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Summary

This paper considers the stability of an explicit Leap-Frog time marching scheme for
the simulation of acoustic wave propagation in heterogeneous media with high-order
spectral elements. The global stability criterion is taken as a minimum over local
element stability criteria, obtained through the solution of element-borne eigenvalue
problems. First, an explicit stability criterion is obtained for the particular case of a
strongly-heterogeneous and/or rapidly-fluctuating medium using asymptotic analy-
sis. This criterion is only dependent upon the maximum velocity at the vertices of
the mesh elements, and not on the velocity at the interior nodes of the high-order
elements. Second, in a more general setting, bounds are derived using statistics of
the coefficients of the elemental dispersion matrices. Different bounds are presented,
discussed and compared. Several numerical experiments show the accuracy of the
proposed criteria in one-dimensional test cases as well as in more realistic large scale
3D problems.
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1 INTRODUCTION

The numerical simulation of wave propagation phenomena is of great interest inmany areas of science and engineering, including
seismic1, acoustic2 and electromagnetic3,4 applications. In this context, the use of time-domain solvers enables to significantly
reduce the memory requirements and the need to devise effective preconditioners, when compared to frequency domain solvers.
The efficiency of a time-domain simulation using explicit time marching algorithms is directly linked to the stability limit of the
selected time marching scheme.
For a homogeneous one-dimensional problem with constant element size, the stability criterion for the spectral element

method (SEM) is given by5

� = cΔt
ℎ

≤ �M , (1)
where c is the wave velocity, Δt is the time step and ℎ is the characteristic element size. The stability limit, �M , is a scalar that
depends upon the polynomial order p. Its value can be derived analytically for homogeneous media5,6,7,8,9. Table 1 summarises
the values for polynomial approximations up to order p = 5 when the SEM is combined with the Leap-Frog time marching
scheme. For regular meshes in nsd spatial dimensions, the value of the stability limit is simply that for one-dimensional problems
divided by

√

nsd.
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TABLE 1 Approximate value of the stability limit �M for spectral elements of polynomial order p in d dimensions with the
Leap-Frog scheme assuming a regular mesh and constant wave velocity.

nsd p=1 p=2 p=3 p=4 p=5
1 1.00 0.40 0.23 0.14 0.10
2 0.70 0.28 0.16 0.10 0.07
3 0.57 0.23 0.13 0.08 0.05

The results in Table 1 are derived for homogeneous material parameters and regular meshes. Numerical tests showing the
negative influence of the deformation of quadrilateral elements on the stability are reported in5,10,11. For simplicial elements,
the influence of distortion is analysed rigorously in12 and for linear triangles and bi-linear quadrilaterals in13. Some hints can
also be found about the error induced by the presence of a discontinuity or heterogeneity of the material properties14,15,16,5, but
general stability criteria have only been derived for specific finite-difference schemes17. When extrapolating the homogeneous
stability criteria to heterogeneous media, the risk is either to run into unstable simulations by overestimating the stability limit
or to waste computational resources by underestimating the stability limit.
In a previous paper18, a classical Von Neumann stability analysis was proposed for the one-dimensional SEM with the Leap-

Frog time integrator scheme in heterogeneous media with periodically-fluctuating material properties. Explicit stability criteria
were derived for quadratic and cubic one-dimensional spectral elements when the periodicity of the fluctuating material prop-
erties was linked to the mesh element size. The analysis revealed the origin of instabilities that are often observed when the
stability limit derived for homogeneous materials is adapted by simply using the lowest local velocity in Eq. (1). The main lim-
itation of the analysis presented in18 is the link between the periodicity of the material properties and the element size of the
mesh, which precludes its application to a large class of problems, including those where the mechanical properties are modelled
as realisations of random fields19,20,21,22,23.
The objective of this work is to obtain a stability criterion that is accurate for a general heterogeneous medium. The strategy

follows a methodology commonly employed in a finite element context (or by other element based methods) that consists of
bounding the eigenvalues of a global matrix by the eigenvalues of the elemental matrices (Irons and Treharne theorem)24. On the
one hand, this allows to bypass the hypothesis about periodic material properties used in18, and on the other hand, it reformulates
the global stability as a bounding problem on the maximum eigenvalue of certain local matrices. To obtain a stability criterion
that is easier to compute in large scale implementations of explicit solvers, the maximum elemental eigenvalues are bounded
using different approaches. The eigenvalue bounds are computed numerically and their accuracy and efficiency is analysed. In the
particular situation of strongly-heterogeneous and/or rapidly-fluctuating material properties, an analytical approach to compute
the stability criterion is also proposed. Although this bound is less accurate and general (not valid for slowly-fluctuating media)
it is more practical and it enables to understand the controlling parameters for the stability. It is worth emphasising that this
paper focuses on the acoustic case only and considers the SEM with Gauss-Lobatto-Legendre points and the Leap-Frog time
integration scheme. However, it is very important to point out that the ideas proposed here are general and they can be directly
applied to the analysis of the stability of other SEM methods25,26 and other time integrators27,28 within the context of acoustic
or elastic wave propagation.
In the next section, the wave equation in a heterogeneous medium is introduced. The discretisation with high-order spectral

elements29,30,31,32 in space and the Leap-Frog scheme in time is described. In Section 3, the stability of the Leap-Frog scheme
is considered, and the Irons and Treharne theorem is recalled. This theorem allows to bound the global stability criterion with a
maximum over elemental stability criteria. Section 4 presents a stability result for the particular setting of strongly-heterogeneous
and/or rapidly-fluctuating media media using an asymptotic analysis. In Section 5, several bounds for the maximum eigen-
value of a general matrix are recalled and compared to obtain computable bounds on the stability in a general heterogeneous
medium. The most accurate bounds are identified through extensive numerical experiments in 1D, 2D and 3D in Section 6.
Finally, several numerical examples are presented in Section 7 to evaluate the accuracy of the proposed stability criteria both
for slowly- and rapidly-fluctuating material properties. In particular, a large scale simulation of wave propagation in a 3D
randomly-heterogeneous medium is considered in Section 7.2.
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2 PROBLEM STATEMENT AND DISCRETISATION

2.1 Weak formulation
Let us consider the acoustic wave equation in a heterogeneous medium Ω ⊂ ℝnsd (with nsd number of spatial dimensions)
characterised by a density function �(x) and a Lamé parameter (x)

�(x))
2u(x, t)
)t2

− ( ⋅ ((x)(u(x, t)) = f (x, t), for (x, t) ∈ Ω × (0, T ], (2)

where u(x, t) is a scalar field and f (x, t) denotes a time-dependent source. The problem is closed by considering appropriate
initial and boundary conditions, namely

u(x, 0) = u0(x),
)u(x, 0)
)t

= v0(x), for x ∈ Ω. (3)

and
u(x, t) = ud(t), for x ∈ )Ω × (0, T ], (4)

where, to simplify the presentation and without loss of generality, only Dirichlet boundary conditions are considered.
The weak statement equivalent to the strong form (2), is obtained by multiplying Equation (2) by a test function v(x), integrat-

ing in the whole domain and performing an integration by parts of the term with second order spatial derivatives. The resulting
weak form reads: find u(x, t) ∈t such that u(x, t) = ud(t) on )Ω × [0, T ] and

∫
Ω

�(x)v(x))
2u(x, t)
)t2

dΩ + ∫
Ω

(x)(v(x) ⋅ (u(x, t)dΩ = ∫
Ω

v(x)f (x, t)dΩ, (5)

for all v(x) ∈ 1
0 (Ω), where

t=
{

u | u(⋅, t) ∈ 1(Ω), t ∈ [0, T ] and u(x, t)=ud(x, t) for (x, t) ∈ )Ω × [0, T ]
}

. (6)

2.2 Spatial and temporal discretisation
The spatial domain is discretised using nel disjoint elements Ωe,

Ω =
nel
⋃

i=1
Ωe, Ωe ∩ Ωl = ∅ for e ≠ l.

