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Abstract

This paper aims at studying the influence of material heterogeneity on the sta-

bility of explicit time marching schemes for the high-order spectral element

discretisation of wave propagation problems. A periodic fluctuation of the den-

sity and stiffness parameters is considered, where the period is related to the

characteristic element size of the mesh. A new stability criterion is derived

analytically for quadratic and cubic one-dimensional spectral elements in het-

erogeneous materials by using a standard Von Neumann analysis. The analysis

presented illustrates the effect of material heterogeneity on the stability limit

and also reveals the origin of instabilities that are often observed when the sta-

bility limit derived for homogeneous materials is adapted by simply changing

the velocity of the wave to account for the material heterogeneity. Several ex-

tensions of the results derived for quadratic and cubic one-dimensional spectral

elements are discussed, including higher order approximations, different period-

icity of the material parameters and higher dimensions. Extensive numerical

results demonstrate the validity of the new stability limits derived for hetero-

geneous materials with periodic fluctuation. Finally numerical examples of the
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stability for randomly fluctuating material properties are also presented, dis-

cussing the applicability of the theoretical limits derived for material properties

with periodic fluctuation.

Keywords: spectral element method, explicit time integration, stability,

heterogeneous media, high-order

1. Introduction1

Explicit time marching schemes for high-order spectral element discretisa-

tions of wave propagation problems are known to be conditionally stable [1].

For a homogeneous one-dimensional problem with constant element size, the

stability criterion is given by

α =
c∆t

h
≤ αM , (1)

where c is the wave velocity, ∆t is the time step, and h is the characteristic ele-2

ment size. The stability limit, αM , is a scalar that depends upon the polynomial3

order p and the dimensionality of the problem d. Its value can be derived ana-4

lytically for homogeneous media [1, 2, 3, 4, 5]. Table 1 summarises the values for5

polynomial approximations up to order p = 5 when the spectral element method6

is combined with the Leap-Frog time marching scheme. For regular meshes in7

d dimensions, the value of the stability limit is simply that for one-dimensional8

problems divided by
√
d.

Table 1: Approximate value of the stability limit αM for spectral elements of polynomial

order p with the Leap-Frog scheme assuming a regular mesh and constant wave velocity.

p = 1 2 3 4 5

1D 1.00 0.40 0.23 0.14 0.10

2D 0.70 0.28 0.16 0.10 0.07

3D 0.57 0.23 0.13 0.08 0.05

9
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The results in Table 1 are derived for homogeneous material parameters and10

regular meshes. Numerical tests showing the negative influence of the deforma-11

tion of the elements on the stability are reported in [1]. Some hints can also be12

found about the error induced by the presence of a discontinuity or heterogene-13

ity of the material properties [6, 7, 1], but no general stability criteria exists in14

that case. A rule of thumb extending Equation (1) is typically applied, in which15

(i) the polynomial order is indirectly taken into account by choosing h as the16

smallest distance between two interpolation points in an element, (ii) element-17

wise maximum, average, or local value of the velocity c(x) is chosen, and (iii) a18

heuristic value of the stability criteria αM is considered. Most authors (see for19

instance [8, 9, 10]) choose a stability criterion close to 0.3-0.4, but it can go20

as high as 0.6 [11, 12], or as low as 0.07 for non-conforming meshes [13] (with21

a discontinuous Galerkin approach). As with any heuristic criterion, the risk22

is either to run into unstable cases by considering a high value or to waste23

computational resources by employing a low value.24

This paper aims at describing the influence of material heterogeneity on25

the stability of explicit time marching schemes for the high-order spectral el-26

ement discretisation of wave propagation problems. A periodic fluctuation of27

the density and stiffness parameters is considered, whose period is related to28

the characteristic element size h. A classical Von Neumann stability analysis29

is performed for quadratic and cubic spectral elements in one dimension. This30

analysis not only provides an analytical stability limit but also demonstrates31

that a heuristic approach can lead to unstable simulations or to unnecessary ex-32

pensive simulations when the stability limit derived for the homogeneous case is33

adapted by simply changing the velocity of the wave to account for the material34

heterogeneity. It is worth noting that this is true even for relative low orders35

of approximation (e.g. p = 2). Several extensions of the results derived for36

quadratic and cubic one-dimensional spectral elements are discussed, including37

higher order approximations, different periodicity of the material parameters38

and higher dimensions. A number of numerical examples are presented to show39

the validity of the stability limits obtained. These values are also compared with40
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the stability limits that would be derived from the results available in the liter-41

ature for homogeneous materials. Finally, the paper presents several numerical42

examples to discuss the validity of the stability limits obtained for periodically43

fluctuating material properties when applied to problems with randomnly fluc-44

tuating material properties.45

2. Problem statement and discretisation46

2.1. Weak formulation47

Let us consider the one-dimensional acoustic wave equation in a heteroge-

neous medium Ω characterised by a density function η(x) and a Lamé parameter

γ(x),

η(x)
∂2u(x, t)

∂t2
− ∂

∂x

(
γ(x)

∂u(x, t)

∂x

)
= f(x, t), for (x, t) ∈ Ω× (0, T ], (2)

where u(x, t) is a scalar field, f(x, t) denotes a time-dependent external force

and T denotes the final time. The problem is closed by considering appropriate

initial and boundary conditions, namely

u(x, 0) = u0(x),
∂u(x, 0)

∂t
= v0(x), for x ∈ Ω. (3)

and

u(x, t) = ud(t), for x ∈ ∂Ω× (0, T ], (4)

where, to simplify the presentation, only Dirichlet boundary conditions are con-48

sidered.49

The weak statement equivalent to the strong form (2), is obtained by multi-

plying Equation (2) by a test function w(x), integrating in the whole domain and

performing an integration by parts of the term with second order spatial deriva-

tives. The resulting weak form reads: find u(x, t) ∈ Wt such that u(x, t) = ud(t)

on ∂Ω× [0, T ] and∫
Ω

η(x)w(x)
∂2u(x, t)

∂t2
dx+

∫
Ω

γ(x)
∂w(x)

∂x

∂u(x, t)

∂x
dx =

∫
Ω

w(x)f(x, t)dx, (5)
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for all w(x) ∈ H1
0(Ω), where

Wt =
{
u | u(·, t) ∈ H1(Ω), t ∈ [0, T ] and u(x, t) = ud(x, t) for (x, t) ∈ ∂Ω× [0, T ]

}
.

(6)

2.2. Spatial and temporal discretisation50

The spatial domain is discretised in elements Ωi = [xi, xi+1] and a nodal

approximation of the solution is considered within each element using the Gauss-

Lobatto-Legendre (GLL) points, denoted by {xi, xi,1, . . . , xi,p−1, xi+1}. The

first and last GLL points within an element correspond to the vertices, xi and

xi+1, respectively. The approximate solution within an element Ωi, u
i
h = uh|Ωi ,

is given by

uih(x, t) = Ni(x)Ui(t) +Ni+1(x)Ui+1(t) +

p−1∑
j=1

Ni,j(x)Ui,j(t), (7)

where {Ni, Ni,1, . . . , Ni,p−1, Ni+1} are Lagrange polynomials of degree p and51

{Ui, Ui,1, . . . , Ui,p−1, Ui+1} denote the time-dependent values of the solution at52

the nodal points.53

Introducing the approximation of the solution in the weak formulation of

Equation (5) and selecting the space of the weighting functions to be the same

as the space of the interpolation functions, leads to the semi-discrete system of

ordinary differential equations

M
d2U

dt2
+ KU = F, (8)

where the mass matrix M, the stiffness matrix K and the forcing vector F are

given by

M j
i =

∫
Ω

ηNiNjdΩ, Kj
i =

∫
Ω

γ
∂Ni
∂x

∂Nj
∂x

dΩ, Fi =

∫
Ω

NifdΩ (9)

and computed by assembling the elemental contributions.54

The integrals are computed using a numerical quadrature defined over the55

reference element. In a standard finite element method, Gauss-Legendre quadra-56

tures are considered, providing the highest order possible for a given set of inte-57

gration points. However, this formulation leads to a dense global mass matrix.58
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In the so-called spectral element method (SEM) [14, 15], the quadrature points59

are selected to be the same as the nodal points (i.e. the GLL distribution),60

leading to a diagonal global mass matrix.61

The main benefit of the SEM is its efficiency when combined with an explicit

time marching algorithm. In this work, the classical second-order accurate Leap-

Frog scheme is considered. At each time step, the solution is advanced in time

according to

Un+1 = 2Un −Un−1 + ∆t2M−1 (Fn −KUn) , (10)

where it is worth emphasising that, in the context of the SEM, each time step62

only involves the solution of a trivial system of equations with diagonal mass63

matrix.64

3. Stability analysis for quadratic spectral elements65

In this section, the model problem of Equation (2) is considered in Ω = R

with no external forces and the classical Von Neumann stability analysis is

performed for the SEM with quadratic elements. A one-dimensional uniform

mesh is considered where the element size is defined as

h = xi+1 − xi, ∀i ∈ Z (11)

and the material properties are considered periodic, with period equal to the

element size h, that is

γ(x) = γ(x+ rh) and η(x) = η(x+ rh), ∀x ∈ Ω, ∀r ∈ Z. (12)

