

[

ηs + β′(n − 1)
]

C̃n(k, s) − Q+
n (k)C̃n+1(k, s) − Q−

n (k)C̃n−1(k, s) = δn,1C1(k, 0)
(B5)

The exact solution of Eq. (B5) for the spectrum C̃1(k, s) is given by (in terms of a
matrix continued fraction)

C̃1(k, s) = �1(k, s)C1(k, 0) (B6)

where the matrix continued fraction �n(k, s) is defined by the recurrence equation

�n(k, s) =
{[

ηs + β′(n − 1)
]

I − Q+
n (k)�n+1(k, s)Q−

n+1(k)
}−1

and I is the unit matrix. Having determined C̃1(k, s) and because of Eq. (263), one
can calculate the dynamic structure factor S̃(k, ω) as

S̃(k, ω) = (2π)−1ZC
†
1(k, 0)�1(k, iω)C1(k, 0) (B7)

where the symbol “†” designates transformation of the column vector C1(k, 0) to
row vector and its conjugation.
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B.4. Quantum Brownian Particle in a Double-Well Potential

Noting that the recurrence equation (457) may be separated into two independent
systems with q + n even and odd, we introduce the column vectors

C2n−1(t) =

⎛

⎜

⎜

⎝

c2n−2,1(t)

c2n−2,3(t)

...

⎞

⎟

⎟

⎠

, C2n(t) =

⎛

⎜

⎜

⎝

c2n−1,0(t)

c2n−1,2(t)

...

⎞

⎟

⎟

⎠

, (n ≥ 1)

Now Eq. (457) can be rearranged as the set of matrix recurrence equations for the
one-sided Fourier transforms Cn(t), namely,

d

dt
Cn(t′) = Q−

n Cn−1(t′) − β′(n − 1)Cn(t′) + Q+
n Cn+1(t′)

+ �
[

qnCn−2(t′) + rnCn−3(t′)
]

(B8)

where rn, qn, and Q±
n are two-, three-, and four-diagonal matrices, respectively.

Their matrix elements are given by

[

Q±
2n−m

]

p,q
= ±
√

2n − m −
1 ∓ 1

2

×
(

δpq+2−me2p−5+m + δpq+1−md±
2p−3+m + δpq−md∓

2p−2+m + δpq−1−me2p−2+m

)

[

q2n−m

]

p,q
= β′√(2n − 1 − m)(2n − 2 − m)

×
(

δpq+1h2p−4+m + δpqg2p−2+m + δpq−1h2p−2+m

)

[

r2n−m

]

p,q
=
√

(2n − 1 − m)(2n − 2 − m)(2n − 3 − m)

×
(

f2p−3+mδpq+1−m + f2p−2+mδpq−m

)

where m = 0, 1,

d±
q =

α−3B1/4

2

√

q + 1
[

3(q + 1) − 2α2
√

Q ± α4
]

eq =
B1/4α−3

2

√

(q + 3)(q + 2)(q + 1)

fq = 12B3/4α−1
√

q + 1

hq = 12α−2
√

B(q + 2)(q + 1)

gq = 4
√

B
[

3α−2(2q + 1) − 2
√

Q
]
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Next, we use perturbation theory to find the solution of Eq. (B8) as

Cn(t′) = C0
n(t′) + �C1

n(t′) (B9)

treating � as the customary small parameter. Substituting Eq. (B9) into Eq. (B8),
we have in the zero order of perturbation theory the matrix three-term differential–
recurrence relation

d

dt′
C0

n(t′) = Q−
n C0

n−1(t′) − β′(n − 1)C0
n(t′) + Q+

n C0
n+1(t′)

and in the first order of perturbation theory the forced three-term matrix
differential–recurrence relation

d

dt′
C1

n(t′) = Q−
n C1

n−1(t′) − β′(n − 1)C1
n(t′) + Q+

n C1
n+1(t′) + Rn(t′)

where Rn(t′) = qnC0
n−2(t′) + rnC0

n−3(t′).
By invoking the general method [14,16] for solving three-term matrix recur-

sion equations, we have the exact solution for the zero-order spectrum C̃0
n(s) =

∫∞
0 C0

n(t)e−stdt in terms of a matrix continued fraction, namely,

C̃0
1(s) = �1(s)C0

1(0)

C̃0
n(s) = S−

n C0
n−1(s) = S−

n S−
n−1 . . . S−

2 �1(s)C0
1(0)

where S−
n = �n(s)Q−

n and the matrix continued fraction �n(s) is defined by the
recurrence equation

�n(s) =
{[

s + β′(n − 1)
]

I − Q+
n �n+1(s)Q−

n+1

}−1

In like manner, we also have the exact solution for the first-order spectrum C̃1
1(s)

in terms of a matrix continued fraction, namely,

C̃1
1(s) = �1(s)

{

C1
1(0) + S+

2 S+
3 [C1

3(0) + F]
}

where S+
n = Q+

n−1�n(s) and

F =

{

q3 + S+
4

[

q4S−
2 + r4 +

∞
∑

n=5

S+
5 . . . S+

n

(

qnS−
n−2 + rn

)

S−
n−3 . . . S−

2

]}

× �1(s)C0
1(0)

because in the first order of perturbation theory, the only nonzero initial conditions
are C0

1(0), C1
1(0), and C1

3(0) [as dictated by the Wigner distribution equations (451)
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and (455)]. Thus, the only nonzero initial conditions cm,2p+1(0) = c0
m,2p+1(0) +

�c1
m,2p+1(0) with ck

m,2p+1(0) (m = 0, 2 and k = 0, 1) given by

ck
m,2p+1(0) =

∫∞
−∞ ξF k

m(ξ)H2p+1(αξ)e−(α2ξ2−2
√

Qξ2+ξ4)/2dξ

Zcl

√

22p+1(2p + 1)!B

where

F0
0 (ξ) = 1, F0

2 (ξ) = 0

F1
0 (ξ) = 16

[

ξ2(−
√

Q + ξ2)
2
+
√

Q − 2ξ2
]

