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CLASSICAL FIELD THEORY LIMIT OF MANY-BODY QUANTUM
GIBBS STATES IN 2D AND 3D

MATHIEU LEWIN, PHAN THANH NAM, AND NICOLAS ROUGERIE

ABSTRACT. We provide a rigorous derivation of nonlinear Gibbs measures in two and
three space dimensions, starting from many-body quantum systems in thermal equilibrium.
More precisely, we prove that the grand-canonical Gibbs state of a large bosonic quantum
system converges to the Gibbs measure of a nonlinear Schrédinger-type classical field
theory, in terms of partition functions and reduced density matrices. The Gibbs measure
thus describes the behavior of the infinite Bose gas at criticality, that is, close to the phase
transition to a Bose-Einstein condensate. The Gibbs measure is concentrated on singular
distributions and has to be appropriately renormalized, while the quantum system is well
defined without any renormalization. By tuning a single real parameter (the chemical
potential), we obtain a counter-term for the diverging repulsive interactions which provides
the desired Wick renormalization of the limit classical theory. The proof relies on a new
estimate on the entropy relative to quasi-free states and a novel method to control quantum

variances.
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1. INTRODUCTION

A nonlinear Gibbs measure p is a probability measure in infinite dimension of the form

o~ Dlu]
dp(u) = “——dpo(w) (L1)

where z is a normalization factor, pg is a Gaussian probability measure and D is a non
quadratic positive function. In this article we consider the case where pg has the covariance
operator (—A 4 V5)~! over a (bounded or unbounded) open set © C R?, for some function
Vo : 2 — R (when € is unbounded we assume that Vj — +o0c at infinity to ensure that the
spectrum of —A + Vj is discrete). One should therefore think that

dpo(u) = “ (Zo) Lexp <— /Q(\VUIQ + V()]u\2)> du” (1.2)

so that

utu) = * (202) exp (= ([ (P + Valul®) + D11 )
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but this is of course purely formal. The nonlinear part D is taken of the form

ol = Ren. {5 [ wle = pluto)Plu(n? dedy} (13)

for a sufficiently regular function w of positive Fourier transform. Nonlinearities of this type
are ubiquitous in the literature and have an important physical meaning, as we will recall.

In dimension d = 1 and under appropriate assumptions on the function Vj, the Wiener-
type Gaussian probability measure pg concentrates on continuous functions. The double
integral appearing in the definition (L3]) of D therefore makes sense p-almost surely without
any special care, even for w a Dirac delta. However, this is not the case in dimensions d > 2
where the Gaussian measure pg concentrates on distributions rather than functions. Then
the terms |u(x)|? and |u(y)|? are ill-defined and the integral requires to be renormalized,
which we have indicated by the notation ‘Ren.” in (L3]). The higher the dimension, the
more difficult the renormalization procedure. For a smooth function w the simplest scheme
called Wick renormalization [70] works in dimensions d = 2,3 and this is the situation which
we consider here.

In this work we provide the rigorous derivation of the Wick-renormalized nonlinear mea-
sures (LI in dimensions d = 2, 3, starting from a quantum mechanical microscopic theory
without divergences, in a mean-field-type limit. Before describing this limit in detail, we
review some important results about the nonlinear measure .

Nonlinear Gibbs measures of the form (L)) play a central role in many areas of mathe-
matics. These measures were first defined in the 60s and 70s in the context of Constructive
Quantum Field Theory [46l, [70, 148, 158], where they were used to construct interacting
quantum fields in the Euclidean framework (imaginary time), through Feynman-Kac-type
formulas (then d = d’ + 1 where d’ is the space dimension of the quantum field). Impor-
tant results in this direction include those of Symanzik [159], Nelson [126], Glimm-Jaffe-
Spencer [71] and Guerra-Rosen-Simon [78].

The same measures have later re-appeared in the study of some deterministic nonlinear
partial differential equations with random initial data, for which they are (formal) invariants
of motion. This covers for instance the (renormalized) nonlinear Schrédinger equation

O = —Au + Vou + Ren. { (w * |u|*) u} . (1.4)

After pioneering works by Lebowitz-Rose-Speer [99] and Bourgain [24] 25| 26] in the 1980s
and 90s, this idea has been made rigorous in many recent articles including [27, 28] 32} [161],
[33], 127, [163]. Most of these works consider the more complicated case where w is replaced
by a Dirac delta, but [26] deals with a smooth function w. Note that in this context the
measure g is often used to give a proper meaning to the renormalized equation (4], which
is typically well-posed for p-almost all initial data.

The Gibbs measure p is also a central object for stochastic nonlinear partial differential
equations, where it now appears as the long-time asymptote of the random flow. This is for
instance the case of the nonlinear heat equation driven by space-time white noise &

Ou = — (—Au+ Vou + Ren. { (w * [u]*) u}) + &, (1.5)

which has been studied in many recent works including [129] (1], [42], R3] 08 [119] [135], 162,
1211 [43],[37). The lack of regularity of typical fields drawn from the measure is related to that
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of the noise, which is inherited by solutions to the equation and makes the renormalization
of nonlinear terms necessary.

Finally, in statistical mechanics nonlinear Gibbs measures of the form (LI) are believed
to describe the universal behavior of large systems close to certain phase transitions [168] [34],
[169, [10] (at least for w = &p). In this context the leading behavior close to the transition is
often captured by mean-field theory whereas fluctuations around it are properly captured by
the classical Gibbs measure y. In the Physics literature this has been predicted to happen
for Bose-Einstein condensation [7, 1Tl 12 88 02] or for Berezinskii-Kosterlitz-Thouless
transitions [I8] 69, [89] 90, 132 131, 153]. For the classical Ising model rigorous mathematical
results in this spirit for equilibrium states can be found in 78], 152 10], whereas works about
the derivation of the dynamical equation (L3]) include [16] 59] 64, [120].

Main result. Our contribution is in the spirit of the latter situation of phase transitions.
We start with a model describing quantum particles in the domain Q C R¢, submitted
to an external potential V' and interacting through a pair potential w. We consider the
Bose equilibrium state of this system at an appropriate temperature. This system has
no divergence and no renormalization is needed. We then study a specific scaling regime
where the (average) number of particles diverges to infinity, in which we can prove the
convergence to the classical nonlinear Gibbs measure p including the renormalization, for
an appropriate potential Vi which is in general different from V. Our result will be stated in
macroscopic variables (taking the size of the full system as reference length scale) but, when
interpreted at the microscopic scale (taking the typical inter-particle distance as reference
length scale), the limit corresponds to zooming just below the critical density for Bose-
Einstein condensation, as we will explain. The physical interpretation of our result is
therefore that the measure p describes how a Bose-Einstein condensate forms at criticality.
We will in addition exhibit a kind of universality of the renormalization scheme, which turns
out to be largely independent of the model.

We now describe our main results. An ensemble of n bosonic quantum particles is de-
scribed by the following Schrédinger operator

n
Hyypn= Z ( = Ay +V(zj) - 1/) + A Z w(z; — xp),

j=1 1<j<k<n

which acts on the subspace of symmetric functions in L?(Q", C), denoted henceforth by
L2(Q",C). We consider Dirichlet boundary conditions for the Laplacian in case Q # R?, or
periodic boundary conditions if €2 is a cube. We have introduced here two parameters: A is
a coupling constant allowing to vary the intensity of the interaction, which will be taken to
zero in our limit, whereas v is called the chemical potential. It plays a decisive role in our
study since it will be used to renormalize the theory. After averaging over all the particle
numbers n at fixed v, we obtain the following function of our parameters A, v

Z(\v)=1+ Z Tr <e_>‘HA’”’”) =1+ Z M Tr (e_)‘ HW’”) , (1.6)

n=1 n=1

which is called the “grand-canonical partition function” [79] [142]. The trace is taken over
the symmetric space L2(Q",C). This kind of Laplace transform of n — Tr (e=*ron) is
the main object of interest in this paper. Note that in the exponential we have multiplied
our Hamiltonian by A, which sets the system at an effective large temperature 1/\ — oo.
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In this regime the average number of particles in 2 diverges:

lim Z(\,v)7! Zn Tr (e_)‘HA’”’"> = +o00.

+
A—0 o1

Our main result is that for a well chosen divergent function v = v(\) discussed below, we
obtain the expansion

log Z (A, v(X)) = log Zur (A, v(N)) 4 log z + o(1) 0+ (1.7)

The first term of the right side diverges very fast when A\ — 0" and it is given by “mean-
field theory”. In our setting, mean-field theory corresponds to restricting the problem to
the subclass of “Gaussian quantum states” also known as “quasi-free states” [8 [I55]. In the
limit A — 0" such Gaussian quantum states provide classical Gaussian measures and in our
case this will give the reference measure g in (ILI)). The most natural reference Gaussian
quantum state is obtained by minimizing the free energy and then provides the partition
function Zyr (A, ¥(A)). Without entering too much into the details, this reference Gaussian
quantum state is associated with the one-particle Hamiltonian —A + V), where the potential

W=V —v(A)+ Apyxw (1.8)
solves the self-consistent nonlinear equation

1
m(ﬂ%ﬂ?) = pA(z).

The limiting classical Gaussian measure o then has covariance (—A + V5)~! where

Vo = lim V).
A—07F
In general the limiting potential V5 may be different from V. We give more details about
mean-field theory later in Section
The non-Gaussian classical measure p includes the nonlinear term D[u] and it cannot
be obtained from mean-field theory. In our setting, p arises by expanding the partition
function to the next order as in (7). The correction involves the constant

z= /eD[u]d,uo(u)

which normalizes the measure p as in (LI]) and where the renormalized interaction D is
given by ([L3]). The expansion (7)) therefore provides the validity of mean-field theory to
leading order, as well as fluctuations around it which involve the classical nonlinear Gibbs
measure g. This is in the spirit of the Physics works mentioned above concerning the phase
transition for Bose-Einstein condensation [7} 111, 12}, 88 [92].

The crucial role of the measure p is better seen when looking at the quantum density
matrices, which are similar to correlation functions in classical statistical mechanics. We

prove below that the k-particle density matrix I’g\k)

converges to its classical analogue

of the interacting quantum system

A—0t

lim kNPT :/\u®k><u®kldu(u) (1.9)
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for every k > 1. This now characterizes completely the measure p when k is varied. This is
the proper justification that the system is fully described by the nonlinear Gibbs measure
w1 in the limit. We defer the precise definition of the density matrix Fg\k) to Section

The behavior of the diverging function v(\) needed for the limit (7)) to hold depends
on the dimension and on @w(0), but it is otherwise essentially universal. We take (in the
second line ¢ is the Riemann zeta function)

@4(0) log()fl) — 19+ o0(l)y\o+ in dimension d = 2,
s = A s (1.10)
0(0)¢(3) 1

— —vgp+o(l)yo+ in dimension d = 3,

82 VA S

for some fixed v, and obtain the limit (L7]) with a potential Vj solving a nonlinear equation
depending only on 1. For instance, when the problem is settled on the d-dimensional torus
with V' = 0, then the limiting Gaussian measure p has the covariance (—A + V) ™!, with
the constant potential Vj solving the equation

w(0)

4

w4(0) Vo + Vo — 0(0)p3(Vo) = 1 in dimension d = 3,
s

log(Vo) + Vo — w(0)p2(Vp) = vy in dimension d = 2,
(1.11)

for a positive decreasing function ¢4 defined in Lemma [B.J] below. The first divergent term
in (LI0) is completely independent of the model, if we except the multiplicative factor
w(0). As we will explain in Appendix [B] the form of this divergent term is related to the
behavior of the infinite free Bose gas at criticality, that is, close to the phase transition to
a Bose-Einstein condensate [160].

We have proved a result similar to (7)) in dimension d = 1 in our previous works [103]
[107] but no renormalization is necessary in this case and the result is much simper. A
different proof based on Borel summation was later provided by Frohlich-Knowles-Schlein-
Sohinger in [60]. Their proof carries over to dimensions d = 2,3 as well and provided the
first derivation of the renormalized Gibbs measure u, but for technical reasons the problem
had to be regularized by changing Z(\,v) in (6] into

Z(A, v)=1+ Z Tr <exp (—(1 —n)A HﬁMN) exp (—77H07,,,N)>
N>1

for some n € (0,1) [60]. This amounts to pulling out of the exponential a little part of
the Laplacian, which then acts as a kind of regulator. Our results deal with the physical
partition function Z(\,v) in dimensions d = 2,3 and this involves a very significant jump
in difficulty, both from a conceptual and technical point of view. The earlier versions of this
paper only included the 2D case [106] and were announced in [108, [109]. Simultaneously to
the completion of the present paper, a completely different proof for both the 2D and 3D
cases has been announced by Frohlich-Knowles-Schlein-Sohinger [62]. It relies on techniques
from Constructive Quantum Field Theory, whereas our approach is variational.

A mean-field / semi-classical limit. It is well known that the regime A — 07 (with the
average number of particles tending to infinity) corresponds to a mean-field or semi-classical
limit, where the quantum model converges towards the nonlinear Hartree model, based on
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the energy functional

eatu) = [ (Vu@P + V@R do+g [ we—p@PlulP deay. (112

The study of this limit is a research topic almost as old as quantum mechanics itself. It
has been spectacularly rejuvenated by the birth of cold atoms physics in the 1990’s, most
notably by the landmark experimental observation of Bose-Einstein condensates in alkali

gases [41],[93]. Following pioneer contributions [86, 67, [68] [156], B4, 14, 117, 130} 133 [165],

the last two decades have seen a great deal of progress on the derivation of such nonlinear
effective models. This includes the case of minimizers (see [101] 114, 137, 138, 140] for
reviews) as well as the time-evolution of such ground states after an initial perturbation
(see [13| [72], 143] for reviews).

Refinements of the Hartree description have also been derived. The corresponding “Bo-
goliubov approximation” can be seen as a quantum field theory based on the Hessian of the
Hartree functional (ILI2]). Recent results bear both on the low-lying eigenfunctions of the

many-body Hamiltonian [146] [74] 11T], 124 47, 20l 19] and on the time-evolution thereof
after an initial perturbation [76, [77) 110} 123 122| 118, 211 31].

In [102] we have studied the limit of Tr(e=?0frvn) for n ~ 1/X, with a fixed \g > 0
instead of the small parameter \. At the leading order we obtained full Bose-Einstein
condensation in the minimizer of the Hartree functional (LI2]). In other words, \g has no
effect to this order and it is only visible in the Bogoliubov next order correction [IT1], which
has the effective temperature Ty = 1/X¢. In the present work Ay is replaced by A and we
obtain the renormalized Gibbs measure u, which physically models a statistical mixture of
Bose-Einstein condensates and the eventual appearance of a single condensate at criticality.

Other rigorous mathematical works on the Bose gas taking temperature into account
include [I7, [144], [145] 147, 167 [49, 48]. In particular, the rigorous derivation of the Bose-
Einstein phase transition in interacting Bose gases still seems way out of reach, except for
special lattice models [114] Chapter 11| and for the trapped case in the Gross-Pitaevskii
limit which was recently solved by Deuchert-Seiringer-Yngvason [49, [48]. To our knowl-
edge, the only mathematical works devoted to the study of the behavior close to the Bose-
Einstein phase transition are [103], [107] [60, 154 62] for equilibrium states and [61] in the
one-dimensional dynamical case.

Since we work in the same limiting regime A — 0 as many other previous works, the
emergence of the nonlinear Gibbs measure p formally based on the Hartree energy (ILI2]) is of
course not a surprise. Similar results have been known for some time in finite dimensions [73,
[94], where the convergence can be reformulated in terms of a usual semi-classical limit [103]
with no renormalization. The main difficulty is to handle the infinite dimensional case
and the emergence of singular objects requiring renormalization. Another difficulty is to
achieve this using only the real parameter () introduced above. This is really in the spirit
of renormalization in Quantum Field Theory, as initiated by Dyson in [5I] and further
developed within statistical physics using renormalization group techniques [166], [44] 169
[10].

Method of proof. Our mathematical approach in this paper is variational, like in [103]
[107]. We crucially use that the equilibrium Gibbs quantum state as well as the measure
1 are the unique solutions to some minimization problems and our goal is to prove the
convergence of the quantum problem to the classical one. The way to connect quantum



8 M. LEWIN, P.T. NAM, AND N. ROUGERIE

objects (positive self-adjoint operators with unit trace on a Hilbert space) to classical ones
(probability measures on a space of functions or distributions) is via so-called de Finetti
measures (or Wigner measures, depending on the point of view) [3,[137,138]. This technique
generalizes ideas from semi-classical analysis to infinite dimensions, cf [4], [102] [T03].

Our main goal is therefore to show that the limiting de Finetti measure of the quantum
problem minimizes the variational problem characterizing the nonlinear Gibbs measure u,
hence must be equal to p. The difficulty here is that u is a very singular object and that its
variational characterization involves the renormalized interaction D. Passing to the limit
requires a fine understanding of the way that singularities appear in the quantum de Finetti
measure when A — 0%. In our case, this reduces to finding good estimates on the high-
momentum part of the one- and two-particle density matrices Fg\l) and Ff\z). We achieve
this goal by using two new inequalities of independent interest.

For I’g\l) we prove an inequality which controls the difference of two one-particle density
matrices in terms of the quantum relative entropy of the corresponding quantum states in
Fock space (one of them being Gaussian). This takes the simple form

Tr ‘h1/2 (r(l) — rgl))hl/z‘z <4 (\/5\/7{(1“,1“0) + H(P,FO))2 , (1.13)

see Theorem below. Here I'y is any Gaussian (a.k.a. quasi-free) quantum state over the
Fock space [8, [155], of one-body Hamiltonian h, which in practice is taken to be the mean-
field solution. On the other hand, I is an arbitrary state and H(I',T'g) = TrI'(log I'—log T'¢)
is the quantum relative entropy. Related bounds were independently derived by Deuchert-
Seiringer-Yngvason in [49, Lemma 4.1] and [48, Lemma 4.1]. The important difference here
is that we are able to include the operator h explicitly. This is all explained in Section [6l

The two-particle density matrix FE\Q) is way more difficult to handle. To deal with it we
prove another general inequality which could be useful in other contexts and occupies the
whole Section [1 It is one of the main new ingredients of this paper. This bound is

Tr (AQe_H) . @

< 1.14
Tr(e=H) a (1.14)
for all 0 < @ < 1 and all bounded operators A, assuming
Ty AefHJrsA
T e | Tf@-HﬁA))‘ + al|[[H, AL, Al VT TAP <1, (1.15)
ee|—a,a

see Theorem [T Tl1below. We have simplified things a little bit here, for the sake of exposition.
Our full estimate relies on a more complicated 1 which provides a tighter bound. It can
also be stated without assuming a,n < 1, at the price of a more complicated right-hand side
in (LI4). In our application we use this for A a one-particle operator over the Fock space,
so that the expectation against A2 gives us access to the two-particle density matrix I’g?).
What (LI4)) then says is that one can control two-particle expectations of a Gibbs state by
one-particle expectations, at the expense of perturbing the corresponding Hamiltonian H
by €A for € in a small window [—a,a]. The error then solely depends on the commutator
[[H,A],A]. Note that our more precise inequality in Theorem [1] involves the quadruple
commutator [[[[H, A], A, A], A] as well and it is the one useful in our context.

We can call (LI4]) a “variance” or “correlation” inequality. If we replace A by A —
Tr(Ae= )/ Tr(e=*), then the left side of (LI4)) is now exactly the variance of A, whereas the
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supremum on the right side of (L.IH]) will typically be small (the function whose supremum
is taken vanishes for ¢ = 0). Correlation inequalities have historically played an important
role in statistical physics [75] [65] 58], [66] [63) [52] and the proof of (LI4]) uses and/or improves
several important estimates from the literature. Note that the difficulties we face here are
(almost) purely of a quantum nature. Estimates like (II4)) are significantly easier in a
classical theory, or when A and H commute.