3.1. Dispersion relations66

The SEM produces the following semi-discrete equations

M i
i

d2Ui
dt2

+
(
Ki
i−1Ui−1 +Ki

i−1,1Ui−1,1 +Ki
iUi +Ki

i,1Ui,1 +Ki
i+1Ui+1

)
= 0,

(13)

M i,1
i,1

d2Ui,1
dt2

+
(
Ki,1
i Ui +Ki,1

i,1Ui,1 +Ki,1
i+1Ui+1

)
= 0, (14)
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for a vertex and an interior node of a quadratic element respectively where, using

the corresponding GLL quadrature points, the terms of the mass and stiffness

matrix are given by

M i
i =

h

3
ηi, M i,1

i,1 =
2h

3
ηi,1, Ki

i =
2

3h
(5γi + γi,1) , Ki,1

i,1 =
16

3h
γi,

(15)

Ki
i−1,1 = Ki

i,1 = Ki,1
i = − 8

3h
γi, Ki

i−1 = Ki
i+1 =

1

3h
(3γi − 2γi,1) . (16)

Assuming plane wave solutions

Ui = α1e
I(ikh−wht) Ui,1 = α2e

I([i+1/2]kh−wht), (17)

with I =
√
−1, Equations (13) and (14) lead to the following generalised eigen-

value problem

K̂

α1

α2

 = w2
hM̂

α1

α2

 (18)

where

K̂ =

 2 cos(kh)Ki
i+1 +Ki

i Ki
i−1,1e

−Ikh/2 +Ki
i,1e

Ikh/2

Ki
i,1e
−Ikh/2 +Ki

i−1,1e
Ikh/2 Ki,1

i,1

 (19)

and

M̂ =

M i
i 0

0 M i,1
i,1

 . (20)

The characteristic equation of the generalised eigenvalue problem (18) is(
hwh
c?

)4

− 4
(
6β2 − δω2

)(hwh
c?

)2

+ 96β2ω2 = 0, (21)

with

c2? =
γi + 2γi,1
ηi + 2ηi,1

, β2 =
1

c4?

γi(γi + 2γi,1)

3ηiηi,1
, δ =

1

c2?

3γi − 2γi,1
ηi

, ω = sin(kh/2).

(22)

The parameter c? has units of velocity whereas β > 0, δ and ω are dimensionless.67

The parameter δ may be positive or negative, depending on the sign of 3γi−2γi,1.68

The homogeneous case (γi = γi,1 and ηi = ηi,1) corresponds to β = δ = 1 and69

c2? = γi/ηi = γi,1/ηi,1.70
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It is worth mentioning that the velocity c? corresponds to the approxima-71

tion of
√∫

Ωi
γ(x)/

∫
Ωi
η(x) by using the GLL quadrature with three integration72

points.73

The roots of the characteristic polynomial of Equation (21) are

w2
h,1 = 2

(c?
h

)2 (
(6β2 − δω2)−

√
(6β2 − δω2)2 − 24β2ω2

)
, (23)

w2
h,2 = 2

(c?
h

)2 (
(6β2 − δω2) +

√
(6β2 − δω2)2 − 24β2ω2

)
, (24)

which reduce to the roots of the homogeneous case considered in [1] when β =74

δ = 1.75

The Taylor series expansion of the two roots leads to

w2
h,1 = c2?k

2

[
1 +

1 + δ − 2β2

24β2
k2h2 +O(k4h4)

]
, (25)

w2
h,2 = c2?k

2

[
24β2

k2h2
− (1 + δ)− 1

24β2
(1 + δ)(1− 2β2)k2h2 +O(k4h4)

]
, (26)

where it can be observed that Equation (25) corresponds to an approximation of76

the dispersion relation of the wave equation whereas Equation (26) corresponds77

to a parasitic wave.78

It is worth noting that the particular case of a medium with δ− 2β2 = 1 in-79

duces a superconvergent phenomenon as the Taylor expansion of Equation (25)80

is of order four. Superconvergence has been previously reported for homoge-81

neous medium [1] but the analysis presented here shows that this behaviour82

can also be obtained for a heterogeneous medium. However, it is important to83

note that the objective of the Taylor expansion of the roots is to distinguish the84

parasitic wave from the physical wave rather than to extract any conclusions85

about the accuracy of the roots as the element size h tends to zero.86

3.2. Stability for the Leap-Frog scheme87

The dispersion relations for the SEM with a Leap-Frog time integrator are

given by

4

∆t2
sin2

(
w2
h,l∆t

2

)
= w2

h,l, for l = 1, 2. (27)
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The stability of the discrete scheme is controlled by the conditions w2
h,l∆t

2 ≤ 4

for l = 1, 2, that is √√√√max
l=1,2

{
sup

ω∈[−1,1]

w2
h,l(ω), 0

}
≤ 2

∆t
. (28)

The supremum of the roots is found by studying the zeros of ∂w2
h,l/∂ω for

l = 1, 2. Firstly, ∂w2
h,1/∂ω only vanishes if δ = −1 or ω = 0. If δ = −1,

w2
h,1 = 4c2?ω

2/h2, whose maximum is 4c2?/h
2. Otherwise, the supremum is

attained for ω = 0 or in the bounds of the interval, namely ω = −1 and ω = 1.

Observing that w2
h,1(−1) = w2

h,1(1) = 2c2?(6β
2 − δ −

√
(6β2 − δ)2 − 24β2)/h2,

leads to (the second value includes the maximum obtained for the special case

when δ = −1)

sup
ω∈[−1,1]

w2
h,1(ω) = 2

c2?
h2

max
{

0, 6β2 − δ −
√

(6β2 − δ)2 − 24β2
}
. (29)

Secondly, ∂w2
h,2/∂ω only vanishes when δ = −1 or ω = 0. If δ = −1, the

roots takes a constant value w2
h,2 = 24(βc?/h)2. Otherwise, observing that

w2
h,2(0) = 24(βc?/h)2 and that at the bounds of the interval w2

h,2(−1) =

w2
h,2(1) = 2c2?(6β

2 − δ +
√

(6β2 − δ)2 − 24β2)/h2, leads to

sup
ω∈[−1,1]

w2
h,2(ω) = 2

c2?
h2

max
{

12β2, 6β2 − δ +
√

(6β2 − δ)2 − 24β2
}
. (30)

The stability condition is therefore given by

α =
c?∆t

h
≤ αM , (31)

with

αM := min

{√
6

6β
,

√
2

6β2 − δ +
√

(6β2 − δ)2 − 24β2

}
. (32)

It can be observed that the well known homogeneous stability condition αM =88

1/
√

6 ≈ 0.40 (see Table 1) is recovered when β = δ = 1.89

3.3. Discussion90

The positivity of the polynomial function P (β, δ) = (6β2 − δω2)2 − 24β2ω2

is discussed next as the square root of this function appears in the stability
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constant of Equation (32). It is worth noting that the parameters β and δ can

be expressed as a function of the ratios Qγ = γi,1/γi and Qη = ηi,1/ηi and the

velocity c? can be expressed as a function of Qγ , Qη and the ratio c2i = γi/ηi as

β2 =
(1 + 2Qη)2

3Qη(1 + 2Qγ)
, δ = (3− 2Qγ)

1 + 2Qη
1 + 2Qγ

, c2? = c2i
1 + 2Qγ
1 + 2Qη

. (33)

Rewriting the polynomial as a function of the ratios of the material properties

leads to

Q2
η(1 + 2Qγ)2

(1 + 2Qη)2
P (Qγ , Qη) =

(
2(1 + 2Qη)−Qηω2(3− 2Qγ)

)2−8Qηω
2(1+2Qγ),

(34)

and by considering the right-hand side function as a polynomial in Qγ with posi-

tive leading term, its minimum is attained at Qγ = (2−4Qη+3Qηω
2)/(2Qηω

2).