In this work, quadrilateral and hexahedral elements are employed in two and three dimensions respectively.
A nodal approximation of the solution is considered in the reference element Ω̂ = [−1, 1]nsd , with local coordinates � =

(�1,… , �nsd), namely

ueℎ(�, t) =
nen
∑

j=1
Nj(�)uj(t), (7)

where Nj are Lagrange polynomials of degree p, uj denote the time-dependent values of the solution at the nodal points and
nen = (p + 1)nsd is the number of nodes per element. The Lagrange polynomials, defined in the reference element Ω̂, are
constructed using the Gauss-Lobatto-Legendre (GLL) points �j = (�j,1,… , �j,nsd) and an isoparametric transformation is used
to link the reference element Ω̂ and the computational element Ωe

'e ∶ Ω̂ ⊂ ℝnsd ←→ Ωe ⊂ ℝnsd

� ←→ 'e(�) ∶=
nen
∑

j=1
xejNj(�),

(8)

where xej = '
e(�j) are the nodal coordinates of element Ωe.

Introducing the approximation of the solution in the weak formulation of Equation (5) and selecting the space of the weighting
functions to be the same as the space of the interpolation functions, leads to the semi-discrete system of ordinary differential
equations

Md2U
dt2

+KU = F, (9)

where the vector U, of size equal to the total number of mesh nodes (nmn), contains the nodal values of the solution. The mass
matrixM, the stiffness matrixK and the forcing vectorF are computed by assembling the elemental contributions. The elemental
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matrices are computed in the reference element after introducing the isoparametric mapping and a numerical quadrature. In the
SEM33,34, the quadrature points are selected to be the same as the nodal points (i.e. the GLL nodal distribution), leading to the
following expressions for the elemental mass and stiffness matrices

Me
ij = �ij�

e
i |J

e
i |!i, Ke

ij =
nen
∑

k=1
ek
[

(Jek)
−1(Ni(�k)

]

⋅
[

(Jek)
−1(Nj(�k)

]

|Jek|!k, (10)

where �el = �(xel ) and 
e
l = (xel ) denote the material properties at the node xel , !l is the GLL quadrature weight of the node

�l, Je = )'e∕)� is the Jacobian of the isoparametric mapping and Jel = Je(�l) is the Jacobian evaluated at the GLL point �l.
It is worth noting that the mass matrix is diagonal because the Lagrange polynomials satisfy the delta Kronecker property, that
is Ni(�j) = �ij . Note also that, in the case of a random medium, the parameters are obtained as realisations of random fields.
Considering the parameters only through their value at the nodes may effectively slightly modify the statistics of these random
parameters.
Assuming a Cartesian grid with uniform spacing ℎ, the isoparametric transformation reduces to a linear mapping and its

Jacobian is simply Je = (ℎ∕2)Insd . In this case the elemental mass and stiffness matrices reduce to

Me
ij = �ij�

e
i!i

(ℎ
2

)nsd
, Ke

ij =
( 2
ℎ

)2−nsd
nen
∑

k=1

(

ek!k
nsd
∑

l=1

)Ni(�k)
)�l

)Nj(�k)
)�l

)

. (11)

In a one-dimensional problem, the expressions of the elemental matrices for a mesh with uniform spacing ℎ further simplify
to

Me
ij = �ij�

e
i!i

ℎ
2
, Ke

ij =
2
ℎ

nen
∑

k=1

(

ek!kdkidkj
)

, (12)

where dab = dNb(�a)∕d� denote the derivatives of the Lagrange polynomials evaluated at the GLL points, which, according
to35, can be evaluated as

dab =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

− 1
4
p(p + 1) if a = b = 1

Pp(�a)
(�a − �b)Pp(�b)

if a ≠ b, 1 ≤ a, b ≤ p + 1

0 if 2 ≤ a = b ≤ p
1
4
p(p + 1) if a = b = p + 1

, (13)

where Pp is the Legendre polynomial of order p.
The main benefit of the SEM is its efficiency when combined with an explicit time marching algorithm. In this work, the

classical second-order accurate Leap-Frog scheme is considered. At each time step the solution is advanced in time according to

Un+1 = 2Un − Un−1 + Δt2M−1 (Fn −KUn) , (14)

where it is worth emphasizing that in the context of the SEM, each time step only involves the solution of a trivial system of
equations with diagonal mass matrix.

3 STABILITY OF THE LEAP-FROG SCHEME

The stability analysis of the discrete scheme given by Equation (14) shows that the SEM with the Leap-Frog time discretisation
is only conditionally stable5. The so-called Courant-Friedrichs-Levy (CFL) stability condition can be written as

Δt ≤ 2
√

�max
, (15)

where �max is the maximum eigenvalue of the dispersion matrix D ∶=M−1K.
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(a) 1D (b) 2D (c) 3D

FIGURE 1 Relative difference between the maximum of �emax for all the elemental dispersion matrices and the maximum
eigenvalue of the global dispersion matrix in logarithmic scale for different values of the degree of approximation and the
variance of the material properties.

3.1 The theorem of Irons and Treharne
As described in36,24,37 for the finite element and spectral element methods (and other methods for which thematrices are obtained
by assembling elemental contributions), the eigenvalues �m, for m = 1,… , nmn, of D are bounded by

min
Ωe

�emin ≤ �m ≤ max
Ωe

�emax, for m = 1,… , nmn, (16)

where �emin and �
e
max are the minimum and maximum eigenvalues of the elemental matrix De ∶= (Me)−1Ke respectively. This

is known as the theorem of Irons and Treharne and it implies that

�max ≤ maxΩe
�emax. (17)

Therefore, a conservative choice for the time step that ensures stability is

Δt ≤ 2
√

maxΩe �
e
max

≤ 2
√

�max
. (18)

3.2 Sharpness of the Irons and Treharne bound for heterogeneous media
The theorem of Irons and Treharne has been previously applied to compute a time step that ensures stability of an explicit
time integrator scheme in applications with homogeneous materials and by using different numerical techniques, e.g. the stan-
dard finite element method38, the boundary element method39 and the natural element method40. The same idea has also been
exploited to study the effect of element distortion in the stability of a finite element method using two-dimensional quadrilat-
eral elements37. To the knowledge of the authors, the application of the Irons and Treharne theorem has not been previously
considered for heterogeneous media.
To illustrate the sharpness of the bound of the maximum eigenvalue provided by the Irons and Treharne theorem, Figure 1

shows the error, in logarithmic scale, between the maximum of �emax for all the elemental dispersion matrices and the maximum
eigenvalue of the global dispersion matrix, �max, defined as

�IT =
maxΩe �

e
max − �max
�max

. (19)

The mechanical parameters  and � at the nodes are modelled as realisations of log-normal random variables with average
� = 2 and variance �2 = (�̃�)2, where �̃ ∈ [0.01, 10]. The results in Figure 1 display the mean value of �IT for a degree of
approximation p ranging from 1 to 8.
In one dimension, a mesh with 40 equally-spaced elements is used. In two and three dimensions, a Cartesian grid with 100

and 512 equally-sized elements, respectively, is considered. In all cases the number of realisations of the mechanical properties
is increased until the results do not present a sizeable difference by adding more realisations.
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It is worth noting that the value of �IT is always positive, as expected due to the theorem of Irons and Treharne (17). In one
dimension, only for linear elements (i.e. p = 1) and large values of �̃, an error above 20% is observed, whereas for the large
majority of degrees of approximations and values of �̃ considered, a value of �IT below 5% is obtained. It is also important to
observe how the range of values of �̃ where an accurate result is obtained, increases as the degree of approximation is increased.
In two and three dimensions accurate results, with a value of �IT below 20%, are observed for all degrees of approximation

and all values of �̃ considered except for linear elements and a high value of the variance. In two dimensions a value of �IT
below 10% is obtained for a low to moderate value of �̃, whereas in three dimensions the accuracy is higher, with a value of �IT
below 10% for almost all values of the variance of the material properties considered.