Inequalities of the type of (LI4)) are reminiscent of the fluctuation-dissipation theorem
and our proof is indeed inspired by linear response theory a la Kubo [95 06]. We use
the fact that one can access the expectation of A? (variance/fluctuation) by differenti-
ating expectations of A in the perturbed Gibbs state with Hamiltonian H — €A (linear
response/dissipation). In classical statistical mechanics the relation between variance and
linear response is an identity. In the quantum case, differentiating leads to the Duhamel
two-point functiorﬂ instead of the variance. There exists known relations between these
quantities, for instance the Falk-Bruch inequality [53]. Thanks to such inequalities (that
we revisit here), the variance is under good control if one can control the derivative of the
first moment. Ideally, a strong bound of the form

Tr (Ae’H+€A) Tr (Ae’H)
Tr(e—H+eA)y — Tr(e H)

could be used, as in the seminal work [52] of Dyson-Lieb-Simon on the phase transition
of the Heisenberg antiferromagnet. A bound of the type (LI0) (for a particular A) was
there obtained using reflection positivity, see [52] Theorem 4.2]. For classical systems this
goes back to an earlier breakthrough of Frohlich-Simon-Spencer [63]. However (LI6]) is not
available to us, and our new inequalities (LI3]) (ILI4]) serve as a replacement. The former
essentially yields (LI6l) without an e factor on the right-hand side, which is a sufficient
bound for our purpose, once inserted in (LL.14]).

Inequality (I.I4)) is, perhaps, our main contribution, and we refer to Section [1 for a proof.
Briefly, bounds on the discrepancy between variance and linear response (Duhamel two-
point function) give an estimate on the average of the “perturbed variance” Tr (AQB_H +5A)
over a small window in € € [—a, a]. To get rid of the averaging, we prove that this function
is approximately convex in €. In the classical case, when A and H commute, the convexity
is obvious as the second derivative in ¢ is Tr (A46_H +5A) > 0. In the quantum case, we will
prove a lower bound for the second derivative in terms of several commutators.

With (LI3) and (LI4]) at hand, we are able to control in Section [§ the correlations in
our quantum Gibbs state at high energies. High energies are exactly where renormalization
takes place and the estimates will tell us that the true quantum state has there essentially
the same behavior as the mean-field one, which has already been studied in detail in [60)].
On the other hand, at low energies we use a quantitative de Finetti theorem from [40], [103]
which gives explicit bounds on the difference between the quantum problem and the classical
one, allowing to pass to the limit in the variational problem. This is the general idea of our
approach for proving (L7]).

In this paper, we first discuss the case where Q = (0,1)? with periodic boundary con-
ditions (an interacting Bose gas on the unit torus), which is easier to state because the
density is always constant. This case clarifies the link with phase transitions in the Bose

= € X error (1.16)

LAlso known as canonical correlation or Bogoliubov scalar product.
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gas in the thermodynamic limit, after re-interpreting our result in microscopic variables,
see Appendix [Bl Then we turn to the more complicated case of Q = R? with a potential
V diverging fast enough at infinity, which requires the introduction of mean-field theory as
described above. We only make comments about the case  C R%.

In the next section we properly define the quantum and classical models and we give
some hints on the relation between the two. Then, in Section [B] we state all our results.
Section M contains a detailed explanation of the strategy of proof, which is then carried over
in the rest of the paper.

Acknowledgements. Insightful discussions with Jirg Frohlich, Markus Holzmann, Antti
Knowles, Benjamin Schlein, Robert Seiringer, Vedran Sohinger, Jan Philip Solovej, Lau-
rent Thomann, Daniel Ueltschi and Jakob Yngvason are gratefully acknowledged. This
project has received funding from the European Research Council (ERC) under the Eu-
ropean Union’s Horizon 2020 Research and Innovation Programme (Grant agreements
MDEFT No 725528 and CORFRONMAT No 758620), and Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) under Germany’s Excellence Strategy (EXC-2111-
390814868).

2. SETTING AND DEFINITIONS

We recap here all the standard and less-standard notions needed to state and discuss our
main results. Perhaps the acquainted reader will want to jump directly to Section B and
come back to this one if some notation is unclear later.

2.1. Fock space formalism. Our basic Hilbert space for one particle is
H=L*Q) (2.1)

with Q an open domain in R?. The reader might think of the two model cases, when
Q = (0,1)? (to which we add periodic boundary conditions, which is then the same as
taking Q = T¢, the torus) or the full space R

For the many-body problem we work grand-canonically, that is, we do not fix the particle
number. The many-body Hilbert space is thus the bosonic Fock space

F=Cono..on"ao... (2.2)

The symbol ®4n stands for the n-fold symmetric tensor product, as is appropriate for the
n-body configuration space of bosons. Operators acting on finitely many particles are lifted
to the Fock space in the usual way:

Definition 2.1 (Second quantization).
Let Ay be a self-adjoint operator on $H®*. We define its action on the Fock space as

AL:=00---® @ Z (AR)iv,.in (2.3)

n=k \1<i1<...<ip<n

where (Ay)i, ... i, denotes the operator Ay acting on the variables labeled i1,. .., in HEs™,
o
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When k =1, it is customary to use the notation

dr(4) :=A =06 é ( > AZ-) (2.4)

=1 \I<i<n
for one-body operators, a tradition that we will also follow throughout. For example, the
particle number operator is

o0
N =dI'(1g) = Pn.
n=0
Next, quantum states are as usual:

Definition 2.2 (Quantum states and reduced density matrices).
A pure state is an orthogonal projection |¥)(¥| on some normalized vector W of the Fock
space §. A mixed state I' is a convex superposition of pure states, i.e. a positive trace-class
operator on § with unit trace. We denote

S (§) := {T self-adjoint operator on §, I' > 0, Trz[['] = 1} (2.5)

the set of all mixed states.
The reduced k-body density matrix I'®) of a state T is the operator on $H®* defined by
duality as

Trgooe | AxT 0| = Trg [AxT] (2.6)
for any self-adjoint operator A; on %< with Ay the second quantization (Z3) of Az. o

If I is of the diagonal form

then the reduced density matrices are equivalently given via partial traces as

n
) = Z (kﬁ) Try15n[Tn].

n>k
Also recall that the expected particle number of a state is given as
Trz[NT] = Trg[TW)].
A quantum Gibbs state is a state of the special form
=/ Trz(e ™)

where H is a self-adjoint operator on the Fock space § such that Trg(e_H) < 00. A Gaussian
quantum state or quasi-free state corresponds to the case where H = dI'(h) for a one-particle
operator h with h > 0 and Trg(e™) < co. More about quasi-free states can be read
in [8, [I55] and in Section They are called Gaussian because H = dI'(h) is a quadratic
operator in the bosonic creation/annihilation operators, the definition of which we now
recall.

Definition 2.3 (Creation/annihilation operators).
Let f € . The associated annihilation operator acts on the Fock space as specified by
i1
a(f)u1 Rg oo Qg Up =M 2 Z(f, uj>u1 Rs o e Uj—] Qs Ujq] Qs - . Dg Up
j=1
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and then extended by linearity. Its formal adjoint, the creation operator af(f) acts as

1
aT(f)ul Rs . Qs =M+ 1)2f Qs U1 Qs ... Vg Up,.
The canonical commutation relations (CCR) hold: for all f,g € 9

[a(£), alg)] = [a'(f),a'(9)] = 0, la(f),a'(9)] = (f.9). (2.7)

o

The reduced density matrices of a state I' can alternatively be defined by the relations
(9185 @09 TS 0404 fi) = T ol (). al(f)algn) . al@)D] . (28)

For a one-body self-adjoint operator 2 > 0 with Trg(e™") < oo (hence of compact resolvent)
diagonalized in the form h =}, hj[u;)(u;|, we can then express

dr(h) =3 by a'(u;) a(u))

which is quadratic as was mentioned above.

2.2. Quantum model. The many-body operators we shall study are of the form

[ Hx = dT(h) + AW — v(A)N + Eo(\). | (2.9)

Here h is a self-adjoint operator on §) such that Trg(e ") < oo for all 8 > 0. The reader
might think of the case when

—A on T4,
—A+V onR%

The interaction term W is the second quantization of the multiplication operator by w(x—y)
on the two-body space $52 :

W:zO@O@é > wwi—ay) | (2.10)

n=2 \1<i<j<n

The coupling constant A > 0 models the interaction strength and the chemical potential
v(A) will be tuned to serve as a counter-term. The constant Ey(A) is just an energy shift,
which we will use in order for the renormalized interaction

AW = AW — v ()N + Eo()) | (2.11)

to stay a positive operator. The quantum Gibbs state associated with the above Hamiltonian
is the unique minimizer of the free-energy functional (energy minus temperature times
entropy)

Far[l] = Tr [HA\T] + T Tr[T' log T'] (2.12)

over all quantum states I" on the Fock space. Explicitly

I = ﬁ exp (-%) (2.13)
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where the partition function Z(\) normalizes the state,
H
Z(\) =Tr [exp <—?)‘>] ,

Fy = min F\p[[] = —Tlog Z(\). 92.14
3i= i A7 (L] og Z(\) (2.14)

and satisfies

In the whole paper we work in the regime

1
T=—-——
A
with v(X\) and Ey(\) appropriately tuned. Note that the energy shift Ey does not modify the
Gibbs state. We could take instead T' = T/ A with a fixed Ty > 0, and this would eventually
lead to a nonlinear classical Gibbs measure 7, at temperature 7. For simplicity we only
discuss the case Ty = 1 and retain A — 07 as our sole parameter.

2.3. Classical model. Let us briefly recap the definitions related to the nonlinear Gibbs
measure. More details are in Section Bl Consider a one-particle self-adjoint operator
ho > 0 of compact resolvent, with the following spectral decomposition:

ho = Z)\j]uj>(uj\ (2.15)

We introduce the scale of spaces

[e.9] o0
2\5/2
Hn° = u:Zajuj, Z|aj| )‘j/ < 00
j=1 j=1
The Gaussian probability measure p of covariance h~! is by definition given by

o0

i a2

dpo(u) == ® (ﬁe Ailes] dai> (2.16)
i=1

with a; = (u;,u) and da = dR(a)d3(a) the Lebesgue measure on C ~ R2. The for-

mula (ZT6) must be interpreted in the sense that the cylindrical projection of g onto the

finite-dimensional space Span{ui, ..., ux } is given by

K
ANi e
dpo. (o, ...ax) = H (—e Ale|? dai> (2.17)

T
i=1
for every K > 1. Assuming that for some p > 0
Tr[hy "] < oo, (2.18)

the limit measure po then concentrates on '~ [103] Section 3.1]. In the cases of interest
to this paper we have hg = —A + V} for some Vy on Q C R Therefore $° is a kind of
Sobolev space and, since we have p > 1, ug is supported on distributions with negative
Sobolev regularity, whence the need for renormalization in the definition of the interacting
measure.
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Let Pg be the orthogonal projector on Span{u, ..., ux }. Consider the interaction energy
with local mass renormalization

Dl =5 [ (1Pxu@P = (Peu@)),,) ww=y) (1Pxuts) = (Pruts)),, ) dedy.

(2.19)
Here, for any f € L'(duo),

(), = / f(w)dpao () (2.20)

denotes the expectation in the measure pg. We shall assume that

w(z) = / B(k)er dk (2.21)

where the Fourier transform @ satisfies
0 < w(k) € LY. (2.22)
Here by convention Q* = R?, except if Q = T¢ then Q* = 27Z¢ (and the integral in (Z21))
becomes a sum). Then, as recalled in Lemma 53 below, when @ > 0 and Tr(hy?) < oo, the

sequence Dc[u] converges to a limit D[u] in L' (dpg), hence we may define the renormalized
interacting probability measure by

dp(u) := 2V exp (—=D[u]) dpo(u) (2.23)

with 0 < z < 0o a normalization constant (to make p a probability measure).
Note that the reduced one-body density matrix

oD = / o) (ul () (2.24)

is a priori an operator from $”~! to $'~ (since |u)(u| is not any better, u-almost surely).
(

However, averaging with respect to u has a regularizing effect, so that 'y“l) turns out to be
a compact operator from $) to §). In fact, one can show that

v = hot, (2.25)

which is called the covariance of pg. Similarly, the reduced k-body density matrix
W) = [ W () = kP ()P (2.26)

belongs to the p-th Schatten class GP($®+*), see [103, Lemma 3.3], and the same is true of
the reduced k-body matrix of the interacting measure. In the right-hand side of (226, P*
denotes the orthogonal projector on the symmetric subspace.

2.4. Formal quantum/classical correspondence. Our aim is to relate the quantum
Gibbs state (2.I3]) to the classical Gibbs measure (2.23]). If we ignore the renormalizing
terms for the moment (in particular, think of v = Ey = 0), the formal correspondence
between the two objects can be seen as follows. Recall that the Gibbs measure can be
interpreted as a rigorous version of the formal

du(u) = “ Zz7Le~Eulul gy 7 (2.27)
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with Epfu] the nonlinear Hartree energy functional
— 1
ulul = [ W@ )@ de+ 5 [[ @)t -yl dedy.
Q 2 JJaxa

Define the quantum fields (operator-valued distributions) a'(z), a(z), creating/annihilating
a particle at position z by the formulae

o) = [a@)f@r. a'(1) = [al@)f@)as (2:29)
for all f € $. Inherited from (2.7]) we have the canonical commutation relations

[a(z), a(y)] = [a'(2),a'(y)] =0, [a(x),a’(y)] = domy- (2.29)

These operator-valued distributions allow us to rewrite the many-body Hamiltonian with
v=Fy;=0as

2
AHy = )\/QaT(x)hwa(x) dx + % //QXQ al(z)al (y)w(z — y)a(z)aly) dz dy. (2.30)

The formal manipulation relating (2ZI3]) and (227) is then to replace the quantum fields
a'(z),a(x) by classical fields, i.e. operators by functions. This involves in particular that
the commutation relations (Z29) become trivial in some limit, all fields commuting at
any position. How this can come about is further explained in [103, Section 5.2] and the
introduction to [60] (in these works the link between the classical and quantum problems
has been made rigorous in 1D). Basically, the order of magnitude of commutators stays
fixed by definition, but the typical value of the fields a(z) and af(z) is of order A=*/2 when
computing expectations against the quantum Gibbs state. This suggests to introduce new
fields b(x) = VAa(z) and bf(x) = v Aal(x). This is now a clean semi-classical limit, since
the commutators of the new fields is of order A — 0.

Let us discuss now the inclusion of counter-terms. It is useful to write the mean-field
interaction, using Fourier variables,

2 12
JIL P ot =t dody = [ @ [P o] ak = [ o] [ apet] o
QxQ
(2.31)
On the other hand, the quantum interaction can be expressed as
1 , 2
W= / w(k) ‘dI‘(e””) dk — KO)N (2.32)

where the second term is typically of lower order and may be ignored. Thus, one formally
obtains the quantum interaction by replacing

[ 1@ f(@)ds ~ ar(s)

with f(x) = e**  identified with the corresponding multiplication operator on $.
To see how to include the renormalization, observe that (219 formally leads to

2

Dl = 5 [ 80 |[aP®) - ([P | i

Mo




16 M. LEWIN, P.T. NAM, AND N. ROUGERIE

Thus the appropriate renormalized quantum interaction should be

1
wren = 2 / @ (k)

After expanding the square, this suggests a natural choice for the chemical potential v(\)
and the energy shift Ey()), as we will see. Making the above formal quantum/classical
correspondence rigorous is the goal of our paper.

Note that here we use Fourier variables mostly for convenience. What they help accom-
plish is rewriting interactions (two-body terms) as sums of products of one-body terms.
Other methods to accomplish this, such as Fefferman-de la Llave type decompositions [56],
[82] could replace the Fourier transform.

2
dk. (2.33)

ar(ee) - (ar(e))

T'o

In the next two sections we present our main results in the following order:

e Homogeneous case. We consider the emblematic case where Q = T and h = —A. Since
the system is translation-invariant, the density is always constant. Modulo an appropriate
choice of parameters v(\), Eg(\), the many-body interaction in (ZII) can be made to
coincide with (233). This amounts to using as reference the mean-field quasi-free state,
which is determined by one constant “potential” V) solving a simple equation. The final
reference Gaussian measure has the covariance hg 1 (—A+ Vo)*1 with Vo = limy_,o V) a
constant solving (LII]). Theorem Bl provides a rigorous connection between the classical
renormalized and quantum problems.

e Inhomogeneous case. We consider here the case

h=-A4+V(zx)
where V(z) — +oo when |z| — oo. The correct reference Gaussian measure has the
covariance hy' where hg = —A + Vy(x) for a potential Vj which solves a nonlinear non-

local equation. First we reinterpret the results of [60] on this Gaussian measure, in light
of the mean-field approximation at the quantum level. Then we state our main result,
Theorem B4l on the mean-field limit, using the optimal quasi-free quantum energy as a
reference.

e Inhomogeneous case, inverse statement. It is also possible to start with a one-particle
Hamiltonian h and modify the interaction as in ([2.33]). We then do not have to solve any
nonlinear equation and in the limit we end up with the interacting measure based on the
Gaussian measure associated with A. This we call an inverse statement because we have
to modify the initial quantum model such as to find the desired measure in the limit. This
is less natural from a physical point of view. Nevertheless, it turns out that the previous
direct statement where one starts with h and identifies what the limiting measure is, follows
from our proof of the inverse statement and the results of [60] on the nonlinear equation.
So the proof of the inverse statement is indeed our main new contribution. It occupies most
of the paper. We are able to prove an abstract statement, Theorem 2] which covers a very
large class of one-particle Hamiltonians, including h = —A + V(z) in R? for a potential V'
growing sufficiently fast at infinity, and h = —A on a bounded domain.
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3. MAIN RESULTS

3.1. Homogeneous gas. We first consider the case where

h=—-Aon Q=T¢ d=2.3

with —A the usual Laplace-Beltrami operator on the torus.
It will be easier to parametrize everything in terms of the reference Gaussian quantum
state. For any fixed k > 0, let

Ty = ZO()\)flef)\ dF(*A‘FR), ZO()\) — Ty (67)\ dF(*A‘FIi)) ) (31)
Its expected particle number is (see Lemma [B.1))
1
No(A) := Trg [NTo] = ) AR 1
ke2rZd
_os) o0 ford =2,
- oo =1 o) 3
)\5(271’)d R4 elklP+ae 1 C(S/z_i_O()\fl) for d = 3.
8m2 )2
Let now
Ty=20) e Z)=Tr (e*AHA) (3.3)

be the interacting Gibbs state with Hy = dI'(h) + AW — v(A\N + Ep(A) as in (Z9), with

the choice of chemical potential and energy reference as

w(0

%, Eo()) := )\TNO()\)2. (3.4)

This choice allows us to express the physical Hamiltonian in the form
Hy = dI'(h) + AW — v(MN + Ep(A)

v(A) = —k + AB(0) No(A) — A w(0)

2
= dl'(h + k) + % > (k) ‘dr(ei“) - <dr(eik-x)>
ke(2nZ)?

o

—:\Pyren
This follows from the fact that, by translation invariance,

<dF(eik'x)>F0 = Or=0No(N),

where (- )p, denotes expectation against the reference Gaussian state I'.
We will require that the interaction potential is a bit more regular than stated in (2.22]).
To be precise, we assume that

(k) >0, > @(k) (1+]k*) < oo (3.6)
ke(2rz)?

with the Fourier expansion

Our first result is
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Theorem 3.1 (Homogeneous gas).

Let d = 2,3. Let h = —A on the torus T%. For a fized k > 0, let hg = —A + k and call
Lo = Zo(\) " te M UEAT5) the corresponding Gaussian state as in B1). Let w : T4 — R
be an even function satisfying B.8) and call Ty = Z(X\)"te ™ the interacting quantum
Gibbs state as in B3). Let po be the Gaussian measure with covariance ho_1 and let dp =

2z~ Ye=Pldpg be the associated nonlinear Gibbs measure as in (Z23). Then we have:

(1) Convergence of the relative free-energy:

, Z(\ o
/\11)rgl+ log Zo(()\)) = log z = log </e Dl ]duo(u)> . (3.7)

(2) Hilbert-Schmidt convergence of all density matrices: for every k > 1

lim Tr

A—0t

2
e [ 1w ()

= 0. (3.8)

(3) Trace class convergence of the relative one-body density matrix:

lim Tr
A—0t

M0 =) = [ fudal (dn(w) — diof)

Here are some immediate comments on the homogeneous gas

= 0. (3.9)

1. In space dimensions d = 2,3, po concentrates on negative Sobolev spaces ﬂt<1—d/2 .
This leads to a big jump in difficulty in comparison to our previous treatment in 1D [103],

107].