After simplification, the minimum is obtained as

min
Qγ

Q2
η(1 + 2Qγ)2

(1 + 2Qη)2
P (Qγ , Qη) = 32Qη(1− ω2). (35)

As ω2 ∈ [0, 1], the minimum is always positive and it is attained for ω2 = 1.91

Therefore, it is concluded that P (β, δ) ≥ 0 for all Qγ and Qη.92

Finally, as 6β2 − δ is proportional to 2 +Qη + 6QηQγ it is clear that 6β2 −93

δ+
√
P (β, δ) ≥ 0, so the stability constant αM of Equation (32) is always a real94

number.95

The analysis presented in the previous section not only shows the stability

condition for the periodic heterogeneous media considered. More importantly,

it explains why the stability limit derived from the homogeneous case can lead

to either inefficient simulations or to instabilities if applied to a problem with

heterogeneous material properties. In the absence of theoretical results for het-

erogeneous media, a possible choice for the time step would be to consider the

value of αM of the homogeneous case and the maximum value of the nodal wave

velocities [16, 17], that is

∆t =
h

maxi{ci}
√

6
. (36)

However, contrary to the homogeneous case, in the heterogeneous case the96

supreme of wh,2 is not always attained at ω = 0. To illustrate the effect of97
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Figure 1: Ratio between the value of αM for the heterogeneous and homogeneous cases for

different values of the ratios Qγ = γi,1/γi and Qη = ηi,1/ηi. The red dot indicates the

homogeneous case and the white discontinuous line represents the change of definition of

αM given by maximum in Equation (31). The other symbols correspond to the numerical

experiments presented in Section 3.4.

the heterogeneity in the stability limit, Figure 1 shows the ratio between the98

value of αM for the heterogeneous and homogeneous cases for different values of99

the ratios Qγ and Qη. When the ratio between the value of αM for the heteroge-100

neous and homogeneous cases is lower than one, the expression of Equation (36)101

will lead to unstable results. In contrast, when the ratio is higher than one, us-102

ing Equation (36) will result in an unnecessary increased computational cost.103

It is important to emphasise that depending upon the fluctuation of the mate-104

rial parameters, the value of αM for the heterogeneous and homogeneous cases105

can differ significantly. For a fluctuation up to one order of magnitude in the106

values of γ and η, the ratio between the value of αM for the heterogeneous107

and homogeneous cases varies between 0.2 and 2.2 as shown in Figure 1. The108

discontinuous line in Figure 1 denotes the change of definition in the maximum109

appearing in the denominator of Equation (32), which corresponds to δ = −1110

or, equivalently, to Qη(2Qγ − 3) = 2.111

Interestingly, this figure can also be used as a guide for generating the com-112

11



putational mesh. Indeed, the strong asymmetry between the values of the pa-113

rameters in the middle of the elements and at the vertices means that it is114

preferable to mesh the domain with elements such that the low values of the115

parameter η(x) and the high values of the parameter γ(x) fall in the middle116

of the elements. In particular, for periodic materials and meshes, it is always117

possible to translate the mesh, and therefore to move around in Figure 1 so as118

to optimise the time step. Note that such a translation would also impact the119

accuracy, which is not considered here.120

3.4. Numerical examples121

Three numerical examples are presented to validate the stability condition

derived in this Section and to illustrate that using a condition derived for the

homogeneous case can lead to either unstable results or inefficient computations.

The domain Ω = [0, 1] is considered and the material parameters are defined as

γ(x) = γi + (γi,1 − γi) sin2(πx/h), η(x) = ηi + (ηi,1 − ηi) sin2(πx/h), (37)

where both functions are defined in terms of the values of the material parameter122

at the vertices (γi and ηi) and at the interior nodes (γi,1 and ηi,1).123

The analytical solution is given by

u(x, t) = cos(2πt) sin(2πx) (38)

and the initial, boundary conditions and source term are derived from the exact124

solution as usually done in the method of manufactured solutions. In all the125

examples, the solution is advanced in time up to a final time T = 10 and the126

relative error in the L2(Ω) norm is measured. It is worth emphasising that127

the objective of the numerical examples is not to evaluate the accuracy of the128

numerical scheme but the accuracy of the stability limit derived for quadratic129

spectral elements with a periodic fluctuation of the material properties.130

The first example considers γi = 1, γi,1 = 3, ηi = 1 and ηi,1 = 3. The131

stability condition given by Equation (32) is αM = 1/
√

7 ≈ 0.37796. Figure 2132

(a) shows the relative error in the L2(Ω) norm as a function of the value of α133
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0
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15

(b)

Figure 2: Relative error in the L2(Ω) norm as a function of α = c?∆t/h for (a) Qγ = 3, Qη = 3

and (b) Qγ = 7, Qη = 1/5. The discontinuous line represents the stability limit corresponding

to αM .

considered to define the time step ∆t for a uniform mesh with h = 0.01. It134

can be clearly observed that when the time step is defined by using a value of135

α ≤ αM stability is guaranteed, whereas a value of α > αM leads to unstable136

results. More precisely, a value of α = 0.378 (i.e, ∆t ≈ 3.78× 10−3) leads to an137

instability, with a final error of 6.1 × 107 whereas a value of α = 0.37795 (i.e,138

∆t ≈ 3.7795 × 10−3) leads to stable results, with a final error of 3.77 × 10−4.139

In this example, if the time step is computed using the results derived from the140

homogeneous case, as detailed in Equation (36), the result is ∆t ≈ 4.08× 10−3,141

clearly leading to unstable results.142

The next example considers a higher fluctuation in the material properties,143

namely γi = 1, ηi = 5, γi,1 = 7 and ηi,1 = 1. The stability condition given by144

Equation (32) is αM = 7
√

10/150 ≈ 0.14757. Figure 2 (b) shows the relative145

error in the L2(Ω) norm as a function of the value of α considered to define the146

time step ∆t for a uniform mesh with h = 0.01. As in the previous example, it147

can be clearly observed that the stability derived in this section holds.148

The previous examples considered material parameters such that the min-149

imum in Equation (32) is achieved by the first term, i.e. αM = 1/(β
√

6).150

The last example considers γi = 8, ηi = 1, γi,1 = 5 and ηi,1 = 1. The pa-151
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Figure 3: Relative error in the L2(Ω) norm as a function of α = c?∆t/h for γi = 8, ηi = 1,

γi,1 = 5 and ηi,1 = 1. The discontinuous line represents the stability limit corresponding to

αM .

rameters have been selected to ensure that the minimum in Equation (32) is152

achieved by the second term in Equation (32). The value of the stability limit is153

αM =
√

11/5 ≈ 0.66332. As in previous examples, Figure 3 shows the relative154

error in the L2(Ω) norm as a function of the value of α considered to define the155

time step ∆t for a uniform mesh with h = 0.01. The results demonstrate the156

validity of the stability limit derived in this section. As in the first example,157

if the value of the stability limit given by the homogeneous case is considered158

unstable results are obtained.159

4. Stability analysis for cubic spectral elements160

This Section presents the classical Von Neumann stability analysis for the161

SEM with cubic elements for the model problem of Equation (2). Analogously162

to the quadratic case, a one-dimensional uniform mesh is considered and the163

material properties are assumed periodic, with period equal to the element size.164
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4.1. Dispersion relations165

Following the procedure presented in Section 3.1, the characteristic equation

of the generalised eigenvalue problem for cubic spectral elements is(
hwh
c?

)6

−2(2δ1ω
2+45A1)

(
hwh
c?

)4

+120(15β2−2δ2ω
2)

(
hwh
c?

)2

−7200β2ω2 = 0,

(39)

with

c2? =
36γi(γiγi,1 + 2γi,1γi,2 + γi,2γi)

(5γ2
i + 3γiγi,1 + γi,1γi,2 + 3γi,2γi)(2ηi + 5ηi,1 + 5ηi,2)

, (40)

β2 =
1

4c6?

γi(γiγi,1 + 2γi,1γi,2 + γi,2γi)

ηiηi,1ηi,2
, (41)

A1 =
1

18c2?

(
3γi + γi,1
ηi,2

+
3γi + γi,2
ηi,1

+
5

2

2γi + γi,1 + γi,2
ηi

)
, (42)

δ1 =
1

c2?