−
Z1

Zcl

√
B

F1
2 (ξ) = 4

√
2
(

3ξ2 −
√

Q
)

Zcl =
∞
∫

−∞

e−V (x′)dx′ =
√

π(2B)−1/4D−1/2

(

−
√

2Q
)

eQ/2

and

Z1√
BZcl

=
1

√
BZcl

∞
∫

−∞

(

V ′(x′)
2 − V ′′(x′)

)

e−V (x′)dx′

= −
√

8
[

D1/2

(

−
√

2Q
)

+ D−3/2

(

−
√

2Q
)]

/D−1/2

(

−
√

2Q
)

B.5. Quantum Brownian Particle in a Periodic Potential

First we introduce the column vectors

Cn(t) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

...

cn−1,−1(k, t′)

cn−1,0(k, t′)

cn−1,1(k, t′)

...

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

Hence, the scalar multiterm recurrence equation (475) can be rearranged as the
five-term matrix differential–recurrence relation

d

dt
Cn(t′) = Q−

n Cn−1(t′) − β′(n − 1)Cn(t′) + Q+
n Cn+1(t′)

+ �
[

qnCn−2(t′) + rnCn−3(t′)
]

(B10)
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where the matrix elements of Q±
n , qn, rn are given by

[

Q±
n

]

q,p
= i

√

2n − 1 ± 1

4

[

(q + k)δqp ∓
g

4

(

δqp−1 − δqp+1

)

]

[rn]q,p = ig

√

(n − 1)(n − 2)(n − 3)

8

(

δqp−1 − δqp+1

)

[

qn

]

q,p
= gβ′√(n − 1)(n − 2)

(

δqp−1 + δqp+1

)

and δq,p is Kronecker’s delta. Next, we use perturbation theory to find the solu-
tion of Eq. (B10) treating � as the customary small parameter so that we seek a
solution as

Cn(t′) = C0
n(t′) + �C1

n(t′) (B11)

Substituting Eq. (B11) into Eq. (B10), we have the matrix three-term differential–
recurrence relation for C0

n(t′) in the zero order of perturbation theory

d

dt′
C0

n(t′) = Q−
n C0

n−1(t′) − β′(n − 1)C0
n(t′) + Q+

n C0
n+1(t′)

and in the first order of perturbation theory the forced matrix three-term
differential–recurrence relation for C1

n(t′), namely,

d

dt′
C1

n(t′) = Q−
n C1

n−1(t′) − β′(n − 1)C1
n(t′) + Q+

n C1
n+1(t′) + Rn(t′)

where Rn(t′) = qnC0
n−2(t′) + rnC0

n−3(t′).
By invoking the general method [14,16] for solving three-term matrix recur-

sion equations, we have the exact solution for the zero-order spectrum C̃0
n(s) =

∫∞
0 C0

n(t)e−stdt in terms of a matrix continued fraction, namely,

C̃0
1(s) = �1(s)C0

1(0)

C̃0
n(s) = S−

n C0
n−1(s) = S−

n S−
n−1 . . . S−

2 �1(s)C0
1(0)

where S−
n = �n(s)Q−

n and the matrix continued fraction �n(k, s) is defined by the
recurrence equation

�n(s) =
{[

s + β′(n − 1)
]

I − Q+
n �n+1(s)Q−

n+1

}−1

In like manner, we also have the exact solution for the first-order spectrum C̃1
1(k, s)

in terms of a matrix continued fraction, namely,

C̃1
1(s) = �1(s)C1

1(0) + �1(s)S+
2 S+

3 [C1
3(0) + F]
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where S+
n = Q+

n−1�n(s) and

F =

[

q3 +
∞
∑

n=4

S+
4 . . . S+

n

(

qnS−
n−2 + rn

)

S−
n−3 . . . S−

2

]

�1(s)C0
1(0)

Here, we have noted that C0
n(0) = 0, n ≥ 2 and C1

2(0) = 0, C1
n(0) = 0, n ≥ 4.

The initial condition vectors C0
n(0) and C1

n(0) can be calculated just as in the
classical case [16] by using the initial condition at t = 0 for W(x′, p′, x′

0, p
′
0, 0) =

Wst(x
′
0, p

′
0), Eq. (477). However, instead of the Maxwell–Boltzmann distribution

of the classical theory, the equilibrium Wigner distribution function Wst(x
′
0, p

′
0)

now has the form [174,175]

Wst(x
′
0, p

′
0) = Z−1 e−p′2

0 −U(x′
0)
{

1 + �
[

U ′2(x′
0) +
(

2p′2
0 − 3

)

U ′′(x′
0)
]}

where the partition function Z is given by

Z =
√

π

2π
∫

0

{

1 + �
(

U ′(x′
0)
)2 − 2�U ′′(x′

0)
}

e−U(x′
0)dx′

0

= Zcl

[

1 − �gI1(g)/I0(g)
]

Here, Zcl = 2π3/2I0(g) is the classical partition function and I0(x) and I1(x) are
modified Bessel functions of the first kind. Equations (473), (474), and (477) yield
the initial conditions for cn,q(t) as

cn,q(0) =
1

√
2nn!