4 STIFF-VERTEX STABILITY CRITERION FOR STRONGLY-HETEROGENEOUS
AND/OR RAPIDLY-FLUCTUATING MEDIA

This Section presents a stability criterion for heterogeneous media derived using asymptotic analysis for the particular case
of strongly-heterogeneous and/or rapidly-fluctuating material properties. More precisely, the criterion derived in this Section
assumes that the local velocity at one element node is much higher than the local velocity in the rest of the nodes. This situation
is typical encountered in random media with a correlation length relatively small compared to the element size (or even white
noise) and in random media with a relatively large variance.
Let us consider a small parameter � and assume that in the i-th GLL node of one element the stiffness is large (ei = (�−1))

and the density is small (�ei = (�)), where the material parameters in all other nodes of the element are (1). Using the
definition of the elemental mass and stiffness matrices in Equation (11), it is clear that this assumption implies that the elements
Ke
ij = (�−1), for any 1 ≤ j ≤ nen, whereas the diagonal element Me

ii = (�). Under this assumption, the largest eigenvalue of
the dispersion matrix can be written as

�emax =
(2cei
ℎ

)2 nsd
∑

l=1

(

)Ni(�i)
)�l

)2

+ (�−1) =
(2cei
ℎ

)2

nnsdgeom

(

p(p + 1)
4

)2

+ (�−1). (20)

where cei =
√

ei ∕�
e
i = (�−1) is the velocity at the i-th GLL node and the second equality in Equation (20) is obtained by using

Equation (13) and the tensorised definition of the Lagrange polynomials in multiple dimensions. In three dimensions, n3geom = 3
if the i-th node is an element vertex, n3geom = 2 if the i-th node is located on an element edge, n3geom = 1 if the i-th node is located
on an element face and n3geom = 0 if the i-th node is interior to the element. Similarly, in two dimensions, n2geom = 2 if the i-th
node is an element vertex, n2geom = 1 if the i-th node is located on an element edge and n2geom = 0 otherwise.
Equation (20) implies that �emax = (�−2) if xi ∉ )Ωe, that is when the extreme value of the velocity is found in a node interior

to the element, whereas �emax = (�−1) if xi ∈ )Ωe. Furthermore, the maximum eigenvalue is largest when the extreme value
of the velocity is found on the vertices of the element.
For large scale simulations that require a mesh with a large number of elements, it is reasonable to assume that the maximum

eigenvalue will be controlled by the elemental maximum eigenvalue in an element where the extreme velocity is found on a
vertex of the element. Using the Irons and Treharne theorem, and observing that for vertices nnsdgeom = nsd, the following estimate
of the maximum eigenvalue of the global dispersion matrix is obtained

�max ≈ �SV,0 = nsd

(

cVmax
ℎ

p(p + 1)
2

)2

, (21)

where cVmax is the maximum velocity over all the vertices of the mesh (i.e. not all the mesh nodes) and SV refers to "Stiff Vertex".
The global stability criterion can be taken as

ΔtSV,0 ≤ ℎ
cVmax

4
p(p + 1)

√

nsd
, (22)

Remark 1. The bound of Equation (22) features the coefficient 1∕
√

nsd that appears in the classical stability limit derived for
homogeneous media5. The result is also consistent with the stability limit found in18 under a very different setting (i.e. stability
limit for quadratic spectral elements in a medium with periodically-fluctuating material properties).

The values of the stability criterion �SV,0M ∶= 4∕(p(p+1)
√

nsd are presented in Table 2 and compared to those of the stability
criterion �M for a homogeneous medium in Table 1 in one dimension. Despite the value obtained in this Section seems to lead
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to a larger allowable time step, it is important to note that this is because the criterion derived here is a priori associated to a
larger velocity (cVmax is assumed to be much larger than the velocity at nodes that are not vertices).

TABLE 2 One-dimensional stiff-vertex stability criterion �SV,0M for spectral elements of polynomial order p and ratio between
�SV,0M and the classical stability criterion �M (see Table 1 ) for a homogeneous medium.

p=1 p=2 p=3 p=4 p=5
�SV,0M 2.00 0.66 0.33 0.20 0.13

�SV,0M ∕�M 2.00 1.67 1.45 1.43 1.33

Remark 2. It is worth emphasising that the stability criterion of Equation (22) is not conservative and, therefore, cannot be used
in practice. This has been confirmed with numerical examples not reported here for brevity. However, its simple definition offers
an insight into the possible causes for obtaining a too conservative time step when the criterion derived for homogeneous media
is adapted for the heterogeneous case. First, �M leads to a more conservative time step when compared to �SV,0M . Second, the
modification of the stability limit derived for homogeneous media uses the maximum velocity over all the mesh nodes and not
over the mesh vertices as done when the stability limit of Equation (22) is considered.

Remark 2 indicates that, to obtain a conservative estimate of the stability limit, it is necessary to go beyond the leading-order
asymptotic analysis. This is done in the following proposition.

Proposition 1 (Elemental eigenvalue in a rapidly-fluctuating randommedium). Let us consider a small parameter � and assume
that in the i-th GLL node of one element the stiffness is large (ei = (�−1)) and the density is small (�ei = (�)), where the
material parameters in all other nodes of the element are (1). The maximum eigenvalue of the elemental dispersion matrix
De = (Me)−1Ke is, asymptotically,

�emax = tr(D
e) + (�−1) (23)

In addition, the following upper bound of the maximum eigenvalue of the elemental dispersion matrix holds true

�emax ≤ tr(D
e) (24)

Proof. See Appendix A.

Using the Irons and Treharne theorem, the bound of the maximum elemental eigenvalue of the elemental dispersion matrix
of Equation (24) leads to the the following conservative stability criterion

Δt ≤ ΔtSV,1 = 2
√

tr(De)
. (25)

As it will be shown in the numerical examples in Section 7, the stability criterion of Equation (25) is conservative but it will
not always provide an accurate estimate of the stability limit, especially when the material properties fluctuate slowly or when
the variance of the fluctuation decreases. More general eigenvalue bounds are described in the next section.

5 STABILITY CRITERIA BASED ON EIGENVALUE BOUNDS

As explained in Section 3, the theorem of Irons and Treharne can be used to obtain a conservative estimate of the critical time
step with randomly fluctuating heterogeneous media. However, the use of Equation (18) to define a stable time step requires the
computation of the maximum eigenvalue of all the elemental dispersion matrices. For linear elements, an analytical computation
of the eigenvalues of the elemental matrices is feasible in one and two dimensions, but for high-order spectral elements in
three dimensions, the computation of the exact eigenvalue of the elemental matrices is not considered a practical option. In
this Section, a number of eigenvalue bounds are considered as a viable alternative to estimate the maximum eigenvalue of the
elemental dispersion matrices. The cost of evaluating these bounds is also discussed in Section 5.2.2.
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5.1 Eigenvalue bounds
There is an extensive list of results involving bounds of eigenvalues or linear combinations of eigenvalues of random complex
matrices41,42. In this Section, some of the results available in the literature are recalled for the particular case of the bound of the
maximum eigenvalue of a real matrix. A simple optimality criterion for these bounds is discussed in Appendix B. This criterion
indicates whether the bound is optimal for linear spectral elements in one-dimension.