12γi − 5γi,1 − 5γi,2
2ηi

, (43)

δ2 = 30
(ηi,1 + ηi,2)β2

(2ηi + 5ηi,1 + 5ηi,2)
− 1

4c4?
c2i

(
γi + 7γi,1
ηi,2

+
γi + 7γi,2
ηi,1

)
. (44)

The parameter c? has units of velocity while β > 0, A1 > 0, δ1, δ2 and ω are166

dimensionless. The parameters δ1 and δ2 may be positive or negative. The167

homogeneous case (γi = γi,1 = γi,2 and ηi = ηi,1 = ηi,2) corresponds to β =168

A1 = δ1 = δ2 = 1 and c2? = γi/ηi = γi,1/ηi,1 = γi,2/ηi,2.169

The roots of the characteristic polynomial of Equation (39) are

w2
h,1 =

c2?
h2

[
σ1(ω) + σ3(ω) +

σ2(ω)

σ3(ω)

]
, (45)

w2
h,2 =

c2?
h2

[
σ1(ω)− 1

2

(
σ3(ω) +

σ2(ω)

σ3(ω)

)
+

√
3

2

(
σ3(ω)− σ2(ω)

σ3(ω)

)
I

]
, (46)

w2
h,3 =

c2?
h2

[
σ1(ω)− 1

2

(
σ3(ω) +

σ2(ω)

σ3(ω)

)
−
√

3

2

(
σ3(ω)− σ2(ω)

σ3(ω)

)
I

]
, (47)

where

σ1(ω) =
2

3
(2δ1ω

2 + 45A1), σ2(ω) = σ2
1(ω)− 40(15β2 − 2δ2ω

2), (48)

σ3(ω) =

(√
σ2(ω)− σ3

2(ω) + σ(ω)

)1/3

, (49)
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σ(ω) =
σ1(ω)

2

(
3σ2(ω)− σ2

1(ω)
)

+ 3600β2ω2. (50)

As expected, the roots obtained here reduce to the homogeneous case con-170

sidered in [1] when β = A1 = δ1 = δ2 = 1.171

The Taylor series expansions of σ1, σ3 + σ2/σ3 and σ3− σ2/σ3 up to second

order are given by

σ1 = 30A1 +O(k2h2), (51)

σ3 + σ2/σ3 = 31/310ϑ1/3 + 32/310(3A2
1 − 2β2)ϑ−1/3 +O(k2h2), (52)

σ3 − σ2/σ3 = 31/310ϑ1/3 − 32/310(3A2
1 − 2β2)ϑ−1/3 +O(k2h2), (53)

where ϑ = 9A1(A2
1 − β2) +

√
3(9A2

1 − 8β2)I and it is worth noting that ϑ is172

complex because 9A2
1 − 8β2 > 0 (see Appendix A.2).173

Using the polar representation of ϑ and the De Moivre’s theorem [18], the

Taylor series expansions of σ3 + σ2/σ3 and σ3 − σ2/σ3 can be written as

σ3 + σ2/σ3 = 20
√

3(3A2
1 − 2β2) cos(θ/3) +O(k2h2), (54)

σ3 − σ2/σ3 = 20
√

3(3A2
1 − 2β2) sin(θ/3)I +O(k2h2), (55)

where

tan(θ) =

√
3(9A2

1 − 8β2)

9A1(A2
1 − β2)

. (56)

These expressions lead to the following Taylor expansions of the roots in

Equations (45), (46) and (47)

w2
h,1 = c2?k

2

[
1

h2

(
30A1 + 20

√
3(3A2

1 − 2β2) cos(θ/3)

)
+O(1)

]
, (57)

w2
h,2 = c2?k

2

[
1

h2

(
30A1 − 20

√
3(3A2

1 − 2β2) cos((θ + π)/3)

)
+O(1)

]
, (58)

w2
h,3 = c2?k

2

[
1

h2

(
30A1 − 20

√
3(3A2

1 − 2β2) cos((θ − π)/3)

)
+O(1)

]
= c2?k

2
[
1 +O(k2h2)

]
. (59)

where it can be observed that Equation (59) corresponds to an approximation174

of the dispersion relation of the wave equation whereas Equations (57) and (58)175
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correspond to two parasitic waves. As pointed out in Section 3.1, the objective176

of presenting the Taylor expansion of the roots is to distinguish the parasitic177

waves from the physical wave and not to analyse the accuracy of the roots as178

the element size h tends to zero.179

To show that 30A1 = 20
√

3(3A2
1 − 2β2) cos((θ − π)/3) (i.e. the root wh,3180

corresponds to the physical wave), the roots of the polynomial S(x) = 4x3 −181

3x − cos(φ) are considered, namely cos(φ/3), cos((2π + φ)/3) and cos((4π +182

φ)/3). As x? = 3A1(3A2
1 − 2β2)/(2|ϑ|) is a root of S(x) for φ = θ − π, it183

is clear that x? must be equal to one of the three roots x1 = cos((θ − π)/3),184

x2 = cos((θ + π)/3) and x3 = cos((θ + 3π)/3). The polar decomposition of185

ϑ implies 0 ≤ θ ≤ π because sin θ = ={ϑ}/|ϑ| ≥ 0. Therefore x1 ∈ (1/2, 1),186

x2 ∈ (−1/2, 1/2) and x3 ∈ (−1,−1/2). Finally, the positivity of β implies187

that 30A1/(20
√

3(3A2
1 − 2β2)) = 1/(2

√
1− 2β2/(9A2

1)) ≥ 1/2 and therefore188

x? = x1, which implies that the third root wh,3 corresponds to the physical189

wave.190

4.2. Stability for the Leap-Frog scheme191

The dispersion relations for the SEM with a Leap-Frog time integrator are

given by

4

∆t2
sin2

(
w2
h,l∆t

2

)
= w2

h,l, for l = 1, 2, 3. (60)

The stability of the discrete scheme is controlled by the conditions192

√√√√ max
l=1,2,3

{
sup

ω∈[−1,1]

w2
h,l(ω), 0

}
≤ 2

∆t
. (61)

In this case, the maximum of the functions cannot be obtained explicitly so

the strategy described in [1] is followed. Setting kh = 2πK and λl = h2w2
h,l/c

2
?,

for l = 1, 2, 3, and using that w2
h,l are the roots of the characteristic polynomial,

leads to

P (λl) = λ3
l − 90A1λ

2
l + 1800β2λl − 4ω2T (λl) = 0. (62)

with ω = sin(πK) and T (λl) = δ1λ
2
l + 60δ2λl + 1800β2.193
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Taking the derivative of Equation (62) with respect to K and noting that

the maximum of λl, and consequently the maximum of w2
h,l, is attained when

dλl/dK = 0, leads to

ω
√

1− ω2T (λl) = 0. (63)

Equation (63) contains three classes of solutions. As discussed in Appendix

A, the only two solutions relevant from the point of view of the stability of the

Leap-Frog scheme are

χ2 = 15

(
3A1 +

√
9A2

1 − 8β2

)
, χ4 =

[
τ1 + τ3 +

τ2
τ3

]
, (64)

where τi = σi(1) for i = 1, 2, 3.194

The stability condition is therefore given by

α =
c?∆t

h
≤ αM , (65)

with

αM =
2

max {√χ2,
√
χ4}

. (66)

It is worth noting that for a homogeneous medium the polynomial T , which195

reduces to the case presented in [1], has no real roots and there are only two196

classes of solutions. It can also be observed that the well known homogeneous197

stability condition αM = 2/
√

6(7 +
√

29) ≈ 0.23 (see Table 1) is recovered when198

β = A1 = δ1 = δ2 = 1.199

4.3. Numerical examples200

Three numerical examples are considered to validate the stability condition

derived in this Section and to illustrate that using a condition derived for the

homogeneous case can lead to either unstable results or inefficient simulations.

The domain Ω = [0, 1] is considered and the material parameters are defined as

γ(x) = φ1 + φ2 sin (2πx/h+ φ3) , η(x) = ψ1 + ψ2 sin (2πx/h+ ψ3) (67)

where the constants φi and ψi, for i = 1, 2, 3 are selected so that γ(xi) = γi,201

γ(xi,1) = γi,1, γ(xi,2) = γi,2, η(xi) = ηi, η(xi,1) = ηi,1 and η(xi,2) = ηi,2.202
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Figure 4: Relative error in the L2(Ω) norm as a function of α = c?∆t/h for (a) Qγ,1 =

Qγ,2 = 10, Qη,1 = Qη,2 = 1/10 and (b) Qγ,1 = 1, Qγ,2 = 1/10, Qη,1 = Qη,2 = 1/10. The

discontinuous line represents the stability limit corresponding to αM .