2. By expanding ([B:2) up to the order A~!, we have

A4( ) log(A\) — vo(k) + o(1) o+ for d = 2,
((3/2)5(0) o d s (3.10)
e v(k) + o(1)yo+  for d=3.

The first term is a counter-term compensating the divergence of the interactions. The
second part (k) is a complicated function of the chemical potential x of the final reference
Gaussian measure. We compute it later in Lemma [B.] in Appendix [Bl and obtain

v(A) =

K+ @(O)loi(m) —w(0) pa(k) for d=2,
vo(K) = g (3.11)
K+ w(0)=—— — w(0) p3(k) for d = 3,

B
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with the positive decreasing function

1 1 dp
pd(K) = Z <|k:|2 +r  (2m)d /(w,ﬂ)d m)

ke2nZd
1 0 e*/@t

le]?
Z e 4t dt for d = 2,

ar Jo 0e72\{0}
-1, = o (3.12)
E Z |€| or = 9.
073\ {0}

Here we started for simplicity with x and we found the corresponding term vy(k). It is in
fact desirable to deduce k from 1 rather than the other way around, which is possible for
all vy > 0 since the function vy(k) is increasing. The o(1) term in (I0) (including the
term A\w(0)/2 in (34])) plays no role and can be removed in the definition of v(\) without
changing our result. The constant Ey(\) has no effect on the Gibbs state itself.

3. In Appendix [Bl we re-express the theorem in microscopic variables and explain the link
with the phase transition in the Bose gas. Theorem [B.1] describes the system just before the
phase transition (i.e. with a density just below the critical one) and p gives the way that
the condensate appears at the macroscopic scale.

4. Our trace-class convergence (3.9]) implies the convergence of the relative number of
particles

tim AW, = W)ry) = [ M) dutw),
A—07F

with M(u) the renormalized mass defined in Lemma This is rather non-trivial, for
the two terms on the left-hand side diverge when taken separately. This convergence is in
the spirit of the physics literature on Bose gases [7), 1T}, 12, [88] 92], where it is argued that
the critical densities are related as pi‘\uant — pluant o plas  peles - In particular, only the
difference in critical densities (interacting minus non interacting) can be properly described

using classical field theory. Note that we have the formal relation

w == [ e (f )

that is, M(u) is actually a difference of two quantities which are individually infinite po-
almost surely. Estimates on relative one-particle density matrices related to (3.9) are re-
cently obtained in [49] 48], but in a different setting, without divergences.

5. Our proof also shows that, in 2D and 3D, for any k& > 2, the difference )\k(l“f\k) — F(()k))
is not bounded in trace class, see Remark When k& > 2 one needs to remove from
Fg\k) combinations of Fé@ for ¢ < k to obtain an operator converging in trace-class. We
do not consider this explicitly here, but results in this direction are in [62] Theorem 1.7].
There the appropriately renormalized (Wick-ordered) density matrices are considered, and
their integral kernels shown to converge uniformly as continuous functions, which implies
trace-class convergence as operators.
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3.2. Inhomogeneous gas. Here we focus on the case

h=—-A+V(z) on Q=R? d=2,3.

We are typically thinking of V' (z) = |z|*, but we can work with a larger class of potentials:
0<VeLX(RY, lim V(z)=+oo,
|z|—00

Vie+y) <CV(z) + H(V(y) +1),
[VV(z)| < C(V(x) + 1),

/ / dz dk c
rixp (K2 +V(z) +1)2 =
All the conditions above ([BI3]) are satisfied for

V(z) = |z|® with s > 2d/(4 — d). (3.14)
Thanks to the Lieb-Thirring inequality in ﬂBﬂL Theorem 1],

dz dk
A4V 1) :
Tl=a+V+ 2y //RR (kP + Vi) 1 1)

the last assumption in ([B.I3]) ensures that
Tr[h %] < 0.

(3.13)

This is the optimal requirement in our method and it barely fails on a bounded domain
(s = 400 in (BI4) formally) in dimension d = 4. For the interaction potential, we assume
that w : R* — R is an even function satisfying

we L (Rd, (1+ V(x))2dx) . 0< @ e LYNRL (14 [k[2)dk). (3.15)

First we discuss the following issue: If we take as reference state the Gaussian state
based on h = —A+V and start with a renormalized Hamiltonian in the same form as (8.5,
we actually perturb the original physical Hamiltonian by an external potential which is x-
dependent. This is physically questionable since it does not correspond to adjusting the two
constants v and Fy. Thus Gaussian states based on h are not a physically good reference
to study the limit of Hy. The determination of the right reference state is discussed next.

Let V) be a general one-body potential (which will be specified later and can depend
on A). Let 'y be the Gaussian state associated with —A + V) (x), namely

e~ A dD(—A+13)
Zo(A)
and let QXA () be its one-body density defined by

Ty = Zo(\) = Tr <e—AdF(—A+Vk>) (3.16)

Vi () o T (e ) — 1 :
o) = T wi0) = | sty | (@9 (3.17)

(1)(

where I'y’ (z; y) is the integral kernel of the one-body density matrix Fgl) (the diagonal part
F(()l)(:n;:c) can be defined properly for instance by the spectral decomposition). Note that

in general QXA () depends on z.
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Following the discussion in Section 2.4l we consider the renormalized Hamiltonian as
in (233), but with the reference state I'g. This results in

AT(—A + T3) + % /Rd @(k) ‘dl‘(eik'm) - <dF(e““'x)> "k

—dr ( A+ Vy — Aw* o + w(0 )/2)+>\W+Eo()\) (3.18)

1)

where Ey()) is given by
A
B i=5 [[ o @ule - y)el (r)dady. (3.19)
Rd x R4

This Hamiltonian coincides with the physical Hamiltonian in (29)) with chemical potential
v(A) if and only if V) solves the nonlinear equation

VA—)\w*g + w(0)/2 =V —v(N) (3.20)

which was called the counter-term problem in [60]. Equation (3:20]) is in the same spirit
as (B.II)) seen before for x, but the unknown is now a function. It arises naturally when
restricting the problem to the subclass of Gaussian quantum states, as we explain now. That
the minimizing Gaussian state gives an appropriate reference in renormalization procedures
has been used before in several contexts, for instance in quantum electrodynamics [116] 80].

We recall that to any one-body density matrix v > 0 one can associate a unique Gaussian
state T' on the Fock space which has the one-particle density matrix T1) = ~ [8 [I55]. TIts
energy terms and entropy can be expressed in terms of v as

—Tr[llogl] = [(1+'y)10g(1+’y) vlog],
Tr[dl (A +V —v)T|=Tr[(-A+V —v)y],
Tr [WT] = // z;x)w(z — y)y(y; y) de dy

=3 / we — y)(esy)P dedy. (3:21)

The last term in (3.21]) (called the exchange energy) is typically negligible at leading order,
resulting in the mean-field or reduced Hartree free energy

FMEG = Tr [(~A+V —v)y // zyx)w(x —y)y(y;y) de dy
—TTr[(1+47v)log(1+v)—vlogy]. (3.22)

Minimizing this energy corresponds to solving the mean-field problem mentioned in the
introduction, as stated in the following result, which is a simple consequence of the convexity
of the functional FMF. The proof is given in Appendix

Lemma 3.2 (Existence and uniqueness of the reference quasi-free state).
Letd>1,T >0, A>0 and v € R. Assume that

0<VelLl . (RY, e VTecL'®RY, welL'(RY, 0<de Ll (R
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Then the variational problem

FME(T N v) = inf FMF[y) (3.23)
vy=7*20

admits a unique minimizer yM¥ . This minimizer solves the nonlinear equation

1

MF

= . .24
’)/ eTfl(—A—f—V—l/-f—)\prF *w) _ 1 (3 )

Hence, when T = 1/X and v = v(\) + Aw(0)/2, its potential Vy :=V — v(\) — Aw(0)/2 +
Apyme kW solves the nonlinear equation (B.20).

The lemma says that we have to use as reference the Gaussian state with minimal free
energy (without exchange) and chemical potential v(\) + Aw(0)/2, since this allows to
rewrite the full Hamiltonian H) in the desired form (Z33]). The shift Aw(0)/2 of the chemical
potential is the one appearing in ([232) and it is negligible in our regime.

The nonlinear equation (.20 has been studied by Froéhlich-Knowles-Schlein-Sohinger
in [60]. It is proved herein that, when 7" = 1/ and the chemical potential v(\) is tuned
as in the homogeneous case ([34I), the potential V) converges to a limit Vj that we will use
as the reference renormalized potential. The following statement summarizes the results
of [60 Section 5]. Everything is again expressed for simplicity in terms of the parameter x
instead of .

Theorem 3.3 (Limit renormalized potential [60]).
Let d =2,3. Let V,w satisfy BI3)-BI5). Take a constant k > 0 and set

. 1 dk ok
06(A) = (27r)d)\% /]Rd elk2+xs 17 v(A) == Aw(0)of (A) — Kk — Aw(0)/2. (3.25)
Then, there exists kg < 0o such that we have the following statements for all Kk > ko and
all0 <A< 1.

(1) The unique solution Vy of [B20) satisfies

\% 3V

(2) There exists a function Vi satisfying

Vi—W
im =0
)\*>0+ V Loo(Rd)
and
2
Jim Tr|(—A+13)7 - (-A+ Vo)’l‘ — 0. (3.27)
—00

(3) The limiting potential Vi solves the nonlinear equation

%:V‘i‘w*PO‘f”@

1 1 (3.28)
po(z) = (_A+% - —A+m> (z;).
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The above is not stated exactly as in [60], Section 5], where the limiting nonlinear equa-
tion ([B.28]) for Vp was indeed not mentioned. We quickly discuss the link with [60] and the
proof of ([3.28)) in Appendix[Al Note that the limiting equation ([328) is formally obtained
by replacing the Bose-Einstein entropy Tr(—~log~y + (1+7)log(1+~)) by Tr(log~) (which
is its leading behavior at large ) in the variational principle (3:222)) and then writing the
associated variational equation.

The interpretation of Theorem is that the divergence of the mean-field density py(z)
is essentially z-independent, and given by that of gf(\), under the condition that v(X) is
chosen as in (B2H). The function gf(A) has already appeared in (82 and we recall that

. —% ‘|‘ O(l)A_>0+ fOI‘ d = 2,
N =9 e R

—m AN + O(l))\_)OJf for d = 3,
so that v(\) behaves the same as in ([B.2). Here « is interpreted as a kind of effective
chemical potential in the limit, but note that V{y depends in a nonlinear way on x. The link
with the free Bose gas is detailed in Appendix [Bl

In the following we use as reference state the Gaussian quantum state

:[10 — ZO()\)flef)\dF(*A+V)\)’ ZO()\) — TI'S’ |:67)\dr(7A+V)\)i| (329)

associated with the one-particle operator —A + V), which provides in the limit the reference
Gaussian measure o with covariance hg - (—A +Vp)~!, depending on k.

We can now state the main result relating the physical inhomogeneous Hamiltonian to
nonlinear Gibbs measure.

Theorem 3.4 (Inhomogeneous gas).

Let d =2,3. Let V,w satisfy BI3)-BI0). Let k > ko and v(\), Vx, Vo as in Theorem [3.3.
Consider the Gibbs state T'y = Z(\)"te ™ associated with the physical Hamiltonian H,
in @) with h = —A+V and Eg(\) as in @I9). Let Tg = Zo(\) " Le AMEAT) be the
reference Gaussian quantum state as in [B29). Let po be the Gaussian measure with co-
variance (—=A+Vp) ™' and let du = 2~ e~ PMdpug be the associated nonlinear Gibbs measure
as in (Z23). Then we have:

(1) Convergence of the relative free-energy:

. Z(\) B —D[u]
/\11)rgl+ log AN log z = log </ e dpo(u) | . (3.30)
(2) Hilbert-Schmidt convergence of all density matrices: for every k > 1,
2
lim Tr AR - / @) (W | dp(u)| = 0. (3.31)
A—0t

(3) Trace class convergence of the relative one-body density matrix:

lim Tr
A—0t

=0. (3.32)

M0 =1 = [ fudal (da(w) — diofw)

Here are some remarks on the inhomogeneous case.
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1. Note that our reference I'g is not the exact mean-field minimizer since its chemical
potential is v(A) + Aw(0)/2 instead of v(A), by Theorem This shift is the same as the
one in ([Z32) and it is completely negligible in our regime. It is simpler to work with I'y as a
reference but the result is exactly the same if we use instead the exact mean-field minimizer
(as we did in the introduction). Note that when referring to a “mean-field minimizer” we
always understand that the exchange term is neglected in its definition.

2. The same theorem was shown in dimension d = 1 for V(x) > C|z|* with s > 2 in [103] and
s> 1in [I07]. In this case it is not necessary to use the mean-field solution as reference. The
final measure is indeed absolutely continuous with respect to the non-interacting measure
with covariance h™! = (—=A + V + k)~!. The assumption that & is large enough is also
not necessary. The proof given in this paper applies to dimension d = 1 as well, with the
weaker assumption s > 2/3.

3. What is really needed in our approach is that Tr[h 2] < co. In Section @ we state another
theorem which covers any h = —A 4+ V on an arbitrary domain Q C R?, for instance with
Dirichlet boundary condition. Should the mean-field convergence in Theorem hold in
this setting, as we believe, we then immediately obtain a result similar to Theorem B4 on
the domain Q c R%.

4. PROOF STRATEGY

To make the presentation transparent, we first formulate in Theorem [£.2] below a general
inverse problem, from which the previous (direct) statements will easily follow. Then we
explain the main ideas of the proof of the inverse statement, whose details occupy the core
of the paper.

4.1. General “inverse” statement. By “inverse problem” we mean the limit of the quan-
tum model (with an arbitrary one-particle Hamiltonian h), to which we add properly chosen,
z-dependent, counter terms so that the limit measure is absolutely continuous with respect
to the non-interacting gaussian (instead of the mean-field one as in the previous section).

Assume that € is an arbitrary smooth domain in R? and h is a positive self-adjoint
operator on L?(Q) such that Tre 5" < oo for every 8 > 0. The reader might think of the
typical case h = —A + V on L?(RY) with a trapping potential V diverging fast enough at
infinity, as before. However, in order to cover as many practical situations as possible, we
will keep h rather general and abstract from now on. This is a difference in approach with
respect to [62], where a path integral formalism is used, based on the Feynman-Kac formula
for the Laplacian.

Let

Lo = Zo(A\)Le MM Z0(\) = Trgle M) (4.1)

be the corresponding quantum Gaussian state. Its one-body density go(x) is given by

o) = T8 (w52) = | gt | i), (4.2)
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We then consider the renormalized interaction
1 A
wee =3 [ o)
2 R4

W T o) + 5 [ el — vey)ddy + 5w 0)

dr(eit=) <d1“(e“”)>ro ik (4.3)

2

and the renormalized Hamiltonian as
H) :=dl'(h) + AW = dl'(h — Aw % g9 + Aw(0)/2) + AW + Ey()) (4.4)

where
B = ([ awuts ~ peots)dedy, (4.5)

Thus instead of varying the chemical potential (we set ¥ = 0 here), we have replaced the
bare one-body operator h by the dressed operator h — Aw * g9 — Aw(0) /2.
We will, for the sake of generality, only make the

Asumption 4.1 (The one-body Hamiltonian).
Let h be a self-adjoint operator on L?(Q) satisfying

Tr[h 2] < oo, (4.6)
[, €52 =12 < C(1+ k%), VEkeRY, (4.7)
e Ph(z,y) >0, YB>0 (4.8)
where ¢ is identified with the corresponding multiplication operator.

This is satisfied in the case of Theorem 3.4l as we explain after the statement of the next
theorem.
Our assumptions on w are the same as before:

w(z) = / w(k)e**dk, w(k) >0, /Q w(k) (1 + |k*) dk < . (4.9)

Of course when Q = T%, the integration is interpreted as a sum as in (3.6) and the momenta
k in [@7) must be in 27Z¢. We will prove the following:

Theorem 4.2 (General inverse statement).

Let h > 0 on L%(Q) satisfy Assumption[J-1] and let w : R? — R satisfy @E3I). Consider the
Gibbs state T'y = Z(\) e ™ associated with the renormalized Hamiltonian Hy in [@EZ).
Let Tg = Zo(\) "' e MM be the reference Gaussian quantum state as in @&I). Let
be the Gaussian measure with covariance h™' and let dp = 2z~ e~ Plldug be the associated
nonlinear Gibbs measure as in ([223). Then we have:

(1) Convergence of the relative free-energy:

. Z(\) B —D[u]
/\11)rgl+ log Z0 log z = log </ e dpo(u) | . (4.10)
(2) Hilbert-Schmidt convergence of all density matrices: for every k > 1,
2
lim Tr AR — / @) (W | dp(u)| = 0. (4.11)
A—0t
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(3) Trace class convergence of the relative one-body density matrix:

lim Tr
A—0t

M0 = 18) = [ )l @it = duo(wp| =0, (4.12)

Here are our comments on Theorem

1. Let us go back to the case h = —A + V(x). When V is not a constant, the renormalized
Hamiltonian ([4]) is different from the physical Hamiltonian (29]) because we have replaced
the bare potential V' by the new potential V' — Aw % gg + Aw(0) /2, instead of simply shifting
a chemical potential. Thus to obtain the Gibbs measure associated with V', we have started
with an ad-hoc, different external potential. In this regard the above is an inverse statement.

2. The homogeneous case in Theorem [3.1]is included in Theorem because we have seen
in (B3] that the Hamiltonian can be rewritten in the form ([@.4)) if v(\) and Ey(\) are chosen
appropriately. But the inhomogeneous case in Theorem [B.4] does not immediately follow
from Theorem In the latter situation, we can write the main Hamiltonian as in (4]
but only if we use the mean-field potential V) solving the counter term problem (B20]), and
thus depending on A. Recall that V), converges to Vy by Theorem B3], however. Our proof
of Theorem 2] will indeed apply to this case too because all our estimates are quantitative
and depend only on Tr[h~2]. This stays bounded when V) — Vj in the sense of Theorem 3.3l
Further details on how to deduce Theorem [B.4] from Theorem .2 and its proof are given in
Section

3. Here besides the natural condition (40]), we also require the bound on the commutator
of h with the multiplication operator by ¢’** in @X)). The precise meaning of ([T is that
we assume e’*% stabilizes the domain D(h) of h for all k, and that

H[h, eik'm]uHZ <C(l+ |k‘|2)2<u, hu).

for all uw € D(h). This condition is needed for the key variance estimate in Section [ For
h=—-A+Vin Q=R% it follows immediately from the computation

[eik-x’ h] _ [eik-m7 —A] _ eik-m( — ‘]{;’2 + 2k - (ZV)) (4'13)

and the fact that e?** stabilizes the domain of the Friedrichs realization of —A + V. The
assumption is also satisfied for the periodic Laplacian on the torus, or the Dirichlet Laplacian
in a bounded domain 2.

4. Our other assumption (X)) is well-known to hold for h = —A + V on L?(R%); in this
case the positivity of the heat kernel is a consequence of the Feynman-Kac formula (see
for example [I51]). But other models are covered, including fractional Laplacians, and
localized versions on bounded domains with various boundary conditions. This condition
is only needed for the convergence of density matrices in ([LI1)-@I2]). Without ([@J]), the

free energy convergence (LI0]) remains valid.