〈

Hn

(

p′
0

)

eiqx′
0+U(x′

0)/2
〉

0

where the brackets 〈 〉0 mean the average over Wst(x
′
0, p

′
0). By representing cn,q(0)

via perturbation theory as cn,q(0) = c0
n,q(0) + �c1

n,q(0), we have the initial condi-

tions for c0
n,q(0) and c1

n,q(0), namely,

c0
0,q(0) =

√
πZ−1

cl

2π
∫

0

eiqx′
0−U(x′

0)/2dx′
0 = 2π3/2Z−1

cl I|q|(g/2)

c1
0,q(0) =

√
πZ−1

cl

2π
∫

0

[

U ′2(x′
0) − 2U ′′(x′

0) +
gI1(g)

I0(g)

]

eiqx′
0−U(x′

0)/2dx′
0

= −2π3/2Z−1
cl

[

4q2 − g
I1(g)

I0(g)

]

I|q|(g/2)

c1
2,q(0) =

√
2πZ−1

cl

2π
∫

0

U ′′(x′)eiqx′
0−U(x′

0)/2dx′
0 =

g
√

2

[

c0
0,q+1(0) + c0

0,q−1(0)
]
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Having determined C̃1(k, s) = C̃0
1(s) + �C̃1

1(s), we can evaluate the dynamic
structure factor S̃(k, ω) in terms of c̃n,q(k, ω) as

S̃(k, ω) =
Zcl

2π3/2

∞
∑

q=−∞
c0

0,q(0)c̃0,q(k, ω)

APPENDIX C: EVALUATION OF AVERAGES

IN THE UNDAMPED LIMIT

C.1. Fixed Axis Rotator in a Symmetrical Double-Well Potential

In the very low damping limit (β′ ≪ 1), the energy of the dipole is not conserved
but will vary very slowly with time (quasistationary). Thus, the dynamics of the
system are described by the one-dimensional Fokker–Planck equation (179) (also
derived by Stratonovich [187]) and differ but little from those of the undamped
limit (β′ = 0). In the undamped limit (when the Langevin torque in Eq. (134)
vanishes), the energy ε, Eq. (178), is a constant of the motion. Thus, the dynamics
of the dipole are described by the deterministic nonlinear differential equation

η
d

dt
φ(t) = ±

√

ε + 2σ sin2 φ(t)

This equation has a solution [188] in terms of the Jacobian doubly periodic elliptic
function cn (u| m) and dn (u| m) [72]

sin φ(t) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

±dn

(

t

η

√
2σ + w

∣

∣

∣

∣

m(ε)

)

, −2σ ≤ ε < 0

±cn

(

t

η

√
ε + 2σ + w

√

m(ε)

∣

∣

∣

∣

m−1(ε)

)

, 0 ≤ ε < ∞
(C1)

where

w =
φ(0)
∫

0

[

1 − m(ε)sin2 x
]−1/2

dx, m(ε) = 1 + ε/2σ

Because [72]

sn2 (u| m) + cn2 (u| m) = 1 and msn2 (u| m) + dn2 (u| m) = 1 (C2)
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we have

sin2 φ(t) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 − m(ε)sn2

(

t

η

√
2σ + w

∣

∣

∣

∣

m(ε)

)

, −2σ ≤ ε < 0

1 − sn2

(

t

η

√
ε + 2σ + w

√

m(ε)

∣

∣

∣

∣

m−1(ε)

)

, 0 ≤ ε < ∞
(C3)

In order to proceed, we recall the Fourier series for the Jacobian functions [189]

cn (u| m) =
2π

m1/2K (m)

∞
∑

n=0

qn+1/2

1 + q2n+1
cos

[

(2n + 1)πu

2K (m)

]

(C4)

dn (u| m) =
π

2K (m)
+

2π

K (m)

∞
∑

n=1

qn

1 + q2n
cos

[

nπu

K (m)

]

(C5)

msn2 (u| m) = 1 −
E (m)

K (m)
−

2π2

K2 (m)

∞
∑

n=1

nqn

1 − q2n
cos

[

nπu

K (m)

]

(C6)

where q = exp
[

−πK (1 − m) /K (m)
]

, K(m) and E(m) are complete elliptic inte-

grals of the first and second kind. Thus, from Eqs. (C3)–(C6), we have sin φ and

sin2 φ averaged over the phase w, namely,

sin φ(ε, w) =
1

4K

2K
∫

−2K

sin φ (ε, w) dw =

{

±π/2K [m(ε)] , −2σ ≤ ε < 0

0, 0 ≤ ε < ∞
(C7)

sin2 φ(ε, w) =
1

4K

2K
∫

−2K

sin2 φ (ε, w) dw =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

E [m(ε)]

K [m(ε)]
, −2σ ≤ ε < 0

1 − m(ε)

{

1 −
E
[

m−1(ε)
]

K
[

m−1(ε)
]

}

, 0 ≤ ε < ∞

(C8)

Accordingly, because Wst is the equilibrium Maxwell–Boltzmann distribution W0,
namely,

W0

[

φ(0), φ̇(0)
]

dφ(0)dφ̇(0) =
η e−σ

2π3/2I0(σ)
e−η2φ̇

2
(0)+2σ sin2 φ(0)dφ(0)dφ̇(0)
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by making the transformation of the variables
{

φ(0), φ̇(0)
}

→ {w, ε} [188], and
by integrating the distribution function W0(ε) over the phase w, we have

W0 (ε) dε =
√

2e−σ

π3/2σ1/2I0(σ)
Re {K [m (ε)]} e−εdε,

∞
∫

−2σ

W0 (ε) dε = 1 (C9)

The average of a dynamical quantity A(ε, w) is defined as

〈

A
〉

0
=

∞
∫

−2σ

A (ε) W0 (ε) dε

=
√

2 e−σ

π3/2σ1/2I0(σ)

⎡

⎣

0
∫

−2σ

A (ε) K [m (ε)] e−εdε

+
∞
∫

0

1
√

1 + ε/2 σ
A (ε) K

[

m−1 (ε)
]

e−εdε

⎤

⎦ (C10)

In particular, we have from Eqs. (C8) and (C10)

〈

sin2 φ

〉

0

=
∞
∫

−2σ

sin2 φ (ε) W0 (ε) dε =
√

2 e−σ

π3/2σ1/2I0(σ)