5.1.1 Frobenius’ bound
A classical result of a bound of the eigenvalues of a matrix in terms of its elements is given by Frobenius’ theorem41. A
consequence of this theorem is the following upper bound of the maximum eigenvalue of a square matrix A ∈ ℝn×n

�F(A) = min
{

max
i=1,…,n

{

n
∑

j=1
|Aij|

}

, max
j=1,…,n

{

n
∑

i=1
|Aij|

}

}

. (26)

Remark 3. One of the most popular results related to the bounds of matrix eigenvalues is due to Lévy, Hadamard and Ger-
schgorin42,43. A consequence of the so-called Lévy-Hadamard-Gerschgorin theorem is that an upper bound of the maximum
eigenvalue of a square matrix A ∈ ℝn×n is given by

�LHG(A) = max
i=1,…,n

{

Aii + Pi(A)
}

, (27)

where

Pk(A) =
n
∑

l=1
l≠k

|Akl|. (28)

In general it is not possible to establish if the Frobenius’ bound is sharper than the Lévy-Hadamard-Gerschgorin bound.
However, when applied to an elemental dispersion matrix, it can be easily shown that the Frobenius’ bound is sharper than the
bound derived from the Lévy-Hadamard-Gerschgorin theorem. As the diagonal terms of the dispersion matrix are non-negative,
the Lévy-Hadamard-Gerschgorin bound can be written as

�LHG(De) = max
i=1,…,n

{ n
∑

j=1
|De

ij|

}

. (29)

From Equations (29) and (26) it can be easily observed that

�F(De) = min
{

�LHG(De), �LHG
(

(De)T
)}

≤ �LHG(De). (30)

5.1.2 Parkers’ bound
Another bound, considered a refinement of an early result by Browne42, provides the following upper bound of the maximum
eigenvalue of a square matrix A ∈ ℝn×n

�P(A) =
1
2
max
i=1,…,n

{ n
∑

j=1

(

|Aij| + |Aji|
)

}

. (31)

5.1.3 Ostrowski’s bound
The next result, similar to the Frobeniu’s bound, is a consequence of the work by Ostrowski41 and provides the following upper
bound of the maximum eigenvalue of a square matrix A ∈ ℝn×n

�O(A) = min
�∈[0,1]

{

max
i=1,…,n

{

Aii +
(

Pi(A)
)� (Pi(AT )

)1−�
}

}

. (32)
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5.1.4 Brauer’s bound
The work by Brauer44 extending the results by Lévy, Hadamard and Gerschgorin led to another well known bound for the
eigenvalues. For a square matrix A ∈ ℝn×n, the following upper bound is a consequence of Brauer’s work:

�B(A) =
1
2

max
i,j=1,…,n

i≠j

{

|Aii| + |Ajj| +
√

(

|Aii| − |Ajj|
)2 + 4Pi(A)Pj(A)

}

. (33)

5.1.5 Trace bound
Another family of well known results for the bounds of eigenvalues involves the use of the trace of the matrix and the trace of
its square45. For a square matrix A ∈ ℝn×n, the following upper bound is a consequence of46

�T(A) = �̄(A) + �(A)
√

n − 1, (34)

where �̄(A) and �(A) are the mean and standard deviation of the eigenvalues of A respectively45, which can be expressed in
terms of the trace of A and the trace of A2 as

�̄(A) = 1
n
tr(A), �(A) =

√

1
n
tr(A2) − �̄2. (35)

5.2 Computability of the eigenvalue bounds for SEM elemental matrices
This section briefly discusses the computability of closed-form expressions for the stability criteria derived from the theorem of
Irons and Treharne combined with the eigenvalue bounds presented in Section 5.1. The computational cost of evaluating these
expressions is also discussed and compared to the computational cost required by the classical power method commonly used
to approximate the maximum eigenvalue of a diagonalisable matrix.

5.2.1 Closed-form expressions for the eigenvalue bounds
Out of the five eigenvalue bounds considered in this work, four of them require the computation of the absolute value of the
dispersion matrix terms, that can be written as

|De
ij| =

|Ke
ij|

Me
ii
= 4
ℎ2�ei!i

|

|

|

|

|

|

nen
∑

k=1

(

ek!k
nsd
∑

l=1

)Ni(�k)
)�l

)Nj(�k)
)�l

)

|

|

|

|

|

|

. (36)

This absolute value can be easily computed for the elemental dispersion matrices to evaluate the first four eigenvalue bounds
described in Section 5.1.
The computation of the trace bound requires the evaluation of the trace of the dispersion matrix and its square, which can be

expressed as

tr(De) = 4
ℎ2

nen
∑

i=1

{

1
�ei!i

nen
∑

k=1

[

ek!k
nsd
∑

l=1

(

)Ni(�k)
)�l

)2
]}

. (37)

tr
(

(De)2
)

= 16
ℎ4

nen
∑

i=1

⎧

⎪

⎨

⎪

⎩

1
�ei!i

nen
∑

j=1

1
�ej!j

[ nen
∑

k=1

(

ek!k
nsd
∑

l=1

)Ni(�k)
)�l

)Nj(�k)
)�l

)]2⎫
⎪

⎬

⎪

⎭

. (38)

Again, these quantities can be easily computed for the elemental dispersion matrices to evaluate the trace bound within an
existing SEM solver.

5.2.2 Computational cost
The computation of each eigenvalue bound recalled in the previous Section requires (n2en) floating point operations (FLOPS).
It is worth noting that the classical power method to approximate the maximum eigenvalue of a matrix has also (n2en) FLOPS.
Therefore, it is of interest to compare the FLOPS required by both approaches. To this end, all the FLOPS are considered here,
including lower order terms that are not usually considered when an asymptotic analysis is performed. This is considered crucial
to compare the performance as the size of the elemental dispersion matrices is relatively small compared to the size of a global
matrix.
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(a) 1D (b) 2D (c) 3D

FIGURE 2 mean value of the number of iterations, in logarithmic scale, required by the power method to compute the
eigenvalue of the dispersion matrix with a tolerance of �PM.

The count of the FLOPS required by the expressions is given by
FLOPSF = 3n2en − nen + 1
FLOPSP = 3n2en + 1
FLOPSO = 3n2en − 2nen
FLOPSB = 4n2en − 7nen + 9
FLOPST = 2n2en + nen + 3

, (39)

where FLOPS□ denotes the FLOPS required to evaluate �□(De). These results clearly indicate that the trace bound is the one
requiring less FLOPS, whereas the Brauer’s bound is the one inducing more FLOPS. As many operations required to compute
the bounds are shared (i.e. evaluating the absolute values and summing over rows and columns), the FLOPS required to evaluate
all the bounds are actually lower than the sum of the FLOPS obtained by evaluating each bound separately. More precisely, the
FLOPS required to evaluate all the bounds is FLOPSBounds = 6n2en + 3nen + 16.
For the classical power method, the FLOPS are given by FLOPSPM = (2n2en + 5nen)nit, where nit is the number of iterations

required to obtain an approximation of the maximum eigenvalue with a desired accuracy. It is worth noting that a single iteration
of the power method is already more computationally expensive than the evaluation of the trace bound, two iterations are
more expensive than the evaluation of any of the other bounds. When the power method requires three or more iterations, the
computational cost of evaluating all the eigenvalue bounds is lower than the cost of the power method.
To obtain a quantitative measure of the FLOPS of the power method, Figure 2 shows the mean value of the number of

iterations, in logarithmic scale, required to compute the maximum eigenvalue of the dispersion matrix for different orders of
polynomials and for different values of the desired error in the eigenvalue. Three lines highlighted in the colour plot represent
the accuracy provided by the power method with nit = 4, nit = 8 and nit = 12 iterations. The results reveal that with four
iterations and for certain values of the degree of approximation, the accuracy of the power methods is above 10%. In practice
this error could lead to an overestimate of the maximum eigenvalue and, consequently, to unstable simulations, if used to define
the time step in a simulation. In addition, this computation is already more expensive than evaluating all the eigenvalue bounds.
For one-dimensional problems, increasing the number of iterations of the power method to nit = 8 leads to a substantial

increase in the accuracy of the computed eigenvalue, but for higher dimensional problems the gain in accuracy is less substantial.
For instance, in three-dimensional problems an error of 10% in the maximum eigenvalue is still obtained for some degrees of
approximation and, even with nit = 12 the error is still close to 9% for some degrees of approximation. This indicates that,
for three-dimensional problems, the use of the power method is more expensive than computing all the bounds described in
Section 5. Further numerical experiments reveal that, to guarantee a 1% error of the eigenvalues computed with the power
method in three dimensions, at least 24 iterations are required. This makes the computation of the eigenvalue with the power
method 24 times more expensive than evaluating the trace bound, 16 times more expensive than evaluating the Frobenius’ or
the Ostrowski’s bounds and 8 times more expensive than evaluating all the bounds.
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(a) 1D (b) 2D (c) 3D

FIGURE 3 Mean value of the relative difference between the maximum eigenvalue of the elemental dispersion matrix and
the best eigenvalue bound in logarithmic scale. The mechanical parameters are modelled as 10,000 realisations of log-normal
random variables with average � = 2, variance �2 = (�̃�)2 and correlation length l = 2ℎ.