In the following we sketch an outline of the proof of Theorem

4.2. Variational method. Our method is variational, in the same spirit as our previous
works [103], [I07]. We shall however rely much more on the structure of the Gibbs state,
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that is, on the fact that it is the ezact minimizer (and not just an approximate one) of the
free-energy
AFy=—logZ(\) = I%l}lgl {Tr [AHL\I'] + Tr [I"log I'] } . (4.14)
Tr =1
From (4.I4) and a similar formula for the Gaussian quantum state I'g, we deduce that I'y
is also the unique minimizer for the relative free energy:

Z()‘) _ : _ : 2 ren
~log 235 = min {0, T0) + ATY{(Ey — Ho)U)} = min {#(D, Do) + N T [We"r] |.
TrI'=1 TrI'=1
(4.15)
Here

H(T,T') := Trg (T(logT —logI")) >0

is the von Neumann relative entropy of two quantum states I' and I. The simple rewrit-
ing ([@IH) is particularly useful, for the left-hand side is nothing but the free-energy dif-
ference, multiplied by A. This is the quantity we show converges when A — 0 in (31
and ([@I0). Characterizing the difference directly as an infimum is much more convenient
than working on both terms seen as infima separately.

Similarly, the classical Gibbs measure u defined in Section is the unique minimizer
for the variational problem

—logz = glin {’Hcl(u, o) + /D[u] du(u)} (4.16)
v pr(l)/é.ugneas.

where g J
/ v v /
= B — —_— >
He(v, V) /fjs o (u)log <dy’ (u)> dv'(u) =0

is the classical relative entropy of two probability measures v and /.

The variational problems (AI6]), (4I5) and their basic properties will be discussed in
Section 5l For now, observe that (£I0) begs for being interpreted as a semi-classical version
of (AIH]). This is the route we follow, using semi-classical-type measures associated with
general states on the Fock space. To our sequences of quantum states Iy and I'g we can
associate in the limit A — 0T two semi-classical measures p and po. This is a general
theory, not particularly linked to the fact that we consider Gibbs states. The measures
are also called de Finetti or Wigner measure and they can be constructed for very general
states. The precise sense in which they approximate quantum states is fairly explicit [4} [5]
[102], 104, 103| 137, 138]. Everything will be recalled in Section below. Although g is
a priori unknown, we have already proved in [I03] that the de Finetti/Wigner measure py
of the Gaussian state I'y is simply the Gaussian measure with covariance h™!, as it should
be. The goal is therefore to prove that p is what we want by showing that it solves the
minimization problem (ZJ6]). This requires to pass to the limit in (£I3]), the difficult part
being the lower bound

Z
li/\rgiorif <— log Zo(();\))> > Hal(p, po) + /D[u] dp(u) = —log z. (4.17)
This can be split into two separate lower bounds
liminf H(T',T¢) = Ha(p, o) (4.18)

A—0t
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and

lim inf A2 Tr [W L] > /D[u] du(u). (4.19)
A—07F

The first bound (£I8]) has already been shown in [103], based on a Berezin-Lieb-type
inequality [15] T12] 150l 137) 13§] for the relative entropy which we recall in Theorem [(.9]
below. The bound ([J9) is much more difficult due to the renormalization of D, which
is seen in the fact that W™ is essentially an average of squares of the difference of two
divergent quantities, depending on A. This makes compactness arguments difficult and
all the known estimates in the literature seem insufficient to pass to the weak limit and
obtain (£I9). In the next section we explain our main new idea for proving (£.19).

4.3. Idea of the proof of (LI9]). As in several of our works on the subject [103], [104] 105,
[107], the method is to project the two quantum states I'y and I'g to a finite dimensional space
using the Fock-space/geometric localization method [100], where semi-classical analysis is
better controlled. The main novelty of this paper is a new way of controlling the projection
error, that we briefly describe here.

We write the renormalized interaction operator in (Z33]) as

2

dk
T'o

A2pyren — %2/@(]{:) ‘dr(eik-z) _ <d1“(e“f'x)>

2
= % [ (k) |ar(eos(h - )) — (AP (cos (k- ), [*

2
2
4% [ B0 [ar(sin(e - 2)) ~ (X (k- 2))y, [ i

The main technical step is to replace for each Fourier mode the multiplication operator
e € {cos(k - z),sin(k - x)} by the projected one Pey P, where P is the projection onto the
chosen finite-dimensional space. Indeed, in this space we can rely on quantitative versions of
the quantum de Finetti theorem [40], [I03]. The errors thus made depend heavily on the rank
of P, whence the need to keep that under control by precisely estimating the contribution
of e,i' = e, — PepP.

A natural choice for P is

P=1(h <A.)

for some finite but large energy cut-off A, = A.(\) to be optimized over. The main challenge
is to show that

2
A2 <‘df(e;) - <dF(e;)>FO‘ > Aj0>+ 0, with e} 1= ey — PeyP. (4.20)
T\

This is the crucial place where the renormalization is taken very carefully into account since
the counter term A <dl“(e,j)>FO may diverge fast (like log(A™") in 2D and A~%/2 in 3D in
the homogeneous case). The limit (£20]) is the object of Theorem and it is proved
using the new correlation inequality (LI4]) mentioned in the introduction. The proof of this
inequality occupies the whole Section [7
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The correlation inequality (LI4]) allows us to replace the difficult limit of the two-body
term in (£20]) by the following one-body problem averaged over a small window ¢ € [—a, a]

(ar(ef) - <dr(e;)>ro>F

with the perturbed state

= max |Te[ef () - TEY)]| >0 (a21)

c€[—a,a]

A max
c€[—a,a]

e

The = Z(A\e) Lexp ( — AH, + ) (dr(eg) - <dr(eg)>ro> )

where Z(A,)~! as usual normalizes the trace of I'y .. Note that the effect of the perturba-
tion is just to replace h by h—ee; since the other term is a constant and can be removed. At
this stage the new inequality (ILI3)) on one-body density matrices also mentioned in the in-
troduction plays a key role. This inequality is a careful elaboration on a Feynman-Hellmann
type argument, see Section [Gl

4.4. Organization of the proofs. The above is our sketch of the proofs’ main ideas. Here
is how they shall be articulated in the sequel:

e In Section [l we collect some basic facts. First we go into more details regarding the
construction of the Gibbs measure u, then we discuss de Finetti measures. Next, we provide
some preliminary estimates on the quantum states I'g and T'y.

e The novel part of our paper starts from Section [6] where we prove the entropy estimate
([LI3) as well as other useful estimates on one-body density matrices.

e The second new ingredient of our paper is Section [7, where we discuss a general strategy
of controlling quantum variance by the first moments of a family of perturbed states. We
prove there an inequality more general than (I.I4) mentioned in the introduction.

e The technical core of the paper is Section [§ where we give a quantitative estimate on the
two body term on the left side of (£20]). This is done by carefully carrying out the method
in Section [7 using a-priori estimates from Section [6] and Section

e All this allows us to prove the desired lower bound ([{I7) in Section [@ using de Finetti
measures and controlling the errors as sketched above.

e A free-energy upper bound matching (A7) is derived in Section [[0, by a trial state
argument and some finite dimensional semiclassical analysis. The argument is much easier
than for (£I7). Our trial state is given by the free quantum state in the ultraviolet (high
kinetic energy modes) and by the projected classical interacting state in the infrared (low
kinetic energy modes).

e In Section [II] the convergence of reduced density matrices is deduced from various es-
timates developed to prove the free-energy convergence, plus Pinsker inequalities. This
concludes the proof of Theorems and 311

e The proof of Theorem [B4lis finally explained in Section

e Appendix [Al contains some material on the counter-term problem introduced in Section
Most of this is taken from [60] and reproduced for the convenience of the reader.

e Appendix [Bl discusses the physical interpretation of our result in light of the phase tran-
sition of the Bose gas. We start with the non-interacting case w = 0 in all dimensions and
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explain the emergence of Gaussian measures, since we have found this nowhere in the phys-
ical or mathematical literature (although this is certainly implicit e.g. in [7) [T, 121 88 [92]).
Then we reformulate our result with interactions in microscopic variables.

5. CLASSICAL MEASURES AND A PRIORI BOUNDS

In this section, we collect some useful facts on the classical Gibbs measures we derive
from the quantum problem, and on the semiclassical de Finetti measures that serve as one
of our main tools. We will also recall some basic properties of the many-body quantum
Gibbs state and prove a collection of a priori bounds to be used throughout the paper.

5.1. Gibbs measures. We do not claim originality for the material below, the methods
having been well-known to constructive quantum field theory experts for a long time. A
related discussion can be found in [60, Section 3] but for pedagogical purposes we follow a
somewhat more pedestrian route.

In this section, we always assume that h satisfies Tr[h™P] < oo for some p > 1. Let
{Ni}2, {ui}s2, be the eigenvalues and the corresponding eigenfunctions of h. Let us start
by recalling the definition of the Gaussian measure:

Lemma 5.1 (Free Gibbs measure).
Let h > 0 on $ satisfy

Tr[h™P] < 00 for some p > 1,
with eigenvalues {\;}5°, and eigenfunctions {u;};2,. The Gaussian measure fio of covari-
ance h™1 is the unique probability measure over the space H'™P such that for every K > 1
its cylindrical projection on Vi = Span(uq, ..., ux) is

K

s

dpo g (u) = H <_Ze—>\i|04i2 dai> (5.1)
i=1 g

where o;; = (u;,u) and do; = dR(oy) dS(ey;) is the Lebesgue measure on C ~ R, Moreover,

the corresponding k-particle density matrix

b = 1) duotu) = b (1) (52)
belongs to the Schatten space &GP (.V)®5k).
(k)

Our convention in (B.2)) is to consider the action of 7,," only on the symmetric subspace
$H®sk. On the full space with no symmetry we have

Ve = KPE() SR P (5.3)
with P¥ the orthogonal projector on the symmetric subspace.

Proof. See [103], Section 3.1] O

The measure just defined on the space $!77 does not live on any better behaved subspace
if Tr[h*p/] = 400 for p’ < p. This is called Fernique’s theorem and is recalled e.g. in [103]
Equation (3.4)]. The need for renormalization arises from this fact.

In particular, when Tr[h~!] = 400, pi is supported on a negative Sobolev space and thus
the mass [pq |ul® is equal to infinity pig-a.e. However, it turns out that when Tr[h™?] < oo,
this infinity “is the same” for pg-almost every w. This allows us to define a notion of
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renormalized mass. The idea goes back to Nelson [I125] and has been thoroughly studied in
constructive quantum field theory [70], 148].

Lemma 5.2 (Mass renormalization).
Let h > 0 satisfy Tr[h 2] < co. For every K > 1, define the truncated renormalized mass

Miclu] = | Preu]? - / [Prcul? do(u) (5.4)

where Py is the orthogonal projection onto Vi = Span(ui,...,ux). Then the sequence
My converges strongly to a limit M in L*(dpuyg).

More generally, for every operator A with D(A) C D(h) and such that Ah™" is Hilbert-
Schmidt, the renormalized expectation value

MU = (P, APut) — / (Prcu, APy dpio(u) (5.5)

converges strongly in L?(duo) to a limit MA . The limit is uniform in A on sets where the
Hilbert-Schmidt norm HAh*lHez(m is bounded by a constant. In fact

/WA[ 117 dpo(u) = Jim /\MK dpio(u) = Tr [ART AR (5.6)
Proof. Writing Pxu = Z]K:1 a;j uj, we first recall the simple Gaussian integration formulae
(Wick’s theorem)
_ 1
<ai05j>ﬂ0 = )\_jfsi:ja <ala]akaﬁ> )\ )\ ~0i= ]619 ¢+ . )\66 k(sj:K (57)

Then we compute

K K K K
B SN0 DIV IED VA VL
j=1 j=1 S j=1
Therefore, for L > K,
L
Milu] = Mglu] = Y (JaP = A7),

j=K+1
From this and (5.7) we find

(Mo~ M) = 3 3 (s =X el = A7)

J=K+16=K+1

S E S (et )= 3
j=K+1(=K+1 T
Since .
Y N2 =Tr(h?) < o, (5.8)
=1

we conclude that { Mg }%°_, is a Cauchy sequence in L?(dpp) and hence it converges strongly
in L2(duo).
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Now consider an operator A such that Ah~! is Hilbert-Schmidt. We check that (5.5]) is
in L?(dug) uniformly in K and leave to the reader the similar proof that it is a Cauchy
sequence. Using (0.7) again we have

<M?}[u]2>ﬂ0 — Z <aid]’dka@>uo <ui, Auj> <Uk, Auﬁ

1<i,5,k,0<K

=Y (i)~ (s, Aug) T, Aug)

1o )\
1<, 5, k<K
_ Z (@iaj),  ~ " <ul,Au]> (ug, Auyg) +Z N )\ (uj, Aug) (u;, Aug)
1<i4,5,k<K @]
1 — _ « _
= Y o (s Aug) (i, Aug) = Tr [A(Pich™ ) A*(Pch™")]
1<i k< Tk
which is bounded by assumption, uniformly in K. O

From the previous result we may choose A to be the multiplication operator by some
bounded function f localized around some point z. Thus (5.6) implies that not only the
global mass, but also the smeared local mass density |u(x)|? around x, is renormalizable.
In fact, in this case (B.0]) reduces to

(W) =mlsnfon) = [ r@TulcanPad 69
1o x

with G the Green function of h (i.e. the integral kernel of h~1). This function is certainly
square-integrable on  x  when Tr[h™2] < co.

Consider now an interaction potential w as in ([£9]). For the same reasons as the mass,
the interaction energy is not well-defined on the support of pg and it is necessary to in-
troduce a renormalization. In our context, it is in fact sufficient to insert the local mass
renormalization in the interaction’s expression. This leads to

Lemma 5.3 (Renormalized interaction and nonlinear measure).
Let h > 0 satisfy Tr[h=2] < 0co. Let w € L>(Q) be such that its Fourier transform satisfies
0 <@ € LY Q). For every K > 1, define the truncated renormalized interaction as

in @19):
_ %//Qxﬂw(x—y) <|PKu(:n)|2 _ <|PKU(x)|2>ﬂO> <|PKu(y)|2 _ <|PK“(?/)|2>#0) iz dy.

Then Dk [u] = 0 and Di[u] converges strongly to a limit D[u] > 0 in L'(duo). Consequently,
the probability measure

1
du(u) = ;e_D[u]duo(u), z= /e_D[u] dpio(u) (5.10)

1s well-defined. Moreover, the reduced density matrices

9= [ 1) (0 (5.11)
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belong to &P(9y) for every p such that Tr[h™P] < oo. Finally, the relative one-particle
density matrix

A = gt = i )l (A (Prcw) = do (Picu) (512
18 a trace-class operator, with

) (1)

’7#0

< 2 V2 /Tx[h2]. (5.13)

Proof. We use the Fourier transform
w(r —y) = /@(k:)eik'xe_ik'ydk

and denote e, the multiplication operator by e?*. Then, using the notation of Lemma [5.2]
1 [ 2
Dklu] = 3 /w(k) |M§§[u]‘ dk (5.14)

Since w > 0 by assumption, we obtain immediately that Dg[u] > 0.
In order to prove that Dy is a Cauchy sequence in L' (dug), we use the Cauchy-Schwarz
inequality

2|Dr[u] — Dilu \—‘/ (M5 = (M5 [w)[) d '

[ @) (M) + |5l )
(5.15)

‘/ ) | M [u) — M [u][* dk

Averaging over pg, using Lemma and recalling that @w € L!, this goes to zero when
L,K — oo. Thus Dglu] is a Cauchy sequence in L'(dug) and it converges strongly to a
limit D[u]. Since Dx[u] > 0, we have D[u] > 0. It follows from Jensen’s inequality that

z = /eDMd,uo(u) > 0, (5.16)

which ensures that (B.10) is well-defined.

That the density matrices (GBI are in &P directly follows from the positivity of the
renormalized interaction and the corresponding statement for the free density matrices (5.2]).
To see that the relative one-particle density matrix (B.12]) is trace-class, note that for any
finite-rank operator A

Tr [A <fylg 'Vuo /MA Jdu(u
Using Cauchy-Schwarz and the fact that u < 2~ !ug we find
1[4 (0 )] < [ 1Ml duta)

1/2
< <z1 / MA[u]2du0(u)> < 27 V2| A/ T2
By duality, the relative one-particle density matrix is thus trace-class, with

R R

Tr
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O

Remark 5.4 (The interaction as an exchange term).
Note that, by Gaussian integrations similar to those appearing in the proof of Lemma [5.2]
we obtain that, formally

<//m Ju(z) Ptz - y)'“(y)'%dy> -3 //m w(z — )Gz, 2)Gly,y) dv dy

Ho
1
+3 // w(z —y)|Ga,y)|* dedy
QxQ

where the first term is called the direct term and the second the exchange term, see Sec-
tion [AJl Here the direct term is infinite because lim,_,, G(z,y) = +oo. For instance for
the Laplacian on a bounded domain 2 we have that G(x,y) behaves like (see e.g. [141]
Lemma 5.4]).

—sloglz —y| ifd=2,
ifd=3.

On the other hand, averaging (B.14]) with respect to up and using (5.9) we find, after passing
to the limit K — oo,

G(-’E, y) :137,:[\;%0 {47rx1_y

1

0< (D, =5 [ B0 (M), d
1

= /w (k) // eF @G, )| Pdady dk
QxQ

_ //QX (@ — y)|Clz, y) [ de dy. (5.17)

We thus see that renormalizing the mass density to define the interaction is equivalent
to dropping the direct term from the bare interaction. Actually, (5.I7) proves that the
renormalized interaction is well defined under the sole condition that w satisfies

//M w(z — )| |Gz, )|” dudy < oo

with G(z,y) = h~!(x,y) the Green function of h. o

5.2. De Finetti measure. Here we review how to associate a semiclassical measure (that
we call de Finetti measure) on the one-body Hilbert space to a given sequence of many-
particles bosonic states. This idea has a long history, for it is related to the de Finetti-
Hewitt-Savage theorem used in classical statistical mechanics to approximate a many-
particle state by a statistical mixture of i.i.d. laws. See [I38] [137] for review. For more on
the connection with usual semi-classics, see [3] and references therein.

The approach we use in this paper is a blend of ideas originating from semi-classical
analysis [4], Bl 6] 5] 112] 150] and quantum information theory [29] 40} B9, [84] with many-
body localization methods [2], 45 100} 1021 105 103].

It will be crucial for us that, once the one-body state-space is projected to finitely many
dimensions, quantitative estimates on the error made by approximating a many-body state
using a classical measure are available [40, [104]. We thus begin by recalling what Fock-space
localization is. Then we continue with the quantitative version of the quantum de Finetti
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theorem available after finite dimensional localization. To deal with the entropy term it
is crucial that the de Finetti measure we use is in fact a lower symbol (associated with a
coherent states basis). This allows us to use a Berezin-Lieb-type inequality from [103].

Fock-space localization. We will localize the problem to low kinetic energy modes. For
this purpose, let us recall the standard localization method in Fock space. Let P be an
orthogonal projection on ) and let @ = 1 — P. Since $ = (P$) @ (Q$H), we have the
corresponding factorization of Fock spaces

T = F(PH) @F(QH) (5.18)
in the sense of a unitary equivalence. That is, there is a unitary
U:F(PHDQH) — F(PH) T (QN) (5.19)
satisfying UU* = 1. Its action on creation operators is
Ud" (U =a" (Pl +1®a"(Qf) (5.20)

and a similar formula for annihilation operators. We refer to [81, Appendix A] and references
therein for precise definitions and properties.

Definition 5.5 (Fock-space localization).
For any state I' on § and any orthogonal projector P, we define its localization I'p as a
state on § obtained by taking the partial trace over F(Q9):

FP = Tr%(Qf)) [L{FZ/{*] .
The density matrices of I'p can be shown to be equal to
(Tp) k) = pekpk) pok k> 1, (5.21)

o

The crucial property ([5.21]) follows immediately from (Z8) and (520), see again [81),

Appendix A] and references therein for detailed discussions. An equivalent definition leading

to (B2I) originates in [I00] and is reviewed in [I37, Chapter 5].

Coherent states and lower symbols. The de Finetti measure is in fact a lower symbol
with respect to the over-complete basis of F(P$)) given by coherent states when P is a
finite-dimensional orthogonal projector. Below, the notation [0) = 1@®0® 0@ . .. stands for
the vacuum vector of Fock space.