The analytical solution given in Equation (38) is again considered and the203

initial, boundary conditions and source term are derived from the exact solution204

as usually done in the method of manufactured solutions. In all the examples,205

the solution is advanced in time up to a final time T = 10 and the relative206

error in the L2(Ω) norm is measured. Analogously to the previous examples in207

Section 3.4, the goal is to evaluate the accuracy of the stability limit derived for208

cubic spectral elements with a periodic fluctuation of the material properties209

and not to study the accuracy of the numerical scheme.210

The first example considers γi = 10, γi,1 = 1, γi,2 = 1, ηi = 1, ηi,1 = 10211

and ηi,2 = 10. The stability condition from Equation (66) is αM ≈ 0.03265212

and it is given by the first term in the maximum in Equation (66). Figure 4213

(a) shows the relative error in the L2(Ω) norm as a function of the value of α214

considered to define the time step ∆t for a uniform mesh with h = 0.01. It215

can be clearly observed that when the time step is defined by using a value of216

α ≤ αM stability is guaranteed, whereas a value of α > αM leads to unstable217

results. In this example, if the time step is computed using the results derived218

from the homogeneous case, as detailed in Equation (36), the time step would219

be selected as ∆t ≈ 2.15× 10−3 clearly leading to unstable results as it is more220
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Figure 5: Relative error in the L2(Ω) norm as a function of α = c?∆t/h for γi = 1, γi,1 = 1,

γi,2 = 10, ηi = 10, ηi,1 = 10 and ηi,2 = 1. The discontinuous line represents the stability

limit corresponding to αM .

than two times higher than the bound derived for the heterogeneous case, i.e.221

∆t ≤ 8.78× 10−4.222

The second example considers γi = 1, γi,1 = 1, γi,2 = 10, ηi = 1, ηi,1 = 10223

and ηi,2 = 10. The stability condition from Equation (66) is αM ≈ 0.073814 and224

it is now given by the second term in the maximum in Equation (66). Figure 4225

(b) shows the relative error in the L2(Ω) norm as a function of the value of α226

considered to define the time step ∆t for a uniform mesh with h = 0.01. Again,227

the results illustrate the validity of the stability limit found in this Section.228

In this example, if the time step is computed using the results derived from229

the homogeneous case (∆t ≈ 6.81 × 10−3) unstable results are obtained as the230

stability limit induces a time step more than four times smaller, i.e. ∆t ≤231

1.55× 10−3.232

The last example considers a case where the time step computed using the233

homogeneous results leads to stable results but the simulation is less efficient234

than if the time step was computed from the heterogeneous bound presented in235

this Section. The material parameters are given by γi = 1, γi,1 = 1, γi,2 = 10,236

ηi = 10, ηi,1 = 10 and ηi,2 = 1. Figure 5 shows the relative error in the L2(Ω)237

norm as a function of the value of α considered to define the time step ∆t238

for a uniform mesh with h = 0.01. Once more, the validity of the proposed239
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stability limit is clearly demonstrated. In this case both terms in the maximum240

in Equation (66) have a similar value, namely χ2 ≈ 77.41 and χ4 ≈ 75.19. If the241

time step is computed using the results derived from the homogeneous case, the242

time step would be selected as ∆t ≈ 2.15×10−3, exactly the same as in the first243

example, leading to stable results here. When compared to the stability limit244

for the heterogenerous case (i.e. ∆t ≈ 4.08× 10−3), the results reveal that the245

simulation using the time step computed from the homogeneous case results in246

almost twice the cost of the simulation with the time step computed from the247

heterogeneous stability limit.248

5. Extensions249

This Section briefly discusses three extensions of the analysis presented in250

detail for quadratic and cubic spectral elements in Sections 3 and 4 respectively.251

The extension to high-order polynomial approximations, larger periodicity of the252

material parameter fields and higher dimensions are considered.253

5.1. Higher order polynomial approximations254

The Von Neumann stability analysis described in previous sections can be255

extended to any order of the polynomial approximation. A detailed analysis,256

as presented for the quadratic and cubic case, is difficult due to the increase257

of the degree of the characteristic polynomial with the order of the polynomial258

approximation. However, with the aid of a symbolic package it is possible to259

obtain an exact expressions of the stability limit for a degree of approximation260

p = 4. For higher orders, it is always possible to obtain an accurate approx-261

imation of the stability limit by employing standard root finding algorithms262

(e.g. Newton-Raphson) to estimate the value of the roots of the characteristic263

polynomial.264

Two examples are considered to validate the stability condition derived for

p = 4. The domain Ω = [0, 1] is considered and the material parameters are
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Figure 6: Relative error in the L2(Ω) norm as a function of ∆t for (a) γi = 10, γi,1 = 1,

γi,2 = 1, γi,3 = 10, ηi = 1, ηi,1 = 10, ηi,2 = 10, ηi,1 = 1 and (b) γi = 4, γi,1 = 2, γi,2 = 1,

γi,3 = 5, ηi = 3, ηi,1 = 6, ηi,2 = 1, ηi,1 = 4. The discontinuous line represents the stability

limit.

defined as

γ(x) = φ1 + φ2 sin (2πx/h) + φ3 cos (2πx/h) + φ4 sin2 (2πx/h) , (68a)

η(x) = ψ1 + ψ2 sin (2πx/h) + ψ3 cos (2πx/h) + ψ4 sin2 (2πx/h) (68b)

where the constants φi and ψi, for i = 1, . . . , 4, are selected so that γ(xi) = γi,265

γ(xi,k) = γi,k, η(xi) = ηi and η(xi,k) = ηi,k for k = 1 . . . , 3. The analytical266

solution given in Equation (38) is again considered.267

The first example considers γi = 10, γi,1 = 1, γi,2 = 1, γi,3 = 10, ηi = 1,268

ηi,1 = 10, ηi,2 = 10 and ηi,1 = 1. The stability condition derived with the aid269

of a symbolic package is ∆t ≈ 5.0197 × 10−3. Figure 6 (a) shows the relative270

error in the L2(Ω) norm as a function of the time step ∆t for a uniform mesh271

with h = 0.01. A second example is considered with γi = 4, γi,1 = 2, γi,2 = 1,272

γi,3 = 5, ηi = 3, ηi,1 = 6, ηi,2 = 1 and ηi,1 = 4. The stability condition is273

∆t ≈ 1.3047× 10−3. Figure 6 (b) shows the relative error in the L2(Ω) norm as274

a function of the time step ∆t.275

In both cases, the results demonstrate the validity of the stability limit276

obtained for quartic spectral elements.277
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5.2. Larger periodicity of the material parameter fields278

The extension to problems involving material properties whose periodicity279

is larger than a single element is also possible using the Von Neumann analysis280

described in previous sections. Once more, the difficulty increases due to the281

higher degree of the characteristic polynomial. With the aid of a symbolic pack-282

age, it is possible to obtain an exact expressions of the stability limit only for283

quadratic spectral elements and periodicity equals to 2h, where h is the char-284

acteristic element size. For higher orders approximations with periodicity 2h or285

for larger periodicities, it is always possible to obtain an accurate approximation286

of the stability limit by employing standard root finding algorithms.287

Two examples are considered to validate the stability condition derived for288

quadratic spectral elements and periodicity 2h. The domain Ω = [0, 1] is con-289

sidered and the material parameters are defined in Equation (68). In this case,290

the constants φi and ψi, for i = 1, . . . , 4, are selected so that γ(x2k+1
1 ) = γ2k+1

1 ,291

γ(x2k+1
i,1 ) = γ2k+1

i,1 , γ(x2k
1 ) = γ2k

1 , γ(x2k
i,1) = γ2k

i,1, η(x2k+1
1 ) = η2k+1

1 , η(x2k+1
i,1 ) =292

η2k+1
i,1 , η(x2k

1 ) = η2k
1 and η(x2k

i,1) = η2k
i,1 where the superscript is used to specify293

odd and even element numbers.294

The first example considers γ2k+1
1 = 10, γ2k+1

i,1 = 1, γ2k
1 = 1, γ2k

i,1 = 10,295

η2k+1
1 = 1, η2k+1

i,1 = 10, η2k
1 = 10 and η2k

i,1 = 1. The stability condition derived296

with the aid of a symbolic package is ∆t ≈ 1.7167 × 10−3. Figure 7 (a) shows297

the relative error in the L2(Ω) norm as a function of the time step ∆t for a298

uniform mesh with h = 0.01. A second example is considered with γ2k+1
1 = 4,299

γ2k+1
i,1 = 2, γ2k

1 = 1, γ2k
i,1 = 5, η2k+1

1 = 3, η2k+1
i,1 = 6, η2k

1 = 1 and η2k
i,1 = 4. The300

stability condition is ∆t ≈ 3.6820× 10−3. Figure 7 (b) shows the relative error301

in the L2(Ω) norm as a function of the time step ∆t.302

The results demonstrate the validity of the stability limit obtained for a303

larger periodicity of the material parameter fields with quadratic approximation.304

It is also worth noting that the magnitude of the material parameters at the305

mesh nodes is the same as in the example with p = 4 spectral elements. However,306

it is clear from the numerical results in Figures 6 and 7 that the stability limit307

is significantly different, being more restrictive for high order approximations.308
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Figure 7: Relative error in the L2(Ω) norm as a function of ∆t for (a) γ2k+1
1 = 10, γ2k+1

i,1 = 1,

γ2k1 = 1, γ2ki,1 = 10, η2k+1
1 = 1, η2k+1

i,1 = 10, η2k1 = 10, η2ki,1 = 1 and (b) γ2k+1
1 = 4, γ2k+1

i,1 = 2,

γ2k1 = 1, γ2ki,1 = 5, η2k+1
1 = 3, η2k+1

i,1 = 6, η2k1 = 1, η2ki,1 = 4. The discontinuous line represents

the stability limit.