Remark 4. It is worth emphasising that, strictly speaking, the use of the power method does not guarantee an estimate of the
maximum eigenvalue that leads to a stable time step. This is due to the inability to determine if the estimated eigenvalue is less
than or greater than the exact eigenvalue.

6 BEST EIGENVALUE BOUNDS

As shown in Appendix B, some of the eigenvalue bounds presented in Section 5.1 are not optimal, even for linear elements, in
a one-dimensional heterogeneous medium. In addition, the bounds that are optimal in this particular case, are not optimal for
higher order elements. From the point of view of the stability of the Leap-Frog scheme, it is of interest to know the error induced
by the eigenvalue bounds when estimating the maximum eigenvalue of the dispersion matrix of high-order spectral elements.
The mechanical parameters  and � at the nodes are modelled as realisations of log-normal random variables with average

� = 2, variance �2 = (�̃�)2, where �̃ ∈ [0.01, 10] and correlation length l = 2ℎ, where ℎ is the characteristic element size. A
total of 10,000 realisations of the material parameters are considered and, for each realisation, the relative difference between
the maximum eigenvalue of the elemental dispersion matrix and the bounds presented in Section 5.1, defined as

�Bound = log10

(�Bound(De) − �emax
�emax

)

, (40)

is measured.
Figure 3 shows the the mean value of the relative difference, in logarithmic scale, between the maximum eigenvalue of an

elemental dispersion matrix and the best of the eigenvalue bounds presented in Section 5.1. In the plots, the regions where one
eigenvalue bound provides the best estimate of the exact maximum eigenvalue are highlighted.
The results show a maximum difference of 14%, 16% and 20% for one, two and three-dimensional problems respectively,

showing that the accuracy of the bounds is only slightly dependent upon the dimensionality of the problem. In addition, the
numerical experiments reveal that the Ostrowski’s bound seems to be the most competitive overall. In one dimension, the trace
bound provides the most accurate results for a high value of the variance whereas the Ostrowski’s bound is more accurate for
lower value of the variance. In two and three dimensions, the Ostrowski’s bound provides the most accurate results for all values
of the variance and all degrees of approximation. It is worth noting that , in both cases, the Ostrowski’s and Frobenius’ bounds
provide identical results for certain values of the variance and the degree of the approximation.
To illustrate the effect of the correlation length l in this study, Figure 4 shows the same study when the correlation length

is l = ℎ∕5. The results reveal that the regions and the best eigenvalue bounds are similar for values of the correlation length
l = 2ℎ and l = ℎ∕5. Note that, in three dimensions and for large values of the variance, the eigenvalue bounds provide more
accurate results for a shorter correlation length.
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(a) 1D (b) 2D (c) 3D

FIGURE 4 Mean value of the relative difference between the maximum eigenvalue of the elemental dispersion matrix and
the best eigenvalue bound in logarithmic scale The mechanical parameters are modelled as 10,000 realisations of log-normal
random variables with average � = 2, variance �2 = (�̃�)2 and correlation length l = ℎ∕5.

It is worth noting that the results provide a qualitative behaviour of the eigenvalue bounds presented in Section 5.1 but they
cannot be used to discard any of the bounds because only the mean value is considered. For completeness, Appendix C shows
the results for each one of the eigenvalue bounds that were used to produce the plots in Figure 3 .

7 NUMERICAL EXAMPLES

This Section presents a number of examples in one and three dimensions to illustrate the accuracy of the stability limit computed
from the Irons and Treharne bound and the eigenvalue bounds presented in Section 5.1 as well as the stiff-vertex stability criterion
for strongly-heterogeneous and/or rapidly-fluctuating media derived in Section 4.

7.1 One-dimensional examples
The numerical solution of the model problem given by Equation (2) is considered in Ω = [0, 1]. The material parameters  and
� correspond to realisations of log-normal random variables with average �, variance �2 = (�̃�)2 and correlation length l.
The first set of examples considers a mesh with 40 elements and p = 3. Five realisations of the material parameters, depicted

in Figure 5 (a), are considered with � = 2, �̃ = 1 and l = 2ℎ, where ℎ denotes the characteristic element size. The blue circles
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FIGURE 5 Realizations of the material parameters with � = 2, �̃ = 1 and l = 2ℎ.
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in Figure 5 denote the nodes of the computational mesh.
For the five realisations in Figure 5 (a), Table 3 reports the exact stability limit, computed asΔtEx = 2∕

√

�max, the estimate
of the stability limit computed by assuming a homogeneous material47,48, ΔtH = �Mℎ∕maxi{ci}, with �M taken from Table 1 ,
the stability limit derived from the Irons and Treharne bound, ΔtIT = 2∕

√

maxΩe �
e
max and the stability limits obtained by

combining the Irons and Treharne bound and eigenvalue bounds of Section 5.1. In Table 3 , the black bold font highlights the

Case ΔtEx ΔtH ΔtIT ΔtF ΔtP ΔtO ΔtB ΔtT
1 0.001025 0.000913 0.001025 0.000980 0.000863 0.001018 0.000993 0.001023
2 0.002237 0.001769 0.002187 0.001905 0.002040 0.002154 0.001854 0.001984
3 0.001469 0.001234 0.001469 0.001381 0.001210 0.001454 0.001412 0.001469
4 0.001119 0.000674 0.001035 0.000900 0.000934 0.000976 0.000892 0.000930
5 0.001587 0.001709 0.001533 0.001289 0.001317 0.001480 0.001264 0.001454

TABLE 3 Exact stability limit (ΔtEx) compared to the estimate using the homogeneous material bound (ΔtH), the bound
obtained by the theorem of Irons and Treharne (ΔtIT) and the bounds induced by the combination of the theorem of Irons and
Treharne and the eigenvalue bounds presented in Section 5.1 for the realisations of the material parameters shown in Figure 5
(a).

exact stability limit, the blue font indicates the Irons and Treharne bound, which is the best possible result to be obtained when
the Irons and Treharne is combined with the eigenvalue bounds of Section 5.1. In green, the best estimate of the stability limit
using the strategy proposed in this paper is highlighted. In red, the cases where the stability limit computed by assuming a
homogeneous material results in an instability is highlighted. Finally, the cases where the stability limit computed by assuming
a homogeneous material results in a very conservative estimate (i.e. times step 20% lower than the exact stability limit) are
highlighted in orange.
The first case in Table 3 shows a situation where the Irons and Treharne bound produces an almost exact estimate of the

maximum eigenvalue. The best estimate using eigenvalue bounds is provided by the trace bound, resulting in a time step only
0.2% lower than the exact stability limit. The Ostrowski’s bound also provides an accurate estimate of the stability limit, 0.7%
lower than the exact value. The Frobenius’ and Brauers’ bounds also lead to good estimates, 4% and 3% lower than the exact
value, respectively. For this example, the results obtained by considering the estimate derived for homogeneous media results
in an approximation of the time step 11% lower than the exact stability limit.
For the second case, the use of the Ostrowski’s bound produces the best estimate of the stability limit, with a time step 4%

lower than the exact value, whereas the estimate derived for homogeneous media leads to an approximation of the time step 21%
lower than the exact stability limit.
In the third case, the trace bound produces the best estimate of the stability limit, almost identical to the estimate obtained by