Definition 5.6 (Coherent states).
A coherent state is a Weyl-rotation of the vacuum |0) in the Fock space §

§(u) == W(w)|0) = exp(a’ (u) = a(w))|0) = e "2 exp (al(w)) 0) = e 11/2 w%“®
n=0

(5.22)
for u € 9. o

The Weyl operator W (u) is a unitary operator translating creation and annihilation
operators

W(f)*a' (W (f) =a'(g) +(f,9), W(f)*a(@W(f) = alg) + (g, f). (5.23)
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The k-particle density matrix of the coherent state &(u) is

)€™ = %Iu@)kﬂu@kl- (5.24)

Definition 5.7 (Lower symbol).
For any state I' on § and any scale € > 0, we define the lower symbol (or Husimi function)
of I' on P$) at scale € by

Ao () = ()™ TPV (E(u)VE), rpg(u/f»g(% (5.25)
Here du is the usual Lebesgue measure on P§) ~ CT (), o

Thanks to the resolution of the identity/closure relation (see e.g. [I03])

7TTr(P)/ |£(u)><£(u)|du _ WfTr(P) (/ 6|U2du> ]l]-"(V) — ]l]-'(P.ﬁ)’ (526)
P$ P

the lower symbol /ﬁzr(u) is a probability measure on P$). Moreover, it provides a good

(k)

approximation for the density matrices I',”, as per the following version of the quantum de
Finetti theorem:

Theorem 5.8 (Lower symbols as de Finetti measures).
We have, for all k € N,

k—1
k k
/Pjﬁ ’u®k><u®k‘ d/ﬁ?,l“(u) = k:!gkfgj) + kleF ; <€>I‘(€) R 1@’;41—1@' (5.27)
=0
Thus, with d = Tr[P],

Tr [Febr(h) — / Y (| dyio
P$H

kz() k €+61i). ) [NEFP] (5.28)

The result is taken from [103, Lemma 6.2 and Remark 6.4]. It is an elaboration on a
theorem originating on [40] and a proof thereof later provided in [I04]. If % is fixed and
Tr [(eN)Tp] = O(1), then the upper bound in (E28) behaves as Cde in the limit & — 0.
This is similar to the bound 4kd/N obtained for N-particle states in the references just
mentioned.

Finally, we recall a Berezin-Lieb type inequality, which links the von Neumann relative
entropy of two quantum states to the classical Boltzmann entropy of their lower symbols.

Theorem 5.9 (Relative entropy: quantum to classical).
Let T and I be two states on §. Let p%pp and ph v be the lower symbols defined in (B.25]).
Then we have

H(D,T) > H(Tp,Tp) > Ha(kir, ir). (5.29)

The result is taken from [103, Theorem 7.1], whose proof goes back to the techniques
in [I5] 112] 150]. Note that, to obtain an approximation of density matrices, other con-
structions than that based on the lower symbol we just discussed are available [29] B8] [91],
157, 139]. Some of those give good quantitative estimates and the main reason for us to
rely on lower symbols (a.k.a. Husimi functions, covariant symbols, anti-Wick symbols) is
that (5.29]) is heavily based on their properties.
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5.3. Gaussian quantum states in the limit A\ — 0. Now we introduce the parameter
A and study the limit A — 0. We start by stating some simple properties of the Gaussian
quantum states. Let h > 0 satisfy Tr[h™P] < oo for some p > 1. Then, Tr[e~#"] < oo for all
£ > 0 and we may define the associated Gaussian quantum state by

e~ I (h)

To="2r Zo(N) = Trg [e—w(h)] . (5.30)

We recall (see e.g. [103], Appendix A]) that the partition function of the Gaussian quantum
state satisfies

—1log Zo(\) = —log Trg(e M)y = Ty (log(l — e_Ah)) = AFp (5.31)
where the free-energy
Fy = Fo[lo] = min Fo[I] = min {Tr (d[(A)T) + A~ Tr (T'log T') }

is the infimum over all states of the free-energy functional associated with Hy. We collect
some of its first properties in the

Lemma 5.10 (Gaussian quantum state).
Let h > 0 satisfy

Tr(h™?) < 00 for some p > 1. (5.32)
The k-particle density matrixz of the Gaussian quantum state is given by
(k) L\ k(p—1\@k
) _ (ekh_1> < AR (h1)ok, (5.33)
Consequently, for every k > 1,
AR T s () = / Y (1 | (1) (5.34)
—

strongly in the Schatten space GP(H*). Moreover,

Trg [rg’“)] - <<JZ >> < O Tr(hP)F APk, (5.35)
0

and, if in addition p > 1,

: pk k)| _
lim \* T [FO ] —0. (5.36)

Here N is the particle number operator and
()o :=Trz (-T'o)
1s the expectation against I'g in the Fock space §.

Regarding (533]) we recall the notational convention discussed around Equation (53]). To
illustrate the bounds on the particle number (5:30)-(5.36]), recall that in the homogeneous

case where h = —A + k on a box with periodic boundary conditions we have that
in 1D (5.32) holds with p =1 and (N), ~ A~?
in 2D (5.32) holds with any p > 1 and (N); ~ —A"!log A (5.37)

in 3D (5.32) holds with any p > 3/2 and (N), ~ A73/2
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Proof. Formula (£.33) is taken from [I03, Lemma 2.1]. Formula (5.34]) follows from the
monotone convergence of operators and the fact that h~' belongs to the Schatten space

GP($) by the assumption ([2I8]). Finally, (5.35]) holds true because

v [ = ((})), < e i =a (o [%J) < G (T [(m) 7))

We have used here that

1 C
<2 Wl (5.38)

Here in the first estimate we have used Wick’s formula for the quasi-free state I'y. We then

remark that
1 AP
P —
AT |:6)‘h—1:| _Ze”‘i—l
j=1
so the limit (5.36]) follows from the dominated convergence theorem, since

7)\1) < min —)\p—l —Cp
e)‘>‘j -1 h )\j ’ ()\j)p

by (5:38) and AP~1/)\; — 0 when p > 1. O

The following result is the counterpart of Lemma It shows in particular that the
renormalized mass is also bounded independently of A for the Gaussian quantum state (take
A =1 in the statement).

Lemma 5.11 (Variance estimate for the Gaussian quantum state).
Let h > 0 satisfy Tr[h=2] < co. For every bounded self-adjoint operator A, we have

lim ) <(dr(A) - <dr(A)>0(2>0 = Te[Ah~ AR (5.39)

where (-)o is the expectation against Tg = e ) ) Tr[e= 2T in the Fock space §.

Proof. Pick an orthonormal basis (u;) of ) and denote a,a; the associated creation and
annihilation operators. Since I'g is a quasi-free state and it commutes with A/, we can
compute explicitly, using the CCR and Wick’s theorem:

o0

(lA0P) = 37 (s Awa) (up, Aug){alyanazag)o

m,n,p,q=1
o

= Z (U, Aun) (up, Aug) ((a;‘nan>0<a;§aq>0 + (a7q)00np + <afnaq>o(a;§an>o)
m,n,p,q=1

= <dP(A)>Z + Tr [42r(] + T [Ar(Par(?] .
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Then using (0.34) and (5.37]), we conclude that
o2 (Jar(a) = areana|”) = ((arap), - arty)
= 22T [42r()] + A2 T AT ar(? |

— Tr[Ah~ AR (5.40)
A—0

0

In the last line we have used that

A2 Tr [AQFg”} < A4 T — 0
A—0

by (B36) for p = 2. O

The term obtained in (5.39) is the limit of the exchange term. An important consequence
of the previous lemma is that the Gaussian quantum state I'g has a bounded renormalized
interaction energy:

Lemma 5.12 (Interaction energy of the Gaussian quantum state)
Let h > 0 satisfy Tr[h™2] < co. Let w :  — R such that 0 < @ € LY(Q*). For the
interaction operator defined as in [@3]), namely

Wren = % / @(k) ‘dr(e“”) - <dF(eik"3)>0‘2 dk, (5.41)

we have
A (Wrenyy < O Tr(h™2). (5.42)
where we recall that To = e‘AdF(h)/ Tr[e_kdr(h)],

Proof. Let us write

ren _ 1 -~ 2
yyren — 5/w(k;)ydr(cos(k;-gc))— (T (cos(k - )))q|? dk

n % /@(k:) AT (sin(k - 2)) — (dT(sin(k - z)))o |2 dk.

Next, we take the expectation against I'g and use (5.39) with A = cos(k - z) or sin(k - x).
Since ||A]| < 1, (542)) follows immediately:

AZ(Wremy < /@(k) Tr[h~2]dk + 0x(1) < C Tr(h™2).
O

Finally, we have the following bounds on the fluctuations of the particle number operator
N around its mean value (N)o.

Lemma 5.13 (Fluctuations of the particle number).
Let h > 0 satisfy Tr(h=2) < co. Then we have

(W = (M)o)*)o
(W = (M)o) o

Tr[h 2]\ 72, (5.43)

<C
< CTe[h2PPA5. (5.44)
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Proof. The first bound (0.43)) is a consequence of (.39) (with A = 1). To prove the second
bound ([5.44)), let (u;);>1 be the orthonormal basis of §) consisting of eigenfunctions of h
and denote a) = a*(u;),a; = a(u;) the associated creation and annihilation operators. By
Wick’s theorem we can write

<N(N - 1)('/\/ - 2)('/\/ - 3)>0 = Z <an1 a’nga’nga’n4anlan2an3an4>0

ni,n2,n3,na=1

- Z Z Uy O 1)) 0@y O (2) )00, A ) 10000, O )0

ni,n2,n3,n421 0€S
where the sum is taken over all permutations o of {1,2,3,4}. Given the choice of (u;) and
the explicit formula of F in (B33), for any nq,ng,ng, ng = 1, if the product
<an1 a"o(1)>0<an2ano(2)>0<an3ano(3)>0<an4ano(4)>0

is nonzero, then ng(; = n; for all i € {1,2,3,4}. The latter condition implies that either
o is the identity (i.e. o(i) =i for all i) or n; = n; for some i # j. Therefore, we have the
upper bound

WW =N =2)N =3))o < D (a5, an)o{ah,@ns)0(ah, ang)0 (a5, an,)o

ni,n2,n3,na=1

6> > (@0, Gny)0(@hy G0y 0| (@, ang Do

ni,n2,n3=1 oc€Sr
= (V)5 + BV N = 1)) Tr(T5")?)
<N+ CTe[h 226
In the last estimate, we have used (5.35]) and the bound (5.33]). Using again (5.35]) to bound
(NF)o with k = 1,2,3 we conclude that
(N — (Mg < CTr[h A5, (5.45)

Finally, using the convexity of x + 2% when x > 0 we have (N3)y > (N)3, and hence

(W= (NM)o) o = (N o — 4NZ)o(N)o + 6NZ)o (NG — BN
< NV ho — (N5 + (N = (N)0)?)o (NG
Therefore, (5.44) follows from (545]), (5:43]) and (G35]). O

5.4. Interacting Gibbs state: first bounds. In this section let us consider the interact-
ing Hamiltonian

Hy = dI'(h) + AW (5.46)
with the interaction W*" defined in (5.41]). Recall that the interacting Gibbs state
ef)\]HIA \H
— — —AH
D= o Z(\) = Trg [e } : (5.47)
is the unique minimizer for the variational problem (ZIH]):
Z(\) , 2
—1 = rr Tr(WrT
08z oy = min {M(T.To) + A Tx(WTy)}

Trz =1
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where Zy(A) is given by (B.30). We also recall the notation Hy := dI'(h). We can first
control the relative free energy, or equivalently the ratio of the free and interacting partition
functions:

Lemma 5.14 (Bound on relative partition function).
Let h > 0 satisfy Tr[h 2] < co. Let w : Q — R such that 0 < @ € L'(Q*). Then

Z(N) 2
0< —log Zo0) < CTr(h™2). (5.48)
In particular, we deduce that
H(T'y,To) < CTr(h™?) (5.49)
and
Tr[W™ Ty ] < CA 2 Tr(h™?), (5.50)

uniformly in \.

Proof. For the upper bound in (5.48]) we take the trial state I' = Iy in (£15]) and use (5.42)).
Then (5.49) and (B.50) follow immediately, and since both these quantities are positive, we
also get the lower bound in (B.48)). O

Using Lemma [5.14] and a simple monotonicity argument we can control the expectations
of some specific observables against the interacting Gibbs state I'y by those against the
Gaussian quantum state.

Lemma 5.15 (Moments of particle number and kinetic operators).
Let h > 0 satisfy Tr[h 2] < co. Let w: Q — R such that 0 < @ € L'(Q*). Then

NFYL < CTDINRY ) < O @ T TPIN2E g > 1, (5.51)
(N = (M) < CeCTI2IN=2, (5.52)
(N = (M) H)a < CeC TR\ =6, (5.53)
((dT(R)?)5 < CeC T I\—6, (5.54)
Tr(hoT(V) < CeC ™ 2IN22 v e 0, 1). (5.55)
Here (-)) is the expectation against T'y.
Note that from (5.36]) we actually obtain
lim A2 (NFY, =o0. (5.56)

A—0t

Proof. We will use the elementary fact (see e.g. [35, Section 2.2]) that for an increasing
function f : R — R and self-adjoint operators A, B

A<B =T f(4)] <Tf(B).
In particular, using H > Hy and the fact that A/ commutes with both Hy and Hy, we

have
Tr [Nke—)\H,\] — Ty [eklog/\/—)\H,\} <Tr [eklog/\/—)\Ho} Ty [Nke—)\Ho] .

Therefore,
Z0(N)
Z(X)

(V) < (NF)g (5.57)
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and hence (B.51)) follows from (5.48]) and (5.35). Similarly, from (548), (£.43) and (5.44)

we have
(O = ()02 < 22 (7 — (Ao < OO a2
(M)
and
Zo(N)

(V= (W)o) ') € Z5H IV = (Vo) o < Ce I T 2A 0,

Thus the bounds (5.52]) and (5.53]) follow.
To prove the kinetic energy estimate (.54]) we use

Tr[f(AHL)] < Tr[f(AHo)]
where f(z) = (2? + 22 + 2)e”? is decreasing (as f'(x) = —z%e~® < 0). Combining with
(B4]]), this leads to
(N}(H)? + 27H,, + 2), < &1 (N2 (Ho)? + 2XHo + 2),,.- (5.58)
The right side of (5.58]) can be bounded easily using (5.33)):
(N2(Hp)?), = A2 Te[h2TS"] + A2 Te[h @ AL

2
<222 Tr h? + 222 [ Tr _h
= erh — 1 e — 1

<2\ Tr [ﬁ} + 2)2 (Tr [ﬁbz

< OTe[h 2] (1 + Tr[h_Q]) A4,

The left side of (5.58]) can be estimated using the Cauchy-Schwarz inequality

A2 A2

>\2(H)\)2 — )\2 (HO + )\Wren)2 > 5 (H0)2 _ C)\4(Wren)2 > 5 (H0)2 _ C)\4(N2 + )\72-/\/')2

and (5.51). Thus (5.58) leads to
v —2 _
A2 ((Hp)?), < CeCTT (N2 (Ho)? + 2XHj + 2), + CA (N2 + A72N)?),
< CeCTr[h_Q})\le
and (5.54)) holds true. By the Cauchy-Schwarz inequality, we deduce from (B.54]) that
(dT(h))y < CeC T 71\ ~3

which is equivalent to (5.55]) with o = 1. Moreover, (5.51]) gives (5.53]) with oo = 0. The full
bound (53 with « € [0, 1] then follows by interpolation. O

6. FROM RELATIVE ENTROPY TO DENSITY MATRICES

In this section we prove a new inequality of general interest on the entropy relative to
Gaussian (quasi—free) quantum states. As a consequence, this gives a strong bound for the
relative one-particle density matrix of the interacting Gibbs state, which is the seed for the
analysis in Section

Let K be an arbitrary separable Hilbert space. We consider the relative entropy

H(T,To) = Try(g) (r(log T - log r0)>
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of two states over the Fock space §(8), under the assumption that

o= AT (h)
Trg[e AT()]

is a Gaussian (quasi-free) state. It is well known that H(I',T'g) vanishes if and only if
I' =T. Indeed Pinsker’s inequality (see [36] and [85, Section 5.4]) states that

1 2
H(D,To) > §<Trm D — r0|) . (6.1)

Ty =

Our goal here is to deduce a bound on the difference T'*) — F(()l) of the one-particle density
matrices, instead of the difference I' — I'y of the states in Fock space. Such a bound does
not follow from (6.IJ). The main result of this section is

Theorem 6.1 (From relative entropy to reduced density matrices).
Let h > 0 be a positive self-adjoint operator on a separable Hilbert space R such that
Trle™"] < co. Consider the associated Gaussian (quasi-free) quantum state

o—dT(h)

Tpy=—
0 Trg (g [e~T®)]

on the Fock space §(R). Then for any other state I' on §F(R), we have
2
V(D¢ f‘ <AH(,To) (V2+ VAT, T)) (6.2)

where TM and Fgl) are the associated one-body density matrices.

TI‘_Q

The constants in the above inequality are not optimal and are displayed only for con-
creteness. The bound (6.2)) is one of our most crucial estimates, exploiting the fact that
quantities calculated relative to the free state are much better behaved than bare ones. In
particular, note that when Tr(h~2) < oo, the left side of (6.2) dominates the trace norm of
the relative one-body density matrix:

Tre ‘r ‘ < /Trglh Hh1/2 () r(”)hlﬂ( o
More precisely, if Tr(h™P) < oo for some 1 < p < 2, we have (see [106])
(0@ —r)ne| | < 22/ (TR Do) + 2|7 [T HT, L) (63)

for all

Ogagu‘

4

Remark 6.2 (Bosonic relative entropy of reduced density matrices).
If T is also a quasi-free state, then the relative entropy of I' and I'y equals H(I',Ty) =

Hpp(TW, Fél)) where

Hpr(7,7) = Tra ('y(log'y —log o) — (14 7)(log(1 +~) —log(1 + ’YO)))- (6.4)

In particular, Theorem [6.1] provides a lower bound on this quantity. Related estimates have
been derived in [49] Lemma 4.1] and [48], Lemma 4.1]; the difference here is that we are able
to include the operator h explicitly in Theorem o
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The proof of Theorem is a Feynman-Hellmann-type argument, i.e. a perturbation of
the variational principle defining I'g. We shall use the explicit expression of the one-particle
density matrix of Ty (c.f. (&33)

1
eh —1°
The following lemma, a consequence of Klein’s inequality, allows us to estimate the effect
of the perturbation:

) —

Lemma 6.3 (Perturbed Gaussian quantum state).
Let A be a self-adjoint operator with A < ch for a constant 0 < ¢ < 1. We have

1 1 1 1.1
0<Tr(A - <—Tr | -A-A). 6.5
r( (eh_“‘—l eh—1>> 1-c r(h h > (65)

Proof. The function

1 1
T = - =
e*—1 =
is increasing on RT, whereas = ﬁ is decreasing. Thus, for all z,y > 0 we have
1 1 1 1
0< (x— — < (x— -———. 6.6
@ (gm-mmg) <e-n(5-7) (6.6)

Klein’s matrix inequality [I28, Proposition 3.16] implies that if fy, gr are real functions on
R* and ¢, real numbers, then

> crfel@)gr(y) = 0 for all 2,y € RY
k

implies that for any pair C, D of positive self-adjoint operators

Tr (Z Ckfk(c)gk(D)> > 0.

k
Hence it follows from (6.6) that for any positive self-adjoint operators C, D

0<Tr [(C_D) <6D1_1 B 6011)] < Tr [(C—D) (% - %)} :

Applying this with D = (h — A)/T and C = h/T yields

A 1 1 1 1
O [f (e(hA)/T Ty 1)] s [A <h—A - E)] '

There remains to use the resolvent expansion

1 1

h—A h

and observe that by the assumption A < ch,
Ir [%AﬁA] = [h11/2Ah —1 AAhll/J ST i = [hll/zA%Ahll/z}

to conclude the proof. O

1

1
—A
+h h—A
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Proof of Theorem[G1l. Let A be a finite rank self-adjoint operator on 8, such that A < h
and let

o—dT(h—A)
Ta= —dr(h—A)
Trﬁ(ﬁ) [6 ]
be the associated quasi-free state, with one-particle density matrix
1

e v
Recall that I' 4 minimizes the free-energy
Tr (dI'(h — A)T) — S(T)
with the entropy denoted by S(I') = — TrT'logI'. Hence, we find
H(I,To) — Tr (ATW) = Tr (dT(h — A)T) — S(T') — Tr (dT(h)To) + S(To)
> Tr (dI'(h — A)T4) — S(T4) — Tr (dT'(R)To) + S(To)
> —Tr (dI'(A)T )
1
A

Therefore we have shown that
1
1
for any A < h. From this we deduce in particular that
1 (1) 1 1
Tr (A(p( ) - T} )) < H(T,Tg) + Tr (A <eh_A — g 1>> . (6.8)

Inserting Lemma gives

1
1—c

Tr (A(P® = 1)) <H(T,To) +

Ry
vh Vil

for any A < ch with 0 < ¢ < 1.
Let us now take

A= +Zpl2BR1/2
2

where 0 < ¢ < 1 and B is a bounded finite rank self-adjoint operator with ||B|| < 1 and
range in D(A). Our choice ensures that A < h/2. Then we obtain

Te (B2 (00 -1 ()2) ( < 27 'H(D,To) + ¢ | B|% . (6.10)
Optimizing over B under the assumption | Bl|g2 < 1 (which implies as required that || Bl <
1) we find

|20 iy

_ o) (DY .«
o ||Brﬁ1§2X<1Tr <Bh (F I )h )

<2 MH(T, D) + ¢
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for all 0 < e < 1. The bound ([6.2]) then follows from the elementary inequality

Oinil (e'a+eb) < max{2v/ab,2a} < 2(Vab+a), Va,b e [0,00). (6.11)
(S
This concludes the proof of Theorem O

7. CONTROLLING VARIANCE BY FIRST MOMENTS

In this section we introduce a general strategy to control the quantum variance of a Gibbs
state in terms of the first moments of a family of perturbed states. This will be the key
ingredient to derive the correlation estimate in Section Bl Our approach is captured in the
following abstract result.