∞
∫

−2σ

Re {E [m (ε)]} e−εdε

(C11)

Equation (C11) yields the same equilibrium value as Eq. (177). One can also verify
that the equipartition theorem, namely,

η2
〈

φ̇2
〉

0
=
〈

ε + 2σ sin2 φ

〉

0

=
1

2
(C12)

also holds. By using Eqs. (C7)–(C11), we have Eq. (180).
The longitudinal correlation function C(t) = 〈sin φ(0)sin φ(t)〉0 for the un-

damped rotation can be derived from Eqs. (C2), (C4), (C5), and (C9) and is
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given by

C(t) =
4
√

2π/σ

I0(σ) + I1(σ)

⎧

⎨

⎩

0
∫

−2σ

(

1

8
+

∞
∑

n=1

q2n

(1 + q2n)2
cos

[

nπ
√

2σ

ηK [m (ε)]
t

]

)

e−ε−σ

K [m (ε)]
dε

+
∞
∫

0

m1/2 (ε) e−ε−σ

K
[

m−1 (ε)
]

∞
∑

n=1

q2n−1

(1 + q2n−1)2
cos

[

(2n − 1)π
√

ε + 2σ

2ηK
[

m−1 (ε)
] t

]

dε

⎫

⎬

⎭

(C13)

For σ = 0, C(t) from Eq. (C13) reduces to the free rotator correlation function,
namely,

C(t) =
1

√
π

∞
∫

0

1
√

ε
cos
(√

εt/η
)

e−εdε = e−t2/4η2
(C14)

Equation (C14) yields τ‖ = η
√

π.

C.2. Fixed Axis Rotator in an Asymmetrical Double-Well Potential

In the very low damping limit (β′ ≪ 1), the energy of the dipole is again not
conserved but will vary very slowly with time (quasistationary). Thus, the dynamics
of the system are described by the one-dimensional Fokker–Planck equation (205)
and differ but little from those of the undamped limit (β′ = 0). In the undamped
limit, the energy ε is a constant of the motion. Thus, the dynamics of the dipole
are described by the deterministic differential equation

(

η
dφ

dt

)2

= ε + 4σh cos φ + 2σ cos2 φ

or, by introducing a new variable Z = cos φ,

(

η
dZ

dt

)2

= 2σ
(

Z2 + 2hZ + ε′
)(

1 − Z2
)

(C15)

where ε′ = ε/(2σ). Equation (C15) has a solution [189,190] in terms of the
Jacobian doubly periodic elliptic functions sn (u| m) and cn (u| m) [72]:

cos φ(t) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

±
1 − a±sn2

(

M1t/η + w±, m1

)

1 + a±sn2
(

M1t/η + w±, m1

) , −1 ∓ 2h ≤ ε′ ≤ h2

−
a − cn (M2t/η + w, m2)

1 − a cn (M2t/η + w, m2)
, ε′ ≥ h2

(C16)
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where

m1 =
1 − ε′ − 2

√
h2 − ε′

1 − ε′ + 2
√

h2 − ε′
, m2 =

1

2

(

1 +
1 − ε′

√

(1 + ε′)2 − 4h2

)

m1 =
1 − ε′ − 2

√
h2 − ε′

1 − ε′ + 2
√

h2 − ε′
, m2 =

1

2

(

1 +
1 − ε′

√

(1 + ε′)2 − 4h2

)

M1 =
√

σ
(

1 − ε′ + 2
√

h2 − ε′
)

/2, M2 =
√

2σ
√

(1 + ε′)2 − 4h2

a± =
1 ± h −

√
h2 − ε′

1 ∓ h +
√

h2 − ε′
, a =

2h

1 + ε′ +
√

(1 + ε′)2 − 4h2

w± =
∫

√

1∓cos φ(0)

a±(1±cos φ(0))

0

dt
√

(1 − t2)(1 − m1t2)
,

w =
∫

sin φ(0)
√

1−a2

1+a cos φ(0)

0

dt
√

(1 − t2)(1 − m2t2)

We remark that the three solutions given by Eq. (C16) correspond to the three
possible domains of energy variations, namely, the oscillations in the deeper well
(domain I: −1 − 2h ≤ ε′ ≤ h2), the oscillations in the shallow well (domain II:
−1 − 2h ≤ ε′ ≤ h2), and rotation (domain II: h2 ≤ ε′ < ∞). The condition for the
existence of two wells is h < 1.

The function cos φ(t) is a periodic function of its arguments M1t/η + w± and
M2t/η + w with the period T given by 2K(m1) for −1 ∓ 2h ≤ ε′ ≤ h2 and 4K(m2)
for ε′ ≥ h2, where K(m) is the complete elliptic integral of the first kind. Hence,
cos φ(t) can be expanded in the Fourier series

cos φ(t′) =
1

2
c0 +

∞
∑

n=1

cncos

(

2πn(t′ + w)

T

)

(C17)

with coefficients

cn =
2

T

T/2
∫

−T/2

cos φ(t′)e−2iπnt′/T dt′
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Thus, we can readily obtain cos φ averaged over the phase w from Eq. (C17),
namely,

cos φ(ε, w) =
1

T

T/2
∫

−T/2

cos φ(ε, w)dw =
1

2
c0

The coefficients c0 can be calculated analytically using tables of integrals from
Ref. [191]. We have

cos φ(ε) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∓1 ± 2
�(−a±, m1)

K(m1)
−1 ∓ 2h ≤ ε′ ≤ h2

−
1

a
+

(1 − a2)

aK(m2)
√

1 − m2

�

(

a2,
m2

m2 − 1

)

ε′ ≥ h2

(C18)

and

cos2 φ(ε) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

a± − 1

a± + 1
+ 2

a±E(m1) −
[

(a±)2 − m1

]

�(−a±, m1)

(a± + 1)(a± + m1)K(m1)
−1 ∓ 2h ≤ ε′ ≤ h2

1 +
E(m2) − �

(

a2,
m2

m2 − 1

)

/
√

1 − m2

[

m2 + a2/(1 − a2)
]

K(m2)
ε′ ≥ h2

(C19)

where E(m) and �(v, m) are complete elliptic integrals of the second and the third
kind, respectively.