the Irons and Treharne bound. It is also worth noting that the Brauer’s bound produces accurate results. This example is used to
emphasise that, based on the analysis described in Section C, it is not possible to discard any of the eigenvalue bounds considered.
Despite the mean value of the error for the Brauer’s bound is higher than the errors obtained with all the other bounds, as shown
in Figure C1 , this particular example shows a situation where the Brauer’s bound is able to outperform other eigenvalue bounds
and provide an approximation of the stability limit very close to the ones provided by the Ostrowski’s and trace bounds.
The fourth case illustrates a situation where the Irons and Treharne bound is less accurate. In this scenario, the accuracy of

the stable time step provided by the use of any eigenvalue bounds is clearly limited by the accuracy of the Irons and Treharne
bound. The best estimate of the stability limit is provided by the Ostrowski’s bound. This estimate is 13% lower than the exact
stability limit but only 6% lower than the Irons and Treharne bound. Finally, the estimate derived for homogeneous media leads
to an approximation of the time step 40% lower than the exact stability limit and therefore resulting in a significant waste of
computational resources.
The last case considered in Table 3 , shows an example where the estimate derived for homogeneous media leads to an

unstable simulation, with an time step 8% higher than the stability limit. The best result is again provided by the Ostrowski’s
bound, only 7% below the exact stability limit and 3% below the bound derived from the Irons and Treharne theorem.
Table 4 shows the results for the realisations of the material parameters depicted in Figure 5 (b). The results show that
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Case ΔtEx ΔtH ΔtIT ΔtF ΔtP ΔtO ΔtB ΔtT
1 0.000708 0.000656 0.000708 0.000660 0.000579 0.000702 0.000669 0.000707
2 0.000941 0.000844 0.000929 0.000836 0.000783 0.000905 0.000689 0.000797
3 0.001275 0.000842 0.001224 0.001083 0.001063 0.001180 0.000944 0.001055
4 0.000338 0.000184 0.000317 0.000273 0.000272 0.000299 0.000282 0.000303
5 0.000946 0.000971 0.000946 0.000839 0.000765 0.000922 0.000792 0.000902

TABLE 4 Exact stability limit (ΔtEx) compared to the estimate using the homogeneous material bound (ΔtH), the bound
obtained by the theorem of Irons and Treharne (ΔtIT) and the bounds induced by the combination of the theorem of Irons and
Treharne and the eigenvalue bounds presented in Section 5.1 for the realisations of the material parameters shown in Figure 5
(b).

the Ostrowski’s and the trace bound always produce the best estimate of the exact stability limit. In the third and fourth cases
in Table 4 , the estimate derived for homogeneous media leads to an approximation of the time step 34% and 46% lower than
the exact stability limit and therefore resulting in a significant waste of computational resources, respectively. The last case in
Table 4 shows again a scenario where the use of the estimate derived for homogeneous media leads to unstable results.
It is worth noting that the examples considered here correspond to a moderate value of the variance of the material properties

and the correlation length, namely �̃ = 1 and l = 2ℎ. When �̃ is increased and/or l decreased, numerical examples reveal that
using the theoretical results derived for homogeneous media commonly lead to either very conservative estimates or overesti-
mates of the exact stability limit. For instance, Table 5 shows the results for three cases generated with �̃ = 1 and l = ℎ∕5. In
all cases, the best estimates obtained with the eigenvalue bound lead to time steps less than 1% lower than the bound provided
by the Irons and Treharne theorem. In contrast, the time step computed from the homogeneous medium bound leads to either
very conservative estimates or an overestimate of the stability time step. The realisations of the material parameters associated
to the cases analysed in Table 5 are shown in Figure 6 (a).

Case ΔtEx ΔtH ΔtIT ΔtF ΔtP ΔtO ΔtB ΔtT
1 0.001113 0.000178 0.001076 0.000917 0.000837 0.000971 0.000862 0.001073
2 0.000851 0.000404 0.000740 0.000736 0.000553 0.000736 0.000566 0.000734
3 0.000496 0.000686 0.000470 0.000431 0.000385 0.000431 0.000407 0.000469

TABLE 5 Exact stability limit (ΔtEx) compared to the estimate using the homogeneous material bound (ΔtH), the bound
obtained by the theorem of Irons and Treharne (ΔtIT) and the bounds induced by the combination of the theorem of Irons and
Treharne and the eigenvalue bounds presented in Section 5.1 for the realisations of the material parameters shown in Figure 6
(a).

Table 6 shows the results for three realisations generated with �̃ = 10 and l = 2ℎ, as shown in Figure 6 (b). In all cases
the best estimates obtained with the eigenvalue bound lead to time steps less than 10% lower than the bound provided by the
Irons and Treharne theorem. In contrast, the time step computed from the homogeneous medium bound lead to either very
conservative estimates or an overestimate of the stability time step.
The last column in Table 6 shows the stiff-vertex stability limit derived in Section 4. It can be observed that the result always

provides a conservative estimate of the exact stability limit. It is worth noting that in two of the three cases shown in Table 6
the stiff-vertex stability limit provides a very accurate estimate, almost as good as the best of the estimates provided by the
eigenvalue bounds.
Finally, it is important to emphasize that the results obtained from the bound derived for homogeneous media are shown for

illustration purposes only as, in practice, it is not possible to know a priori if the time step will result in an unstable simulation
or a very conservative estimate.
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FIGURE 6 Realizations of the material parameters with � = 2 and p = 5. In (b) a logarithmic scale is used.

Case ΔtEx ΔtH ΔtIT ΔtF ΔtP ΔtO ΔtB ΔtT ΔtSV
1 0.7794 0.2434 0.7445 0.6288 0.6371 0.6411 0.6442 0.6511 0.4454
2 0.4926 0.4088 0.4926 0.4539 0.3678 0.4917 0.4775 0.4926 0.4903
3 0.5987 1.0526 0.5259 0.2093 0.1997 0.3847 0.2118 0.5240 0.4795

TABLE 6 Exact stability limit (ΔtEx) compared to the estimate using the homogeneous material bound (ΔtH), the bound
obtained by the theorem of Irons and Treharne (ΔtIT) and the bounds induced by the combination of the theorem of Irons and
Treharne, the eigenvalue bounds presented in Section 5.1 and the stiff-vertex bound derived in Section 4, for the realisations of
the material parameters shown in Figure 6 (b). All time steps have been multiplied by 104.

7.2 Large scale simulation of wave propagation in a 3D randomly-heterogeneous medium
The use of the different stability criteria introduced in this paper is now illustrated with an example of practical interest. The
wave propagation problem governed by Equation (2) is considered in a 3D heterogeneous medium with randomly-fluctuating
parameters �(x) and (x). The domain is a cube of side L = 20 m, centred around (0, 0,−10). Dirichlet boundary conditions
are considered on all sides of the cube. The source is a Ricker impulse with central frequency f0 = 0.3 Hz and time lag �0 = 3 s
centred at (0, 5,−7). A receiver is placed at position (6,−9, 0). The domain is meshed with N3 = 8 000 uniform hexahedra of
sideL∕N = 1m. Polynomials or order p = 4 are chosen in each direction, so that each element is discretised using (4+1)3 = 125
degrees of freedom, for a total of 531 441 degrees of freedom. Simulations are run with different time steps, in order to localize
precisely the transition to instability. The simulation durations range from a few seconds to a few minutes on 12 processors of an
Intel Xeon E5-2670v3@2.30GHz node, depending on the particular realisation of the heterogeneous parameters and the chosen
time step.
The parameters �(x) and (x) are modelled as independent Gaussian random fields with Gaussian correlation model, locally

modified by Rosenblatt transform such that their first-order marginal density is log-normal with averages  = 1 N/m2 and
� = 2.67 kg/m3 and standard deviations � = 5 N/m2 and �� = 5 N/m2. Two different cases are considered with correlation
length l = 2ℎ = 2 m (shown in Figure 7 ) and l = ℎ∕5 = 0.2 m (shown in Figure 8 ).
For both cases with l = 2ℎ and l = ℎ∕5, a series of increasing time steps is considered and the value of the velocity in the

receiver at time t = 10 s and t = 16 s is monitored. These instants correspond to the first wave arrival at the receiver. The lowest
value of the time step for which the monitored velocity shoots up is a numerical estimation of the instability limit. Numerically,
it is verified that this value is very close to the theoretical stability values reported in Table 7 , and obtained from the maximum
eigenvalue of the dispersion matrix. This value is compared in Table 7 to the different bounds discussed in this paper. It appears
clearly that all bounds are accurate, except the Brauer bound and the homogeneous bound. The latter in particular might induce
a choice of time step 50% below the stability limit, while using the trace bound for instance would allow reaching 90% of that
limit. It is worth noting that the stiff-vertex bound produces an accurate estimate in the second example, for which l = ℎ∕5.
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FIGURE 7 Map of density �(x) in log-scale (left) and trace of the velocity in the receiver (right), for the large scale three-
dimensional case with l = 2ℎ. The simulation was performed with Δt = 0.0434 s.
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FIGURE 8 Map of density �(x) in log-scale (left) and trace of the velocity in the receiver (right), for the large scale three-
dimensional case with l = ℎ∕5. The simulation was performed with Δt = 0.0511 ms.