Theorem 7.1 (Controlling variance by first moments and commutators).
Let H be a self-adjoint operator on a separable Hilbert space K such that Tr[e*BH] < oo for
any B> 0. Let A be a bounded self-adjoint operator on K such that

X =[[H, Al 4]
is bounded. Consider the perturbed Gibbs states
e*H‘i’EA
Let a > 0 and introduce
p=n@)= sw (ITAL)] + oy [ROTIVIXTH I ALAT). (72)
eg|—a,a
Then , )
2 (1
Tr(ATy) < Mnean (7.3)

a

Here the boundedness of X = [[H, A], A] includes the assumption that all the commuta-
tors are properly defined, namely AD(H) C D(H).

The significance of Theorem [I1] is that the second moment Tr(A%I'g) can be bounded
by only the first moment | Tr(AT:)| for € in a window around the origin, plus some error
terms involving the double and quadruple commutators of H with A. We will use the
bound for A" = A — Tr(ATy), with A living on high kinetic energy modes. In this case
Tr(A'T.) = Tr(AT:) — Tr(ATy) will stay small uniformly in € € (—a,a) for a small enough,
as a consequence of Theorem Assuming that the commutators are also suitably small,
the bound (Z3)) will then tell us that the variance Tr(A%I'g) — Tr(ATlg)? stays small as well.

Note that in our application we will have a,n < 1, so that the bound (Z3)) implies

1777

Tr(A®To) < (7.4)

Notice also that
n< sup | Te(AT)| +al X[ /1 + A
e€l—a,al
so that the estimate (7.3]) can be stated only in terms of the supremum on the right together
with ||Al] and || X|| = ||[[H, A], A]||, as we did in the introduction. In our case it will be
important to use Tr(XT;) since it will be much smaller than || X]||.
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Case of commuting operators. To make the idea transparent, we first explain the proof
of Theorem [Tl when A and H commute (the argument is the same in the classical case).
The function

f(e) = Tr(A%e~f*e4)

is convex since
f"(e) = Tr(A%e 1) > 0,
Hence,
1 a

£0) < 50 [ fEe
On the other hand, we have

f(e) = 0. Tr(AeHHe4)
and therefore we obtain
Tr(Ae HFed) — Tr(Ae=H—e4)

2a ’

It only remains to divide by the appropriate partition function. Its variations are controlled

by

Tr(A%e 1) < (7.5)

. log(Tr(e F54)) = Tr(AT,).

Letting
n:= sup [Tr(AL),
c€[—a,al
this implies
o Tr(e—H:I:aA) o
Tr(e=H)

Dividing (Z3) by Tr(e~#) and using the previous estimate, we conclude that

Tr(A%e 1
ﬁ < 260”7, when [H, A] = 0.
General case. The challenge for proving Theorem [I] is to handle the case when the
relevant operators do not commute. Our goal is to prove that
(i) Tr(A2e=H+e4) is close to 0. Tr(Ae H+e4).
(ii) &+ Tr(AZe~H+e4) is “almost convex”.
The first point has been used many times in the literature in different forms, within linear
response theory a la Kubo [95, 07, 06]. We will rely here on known ideas but provide
different proofs.

We are not aware of any previous use of (ii). The quotation marks around “almost
convex” are in order: we do not directly use the second derivative in e, which would lead
to a Duhamel three-point function. Instead, we compute the first derivative and prove
that it is given by Tr(A3e~7+4) modulo errors. Then we compute the first derivative of
Tr(A3e=H+e4) and prove it is positive, modulo errors. Here “modulo errors” means up
to the commutators that appear in the main statement and are small in applications, and
up to multiples of Tr(A%e~H+54) itself. This rather weak form of convexity is sufficient to
make an averaging argument work and bound Tr(A%e~H#+¢4) pointwise by its mean value
over a small interval.
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We will bound the errors in (i) and (ii) using quantitative estimates between the normal
thermal expectation Tr(ABT'.) and the Duhamel two-point function

1
/ Tr(ATS BT~ %)ds
0
which naturally occurs when differentiating Tr (Ae’H +Be ) in €. This link will be explained
in Section [ Il Then in Section we will justify the (approximate) convexity of ¢
Tr(A2e~H+¢4). The proof of Theorem [Z1]is concluded in Section

7.1. Discrepancy of quantum variances. Here we discuss some general properties of
quantum variances. Let I' be a quantum (mixed) state on a Hilbert space K. For a self-
adjoint operator A on &, the quantum variance is usually defined by (see [55])

Tr (4 = Te(AT))T) = Tr (4T) = (Te(AT))*, (7.6)

For the formula to make sense it is only required that VT A € &2, in which case the first term
on the right side is understood as Tr(A%T") = Tr(vTA*VT) = H\/fAHQG2 For simplicity of
exposition, we will most of the time assume that A is bounded.

When A does not commute with I', one might be interested in the averaged quantum
variance (or the canonical correlation [96])

(A, A)r = /01 Tr (AT®AT' %) ds — (Tr (AD))?. (7.7)

The expression (7)) appears naturally from the study of the perturbed Gibbs states in ()
via Kubo’s formula (c.f. Lemma [73] below)

1
0. Tr(AT,.) = (A, A)r. = / Tr (ATSATL™) ds — (Tr (ATL))*.
0

This formula is well-known in linear response theory, where the averaged quantum variance
is interpreted as a (static) response function measuring the fluctuation/dissipation against
the perturbation (see [95], [96, Chapter 4] and [57, Section 2.10]).

More generally, for two self-adjoint operators A, B on K, one might relate the normal
covariance Tr (ABT') — Tr(AT) Tr(BT") to the Duhamel two-point function

(A, B)r := /0 1 Tr(AD* BT ~%)ds — Tr(AT') Tr(BT). (7.8)

The expression ([Z.8]) goes back to Kubo [97], Bogoliubov (Jr) [22, 23] and has been used by
many authors, including Dyson-Lieb-Simon [52].

An important tool of our analysis is the following result, which sets bounds on the possible
discrepancy of Tr(AT'* BT'1~%) at different values of s.

Theorem 7.2 (Discrepancy of quantum variances).
Let I > 0 be a trace class operator on a separable Hilbert space K. Let A, B be bounded
self-adjoint operators on K. Then the following holds.
(i) The function s + Tr(AT®AT'=%) is convex on [0,1] and attains its minimum at
s =1/2. In particular,

0 < Tr(AVTAVT) < Tr(ADSADP %) < Tr(4%T), Vs e [0,1]. (7.9)
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(i) If T = e/ Tr(e ) for a self-adjoint operator H such that AD(H) C D(H) and
if [A, H|VT € &2, then

0 < Tr(AD) — Tr(ATSAT) < %Tr (r[[A,H],A]), Vs € [0,1]. (7.10)
(iii) If the conditions in (ii) hold for both A and B, then for all s € [0,1] we have

IR Tr(AD*BI') — RTH(ABT)| < i\/Tr <F[[A, H],A]) \/Tr (F[[B,H],B]). (7.11)

Several similar estimates have appeared in the literature. The bound (ZI0)) is a refined
version of Bogoliubov’s inequality in [22] 23], see also Roepstorff [I36]. A famous bound of
the same kind is the Falk-Bruch inequality [53] which was later rediscovered by Dyson-Lieb-
Simon in [52]. Our bound (I0)), valid for any s, does not seem to have been noticed before.
Its average over s, which gives access to the discrepancy between variance and Duhamel two-
point function, actually follows from [52] Theorem 3.1]. We provide a simpler proof below,
by working pointwise in s. The covariance estimate (ZII]) is an immediate consequence
of (I0) by the Cauchy-Schwarz inequality and it is useful to control higher/nonlinear
correlations.

Theorem is crucial for the sequel: it allows us to make rigorous the intuition that
different versions of the quantum variances coincide in a semi-classical limit, where commu-
tators ought to disappear.

Proof. (i) We assume that I' > 0 and that Tr(I''~%) < oo for some 0 < ¢ < 1 throughout
the proof. The general case is obtained by an approximation argument. Under these
assumptions we have that H*T is trace class for all k > 0, where H := —logI'. For A a
bounded self-adjoint operator, the function

f(s) :== Tr(TSAT 5 A),
is C*° on (0,1) and we have

f'(s) = = Te(T*[H, A]T' 5 A), (7.12)

F(s) = ~ Te(U*[H, AT [H, A) = |05 A, A (262 > 0.

Note that for s € (0,1), H is always multiplied by some I'* with ¢ > 0 and that T*H ¢ G/
due to our assumption that Tr(I''~%) < oco. This gives a clear meaning to all the above
expressions (the derivatives can blow up only at s = 0 and s = 1). In particular, this proves
that f is convex on [0, 1]. Due to the symmetry f(s) = f(1—s), we conclude that f achieves
its minimum at s = 1/2.

(ii) From the convexity of f we have
)< f(s) < f(1/2) =0, Vsel0,1/2].
Hence, we deduce (ZI0) as

1/2 /
/2 - 10 = [ s> 5

Here in the last identity we have used the cyclicity of the trace and the fact that H commutes
with T'. Note that f/(0) = lim,_,o+ f'(s) exists due to the assumption [A, H] VT € &2.

= 2 Tx ([, AP 4) = — Tr ([[A, H], A]T).
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(iii) For any € > 0 by the variance estimate (ZI0) we can write
£ 2R Tr (AT BT )
=Ty ((EA + e 1B (eA + g—lB)rl—S) — 2Ty <AFSAF1_S> Ty <BFSBP1_S)
< Tr <(€A + 571B)2F)) - 52<Tr(A2F) — i Tr (F[[A, H], A]))

—e(T(Br) + % T (V(1H, B, B)) )

= £9R Tr(ABT) + %Tt <F[[A,H],A]> + % Tr <F[[B, H, B]).

Therefore,

2 ‘?RTr <AF5BF1_S) - éRTr(ABF)( < 2—2Tr <F[[A,H],A]> + % Tr <F[[B,H],B]>.

Optimizing the latter bound over € > 0 leads to the desired estimate ([ZIIJ). O

7.2. Derivatives of perturbed partition functions. In this section we prove quantita-
tive estimates on the derivatives up to order 4 of £ — Tr(e™*+¢4), using the bound (ZI0).

Let H be a self-adjoint operator on a separable Hilbert space & such that Tr[e*SH ] <o
for any s > 0 and let A be a bounded self-adjoint operator on 8. We consider the perturbed
Gibbs states (1))

I.:=2Zte e Z .=Tr(e ), H.:=H-cA
Theorem allows us to derive effective bounds for the derivatives of Z..

Lemma 7.3 (Approximate derivatives of the perturbed partition function).
Assume that A and X = [[H, A], A] are bounded and let Y = [[[[H, A], A], A], A]. We have

0. Tr(e He) = Tr(Ae o), (7.13)

|0- Tr(Ae ) — Tr(A%e He)| < i[ Tr(Xe ), (7.14)

|0- Tr(A%e™ o) — Tr(A%e o)

1
< Tr(A%e™ ) + || X Tr(Xe™ )

+ VIV (e ey [ Tr(xete)|, (7.15)

—0: Tr(APe™ ) < Tr(A%e™') + %(HXII YD Tr(X e )]

+ VIV Te(e e | Tr(xete))| (7.16)

The result says that 0. Tr(A*T.) is close to Tr(A**'T'.) with errors involving lower order
terms. Note that in (ZI6), 0. Tr(A4%T.) ~ 92 Tr(A®T.) is bounded from below by lower
order terms only. This is the almost convexity of & — Tr(A%I'.) which we announced at the
beginning of this section.
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Proof. We use Duhamel’s formula

1 1
D.eHe :/ e*SHE(—aeHg)e*(lfs)Hfds :/ e 5He pe=(1=9)He g g
0 0

In particular, (ZI3]) follows from the linearity and the cyclicity of the trace:

1
0. Tr(e He) = / Tr <e_SH5Ae_(1_S)HE> ds = Tr(Ae He).
0
(Alternatively, (Z.I3]) also follows from the Feynman-Hellmann principle.)
Next, using Theorem (ii) we obtain

|6€ Tr(Ae ) — Tr(A%e He)

This gives (.I4]). Now using Theorem (iii) we get

1
= / RTr <Ae_SH5A26_(1_S)HE> ds — Tr(A3e =)
0

|0- Tr(A%e He) — Tr(A3e He)

1
</ ‘?RTr <Ae_SH5A26_(1_S)HE> — Tr(A3e He)| ds
0

< VI Cee | I mo((1, A2, a2l

Here we have used the fact that Tr(A*e=H¢) is real for all k € N. Since
[[H,A%], A%) = [[H,A]JA + A[H, A], A%) = A2X + 2AX A+ XA? =4AXA+Y
we can bound
| Te(([H, 42, A%)e~)| < 41X Te(A%e~He) + Y| Te(e 1),
Combining with the Cauchy-Schwarz inequality we obtain (Z.I3)):
|0- Tr(A%e He) — Tr(A3e =)

1
_ —H: 2,—H: —H:
< 4\/I Tr(Xe )I\/4||XHTT(A e~ o) + V][ Tr(e*e)

< i\/| Tr(Xe~He) |y /4] X]| Tr (A2¢He) + i\/Tr(Xe*HE)\/IIYII Tr(e M)

1 1
< To(A%e ) 4 LX) Te(Xe )] + /I I Te(Xem o) Tu(e ),

Finally, by Theorem (iii) again,

|0- Tr(A3e™He) — Tr(Ate He)

1
/ RTr <Ae_SH5A36_(1_S)HE> ds — Tr(Ate 1)
0

< TRt/ (U1, 4%, 4%
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From the decomposition
[[H, A%], A%] = [[H, A]A® + A[H, A|A + A%[H, A}, A%
= XA* +2AX A% + 342X A + 243X A+ A*X
= 9A2X A% + [[X, A%], AY] + 4A[[X, A], A]A
=9A2X A% + 6AY A + A%Y + YV A?
we can bound

| Tr([[H, A%], A%le™ )]

<9 X|| Tr(A%e ) + 6|V || Tr(A%e He) + QHYH\/Tr(e—HE) Tr(Ate—He)
< O]+ Y[} Tr(Ae~He) 4 6][Y || Te(AZe o) 4 [y | Te(e~ 7).
Using the Cauchy-Schwarz inequality we obtain
|0- Tr(A3e =) — Tr(Ate™ 1)

1
< 1\/I Tr(XB*HE)I\/(9IIXH + [[Y])) Tr(Ate=He) + 6]V || Tr(A2e= =) + || Y] Tr(e~ )

< L I fox + v Tr(ate )
VIOt oY T (e 4 /| (e ) 17 e 1)

_ 1 _
< Tr(Ate™) + 2 OIX ] + [V Tr(Xem )]

6 1
+ Tr(A%e™) + Y Tr(Xe™ )] + Z\/HY\H Tr(Xe~He)[ Tr(e= ).
The lower bound (Z.I6]) then follows from the triangle inequality. O

7.3. Proof of Theorem [Tl Let
H.=H—cA, Z.=Tr(e )

and

X =[[H,A],A], Y =[[[H,A], A], A}, A].
Note that the definition of 7 in Theorem [Tl implies that

| Te(AL)| < n, @®| Te(XTe)]” < a®(| X ]| + [V [D] Te(XTe)| < 7? (7.17)

for all € € [—a,a]. In particular, from (ZI3]) we have

10:(log Ze)| = 1210 Ze| = | Te(ATe)| <,
which implies that the partition function Z. does not vary much in e, namely

e M7y < Z. < e"Zy, Ve € [—a,al. (7.18)
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Thanks to (ZI7) and (ZI8]), we can simplify (CI4]), (ZI5) and (ZI6]) into

Z Z
|0- Tr(Ae™ o) — Tr(A%e )| < 4—;77 < 4—2776‘"’, (7.19)
Z
0. Tr(A%e 1) — Tr(A%e 1) < Tr(A%e ) + Tome (1 + Q) , (7.20)
a a
3 _—H. 2 —H. Zy an n
—0: Tr(A%e ) < Tr(A%e e) + 1o 1+ = (7.21)
a a
Now we use these bounds. First, integrating (Z.19]) we get
a a Z Z
F = / Tr(A%e He)de < / <3€ Tr(Ae =) + 4—07760”7) < %nea”, (7.22)
a
—a —a

which is an averaged version of ([Z3]). We next get rid of the averaging by using the estimates
on derivatives. Using (20 and (Z21]) we find that

0
2a Tr(A%e 1) = /

—a JE

0 0 7
- 3 —Hgy 4 20, an Ui
\/a/e (Tr(A Hay 4 Tr(A%e )—}—4@7]6 (1+a>)d8de
a &€ Z
- / / (Tr(A?’e_HS) — Tr(A2e sy — Z0pen <1 + ) )dsds +F
0 Jo 4a
0 0 Z
< / / Tr(A3e H)dsds — / / Tr(A%e™H)dsde + (a + 1)F + Zne T(a+mn)
—a JE

///8Tr Hr)drdsda—/ / / 0, Tr(A3e 1) drdsde
—aJe 0o Jo Jo

+(a+1)F + Zne " (a+n)

/a/e / Tr Hry 4 %nea” <1 + g) >d’l“d8d6

/ / / Tr (A%e~Hr) 4 776‘”’ (1 + > )drdsde +(a+1)F + %ne‘m (a+m)

0
D5 Tr(A%e Ha)dsde — / / D5 Tr(A%e Ha)dsde + F

Zy a
1)F+ 2 (1+3)-
(2+a+ +477€ "(a+mn) +3

Inserting (Z.22]) in the last estimate, we obtain

5(a° 1
2a Tr(A%e 1) < (5(% +a+ 1) +3 (a+mn) <1 + g)) Zone™

5 11 45 n a
= (2+=a+za+1(1 —) Zone®™
<2+4a+3a —|—4< —|—3> one
§4(1+a2+772)20776‘”’

We used the last bound for aesthetic reasons, it is far from optimal. This concludes the
proof of Theorem [Z.1] O
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8. CORRELATION ESTIMATE FOR HIGH MOMENTA

Now we are ready to prove the key estimate allowing us to control errors when localizing
to low-momentum modes. The main result of this section is

Theorem 8.1 (Correlation estimate for high momenta).
Let h > 0 on L*(RY) satisfy @8)-ET) and let w : R? — R satisfy @EJ). Denote

+ _
e, = e — PepP

where ey, is the multiplication operator by cos(k - z) or sin(k - x) and P = 1(h < A.) with
1 < Ae < A2, Then we have

22 (Jdr(ef) = (A0(e)), "), < CO+ BB (4 10 - P V) (81)

for all k € QF, where we recall that (-), and (-), denote the expectation against the Gaussian
state I'g and the interacting Gibbs state I'y, respectively. The constant C' > 0 depends on h
only via Tr[h~2].