Hence, because Wst is the equilibrium Maxwell–Boltzmann distribution W0,
namely,

W0

[

φ(0), φ̇(0)
]

dφ(0)dφ̇(0) =
η e−η2φ̇

2
(0)+2σ cos2 φ(0)+4σh cos φ(0)

2
√

π3eσ
∑∞

m=−∞ Im(σ)I−2m(4σh)
dφ(0)dφ̇(0)

(C20)

by making the transformation of the variables
{

φ(0), φ̇(0)
}

→ {w, ε} [188], and
by integrating the distribution function W0 over the phase w, we obtain

W0 (ε) dε =
e−σ−εdε

π3/2
∑∞

m=−∞Im(σ)I−2m(4σh)

⎧

⎨

⎩

K[m1(ε)]/M1(ε), −1 ∓ 2h ≤ ε′ ≤ h2

2K[m2(ε)]/M2(ε), ε′ ≥ h2

(C21)
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The average of a dynamical quantity A(ε) is defined as

〈

A

〉

0
=

e−σ

π3/2
∑∞

m=−∞Im(σ)I−2m(4σh)

⎡

⎣

2σh2
∫

−2σ(1+2h)

A (ε) K [m1 (ε)] M−1
1 (ε)e−εdε

+

2σh2
∫

−2σ(1−2h)

A (ε) K [m1 (ε)] M−1
1 (ε)e−εdε + 2

∞
∫

2σh2

A (ε) K [m2 (ε)] M−1
2 (ε)e−εdε

⎤

⎦

(C22)

In particular, the equipartition theorem holds, namely,

η2
〈

φ̇2
〉

0
=
〈

ε + 2σ cos2 φ + 4σh cos φ
〉

0
=

1

2

C.3. Brownian Particle in a Double-Well Potential

In the very low damping limit (β′ ≪ 1), the energy of the particle is once more
not conserved but will vary very slowly with time (quasistationary). Thus, the
dynamics of the system are described by a one-dimensional Fokker–Planck equa-
tion (250) and differ but little from those of the undamped limit [β′ = 0, when the
Langevin torque in Eq. (212) vanishes]. The undamped limit has been treated in
Refs [102,117,122]. We apply these results to evaluate integrals in Eq. (251). In
the undamped limit, the energy ε, Eq. (249), is a constant of the motion, namely,
ε̇ = 0. Equation (249) can be rearranged as the deterministic nonlinear differential
equation describing the undamped dynamics of the particle

η
√

e2B

d

dt
z(t) = ±

√

[

z2(t) − e1/e2

][

1 − z2(t)
]

(C23)

where z(t) = y(t)/
√

e2 and e1,2 =
√

Q/B
(

1 ∓
√

1 + ε/Q
)

are the roots of

the quadratic equation ε + 2
√

QBx − Bx2 = 0. Equation (C23) has a solution
[117,122] in terms of the Jacobian doubly periodic elliptic function cn (u| m) and
dn (u| m) [72]

y(t) =

{

±√
e2dn

(√
Be2t/η + w

∣

∣m
)

, −Q ≤ ε ≤ 0

±√
e2cn
(√

B(e2 − e1)t/η + w
√

m
∣

∣m−1
)

, 0 < ε<∞
(C24)
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m = m(ε) =
e2 − e1

e2
=

2

1 + (1 + ε/Q)−1/2
(C25)

w =
1
∫

y(0)/
√

e2

1
√

(x2 − e1/e2)(1 − x2)
dx

By noting Eq. (C2), one has

y2(t) =

{

e2

[

1 − msn2
(√

Be2t/η + w
∣

∣m
)]

, −Q ≤ ε ≤ 0

e2

[

1 − sn2
(√

B(e2 − e1)t/η +
√

mw
∣

∣m−1
)]

, 0 < ε < ∞
(C26)

Next, we recall Eqs. (C4)–(C6) and the Fourier series [189,192]

m2sn4 (u| m) =
1

3

[

2 + m − 2 (1 + m)
E

K

]

+
4π2

3K2

∞
∑

n=1

[

n2π2

4K2
− m − 1

]

nqn

1 − q2n
cos
(nπu

K

)

(C27)

Thus, from Eqs. (C4)–(C6) and (C25)–(C29), we can obtain averages over the

phase w averages y, y2, and y4. In particular, we have in the domain −Q ≤ ε ≤ 0

y(ε) =
1

K

K
∫

0

y (ε, w) dw = ±π
√

e2/(2K) (C28)

y2(ε) = e2E/K (C29)

y4(ε) =
e2

2

3
[m − 1 + (4 − 2m)E/K] (C30)

Accordingly, because Wst is the equilibrium Maxwell–Boltzmann distribution W0,
namely,

W0

[

y(0), ẏ(0)
]

dy(0)dẏ(0) =
η

Z
√

π
e−η2ẏ2(0)+2

√
QBy2(0)−By4(0)dy(0)dẏ(0)

by making the transformation of the variables {y(0), ẏ(0)} → {w, ε}, and by inte-
grating the distribution function W0(ε) over the phase w, we have

W0 (ε) dε =
25/4 e−Q/2

πQ1/4D−1/2

(

−
√

2Q
)

Re {K [m(ε)]} e−ε

√

1 +
√

1 + ε/Q
dε (C31)
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The average of a dynamical quantity X(ε) over ε is defined as

〈

X
〉

0
=

∞
∫

−Q

X (ε) W0 (ε) dε,

∞
∫

−Q

W0 (ε) dε = 1 (C32)