Case ΔtEx ΔtH ΔtIT ΔtF ΔtP ΔtO ΔtB ΔtT ΔtSV
l = 2ℎ 0.14165 0.06701 0.14165 0.14112 0.10466 0.14112 0.12727 0.14114 0.12034
l = ℎ∕5 0.11212 0.07892 0.11150 0.11128 0.07767 0.11128 0.10951 0.11150 0.11110

TABLE 7 Exact stability limit (ΔtEx) compared to the estimate using the homogeneous material bound (ΔtH), the bound
obtained by the theorem of Irons and Treharne (ΔtIT) and the bounds induced by the combination of the theorem of Irons and
Treharne, the eigenvalue bounds presented in Section 5.1 and the stiff-vertex bound derived in Section 4, for the large scale 3D
cases. Times are in ms.

8 CONCLUSION

The stability of an explicit Leap-Frog time marching scheme for the simulation of wave propagation in randomly-heterogeneous
media with high-order spectral elements has been considered. By using the so-called Irons and Treharne theorem, the global
stability criterion is taken as a minimum over local element stability criteria, obtained through the solution of element-borne
eigenvalue problems.This work proposes two alternatives to estimate the maximum eigenvalue of the elemental dispersion
matrix, avoiding the computation of the exact maximum eigenvalue, which is considered a not viable option for high-order
elements due to the size of the elemental matrices in this context.
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The first type of stability criterion was obtained in the particular setting of strongly-heterogeneous rapidly-fluctuating media
through asymptotic analysis. This criterion depends only on the maximum velocity at the vertices of the mesh, and not on the
velocity at the interior nodes. More particularly, it shows that stability is improved if the large values of the local velocities are
found at the interior nodes of the elements rather than on their boundaries. This is consistent with results obtained in18, in a very
different setting (periodically-fluctuating quadratic spectral elements). It might provide leads to improve stability through mesh
distortion, although the impact of that mesh distortion on stability would also have to be evaluated.
For more general situations, different bounds on the eigenvalues of general matrices were recalled to approximate the

global stability criterion conservatively. The accuracy of the proposed stability limits have been tested with an extensive
set of experiments in one, two and three dimensions. For all cases tested, the Trace and Ostrowski bounds seemed to pro-
vide particularly accurate estimates of the actual stability criteria. The numerical examples involving the wave propagation in
randomly-heterogeneous media in two and three dimensions corroborate the findings and provide a clear illustration of the
problems induced by the extended approach of adapting the stability limit derived for homogeneous media to a heterogeneous
media.
As a conclusion, it should be reminded that this paper focused on the acoustic case for the SEMwith Gauss-Lobatto-Legendre

points and the Leap-Frog time integration scheme. However, the ideas proposed are general and can be directly applied to study
the stability of other formulations of the SEM25,26 and other time integrators27,28, for both acoustic or elastic equations.

APPENDIX

A STABILITY OF STRONGLY-HETEROGENEOUS RAPIDLY-FLUCTUATING RANDOM
MEDIA

In this Appendix, the proof of Proposition 1 of Section 4. This proof is based on the following lemmas:

Lemma 1. Let us consider a a vector in a basis of dimension N , e be one of the elements of that basis, and B be an N × N
square matrix in the same basis. If all vectors and matrices are real and their norm is of order (1), then

det
(

e⊗ a − �IN + �B
)

= −(−�)N−2
{

�2 − � [a ⋅ e + �tr(B)] − �a ⋅
[

B − tr(B)IN
]

e
}

+ (�), (A1)

for all � ∈ ℝ, where IN is theN ×N identity matrix.

Proof. The Taylor expansion of the determinant of a matrix to first order in � yields

det
(

e⊗ a − �IN + �B
)

= det
(

e⊗ a − �IN
)

{

1 + �tr
(

[

e⊗ a − �IN
]−1 B

)}

+ (�) (A2)

Using Sherman-Morrison formula, we have that
(

e⊗ a − �IN
)−1 = −1

�

(

IN +
e⊗ a
� − a ⋅ e

)

, (A3)

which implies
tr
(

[

e⊗ a − �IN
]−1 B

)

= −1
�

(

tr(B) + a ⋅ B ⋅ e
� − a ⋅ e

)

. (A4)

Combining the fact that det
(

e⊗ a − �IN
)

= (a ⋅ e − �)(−�)N−1 and Equation (A4) in Equation (A2), the expected expansion
is obtained.

Lemma 2. With the same hypothesis of Lemma 1, the maximum eigenvalue of e⊗ a + �B is equal to

�max = a ⋅ e + � a ⋅ B ⋅ e
a ⋅ e

+ (�). (A5)

Proof. Using Lemma 1, the three eigenvalues are, asymptotically, 0, with multiplicityN −2, �[tr(B) − (a ⋅B ⋅ e)]∕(a ⋅ e) + (�)
and the eigenvalue in Equation A5. Being the only eigenvalue of order (1), and with a positive leading-order coefficient, the
latter eigenvalue is the maximum.

Using Lemmas 1 and 2, the proof of Proposition 1 is now provided.



18 REGIS COTTEREAU AND RUBEN SEVILLA

Proof. The one-dimensional case is considered first. It is assumed that the n-th element node has a low value of the density and
a large value of the stiffness. For the reasons exposed in Section 4, the studiy is limited to the case where the node corresponds
to an element vertex, i.e. n = 1 (the situation with n = nen is equivalent).
It is worth noting that the scaled elemental dispersion matrix, �2De, can be written in the form of Lemma 2 with

aj = �2
( 2
ℎ

)2 e1
�e1
d11dj1, B1j = �

( 2
ℎ

)2 nen
∑

k=2

ek!k
�e1!1

d1kdjk, Bi>1j = �
( 2
ℎ

)2 e1!1
�ei!i

di1dj1, (A6)

and with higher order terms in � that do not play a role in this analysis. Using Lemma 2, the maximum eigenvalue is then

�max =
( 2
ℎ

)2
(

e1
�e1
d211 +

nen
∑

k=2

ek!k
�e1!1

d21k +
nen
∑

k=2

e1!1
�ek!k

d2k1

)

+ 
(

�−1
)

= tr(De) + 
(

�−1
)

. (A7)

This result extends naturally to higher dimensions by simply replacing the term dij by the appropriate derivative.
Finally, to prove that this value is actually an upper bound, it is sufficient to recall that the trace of a matrix is equal to the sum

of the eigenvalues of the matrix and that the eigenvalues of a dispersion matrix are all positive. The latter result can be obtained
with a lower bound49 on the smallest eigenvalue of the dispersion matrix, which is positive when the matrix is a product of a
definite positive matrix (the inverse of the mass matrix) and a positive matrix (the stiffness matrix). Then is is clear that

�max ≤ tr(De). (A8)

B OPTIMALITY OF THE EIGENVALUE BOUNDS FOR LINEAR SPECTRAL ELEMENTS IN
ONE DIMENSION

As a first measure of the accuracy of the eigenvalue bounds summarised in Section 5.1, their optimality for the simplest case in a
heterogeneous medium is considered. For linear one-dimensional elements (i.e. p = 1) with heterogeneous material properties,
the elemental mass and stiffness matrices are

Me = ℎ
2

(

�1 0
0 �2

)

, Ke =
(1 + 2)
2ℎ

(

1 −1
−1 1

)

. (B9)

The dispersion matrix, given by

De =
(1 + 2)
�1�2ℎ2

(

�2 −�2
−�1 �1

)

, (B10)

has maximum eigenvalue

�emax =
1
ℎ2
(1 + 2)

(

1
�1
+ 1
�2

)

. (B11)

B.1 Frobenius’ bound
The Frobenius’ bound of Equation 26 for linear elements in one dimension gives

�F(De) = 1
ℎ2
(1 + 2)

1
�1�2

min
{

2max
{

�1, �2
}

, �1 + �2
}

, (B12)

which is equal to the eigenvalue in Equation (B11) and therefore, optimal.