We will prove (81]) using the method described in Theorem [T, namely we use first mo-
ment estimates of a family of perturbed Gibbs states. Actually we will derive Theorem
from the following.

Lemma 8.2 (Intermediate variance estimate).
Let h > 0 on L*(R?) satisfy [E8)-@T) and let w : R — R satisfy [@Q). Pick two orthogonal
projectors commuting with h such that

1Qh |2 =, 0 and |PR| < LA2

for some L satisfying

o=
—~
o0
[\
~

l<L<(A+Qh Ms2)~
Let
fif = Pex@Q + Qex P

where ey, is the multiplication operator by cos(k - x) or sin(k - x). Then

2 3 _ 1 C
N((Ar() = @r(hye) ), < O+ AL+ @ er)t + 75
The constant C' depends on h only via Tr[h~2].

We now focus on the proof of Lemma B2 Throughout this section, we denote by

B—AHA—I—eA
A=MA0G) ~ W), Tae = gymsmeen (8.3)

for € € [—a, a] with some a which will always be assumed to satisfy

mino(h)
).
Then h — ¢ f,j > h/2 and hence the Gibbs state I'y . is well-defined under the assumption
Tr[h 2] < co. We will denote by (), - the expectation against the perturbed state I'y ..

In order to apply Theorem [.T], we will derive a first moment estimate for A against I'y .
from Theorem [6.1] and then control the commutators between A and H. Since Theorem [7.1]

a < min <1, (8.4)
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requires bounded perturbations, we will also have to introduce a cut-off on the particle
number operator in Fock space

P=1N <L\ ?), (8.5)

which ensures that PA and P[[H), A], A] are bounded. The parameter L in (83]) is chosen
as in Lemma for simplicity, although this might not be the optimal choice.

8.1. First moment estimates. The starting point of our analysis is the following crucial
input from the relative entropy estimate in Theorem

Lemma 8.3 (First moment estimate via relative entropy).
Under the conditions of Lemmal83, and with A and 'y, as in [&3), we have

(A)ael < ClQRTIE
The constant C' depends on h only via Tr[h~2].
Proof. We use the triangle inequality
[(A)xel <T{AIxe = (Aol + [{A)o,e — (Aol
= AT (@ =) |+ AT (e - TE) |- (.6)

Let us estimate the first term on the right side of (86). By following the proof of (549
(with h replaced by h — €ex) we obtain the a-priori bound on the relative entropy

H(FA,aFO,a) < C.

Since I'g . is a quasi-free state, we can use Theorem to deduce that

Al -Tide| < (8.7)
Consequently,
A|Tr (f;;F(P(ﬁi - Fé?))( <A Hhﬂ/zf,jhﬂmHGQth/a(rgn B Fél))h1/2‘ .

< O H 2 g
Note that, since |ex| < 1 and ||h~}||g2 < C we have
Y2 & = Te (T PR
= Tr(h ' PerQh ' PerQ) + Tr(h ' Qe Ph™ Qe P)
+ Tr(h ' Qer Ph™ PerQ) + Tr(h ™' PerQh ™1 Qey P)
<O g
Therefore
1/2

AT (£ -T6)) | < cflen|&

Now we turn to the second term on the right side of (8.6]). Since I'g is a quasi-free state,
its one-body density matrix can be computed explicitly as in (5.33]). This allows us to use
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Lemma to bound

+ M _pOy)] — + 1 1
AT <fk (Toz — Po,o))‘ =ATr (fk (ek(hff;?) 1 M- 1))'
< Cle| T (R P D) < ClQR™ |2
The conclusion follows by inserting the above estimates in (8.0)). O

Our proof requires us to introduce the particle number cut-off P in ([8X]). The error due
to this insertion is controlled by the following lemma.

Lemma 8.4 (First moment estimate in truncated Fock space).
Under the conditions of Lemmal823, and with A, Ty ., P as in [3)-&32), we have

(PA < C (AL +lQn Y1 EF)

Proof. Using (N < LoA~2 by Lemma BEI0, we have |A| < CA(N + A72). For L > 2Ly,

we also have

L L
%/]1(/\/ > LA %) > Wn(/\/ > LA %) > E]1(N > LA H(N)g = 1N > LA 2) (N
0
hence N
TN > LA HN — (M) > 5]1(/\/ > LA,
This gives
C)\S _ 2
(1—=P)A] <K CAN + X HILWN > LA ?) < WL No) .
Therefore, from (5.52) it follows that [((1 — P)A).| < CAL™!. The desired bound then
follows from the triangle inequality and Lemma O

As a consequence of Lemmas and we have

Lemma 8.5 (Discrepancy of partition functions).
Under the conditions of Lemmal82, and with A,T'y ., P as in [3)-&32), we have

O Tr(e M) < Tr(e Mty < O Tr(e M)

and

O Tr(eMH0) < Tr(e MEATPAY < O Tr(e V),
for all € € [—a,a] with a small constant a > 0 (depending on h only via Tr[h=?]).
Proof. From Lemma [B3] it follows that

|0 log(Tr(e™ M F¥4))| = [(A)y ] < C,

and hence

O Tr(e M) < Tr(e MNTERY < O Tr(e M), (8.8)
From Lemma B4 and (B8]) we have

10, Tr(e NEATePA) | — | Ty(PAe MEATEPAY| — | Ty(PAeHrteh))

= [(PA)) | Tr(e MIAFTeA) < O Tr(e M),
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Integrating the latter bound over e, we find that
O Tr(e M) < Tr(e MNVFEPAY < O Tr(e7 M) (8.9)
if |e| is sufficiently small. O

8.2. Commutator estimates. In this section we control the commutator [[Hy, A], A], pro-
jected over the particle number sectors with N' < L/\2.

Lemma 8.6 (Commutator estimates).
Under the conditions of Lemma [82, with A,T'\.,P as in B3)-®H), if we denote X =
)‘[[HA’ALAL then

IPX|| < C(1+ [k[*)L?, (8.10)

IPIX, AL AJll < C(1 + [K[*)L?, (8.11)

(PX)rel < C(L+ KL (f +1Qh 2 ) - (.12)

Proof. We will use repeatedly that [dI'(a),dI'(b)] = dI'([a,b]) for any pair of one-body

operators a, b.

Kinetic estimates. Consider
Xy = A[[dL(h), A, A] = XdT([[h, £;7], ;7).

From fk = PerQ + Qe P we have ka || < 1. Moreover, using the fact that A commutes
with P and @, together with Assumption (7)) we can bound

1, £ 111 < 201QTR, ex] Pl < 21 QU ex]n™ 2| IWV2PI| < O(L+ [KP)LY? /A (8.13)

Consequently,
s £ B < 20NN RIS O+ [RIP)EY? /0

and hence
IPXa || = N [PAT([[h, f7], £ < O+ [KP) L2, (8.14)
Similarly, we also have
IP[[X1, A, Al < C(1+ [K)|| PR|Y2 L3>, (8.15)

We can actually gain a factor A% in ([8I%), but this will not be needed in the following.
Next, we derive improved bounds for the expectation against the Gibbs state (-) .. Using
Assumption (7)) and the a-priori estimate (B.55]) we have

T ([, £, 0| = 228 [ (1, f,j]r(”)
<23 £ R, IR e < QU+ [R2) VA
Moreover, using (814]) and (B.52]) we can argue as in the proof of Lemma B
(1= P)Xi)ael < IKa[[{N = (M)o)2X /L2
< CA+ k)P V2LA x X722t/ L2
= C(1+ [k[?)L71/203,

[(X1)ael = A?
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By the triangle inequality, we conclude that
(PX1)ael < C(1+ |k[2)V (8.16)

Interaction estimates. Next, we consider the renormalized interaction in (Z4.3])
ren 1 -
e = 573 | den(©B Be=A(dr(ee) - (T(ee))o
€
where the sum is taken over e¢ € {cos({ - x),sin({ - x)}. Denote

Xy = A2[[Wren], A Z/Rddgw [[BZ, A, A]

= ‘Z/*dﬁu 2[Be, A]* + Be[[Be, A, A] + [[Bg,A],A]IB%§>.

From the operator inequalities
|PBe| < AP(N + T?) < CL/ ),
[PBe, All = N[PdL([eg, fi7 )] < V[ee. fTlIPA < CL
|P[[Be, A, Al = N°|PAT(([eg, £7), [T DI < Mlllee, f7], FIIPA < CLA
and the assumption @ € L'(Q*), it follows that
[PXo| < CL. (8.17)

Similarly, we also have

|P[[X2, A], A]|| < CL?. (8.18)

Now we derive improved bounds for the expectation against the Gibbs state. Since
0 <@ € LY(Q*), we have the Cauchy-Schwarz inequality

[ aca(©) (P (elBe. Al 41 + [Be 41, ATBC) ),

< \/ | deate <B§>M\/ | dea(e) (PliEe. AL A1),

< O\ (Wen), L\ [N < OV (8.19)

In the last estimate we have used Lemmas [5.14] and BI85l with I'y replaced by I'y ..
Next, we have

P|[Be, All* = NPlAL([eg, f{DI* < XPNAL(|[eg, £71*) < LAPAD(|[eg, £711%)

and hence

(PI[Be, Al < LN’ Te(|[eg, fH]1PTEY). (8.20)

By (B7) we can replace Fg\li by F&g with a small error:

\E \E

L [T (Jlee, f71ASL = T6D))| < 222 lee, FNPITS) - T |or < CLA. (321)
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On the other hand, using the operator inequalities

1) _ 1 —2/1  _py—2 —2; -2
0e = ) 1 SCX“(h—ef)) "< CX"h

and

I[ee, f,j]\2 = lecPerQ + ecQep P — PepQeg — QekPeg\Q
< C(egPeerkPeg + ecQepPerpQee + PeerngkP + QekPegPekQ)

we get

L\?

Tr (|lec, £711PT52)

< CL(||QexPech™ % + || PerQech™" |2
+ lleQer PR~ 2 + llecPer Q™3 ). (8.22)

In all the above terms we commute h~! until it hits a @, using [h™1, e¢] = —h L[k, eg]h ™!
and Assumption (7)) which, we recall, says that [|[h, e¢]h™1/2|| < C(1+ |¢|?). For instance,
we have for the first term

QerPech™ = Qe Ph ' [h,ec)h ™ + Qerh ™' Peg
= Qh 7 [h, ex)h ' Plh,ec]h ™ + Qb e Plh, eg]h
+ Qh ™, ep)h  Peg + Qh ey Peg.
Using that |lex|| < 1 and (1), this gives
|QexPech™ | o < C(L+ [P+ €] |Qh g -

All the other terms on the right side of ([8.22]) are estimated similarly. In order to avoid
having to square (1 + |k|?) and (1 + [£|?) which would require more assumptions on w, we
may also bound all the terms on the right side of ([8.22]) by a constant, hence remove the
squares. This gives

2% < CLA+ [KP) (A + €2 1Qh™" 2. (8.23)

Tr (|fec, f;7]°T.)
Putting (823) and (82]) together, we conclude from (820]) that
(Pl[Be, Al )xe < CL(L+ [KP) (A + €A+ QR e2)-

Consequently, thanks to Assumption (£.9),

| 450 (PIBeAIR), , < CLO+ HE)OA +1Qh 7" ) (8:24)
From (8I9) and ([824) it follows that
(PXo)ae < C(1+ [E)LVA+ QR e2). (8.25)

Conclusion. The bound (8I0) follows from (8I4) and (BIT). The bound ([RII]) follows
from (BI5]) and (BI8). The bound (812) follows from (8I6) and (825]). O
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8.3. Variance estimates. We are now able to to provide the
Proof of Lemma[83. We apply Theorem [Z1] to the case
H=XH,, A=PA, A=\dT(f)— (dT(f)o)-

Note that the corresponding perturbed state
e*)\H}pl’E'PA
Daep = Tr(e— \i+ePh)

is different from I'y . defined before. However, thanks to Lemma B3] the partition functions
are comparable:

C*l Tr(ef)\H)fi’EA) < Tr(ef)\H)pl’E'PA) < CTr(ef)\H)\+€A). (826)
Therefore, from Lemma we deduce the first moment estimate

Tr(e—NHr+eh)

| TH(ATs 2 p)| = | T(PAT ) ¢ sy

<C(r+lQnIg)-

Moreover, from Lemma we find that the commutator
satisfies

X1+ 11X, AL A]ll < O+ [kP)L?
and
Tr(e—AHA-i-eA)

TRy < O+ LI+ |00 ee).

| Tr(XThep)| = | Tr(XTh )|

Thus for a > 0 sufficiently small we have

ni= swp (| Tr(ATe )|+ ay/| Tr(XToc )|V IXT -+ X, AL AT

e€[—a,al
3 _ 1
<C(A+ Q) + Call+ RHLEA + QA |2)
We satisfy ([84]) by picking

2

and we find that n — 0 when A — 0, uniformly in k, under the conditions in (82I).
Theorem [T1] (or, rather (7.4])) then gives the variance bound

(PA2)) = Tr(A’Ty 0p) < C(1+ B L3\ + [Qh ! ||e2)

a:= (14 k%)~ min <1, M)

where we used that since both A, HQh*lHle/Q2 < 1 we have

—1(1/2 _ 1
(A +1QrT1IE) < CO+ QR e
Finally, arguing as in the proof of Lemma we have

C\S

(1 =P)AN < —5 (W = N)o) e < 75

L2
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Here we have used (.53)) in the last estimate. Thus in summary,
(A%, < O+ FPILEO+ [ QR ) + 7.
as desired. ]
Finally, we are ready to provide the

Proof of Theorem [81] . Consider
ef =1—PepP = fif +QerQ, P=1pcx,, Q=1-P.

Take a large parameter L (will be determined at the end). We have ||Ph|| < A, < LA™2
and [|Qh~!||g2 — 0, because A, > 1. Hence we may apply Lemma B2 to obtain

C

=t (8.27)

2 3 _ 1
V(AP = @r(0) ), < OO+ FRLIO+ [Qh~ea)* +
For the term Qe @Q we decompose further
QexQ = PrepPr + PregQ1 + Quep P+ QiexQ1, Q1 =151)0, P =Q — Q1.

Since ||Pih~ Y g2, |Q1h g2 < |Qh g2 and ||Pih|| < L/A?, we may apply Lemma B2
again, first with P = Q) = Py, then with P = P, = ()1 to obtain

)\2<(dF(PlekP1) - <01r(1316,€131)>0>2>A <O+ [RA)LE A+ QR Ye2)T + % (8.28)

and

2
)\2< (dF(Plele + Qlekpl) — <dF(P1€kQ1 + QlekP1)>0) >>\

3
2

<O+ L2\ + |Qh |e2)3 +

|Q

S (8.29)

h

On the other hand, using the operator inequality

)\2
|Q1rerQ1] < Q1 < fh

and the kinetic estimate (5.54]) in Lemma [B.15] we deduce that

M (dT(Qrer@1) — (AT(Q1ex@1))0)*)y < CL—>;6 <<(d1“(h))2>/\ + <(d1“(h))2>0) < %
(8.30)

Combining the bounds (8.27)-(8.30) and using the Cauchy-Schwarz inequality we conclude
that

N {(dT(ef) — {dT(ef))0)?) < C(1+ [MALE (A+ [Qhe2) T + = (8.31)

L%

The desired bound (&I follows from the choice L = (A + ||Qh~!||g2) "'/, which is indeed
compatible with (8.2]). O



62 M. LEWIN, P.T. NAM, AND N. ROUGERIE

9. FREE ENERGY LOWER BOUND

We are now ready to prove the free energy lower bound announced in ([I7). As usual in
variational approaches, the lower bound on the free energy is the harder part. A matching
upper bound will be obtained in the next section by a trial state argument.

Consider Hly = Hp + AW™. Recall that we can write the relative free-energy as an
infimum:

—1

Z )\ . ren
og Zo(()\)) = H(T»,To) + A2 Te[W™rT, ] = T%%% 1 {H(F,PO) + A2 Tr[W PA]}.
I‘g =

We shall relate this variational principle to its classical analogue (cf. Section [.1])

“togz = min{ [ Dl fduo) + [ 70 toe(F () dua(w)}

0<feL (duo
S F(w)dpo (u)=1

—Dlu

with the optimal f =e ] /z. This section is devoted to the proof of the following

Proposition 9.1 (Free-energy lower bound).
Let h > 0 satisfy @EB)-@ETD) and let w: RY — R satisfy @Q). Let z be the classical relative
partition function defined in Lemma[Z3. Then we have

- ZM)
h)\II_l)(l)Iif <— log Zo()\)> > —log z. (9.1)

We split the proof in two parts, occupying a subsection each.

e In Section we project the energy (together with counter-terms) on low momen-
tum modes P = 1(h < A.) and estimate the error thus made. This is the core
novelty with respect to our previous papers [103, [107], where the new correlation
estimate in Section [8lis crucial. The relative entropy is controlled by Theorem
as in our previous papers. Combining with the quantitative de Finetti Theorem (.8
this leads to a quantitative energy lower bound in terms of the projected classical
energy of a lower symbol/Husimi measure.

e In Section[0.2] we compare further the lower symbol with the cylindrical projection of
the Gaussian measure on P$). This allows to remove the localization in the classical
problem and to conclude (@.J]).

9.1. Localization and energy lower bound. In this subsection we localize to the low
kinetic energy modes. Our energy lower bound is as follows:

Lemma 9.2 (Renormalized energy lower bound).
Let h > 0 satisfy [@6)-ET) and let w satisfy [E9). Define
P=1(h<A), Q=1-P, 1<A <\ 3. (9.2)

Let p1po be the lower symbol/Husimi function of 'y associated with the projection P and
the scale ¢ = X\ as in (B.20), and let D be the truncated renormalized interaction from
Lemma 2.3 Then we have

Z(\)
Zo(N)

The constant C' depends on h only via Tr[h=2].

1

> —log < / e~ Prl duP,o(U)> —COM = CO+|Qh lg2)17. (9.3)
P$

—log
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Proof. By the Berezin-Lieb inequality (5.29]), we have

H(LA,To) = H((TA)p, (To)p) = Halppr, ipp)- (9.4)
We will prove that

1
N TWTh] > o | Drluldupau) - OME = CO+ QR e2)s (9.5)
P$H

where pp )y is the lower symbol of I'y associated with the projection P at the scale € = A
as in (5.25). Then putting ([@4) and (@3) together, we conclude (@.3]) by the classical
variational principle (ZI6]):

Z(N)

—1
o8 Zo(N)

= H(T'»,Tg) + A2 Tr[W™nTy]

1 _ L
> Ha(upainro) + 5 | Drluldupa(u) = CME = CO+ QD e2) s
P$

1

> —log (/ e~ Prclul dup,o(u)> — CMZ —C(\ + ||Qh Y| g2) 13,
P$H

It remains to prove ([@.5). We will write the renormalized interaction as in ([A3]) and
estimate each Fourier component separately.

Step 1: Localization. Let e; be the multiplication operator by cos(k - z) or sin(k - z) and
let

e;:PekP:ek—e:, P:]lthe
By the Cauchy-Schwarz inequality and Theorem we have

X (Jdr(er) = (drep))o|*)
< (1+2)2% ([dr(ex) - <d1‘(ek)>o\2>/\ + (1427122 (far(ef) - <dr(e;)>o\2>A
< (1+ ) (JdT(er) = (dD(e))of*) +(1+e7HO + kDA + QR o)
for all £ > 0. Integrating against @(k) over k € *, then using [@J) and (G50) we get
A2 / @(k) <(dr(e,;) - (dF(e;)>0\2>Adk
(L4 )2 (W), + (14 OO+ Q|27

AZ (W), + Ce+ (1+e O+ |[QhHe2)Y".