In particular, we have from Eqs. (C32) and (C33)

〈

y2
〉

0
=

211/4Q1/4 e−Q/2

πD−3/2

(

−
√

2Q
)

∞
∫

−Q

√

1 +
√

1 + ε/QRe [E (m)] e−ε dε = 1

(C33)
Moreover, the equipartition theorem also holds, namely,

η2
〈

ẏ2
〉

0
=
〈

ε + 2
√

QB y2 − By4
〉

0
=

1

2

By using Eqs. (C26)–(C31) in Eq. (251) and noting that y at 0 < ε < ∞, we have

T VLD ≈
3ηπ3/2

4β′ Z
√

B

0
∫

−Q

√
e2e

ε
(

eQ − e−ε
)2

[

3ε + (1 − m)Be2
2

]

K + 2
[

3
√

QBe2 − (2 − m)Be2
2

]

E
dε

(C34)
which after some simplifications leads to Eq. (252).

The correlation function 〈y(0)y(t)〉0 for the undamped motion can be derived
from Eqs. (C6), (C24), (C26), (C27), and (C31) and is given by [122] (in our
notation)

〈y(0)y(t)〉0 =

25/4π e−Q/2

D−3/2(−
√

2Q)

⎧

⎨

⎩

0
∫

−Q

(Q + ε)1/4

√
mK(m)

(

1 + 8

∞
∑

n=1

q2n

(1 + q2n)2
cos

[

nπ
√

Be2

ηK(m)
t

]

)

e−εdε

+ 8

∞
∫

0

(Q + ε)1/4

K(m−1)

∞
∑

n=1

q2n−1

(1 + q2n−1)2
cos

[

(2n − 1)π
√

B(e2 − e1)

2ηK(m−1)
t

]

e−εdε

⎫

⎬

⎭

(C35)

C.4. Brownian Particle in a Periodic Potential

For β′ ≪ 1, the dynamics of the system differ but little from those of the undamped
limit (β′ = 0) when the Langevin force vanishes. For β′ = 0, the energy of the
Brownian particles [see Eq. (283)] is a constant of the motion and so the dynamics
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of the particle in the potential well are described by the following deterministic
nonlinear differential equation

ẋ(t′)
2 = ε + gcos x(t′)

or

d

dt′
cos x(t′) = ±

√

[

ε + gcos x(t′)
][

1 − cos2 x(t′)
]

(C36)

For −g < ε < g, Eq. (C36) has a solution in terms of the Jacobian doubly periodic
elliptic function sn (u| m) [189]:

cos x(t′) = 1 − 2m(ε)sn2
(

t′
√

g/2 ± w

∣

∣

∣
m(ε)
)

(C37)

where

w =
arcsin(

√
m(ε)sin[x(0)/2])
∫

0

[

1 − m(ε)sin2x′
]−1/2

dx′ (C38)

m(ε) =
g + ε

2g
(C39)

Now we recall the Fourier series for sn2 (u| m) Eq. (C6). Thus, we have from
Eqs. (C37)–(C39)

cos x(ε) = 2
E(m)

K(m)
− 1 (C40)

where the double overbar denotes averaging over the fast phase variable, the de-
pendence of the modulus m on ε is determined by Eq. (C39).

In order to evaluate equilibrium averages, one needs an equation for the station-
ary distribution function Wst. Because Wst is the equilibrium Maxwell–Boltzmann
distribution W0, namely,

W0 [x(0), ẋ(0)] dx(0)dẋ(0) =
1

2π3/2I0(g)
e−ẋ2(0)+gcos x(0)dx(0)dẋ(0)

by making the transformation of the variables {x(0), ẋ(0)} → {w, ε}, and by inte-
grating the distribution function W0(ε) over the phase w, we have

W0 (ε) dε =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

K[m(ε)]e−ε

π3/2I0(g)
√

g/2
dε, (−g < ε < g)

√
2K[m−1(ε)]e−ε

π3/2I0(g)
√

gm(ε)
dε, (ε > g)
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with
∫∞

−g
W0 (ε) dε = 1. Because the diffusion coefficient D(2) in the Fokker–

Planck equation (284) is defined by Eq. (285), the MFPT approach yields τ in
the VLD limit

τ

η
∼

1

4β′g

g
∫

−g

∫ ε

−g
eε−xK [m(x)] dx

m(ε)K [m(ε)] + E [m(ε)]
dε (C41)

APPENDIX D: ESCAPE RATE IN THE IHD LIMIT

In order to compare the exact numerical solution with the escape rate obtained
from the Kramers theory [15], we adapt the procedure described for the inter-
mediate to high damping classical case in [3,20]. In the IHD limit for the cosine
potential given by Eq. (471) it is sufficient [8,9] to consider escape rate from a
single well only. The escape rate considering an isolated well with a source of par-
ticles at point A (the bottom of the well) and a potential barrier at point C is then
defined by

ŴIHD =
jC

nA

=

∫

top(p/m)Wst(xC, p)dp
∫

wellWst(x, p)dp dx
(D1)

Here, nA is the number of particles in the bottom of a potential well at point A and
jC is the current across the barrier top at point C. The integrals in Eq. (D1) can be
estimated via steepest descents by approximating the Wigner functions Wst(xC, p)
and Wst(x, p) [which are the equilibrium solutions of Eq. (472) near the points A

and C] by those of the harmonic oscillator. The number of particles in the well nA

is given by

nA ≈
∫

well

∫

Wst(x, p)dx dp ≈
∞
∫

−∞

∞
∫

−∞

WA(x, p)dx dp =
π� e−βV (xA)

sinh
[

�ωA/(2kBT )
]

(D2)

where xA is the bottom of the well. Here, we have approximated the Wigner
function Wst(x, p) [which is the equilibrium solution of Eq. (448) near the point
A] by that of the harmonic oscillator, namely [168]