5.3. Higher dimensions309

Following the methodology described in [1, Section 12.2] (and originally de-310

rived in [19, 20]) for homogeneous materials, the results presented in this paper311

for one-dimensional problems can be easily extended to higher dimensions when312

the functions that describe the material properties can be written as a tensor313

product of one-dimensional functions.314

Assuming the following decomposition in d dimensions:

η(x1, . . . , xd) =
d∏
k=1

ηk(xk) γ(x1, . . . , xd) =
d∏
k=1

γk(xk), (69)

where ηk(xk) and γk(xk) denote the one-dimensional material field in the xk

direction, it can be shown, using an extension of the original method described in

previous sections, that the roots of the characteristic equation correspond to the

sum of the roots of the one-dimensional characteristic equations corresponding

to one-dimensional material fields

w2
h,ld

(ω) =

d∑
k=1

w2
h,l,k(ω), l = 1, . . . , p, k = 1, . . . , d (70)
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where wh,l,k(ω) denotes a root of Equation (21) with parameter fields ηk(xk)

and γk(xk). The stability limit can be written as

∆t ≤ 2√√√√max
1≤l≤p

{
sup

ω∈[−1,1]

(
d∑
k=1

w2
h,l,k(ω)

)
, 0

} . (71)

With the aid of a symbolic package, it is possible to find the supremum of315

Equation (71) for quadratic elements in two dimensions. For higher orders in316

two dimensions, or higher dimensions, the supremum can be found by using317

standard root finding algorithms.318

Alternatively, an upper bound of the roots of the characteristic polynomial

corresponding to the multi-dimensional problem can be expressed as

max
1≤l≤p

{
sup

ω∈[−1,1]

(
d∑
k=1

w2
h,l,k(ω)

)
, 0

}
≤

d∑
k=1

(
max

1≤l≤p

{
sup

ω∈[−1,1]

w2
h,l,k(ω), 0

})
(72)

and a conservative stability limit, using results from the one-dimensional anal-

ysis, reads

∆t ≤ 2√√√√ d∑
k=1

(
max

1≤l≤p

{
sup

ω∈[−1,1]

w2
h,l,k(ω), 0

}) . (73)

319

It is worth noting that, if Equation (72) is an equality, then the stabil-320

ity limit derived from a one-dimensional analysis is exact. Furthermore, when321

wh,l,1 = . . . = wh,l,d, for l = 1, . . . , p, the stability limit in d dimensions is ob-322

tained by dividing the one-dimensional stability limit by
√
d. A particular case323

corresponds to a medium where the material properties in each dimension co-324

incide, that is η1(x1) = . . . = ηd(xd) and γ1(x1) = . . . = γd(xd). This confirms325

the results detailed in [1] for a homogeneous medium.326

In the case of non-tensorised material properties (i.e. when Equation (69) is327

not verified), one-dimensional results cannot be employed and the Von Neumann328

stability analysis must be repeated for the full multi-dimensional problem.329

Two examples in two dimensions are considered to validate the stability

limits derived for the multi-dimensional case with quadratic spectral elements.
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The domain Ω = [0, 1]2 is considered and the material parameters are defined,

similarly to the one-dimensional case with p = 2 presented in Section 3, as

γ1(x) = γ1
i + (γ1

i,1 − γ1
i ) sin2(πx/h), η1(x) = η1

i + (η1
i,1 − η1

i ) sin2(πx/h),

(74a)

γ2(x) = γ2
i + (γ2

i,1 − γ2
i ) sin2(πx/h), η2(x) = η1

i + (η2
i,1 − η2

i ) sin2(πx/h).

(74b)

The first example considers a material with γ1
i = 1, γ1

i,1 = 3, γ2
i = 2, γ2

i,1 = 4,330

η1
i = 2, η1

i,1 = 6, η2
i = 4 and η2

i,1 = 8. Figure 8 (a) shows the L2(Ω) norm of the331

solution at time T = 10 as a function of ∆t. The red and blue discontinuous332

lines represent the stability limit of Equations (71) and (73) respectively. It can333

be clearly observed that the stability limit derived for the multi-dimensional334

problem is exact whereas the stability limit derived from the one-dimensional335

analysis is conservative due to the bound introduced in Equation (72). A second336

example is considered using a medium that leads to an equality in Equation (72),337

meaning that the stability limit in Equation (73) is exact. Figure 8 (b) shows338

the L2(Ω) norm of the solution at time T = 10 as a function of ∆t for a material339

with γ1
i = 1, γ1

i,1 = 3, γ2
i = 1, γ2

i,1 = 3, η1
i = 2, η1

i,1 = 6, η2
i = 2 and η2

i,1 = 6. In340

this case the red and blue lines are overlapped as the two stability limits given341

by Equations (71) and (73) coincide.342

6. Numerical examples in randomly fluctuating media343

This Section presents a number of examples of wave propagation in ran-344

domly heterogeneous media. The periodicity hypothesis for the material prop-345

erties does not hold and therefore, the stability analyses in Sections 3 and 4346

are theoretically not valid. However, the objective is to show that the criteria347

developed in this paper still provide reasonable estimates for the stability in348

more complex scenarios.349
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Figure 8: L2(Ω) norm of the solution at time T = 10 as a function of ∆t for (a) γ1i = 1,

γ1i,1 = 3, γ2i = 2, γ2i,1 = 4, η1i = 2, η1i,1 = 6, η2i = 4, η2i,1 = 8 and (b) γ1i = 1, γ1i,1 = 3, γ2i = 1,

γ2i,1 = 3, η1i = 2, η1i,1 = 6, η2i = 2, η2i,1 = 6. The red and blue discontinuous lines represent the

stability limit of Equations (71) and (73) respectively. In (b), the red and blue lines overlap.

6.1. Stability of wave propagation in quasi-periodic randomly heterogeneous me-350

dia351

The propagation of a wave in Ω = [0, 1] is considered. The domain is352

meshed with 20 elements of length h = 0.05. The material properties are353

randomly fluctuating within the elements, but always take the same value at354

the vertices (see two examples in Figure 9). More specifically, the parame-355

ters at all the vertices are ηi = 5 and γi = 2, whereas within the elements356

(one node for quadratic polynomials, and two nodes for cubic polynomials)357

they are realisations of independent log-normal random variables with averages358

η = E[η(x)] = 5 and γ = E[γ(x)] = 2 and variances σ2
η = E[(η(x) − η)2] = 32359

and σ2
γ = E[(γ(x) − γ)2] = 2. Although there is no analytical solution for this360

problem, the same boundary conditions, initial conditions and source term as in361

the examples of Section 3.4 are considered. In all the examples, the solution is362

advanced in time up to a final time T = 10 and the L2(Ω) norm of the solution363

u(x, T ) is measured.364

The stability limits of Equation (32) and (66) are modified slightly because

the equivalent velocity c? is not constant throughout the elements. The stability
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(a) (b)

Figure 9: Two realisations of the quasi-periodic randomly fluctuating properties for (a)

quadratic and (b) cubic polynomials. The solid and dashed fluctuating lines represent the

two realisations, respectively, and the lower line represents the mesh elements. The circles

indicate the position of the vertices.

limit is therefore taken directly in terms of the time step as

∆t ≤ hmin

(
αM
c?