B.2 Parkers’ bound
For linear elements in one dimension, the Parker’s bound of Equation 31 gives

�P(De) = 1
2ℎ2

(1 + 2)
1
�1�2

(

2max
{

�1, �2
}

+ �1 + �2
)

. (B13)

After some basic manipulations, it can be shown that

�P(De) = 1
2
�LHG(De) + 1

2
�emax. (B14)

Therefore, as the the Lévy-Hadamard-Gerschgorin bound, the Parker’s bound is only optimal when �1 = �2.
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B.3 Ostrowski’s bound
The computation of the terms in Equation (32) for linear elements in one dimension leads to the following expression for the
Ostrowski’s bound

�O(De) = 1
ℎ2
(1 + 2)

1
�1�2

max
{

�1 + min{�1, �2}, �2 + min{�1, �2}
}

. (B15)

which, after some manipulations, can be shown to be optimal.

B.4 Brauer’s bound
For linear elements in one dimension, the Brauer’s bound of Equation 33 gives

�B(De) = 1
2ℎ2

(1 + 2)
1
�1�2

(

�1 + �2 +
√

(�1 − �2)2 + 4�1�2

)

. (B16)

After some basic manipulations, it is easy to show that is optimal.

B.5 Trace bound
A simple calculation of the terms in Equation (35) for linear elements in one dimension shows that the maximum eigenvalue
coincides with the trace bound because

�̄(De) = �(De) = 1
2ℎ2

(1 + 2)
(

1
�1
+ 1
�2

)

. (B17)

C SHARPNESS OF THE EIGENVALUE BOUNDS

To illustrate the sharpness of the eigenvalue bounds considered in this work, Figure C1 shows the mean value of the relative
difference, in logarithmic scale, between the maximum eigenvalue of an one-dimensional elemental dispersion matrix and the
bounds presented in Section 5.1. The mechanical parameters  and � at the nodes are modelled as realisations of log-normal
random variables with average � = 2, variance �2 = (�̃�)2, where �̃ ∈ [0.01, 10], and correlation length l = 2ℎ, where ℎ is
the characteristic element size. The results show the mean value of �Bound for a degree of approximation p ranging from 1 to 8
on a one-dimensional element and by using 10,000 realisations of the mechanical properties.
For linear elements (i.e. p = 1) the Frobenius’, Ostrowski’s, Brauer’s and trace bounds are optimal, as shown in Section 5.1.

For higher order elements the different bounds show a different behaviour.
The difference between the Frobenius’ bound and the exact eigenvalue shows a very small dependence on both the degree

of the approximation, p, and the variance of the material properties, �̃. Only for quadratic elements (i.e. p = 2) and for a high
value of �̃, the Frobenius’ bound provides a less accurate estimate of the maximum eigenvalue. Similarly, the Ostrowski’s bound
shows almost no dependence on the degree of approximation and the variance of the material properties. For quadratic elements
and a low value of �̃ the Ostrowski’s bound provides more accurate results. The other bounds, namely the Parker’s, Brauer’s and
trace bounds, show a sizeable dependence on both p and �̃.
Overall, it is apparent that the Ostrowski’s bound and the trace bound provide the sharpest estimate of themaximum eigenvalue

for the values of p and �̃ considered, whereas the Brauer’s bound provide the less accurate results.
A similar study is also performed in two dimensions. Figure C2 shows the mean value of the relative difference, in loga-

rithmic scale, between the maximum eigenvalue of a two-dimensional elemental dispersion matrix and the bounds presented in
Section 5.1. As in the previous example, the mechanical parameters  and � at the nodes are modelled as realisations of log-
normal random variables with average � = 2 and variance �2 = (�̃�)2, where �̃ ∈ [0.01, 10]. The results show the mean value
of �Bound for a degree of approximation p ranging from 1 to 8 on a one-dimensional element and by using 10,000 realisations of
the mechanical properties.
Important differences are observed between the accuracy provided by some bounds in one and two dimensions. The Frobenius’

bound provide significantly better results in two dimensions and, as in the one-dimensional example, the sharpness of the estimate
produced shows a very small dependence on the degree of approximation, p, and the variance of the material properties, �̃. The
Parker’s bound provides better results in two dimensions for particular cases with p = 1 and a high value of �̃, but, overall, the
performance is very similar in one and two dimensions. The Ostrowski’s bound also shows a very similar behaviour for both one
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(a) Frobenius’ bound (b) Parker’s bound (c) Ostrowski’s bound

(d) Brauer’s bound (e) Trace bound

FIGURE C1 Mean value of the relative difference between the maximum eigenvalue of the one-dimensional elemental disper-
sion matrix and the eigenvalues bounds of Section 5.1 in logarithmic scale. The mechanical parameters are modelled as 10,000
realisations of log-normal random variables with average � = 2, variance �2 = (�̃�)2 and correlation length l = 2ℎ.

and two-dimensional problems. It is interesting to observe that, for low values of �̃, the Ostrowski’s bound seems to provide better
results for two-dimensional problems. The Brauer’s bound shows a very similar behaviour for one and two-dimensional problems
with a slight low accuracy in two dimensions. Finally, the trace bound shows the most sizeable deterioration in two-dimensional
problems compared to the results for obtained in one dimension.
Overall, the results show that the the Frobenius’ and the Ostrowski’s bound provide the sharpest estimate of the maximum

eigenvalue for the values of p and �̃ considered, whereas the Brauer’s bound provide the less accurate results.
For completeness, the same study is performed in three dimensions next. Figure C3 shows the mean value of the relative

difference, in logarithmic scale, between the maximum eigenvalue of a two-dimensional elemental dispersion matrix and the
bounds presented in Section 5.1. As in the previous example, the mechanical parameters  and � at the nodes are modelled as
realisations of log-normal random variables with average � = 2 and variance �2 = (�̃�)2, where �̃ ∈ [0.01, 10]. The results
show the mean value of �Bound for a degree of approximation p ranging from 1 to 8 on a one-dimensional element and by
using 10,000 realisations of the mechanical properties. In this case, the behaviour is very similar to the two-dimensional case,
with a slight deterioration on the accuracy obtained by all the proposed bounds. It is interesting to observe that even for linear
elements with a large value of the variance of the material properties, �̃, the results a sizeable deterioration with respect to the
two-dimensional case is observed. Similarly to the two-dimensional example, the results show that the the Frobenius’ and the
Ostrowski’s bound provide the sharpest estimate of the maximum eigenvalue for the values of p and �̃ considered.
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(a) Frobenius’ bound (b) Parker’s bound (c) Ostrowski’s bound

(d) Brauer’s bound (e) Trace bound

FIGURE C2 Mean value of the relative difference between the maximum eigenvalue of the two-dimensional elemental disper-
sion matrix and the eigenvalues bounds of Section 5.1 in logarithmic scale. The mechanical parameters are modelled as 10,000
realisations of log-normal random variables with average � = 2, variance �2 = (�̃�)2 and correlation length l = 2ℎ.
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