Wa(x, p) ≈ sech
[

�ωA/(2kBT )
]

e
−βV (xA)−(p2+m2ω2

A
x̄2)

tanh[�ωA/(2kBT )]
m�ωA

where ωA =
√

V ′′(xA)/m and x̄ = x − xA. In order to calculate the current jC
through the barrier at C, one needs the Wigner stationary solution near the top (point
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C). Here, the Wigner function is approximated by that of the inverted harmonic
oscillator potential, namely,

W(x′, p′) = e−βV (xC)sec
[

�ωC/(2kBT )
]

e
−m
(

p′2−ω2
cx

′2
)

tan[�ωC/(2kBT )]
�ωC (D3)

where ωC =
√

|V ′′(xCc)| /m, p′ = p/m, and x′ = x − xc. Furthermore, near the
top we have from Eq. (448)

p′ ∂WC

∂x′ + ω2
Cx′ ∂WC

∂p′ =
∂

∂p′

[

γp′WC + Dp′p′
∂WC

∂p′

]

(D4)

where Dp′p′ = (γ�ωC/2m)cot
[

�ωC/(2kBT )
]

. Equation (D3) has the form of a
Boltzmann distribution and satisfies Eq. (D4). This fact allows us to write following
Kramers [15,186] the nonequilibrium solution W(x′, p′) near the barrier as

WC(x′, p′) = CF (x′, p′)e
−β′
(

p′2−ω2
C
x′2
)

(D5)

where C = e−βV (xC)sec
[

�ωC/(2kBT )
]

and β′ = mtan
[

�ωC/(2kBT )
]

/(�ωC).
The function F (x′, p′) is a crossover function that has the equilibrium distribu-
tion in the depths of the well, varies very rapidly in the vicinity of the barrier and
vanishes beyond the barrier as in the classical Kramers case [3,15]. Consequently
that function must satisfy the boundary conditions

F (x′, p′) →

{

1, x′ → ∞
0, x′ → −∞

(D6)

By substituting Eq. (D5) into Eq. (D4) and noting that Dp′p′β′ = γ/2, we have the
differential equation for the crossover function as in the classical case [3,15,186]

p′ ∂F

∂x′ + ω2
Cx′ ∂F

∂p′ = Dp′p′
∂2F

∂p′2
− γp′ ∂F

∂p′ (D7)

The solution of Eq. (D7) is of the form F (x′, p′) = F (p′ − ax′). By substituting
F (p′ − ax′) into Eq. (D7) and introducing a new variable ξ = p′ − ax, we have

[

(a − γ)p′ − ω2
Cx′
] ∂F

∂ξ
+ Dp′p′

∂2F

∂ξ2
= 0 (D8)

Equation (D8) simplifies to an ordinary differential equation if ω2
C = (a − γ)a or

a − γ =
√

γ2/4 + ω2
C − γ/2
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(this is the condition that the eigenvalue associated with the unstable barrier-
crossing mode is real), namely,

(a − γ)ξ
∂F

∂ξ
+ Dp′p′

∂2F

∂ξ2
= 0 (D9)

The solution of Eq. (D9) satisfying the boundary conditions Eq. (D6) is

F (ξ) =
1

√
π

ξ
√

(a−γ)/2Dp′p′
∫

−∞

e−y2
dy (D10)

The current jC is then given by

jc = m

∞
∫

−∞

p′WC(0, p′)dp′

=
mC
√

π

∞
∫

−∞

p′ e−β′p′2

p′√(a−γ)/2Dp′p′
∫

−∞

e−y2
dydp′ (D11)

=
� e−βV (xC)

2sin
[

�ωC/(2kBT )
]

(

√

γ2/4 + ω2
C − γ/2

)

Substituting Eqs. (D2) and (D11) into Eq. (D1) then yields the escape rate ŴIHD.

APPENDIX E: JUSTIFICATION OF SEMICLASSICAL

REPRESENTATION OF MATRIX ELEMENTS

The semiclassical representation of the matrix elements 〈f | x̂ |j〉 of the position
operator x̂ as the Fourier transform of the classical trajectory, namely,

〈f | x̂(t) |j〉 =
ω

2π

∮

xj(τ)e−(i/�)(Ef −Ej)(τ−t)dτ (E1)

which is Eq. (370) or in Melnikov’s notation (Eq. (3.8) of Ref. [8])

〈ε| x̂(t)
∣

∣ε′〉 =
1

2π�

∞
∫

−∞

x(t)e(i/�)(ε−ε′)tdt (E2)
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may be briefly justified as follows. We have referring to closed librational trajec-
tories in the well

E =
p2

2m
+ V (x) (E3)

dE =
p dp

m
= v dp (E4)

that is proceeding from infinitesimal

�E = v �p

or

ε − ε′ = v(ε, x)
[

p(ε) − p(ε′)
]

so that

p(ε) − p(ε′) =
(

ε − ε′) /v(ε, x) (E5)

Hence normalizing by delta function of energy as in Ref. [23], we have

〈ε| x̂(t)
∣

∣ε′〉 =
∞
∫

−∞

ψ∗(ε)xψ(ε′)dx =
1

2π�

∞
∫

−∞

x dx

v(ε, x)
e

(i/�)
∫ x

0
[p(ε,x′)−p(ε′,x′)]dx′

or

〈ε| x̂(t)
∣

∣ε′〉 =
1

2π�

∞
∫

−∞

x dx

v(ε, x)
e

(i(ε−ε′)/�)
∫ x

0
dx′

v(ε,x′) (E6)

where we have used Eq. (E5). Now since dt = dx/v, Eq. (E6) may be rewritten
yielding Eq. (E2). For further details of semiclassical methods see [193].
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135. M. Büttiker and R. Landauer, Phys. Rev. B 30, 1551 (1984).