)
, (75)

where the minimum is taken over all elements of the mesh, and αM is given365

by Equation (32) with element-dependent β and δ, and (66) with element-366

dependent β, δ1, δ2 and A1, for quadratic and cubic polynomials, respectively.367

As only 20 elements are considered, there is a strong variability of the time368

step (and the actual stability limit) computed for different realisations of the369

material properties. Figure 10 presents the probability density function (PDF)370

of the time step ∆t computed with Equation (75) for different realisations of the371

20 elements-long bar. As this PDF depends on the length, three different lengths372

are considered. The estimations of the PDFs are obtained through Monte Carlo373

sampling with 100,000 realisations and 50 bins for the histogram. As expected,374

it can be observed that the stability limit becomes more stringent for longer375

domains, for both quadratic and cubic polynomials. It is also interesting to376

note that the heterogeneous stability limit is systematically higher than the377

homogeneous stability limit (for this particular setting), which means that using378

the homogeneous criterion would yield an unnecessary higher computational379

cost.380
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Figure 10: Probability density function of the time step ∆t computed with Equation (75) for

(a) quadratic and (b) cubic polynomials. The three solid lines correspond to lengths of 10,

20 and 50 elements respectively (the smallest ∆t corresponds to the longest domain) and the

thin dashed line corresponds to the homogeneous stability criterion of Equation (36) for the

same lengths.

Figure 11 presents stability results, obtained for three different realisations381

of the 20-element domain described above. As expected, the stability criterion382

is not as precise as in the periodic case, since the theoretical derivation is not383

applicable, but it is interesting to note that, for the three realisations considered,384

the stability constant is both conservative and accurate. It is conservative in385

the sense that instability seems to arise for larger time steps than predicted by386

the stability coefficient. It is accurate in the sense that there is a very small387

difference between the time step predicted and the time step for which instability388

arises. This stability limit is compared to the homogeneous stability criterion of389

Equation (36), which confirms the previous observation that the homogeneous390

criterion is systematically overly conservative for this particular setting.391

Finally, the relative distance to instability provided by the stability limit in

Equation (75) is computed for 1,000 samples of 20 elements of the bar of the

PDF. This relative distance is defined as

DtI = 2
∆tinstab −∆t

∆tinstab + ∆t
, (76)

where ∆tinstab is the time step at which instability emerges for a given sample.392
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Figure 11: L2(Ω) norm of the solution at time T = 10 as a function of ∆t for three realisations

of a quasi-periodic randomly fluctuating case with (a) quadratic and (b) cubic polynomials.

The discontinuous red line represents the heterogeneous stability criterion of Equation (75),

and the discontinuous blue line correspond to the homogeneous stability criterion of Equa-

tion (36).

This coefficient is clearly expected to be small if the stability limit is accu-393

rate and it is expected to be positive if the stability limit is conservative. The394

PDF for the relative distance to instability is approximated using 50 bins and395

represented in Figure 12. It is remarkable that, even though the theory is not396

directly applicable because the material properties are not periodic, the stability397

criterion is still both accurate and conservative. In particular, it is much more398

accurate than the homogeneous stability limit estimated with Equation (36). It399

is interesting to note that, even though it is mostly conservative, the homoge-400

neous limit does induce instability in some cases (i.e. the dashed curve does not401

vanish completely for negative values of the instability limit in Figure 12), at402

least in the quadratic case.403

6.2. Stability of wave propagation in randomly heterogeneous media404

The following set of numerical examples considers the wave propagation in405

a randomly heterogeneous medium. The constraint of having the same value406

of the material properties in the mesh vertices is removed (see two examples407
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Figure 12: Probability density function of the relative distance (in time) to instability for

quadratic (left figure) and cubic polynomials (right figure). The solid lines represent the

heterogeneous stability criterion of Equation (75), and the discontinuous lines correspond to

the homogeneous stability criterion of Equation (36).

in Figure 13) and the applicability of the stability limits derived for periodic408

material properties is studied numerically.409

The parameters are realisations of statistically homogeneous random fields410

with log-normal first-order marginal densities with averages η = E[η(x)] = 5 and411

γ = E[γ(x)] = 2 and variances σ2
η = E[(η(x) − η)2] = 32 and σ2

γ = E[(γ(x) −412

γ)2] = 2. As in the previous examples, the random fields of the two parameters413

are assumed independent. The solution is advanced in time up to a final time414

T = 10 and the L2(Ω) norm of the solution u(T ) is measured.415

Computing the solution for 1000 realisations of the random fields, either416

with quadratic or cubic polynomials, it is possible to construct the PDF of the417

relative distance to instability, as in Equation (76). These PDF are represented418

in Figure 14. Contrary to the case of the quasi-periodic fields, the heteroge-419

neous stability criterion of Equation (75) is not always conservative, although420

it remains rather accurate. Comparing this limit to the homogeneous stabil-421

ity criterion of Equation (36), it is not very clear which estimate is the most422

appropriate for a given simulation. Indeed, in most cases, conservatism would423

probably be preferred over precision. Indeed, running into instability forces the424

user to restart the simulation completely, while a slightly over-constrained time425
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(a) (b)

Figure 13: Two realisations of the non-periodic randomly-fluctuating properties for (a)

quadratic and (b) cubic polynomials. The solid and dashed fluctuating lines represent the

two realisations, respectively, and the lower line represents the mesh elements. The circles

indicate the position of the vertices.
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Figure 14: Probability density function of the relative distance (in time) to instability for

quadratic (left figure) and cubic polynomials (right figure). The solid lines represent the

heterogeneous stability criterion of Equation (75), and the discontinuous lines correspond to

the homogeneous stability criterion of Equation (36).

step only means a longer simulation time. This conclusion remains the same for426

both quadratic and cubic polynomials.427
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6.3. Influence of correlation length428

Finally, correlated random fields for the parameters are considered, instead429

of the white noise that was considered in previous examples with randomly430

fluctuating material properties. The first-order marginal densities of the random431

fields are the same as in the previous section. In addition, triangular power432

density spectra is considered, with correlation length `c = h and `c = 3h. From433

these random models, realisations can be drawn (using for instance the spectral434

representation method [21]) to obtain values of the material parameters at the435

vertices and at the interior nodes. Computing the solution for 1,000 realisations436

of the random fields, either with quadratic or cubic polynomials, the PDFs of the437

relative distance to instability, as in Equation (76), are displayed in Figure 15.438

To better analyse the results, the results reported in Figure 14, which formally439

corresponds to `c = 0, should be also considered. Similarly to the examples440

with randomly fluctuating material properties, the heterogeneous criterion is441

overall less conservative and more precise than the homogeneous criterion. As442

expected, the two curves are closer when the correlation length increases, since443

this corresponds to material properties being close to a homogeneous medium.444

7. Concluding remarks445

The stability of an explicit time marching algorithm for the spectral ele-446

ment method in a medium with periodically fluctuating material parameters447

has been discussed. A detailed Von Neumann stability analysis is presented for448

quadratic and cubic polynomial approximations under the assumption of peri-449

odic heterogeneous media with period equal to the characteristic element size.450

The theoretical stability limits are demonstrated to be valid using numerical451

examples. More important, the analysis reveals the origin of instabilities that452

are often observed when the stability limit derived for homogeneous materials453

is adapted by simply changing the velocity of the wave to account for the ma-454

terial heterogeneity. The numerical examples show that adapting homogeneous455
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(b) `c = 3h and p = 2
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(d) `c = 3h and p = 3

Figure 15: Probability density function of the relative distance (in time) to instability for

1000 realisations of correlated samples. The solid lines represent the heterogeneous stability

criterion of Equation (75) and the discontinuous lines correspond to the homogeneous stability

criterion of Equation (36).

formulae for heterogeneous media leads to either instability or to unnecessary456

increased computational resources.457

Extensions of the results derived for quadratic and cubic one-dimensional458

spectral elements are discussed, including higher order approximations, differ-459

ent periodicity of the material parameters and higher dimensions. The main460

limitation of the analysis presented here is that exact formulas can only be de-461

rived when the degree of the characteristic polynomial is low (i.e. moderate462

polynomial orders of approximation, moderate period of the material parame-463

34



ters compared to the element sizes), despite the methodology is still applicable464

when combined with a root finding algorithm.465

Extensive numerical results demonstrate the validity of the new stability466

limits derived for heterogeneous materials with periodic fluctuation. In addition,467

further numerical experiments of the stability for randomly fluctuating material468

properties are presented. These numerical experiments reveal that the stability469

limits derived for periodically fluctuating material properties are precise when470

the material parameters take the same value at the vertices of the mesh. In471

contrast, for fully randomly fluctuating material properties its accuracy is lower.472
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Sêr Cymru National Research Network for Advanced Engineering and Materials,478

United Kingdom.479

References480

[1] G. Cohen, Higher-order numerical methods for transient wave equations,481

Scientific Computation, Springer, 2001.482

[2] J. D. De Basabe, M. K. Sen, Grid dispersion and stability criteria of some483

common finite-element methods for acoustic and elastic wave equations,484

Geophysics 72 (6) (2007) T81–T95.485

[3] J. D. De Basabe, M. K. Sen, Stability of the high-order finite elements486

for acoustic or elastic wave propagation with high-order time stepping,487

Geophysical Journal International 181 (2010) 577–590.488

35



[4] C. Agut, J. Diaz, Stability analysis of the interior penalty discontinuous489