136. Yu. P. Kalmykov, J. Appl. Phys. 96, 1138 (2004).

137. J. L. García-Palacios, Europhys. Lett. 65, 735 (2004).

138. J. L. García-Palacios and D. Zueco, J. Phys. A 37, 10735 (2004).

139. E. Wigner, Phys. Rev. 40, 749 (1932).

140. J. Ankerhold, P. Pechukas, and H. Grabert, Phys. Rev. Lett. 87, 086802 (2001); J. Ankerhold,

Chaos 15, 0026106 (2005).

141. L. Machura, M. Kostur, P. Hänggi, P. Talkner, and J. L–uczka, Phys. Rev. E 70, 031107 (2004).

142. J. L–uczka, R. Rudnicki, and P. Hanggi, Physica A 350, 60 (2005).

143. D. A. Smith and F. A. de Rozario, J. Magn. Magn. Mater. 3, 219 (1976).

197



308

144. W. F. Brown, Jr., IEEE Trans. Mag. 15, 1196 (1979).

145. I. Klik and L. Gunther, J. Stat. Phys. 60, 473 (1990).

146. W. F. Brown, Jr., Phys. Rev. 130, 1677 (1963).

147. W. T. Coffey, P. J. Cregg, and Yu. P. Kalmykov, Adv. Chem. Phys. 83, 263 (1993).

148. M. C. Wang and G. E. Uhlenbeck, Rev. Mod. Phys. 17, 323 (1945), also reprinted in Wax cross-ref.

149. N. A. Usov, J. Appl. Phys. 107, 123909 (2010).

150. P. G. Wolynes, Phys. Rev. Lett. 47, 968 (1981).

151. E. Cortes, B. J. West, and K. Lindenberg, J. Chem. Phys. 82, 2708 (1985).

152. A. O. Caldeira and A. J. Leggett, Ann. Phys. 149, 374 (1983).

153. E. B. Wilson, Jr., J. C. Decius, and P. C. Cross, Molecular Vibrations, McGraw-Hill, 1955.

154. P. Pechukas, in Dynamics of Molecular Collisions, part B, W. H. Miller, ed., Plenum Press, New

York, 1976, Chapter 6.

155. P. Hänggi and G. L. Ingold, Chaos 15, 026105 (2005).

156. D. Kohen and D. J. Tannor, Adv. Chem. Phys. 111, 219 (1994).

157. M. Hillery, R. F. O’Connell, M. O. Scully, and E. P. Wigner, Phys. Rep. 106, 121 (1984); V. I.

Tatarskii, Uspekhi Fiz. Nauk 139, 587 (1983) [Sov. Phys. Uspekhi 26, 311 (1983)].

158. H. W. Lee, Phys. Rep. 259, 147 (1995).

159. W. P. Schleich, Quantum Optics in Phase Space, Wiley-VCH, Weinheim, 2001.

160. R. Kapral, Annu. Rev. Phys. Chem. 57, 129 (2006).

161. N. Makri, J. Math. Phys. 36, 2430 (1995).

162. C. H. Mac and R. Egger, Adv. Chem. Phys. 93, 39 (1995).

163. A. G. Redfield, IBM J. Res. Dev. 1, 19 (1957).

164. Y. J. Yan, F. Shuang, R. Xu, J. Cheng, X. Q. Li, C. Yang, and H. Zhang, J. Chem. Phys. 113, 2068

(2000).

165. H. Grabert, P. Schramm, and G. L. Ingold, Phys. Rep. 168, 115 (1988).

166. H. T. Davis, K. Hiroike, and S. A. Rice, J. Chem. Phys. 43, 2633 (1965).

167. Y. Tanimura and P. G. Wolynes, J. Chem. Phys. 86, 8485 (1992).

168. S. Zhang and E. Pollak, J. Chem. Phys. 118, 4357 (2003).

169. G. S. Agarwal, Phys. Rev. A 4, 739 (1971).

170. H. Dekker, Phys. Rev. A 16, 2116 (1977).

171. J. J. Halliwell and T. Yu, Phys. Rev. D 53, 2012 (1996).

172. R. Karrlein and H. Grabert, Phys. Rev. E 55, 153 (1997).

173. G. W. Ford and R. F. O’Connell, Phys. Rev. D 64, 105020 (2001).

174. W. T. Coffey, Yu. P. Kalmykov, S. V. Titov, and B. P. Mulligan, Europhys. Lett. 77, 20011 (2007).

175. W. T. Coffey, Yu. P. Kalmykov, S. V. Titov, and B. P. Mulligan, J. Phys. A: Math. Theor. 40, F91

(2007).

176. Yu. P. Kalmykov, W. T. Coffey, and S. V. Titov, Physica A, 377, 412 (2007).

177. D. Barik, B. C. Bag, and D. S. Ray, J. Chem. Phys. 119, 12973 (2003).

178. R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957); R. Kubo, M. Toda, and N. Hashtsume, Statistical

Physics II. Nonequilibrium Statistical Mechanics, 2nd ed., Springer, Berlin, 1991.

179. S. R. de Groot and L. G. Suttorp, Foundations of Electrodynamics, North-Holland, Amsterdam,

1972, Chapters VI and VII.

180. J. T. Stockburger and C. H. Mak, J. Chem. Phys. 110, 4983 (1999).

198



309

181. R. Ferrando, R. Spadacini, and G. E. Tommei, Nuovo Cim. D 15, 557 (1993).

182. S. Miret-Artés and E. Pollak, J. Phys.: Condens. Matter 17, S4133 (2005).

183. Yu. Georgievskii and E. Pollak, Phys. Rev. E 49, 5098 (1994).

184. Y. Tanimura and P. G. Wolynes, Phys. Rev. A 43, 4131 (1991).

185. V. I. Mel’nikov and A. Sütö, Phys. Rev. B 34, 1514 (1986).
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