Galerkin method for the wave equation, ESAIM: Mathematical Modelling490

and Numerical Analysis 47 (3) (2013) 903–932.491

[5] W. Mulder, E. Zhebel, S. Minisini, Time-stepping stability of continuous492

and discontinuous finite-element methods for 3-d wave propagation, Geo-493

physical Journal International 196 (2) (2014) 1123–1133.494

[6] Y. Maday, E. M. Ronquist, Optimal error analysis of spectral methods with495

emphasis on non-constant coefficients and deformed geometries, ICASE496

Report 89-56, NASA Langley Research Center (1989).497

[7] G. Seriani, E. Priolo, Spectral element method for acoustic wave simulation498

in heterogeneous media, Finite elements in analysis and design 16 (3) (1994)499

337–348.500

[8] D. Komatitsch, S. Tsuboi, J. Tromp, The spectral-element method in seis-501

mology, in: A. Levander, G. Nolet (Eds.), Seismic Earth: Array Analysis502

of Broadband Seismograms, Vol. 157 of Geophysical Monograph, American503

Geophysical Union, 2005, pp. 205–228.504

[9] E. Casarotti, M. Stupazzini, S. J. Lee, D. Komatitsch, A. Piersanti,505

J. Tromp, CUBIT and seismic wave propagation based upon the spectral-506

element method: an advanced unstructured mesher for complex 3D geolog-507

ical media, in: M. L. Brewer, D. Marcum (Eds.), Proceedings of the 16th508

International Meshing Roundtable, no. 5B, Springer, 2008, pp. 579–597.509

[10] P. Cupillard, E. Delavaud, G. Burgos, G. Festa, J.-P. Vilotte, Y. Capdeville,510

J.-P. Montagner, RegSEM: a versatile code based on the spectral element511

method to compute seismic wave propagation at the regional scale, Geo-512

physical Journal International 188 (3) (2012) 1203–1220.513

[11] K. C. Meza Fajardo, Numerical simulation of wave propagation in un-514

bounded elastic domains using the spectral element method, Ph.D. thesis,515
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Appendix A. Solutions of Equation (63)545

The three classes of solutions of Equation (63) and their relevance to the546

stability of the Leap-Frog scheme are discussed in this Appendix.547

Appendix A.1. Solutions corresponding to ω = 0548

Introducing ω = 0 into the characteristic polynomial of Equation (62), the

following cubic equation is obtained

λ3
l − 90A1λ

2
l + 1800β2λl = 0, (A.1)

whose solutions are

χ1 = 0, χ2 = 15

(
3A1 +

√
9A2

1 − 8β2

)
, χ3 = 15

(
3A1 −

√
9A2

1 − 8β2

)
.

(A.2)

Using the definition of the parameters A1 and β, and after algebraic manipula-

tions, it can be shown that the condition 9A2
1 − 8β2 > 0 is equivalent to

(γi + γi,1)2

ηiηi,2
+

(γi + γi,2)2

ηiηi,1
+

(3γi + γi,1)2

5η2
i,2

+
(3γi + γi,2)2

5η2
i,1

+
8γ2
i

5ηi,1ηi,2

+
5

4η2
i

(
(2γi + γi,1)2 + 4γiγi,2 + 2γi,1γi,2 + γ2

i,2

)
> 0 (A.3)

which is clearly satisfied for any choice of the material parameters. Therefore,549

the three solutions in Equation (A.2) are always real. More importantly, the550

maximum of the three solutions is always attained by χ2, meaning that this is551

the only relevant solution for the stability of the Leap-Frog scheme.552

Appendix A.2. Solutions corresponding to ω2 = 1553

Introducing ω2 = 1 into the characteristic polynomial of Equation (62), the

following cubic equation is obtained

λ3
l − 3σ1(1)λ2

l + 6σ2(1)λl − 2σ3(1) = 0, (A.4)
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and the three roots are

χ4 = τ1 + τ3 +
τ2
τ3
, (A.5)

χ5 = τ1 −
1

2

(
τ3 +

τ2
τ3

)
+

√
3

2

(
τ3 −

τ2
τ3

)
I, (A.6)

χ6 = τ1 −
1

2

(
τ3 +

τ2
τ3

)
−
√

3

2

(
τ3 −

τ2
τ3

)
I, (A.7)

where τi = σi(1) for i = 1, 2, 3.554

From the definitions in Equations (48) and (49), it is clear that τ1 and τ2555

are real, whereas τ3 can be real or complex.556

If τ3 is real, then χ4 is real and χ5 and χ6 are complex. In this case only χ4557

is relevant from the point of view of the stability of the Leap-Frog scheme.558

If τ3 is complex then it can be shown that τ2 = |τ3|2 by using Equation (49).

This implies that χ4, χ5 and χ6 are real and they can be rewritten as

χ4 = τ1 + 2<{τ3}, (A.8)

χ5 = τ1 −<{τ3} −
√

3={τ3}, (A.9)

χ6 = τ1 −<{τ3}+
√

3={τ3}, (A.10)

It is possible to prove that χ4 is always the maximum of the three roots and559

therefore it is the only relevant from the point of view of the stability of the560

Leap-Frog scheme. Using the polar representation of a complex number, τ3 can561

be written as τ3 =
√
τ2[cos(θ) + i sin(θ)]1/3 where tan(θ) =

√
τ3
2 − τ2/τ . It is562

worth noting that τ3
2 − τ2 > 0 because of the assumption of τ3 being complex.563

The application of the De Moivre’s theorem [18] leads to

<{τ3} =
√
τ2 cos(θ/3), ={τ3} =

√
τ2 sin(θ/3). (A.11)

Finally, it can be observed that, if θ ∈ [0, π), then ={τ3} > 0. This clearly564

implies that χ6 > χ5. More importantly, θ ∈ [0, π) leads to 3<{τ3} >
√

3={τ3},565

which is equivalent to χ4 > χ6. An analogous argument can be used to prove566

that χ4 > χ5 > χ6 when θ ∈ (−π, 0]. It is worth mentioning that the case θ = π567

corresponds to τ3 being real.568
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Appendix A.3. Solutions corresponding to the roots of the polynomial T569

The number of real roots of the polynomial T depends upon the param-570

eters δ1 and δ2. If δ1 6= 0 the two roots of T are real, namely −30(δ2 ±571 √
δ2
2 − 2β2δ1)/δ1. If δ1 = 0 and δ2 6= 0, there is only one real root, that is572

−30β2/δ2. Finally, if δ1 = δ2 = 0, T has no real roots.573

Introducing λl = −30(δ2 ±
√
δ2
2 − 2β2δ1)/δ1 in Equation (62) leads to(

δ2 ±
√
δ2
2 − 2β2δ1

)
(2δ2 + 3A1δ1) + 2β2δ1(δ1 − 1) = 0, (A.12)

provided that δ1 6= 0. Analogously, introducing λl = −30β2/δ2 in Equation (62)

leads to

β2 + δ2(3A1 + 2δ2) = 0, (A.13)

provided that δ1 = 0 and δ2 6= 0.574

From Equation (62), it is clear that the solutions corresponding to the roots575

of T correspond to the solutions described in Appendix A.1 (i.e. when ω = 0)576

with extra restrictions on the material parameters given by Equations (A.12)577

and (A.13). Therefore, the solutions corresponding to the roots of the polyno-578

mial T are already included by the solutions given by Equation (A.2).579

Appendix A.4. Positivity of the solutions χ2 and χ4580

The positivity of the two solutions relevant to the stability of the Leap-Frog581

scheme, namely χ2 and χ4, is discussed next. The positivity of χ2 is clear as582

β > 0, A1 > 0 and, as previously discussed, 9A2
1 − 8β2 > 0.583

In order to discuss the positivity of χ4, two cases are considered. If τ3 is

complex, it is possible to show that χ4 = τ1 + 2<{τ3} > 0 because τ1 > 0 and

cos(θ/3) > 0,∀θ ∈ (−π, π). It is worth noting that the condition τ1 > 0 is

equivalent to

49γi
5ηi

+
γi,1 + γi,2

2ηi
+

3γi + γi,1
ηi,2

+
3γi + γi,2
ηi,1

> 0, (A.14)

which is clearly satisfied for any combination of the material parameters. Fi-584

nally, if τ3 is real it is easy to show that τ1 + τ3 + τ2
τ3

> 0 because it is the585

maximum root and the polynomial P of Equation (62) satisfies that P (0) < 0586

and lim
λl→∞

P (λl) > 0.587
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