Optimizing over £ > 0 gives

)\2 <Wren>)\ 2 )\2/

<
<

(k) ([dr(eg) = @r(eol’) dk = CO+ QA ) /M. (9.6)

*

Step 2: Use of the de Finetti theorem. Now we turn to the low-momentum part of
the interaction. For any self-adjoint one-body operator A we have

dr(A)? =26 > Ai@A;+dr(4%).

n>2 1<i<j<n
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Hence
<|df(e;) - <dF(e;)>0‘2>)\ =2Tr ((e,;)®2fg\2)> —2Tr (elzfg\l)> Tr <e,;I‘(()1))
+ (T (e,;rg”»z + T (()°r{) (9.7)

The last term Tr((e,;)QFg\l)) > 0 can be omitted for a lower bound. From the explicit
formulas (0.33) and (5.2]), the operator bound

1 1 -
e —1  Ah| T2

and

K :=dim (P$) = Tr P < Tr[(Ac/h)?] < CAZ, (9.8)

1
)\TI' <€];Pél)) = )\TI' <€k m)

1 1
=Ty (e;h*l) + A\Tr <€k (m — E))

— / (u, epu) dpio(us) + O(AA?), (9.9)

On the other hand, using |e; | < P < Ach™!, (87) and (5:33) we get

it follows that

AT (r )| < A (e (@8 = 1) |+ AT (616" |
AT |0 = 1| + 1 ()
< CATr [h77]. (9.10)

Thus ([@.1) gives

A2 <‘dF(e,;) - <d1“(el;)>0|2>>\ > 2\2 Tr <(e;)®21“&2)> —2\Tr <e,;1“(;)> < (u, e u) >ﬂ0

+ (/ (u e u) duo(u)>2 —C (A3 +XNAY) . (9.11)

Note that, for A, < A~'/3 the last error term A2A? is of lower order and can be absorbed
in AA2.

Next, let ;1p be the lower symbol of Iy associated with the projection P and the scale
e = X as in (B20). We apply (527) to obtain the density matrices of the P-projected
state I'y p:

1
- /P . u®2) (u®?] dpp(u) — 2X°T§ ), @5 P~ 2)2P @, P,

21(2)
)\ F)\,P - 9

D, — / ) (] dpupa () — AP.
P$H

)

Recalling (B.2]]) we have
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and using (@.I0), we deduce that

1

—/ [, e w)Pdppa(u) + O (AAF)
P5

A2 Tr [(e,;)@r(f)} =5

ATr [elzl“(;)} = /Pﬁ(u, epu)dpp(u) + O (AAZ) .

Inserting the latter formulas in (@.I1]) and using ([@.I0) again we obtain

X2 (lar(ey) - <01r(e,;)>0\2>A > /

‘(u, e uy — {(u, e;u>>u0‘2dup7>\(u) — CMA3.
PH

Integrating the latter bound against w(k) gives

1

)\2/* @(k) <|dr(el;) - <dr(e,;)>0(2>A dk >3 | Drfuldupa() - CAAE (9.12)

P

where Dy is the truncated renormalized interaction as in Lemma [5.3]

Finally, we compare (@.12]) with ([@.6]) to obtain (@.3])
1

)\2 Tr[WrenP)\] = 5 DK[u]duR)\(u) — C)\Ag — C()\ + Hthl“@g)l/M.
P
This concludes the proof of Lemma O

9.2. Removing the localization and concluding. In order to estimate further the right
side of (@3] from below, our task is now to compare the lower symbol ppg of I'g with the
cylindrical projection p i of the Gaussian measure ;o on P$) in Lemma [BIl In this
direction we prove the following lemma. For its statement, recall that both measures we
are interested in are absolutely continuous with respect to the Lebesgue measure on P$).

Lemma 9.3 (Further comparisons for the projected free state).
Let h > 0 satisfy Tr[h 2] < co. Then

l1p0 = Ho,icl 1 (psyy < 2Te[A72AAL. (9.13)
Proof. Recall that
K K
duQK(u) = H <%e>‘j|aj2> dOéj, with u = Zajuj.
j=1 j=1

On the other hand, by Definition 5.7 and the explicit action of Fock-space localization on
quasi-free states [100, Example 12]

dppo(u) = (Aw)_K<£(u/\/X), (To) pé <u/\/X) >du
= () K {Tr (eiAdF(Ph))] o <£(u/\/X), ef)‘dF(Ph)g(u/\/X)>du.
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Using the Peierls-Bogoliubov inequality <x, eAx> > e®4%) and the coherent states’ defini-

tion (5:22]), we have
(6@u/VR), e T/ VA)) > exp [—{€(u/VR), AD(PRE(/V))]

K
= exp [~ (u, Phu)] = exp | =Y Ajla;[*| .
j=1

Combining with the explicit formula for the free partition function (c.f. ([B.31])), we arrive
at

Ko VY
ura(w) > [T |50 = )] ot (9.14)
j=1+""Y

Using

1—et t
>1—=, Vt>0
t 2

and Bernoulli’s inequality, recalling (0.8]) we can estimate

K K
11 [i(l — e_)‘Aj)} >1] ( — &> >1- A >1 - ATr[h2]A2. (9.15)
I + 2 2
Thus
ppo(u) > (1= Tr[h AN ) o i (w), (9.16)

which implies
(1o — o) _ (u) < Tr[A™2)IAA po i (u)
where f_ = max(—f,0) is the negative part. Integrating over u € P$) we find
[ (o= o) < Tl AL
P

Notice then that

0= / (,UP,O - MO,K) = / (,UP,O - MO,K)+ - / (,UP,O - MO,K),
P§H P9 P$H

so we get as announced that

/ lupo — to,x| = 2/ (po — por)_ < 2Tr[R 2AAL.
P$H P$H

We now conclude the

Proof of Proposition [9l. Using Lemma [0.3] and the fact that Dg[u] > 0, we can estimate

/ G_DK[U] d#P,O(u) < / e_DK[U] d,uo,K(u) + ||,up,0 — MOvK”Ll(P.VJ)
P9 P$

< / PRl g () + 203, 9.17)
P$H
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Inserting this bound in the right side of ([@.3]), we arrive at the lower bound

Z(\)
~log Zp(A)

> —log < / e Pl dpg g (u) + cmi) —OME = OO+ |Qh Y| g2) 15
P$H
(9.18)

Moreover, note that when A — 0, we have K = dim(P$)) — oo since A, — oo. Therefore,
Dy u] — Dlu] in L' (pp) by Lemma 53l Consequently,

lim e Prll dpg g (u) = /ep[u] dup(u) € (0,1). (9.19)
A—0 P

by the dominated convergence theorem. Using the fact that log(1 + ¢) = O(t) for |t| small,
we obtain

—log (/ ¢~ Prlyl dpo x (u) + CAAZ’) > —log (/ ¢~ Prlul duovK(u)> — OMA2,
PH PH

Thus from (9.18) we obtain the final quantitative lower bound

Z(N) 1

—log ——= > —log / e Prl dpug g (u) ) — CAAZ — CON+ |Qh Y |g2)T1.  (9.20)
Zo(A) P 7

In particular, in the limit A — 0, with the choice 1 < A, < A~Y/3 from ([@20) and (@I9)
we conclude that

Z(N) D
—log ———= > —1 [l g 1)=-1 1).
ogzo()\) og </e uo(u)>+0( ) ogz+o(l)
This concludes the proof of the lower bound (@.T]). O

10. FREE ENERGY UPPER BOUND

Now we complete the proof of the free energy convergence ([B.7)) by providing a free-energy
upper bound which complements Proposition

Proposition 10.1 (Free-energy upper bound).
Let h > 0 satisfy @EB)-@ETD) and let w: RY — R satisfy @Q). Let z be the classical relative
partition function defined in Lemma 2.3 Then we have

Z(\)
Zp(A)

lim sup <— log ) < —log z. (10.1)

A—=0t

This part is conceptually easier than the free-energy lower bound. We rely on the vari-

ational principle and simply evaluate the free-energy of a suitable trial state. We split the
proof into two main steps:

e Reduction to a finite-dimensional estimate, Section [I0.1l Our trial state coincides
with the Gaussian state on high kinetic energy modes, and with a projected finite-
dimensional interacting Gibbs state on low modes. We prove that to leading order
its free-energy reduces to that in the low-energy sector, up to affordable errors. This
is fairly similar to the analysis in Sections 8 and [0.T] but somewhat simpler. Some
details will thus be skipped.
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e Finite-dimensional semi-classics, Section [I0.2. Once we are reduced to treating a
problem posed in a finite dimensional one-particle space, we are on more familiar

terrain [112 150l [94] [73], see e.g. [137, 138, Appendix B]. We provide a proof of the

needed free-energy upper bound for self-containedness and because we need to keep
track of the dependence on the finite, but large, dimension.

10.1. Reduction to a finite-dimensional estimate. We use similar low- and high-
kinetic energy projectors as previously:
P=1(h<A), Q=1-P, 1<A <X /3
Let us define the interacting Gibbs state in F(P$):
o~ AdL(Ph)+AWS™)

Lyp= — (10.2)
Trz(ps) o~ MdT(Ph)+AWi™)

where WS" is the localized interactionlg

1 4 . 2
ion — L / o (k) [ar(Peep) - (ar(pet=p)) [ dk

2 Rd 0

1

= 5/ @ (k) |dT(P cos(k - ) P) — (dT(P cos(k - ) P)),|* dk
R4

+1 / @ (k) |AT(Psin(k - ) P) — (AT (Psin(k - ) P)),|* dk. (10.3)
2 Jpa

Note that I'y p does not coincide with the state (I'y)p obtained by P-localizing the full
interacting Gibbs state, except in the non-interacting case

Cy—o,p = (T'o)p.
Let
F)J\D — A log (Tr <ef)\(dI‘(Ph)+)\W§§n)>)

be the free-energy of the P-localized problem.
In this subsection we prove the following, which reduces Proposition [[0.1] to the corre-
sponding estimate in a finite dimensional subspace P$).

Lemma 10.2 (Reduction to low kinetic energy modes).
Let h > 0 satisfy Tr[h=2] < co. Then

Z(A N
ZO(()\)) = )\(F)\ - FO) < A (F)\P — FOP) +C ()\+ ”thlHGQ)M ) (104)

Before proving this we interject

—log

Lemma 10.3 (Entropy relative to a product state).
Let $1 and $Ho be two complex separable Hilbert spaces. Let A be a state on $1 @ $Ho with
the partial traces Ay = Trg, A, Ay = Try, A and let By, By be states on $1,$2. Then

H(A, By ® By) = H(A, A1 ® Ag) + H(A1, B1) + H(A2, Ba).

2Note that the expectation (dT'(Pe’™®P))o in Ty is the same as that in (o) p.
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Proof. Writing the spectral decompositions of By, By one can easily see that
log(B1 ® B) = log(B1) ® 1 + 1 ® log(B>)
and thus we can write
H(A, B; ® By) = Tr (A(log A — log(B; ® B3)))
= Tr (A(log A —log(A; ® A3))) + Tr (A(log(A;) ® 1 — log(B;) ® 1)))
+ Tr (A(1 ® log(A2) — 1 ® log(B2)))
=H(A, A1 ® Ag) + H(A1, B1) + H(Az, Bs).
O

In this section we only use Lemma [[(0.3] in the simple case A = A; ® As. The general
version will be useful later in Section [Tl

Proof of Lemma 12 In the last identity of (I0.4]) we use the fact that (I'g)p and T'y p
are the free and interacting Gibbs states in §(P$)), similarly as in (£I5]). The inequality is
proved by a trial state argument.

Step 1: Trial state. Using the unitary ¢/ in (5.19]), we define
T=u (vap ® (FO)Q>u (10.5)

where I'y p is as in (I0.2) and (I'g)g is the Q-localization of the Gaussian state, c.f. Defi-
nition .5l Importantly, from (520) and (2.8)) one shows that

r® = pri’,p+Qri’Q (10.6)
and
I = pe2p) po2 4 Q=20 Q%2 + (r&f}p ©QrVQ +Qri’Q e r&f}) . (107)

Also, since the relative entropy is unaffected by the unitary and the Gaussian state is
factorized,

To = U ((To)r & (To)q U,
we obtain from Lemma [I0.3] that
H(T,To) = H(Txp @ (L), (Co)p @ (To)g) = H(Txp. (Do) p).
Hence, by the variational principle (£I5])
Z(A)
0
52000
On the other hand, from the choice of I'y p we have
AL = F) =H(Tp, (To)p) + A Te[WET), p).

Thus there remains to evaluate the interaction energy of the trial state.

—1 = A (F) — Fy) < H(T,Tg) + A2 Te[W™™T| = H(T'x p, (To) p) + A% Tr[W"T).

Step 2: Bound on the renormalized interaction energy. We finish the proof of (I0.4))
with the following claim:

1

A2 Tr[WHerT) < A2 Te[WESPTy p) + C(A + [|Qh ™Y |g2) 4. (10.8)
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This is very similar in spirit to Lemma and we shall skip some details for brevity. In
particular, since (I'g)p and I'y p are the free and the interacting Gibbs states in the Fock
space §(P$), we can adapt to them (with the same proofs) most of the bounds on I'y and
I") we used previously.

First, using (I0.0) and arguing as for the proof of (6.2), we have

A th/Q(fU) - rgl))hWHGQ = HPhl/Q(r(;jj - rgl>)h1/2PH62 <C
Consequently, if we use again the notation
e, = PepP, e;r =ep — €

with e being either cos(k - ) or sin(k - x), then following the proof of Theorem BIl, we
obtain the variance estimate

AT [[dr(ef) — (e ol T] < C(1+ KO+ 108 )7,
By using the Cauchy-Schwarz inequality we find that
A2 Ty [\dr(ek) - (dl“(ek)>0!2f] <(1+2)A2Tr [\dr(e,;) - <dr(e,;)>0{2f}
F (e O+ RO+ [Qh ). (10.9)
Integrating (I0.9) against w(k) over k € Q* gives
A2 Tr [ernf] < (14 )N Tr [WiTy p] + (1+ e HON+|Qh Y)Y, (10.10)

Note that A\* Tr [W'S"T'y p] is bounded uniformly in A, which follows by inserting the trial
state (I'g)p in a variational formula similar to [@ID), and the fact that Wis" > 0. The
desired result (I0.8) thus follows from (I0.I0) by optimizing over € > 0. O

10.2. Finite-dimensional semi-classics. The missing ingredient for the proof of Propo-
sition (I0.I)) is the analysis of the partition functions in §F(P$)) appearing in the right-hand
side of (I0.4]). We have

Lemma 10.4 (Finite-dimensional semi-classics).
Let h > 0 satisfy Tr[h™2] < oo. Let P = 1(h < A.) with 1 < A, < A™Y3. Then

ANES - F) < —log </
P

where Dy is the truncated renormalized interaction from Lemma [5.3

Proof. Recall that (531 yields

e_DK[u}duQK(u)) + CAA2, (10.11)

K
1
Tr e MIPR _ T v (10.12)
j=1

where {); }JK:1 are the eigenvalues of PhP and that

Ty e~ MAT(PR)+AWES?)
A(FP = FP) = —log — -

Tr e~ AL (Ph)
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To estimate the interacting partition function in the right-hand side, we use (a rescaled
version of) the coherent-state resolution of the identity (5.26]):

o) [ Jetwr V) e (w/VA) o= 1y

and the Peierls-Bogoliubov inequality <m, eAm> > el@47) to obtain
1
—(dT(PR)+AWIS) /T A(AT(Ph)+AWESR )
Tre P = OF /PﬁTr[ §<u/\/X>><§<u/\/X>H du
_ —A(dT(PR)+AWE™)
_(AW)K/Pﬁ<§<u/\/X>,e P §<u/\/x>>du

> ﬁ /P o (& (w/VR)  (@r(Ph) + awign) ¢ (u/\/X)Z}Ociz;)

Then, for u € P$), similarly as in the proof of Lemma

A <§ <u/\/X> ,dT(Ph)¢ (u/\/X)> = (u, hu).

Moreover, calculating as in ([@71) and recalling (5:24]), [@9]) we have
X (¢ (w/ V), — (dr(e)) [P € (w/ V)

= (u, e;u>2 — 2X\(u, ey u) Tr [ek rt )] + )2 (Tr [ek F(l)D2 + Mu, (e;)2u>

< <<u, e, u) — ((u, e,;u>>uo )2 + O|u|*AAZ, (10.14)
Since @ € L', we find that
(& (w/VX) X2Wism € (u/vVA) ) < Dl + CllulPAA2 (10.15)
Inserting the latter bound in (I0.I3]) we arrive at
Ty e~ MATPRAFE) 5 () y=K /P exp [ ) Dl — Cll*AAZ) . (1010

Combining with (I0.12]), we find

Tre A(dI‘(Ph)Jr)\Wre“)
Tr e AL (Ph)

K
1:1 (1— M ] /Pbexp[—DK[u]—cuurrzAAi]duovmm
(10.17)

where dpo i is the cylindrical projection of duy on PS$), defined in (GI). Then, recall
from (@3] that

Ko
— (1 —e M) =1 - CMAS.
H|:)‘)‘j( ‘ J)] O

.
—
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Using that Dg[u] > 0 by Lemma [5.3] we have

exp [~Dxc[u] — Cllul2AA2) = exp [~ Dy [u]] exp [C[ul2AAZ]
exp [~Dic[u]] (1 = CllulPAA2)
xp [~ Dic[u]] — CllulPAA2.

VoWV
@

Moreover, by (52 and (ZI6]) we can bound

[l sc(w) = PR < T{(A W) < CA..
P$H
Thus we infer

/P exp [~ Dic[u] — ClJul2AAZ] dpo,c (1 exp [~ Dy [ul] — Cllul2AN2) dyo, (1)
)

)

exp [~ D [u]] dpo g (u) — CAAL.
)

12 )¢
>,

Therefore, it follows from (I0I7)) that

Tr eiA(dF(Ph)J,»)\Wr;n) . .
B —Dxkly] - 5
Trearen 2 17O [/psa e Pl g e (u) — CAA?

> / e_DK[“]duo,K(u) — CAA2,
P$H
Taking the log and using the fact that log(1+¢) = O(¢) for |t| small concludes the proof. [
Now we can conclude the

Proof of Proposition [0 Inserting (I0.I1]) in (I04]) we get the quantitative estimate

Z(\
—log () < —log ( / e—DK[u}d,m,K(u)> + CAE+ CA+ QL7 |g2)Y ™ (10.18)
Zo(N) P$

In the limit A — 0 and 1 < A, < A3, using (@I9) we obtain the desired upper

bound ([I0.0)

— log ZZO(();\)) < —log </ eD[“]d,uo(u)> +0(1) = —log z + o(1).

The proof of Proposition [[0.1], hence that of ([B.1), is complete. O

11. CONVERGENCE OF DENSITY MATRICES

In this section we prove the convergence of reduced density matrices stated in our main
results. As in the previous sections we denote

P=1(h<A), Q=1-P, 1<A <A\ 3
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11.1. Collecting useful bounds. First, we collect several positive terms previously dropped
in our analysis, and use them to derive some new information.

Lemma 11.1 (Trace-class estimates for projected states).
Let h > 0 satisfy @8)-@T) and let w : RY — R satisfy @&J). Then in the limit A — 07 we

have

[T — (To)g| = 0. (11.1)

Tr

Dy =U((Ty)p @ (FA)Q>U( 0. (11.2)

Here U is the unitary in (BI9) and (T'y)p, (I'x)q are localized states in F(P$H), §(QH),
respectively, as in Definition 5.0 Moreover, we have

TS (11.3)

where
—Dxku] d
i) = e
Jps € Pl dpg x (v)
Here pp ) is the lower symbol of the Gibbs state I'y associated with P and the scale e = X as

in (B28), po, Kk is the cylindrical Gaussian measure and D [u] is the truncated renormalized
interaction (all defined in Section[3).

(11.4)

Note that (ILI)-(IT2]) precisely confirm the expectation that the interacting and Gauss-
ian Gibbs states almost coincide on high kinetic energy modes, whereas (IL3]) quantifies
the precision of the mean-field /semi-classical approximation on low kinetic energy modes.

Proof of Lemma[I17. After conjugating by the unitary ¢/ in (5.19]), the Gaussian quantum
state is factorized:

To=U" ( (To)p ® (PO)Q) u. (11.5)
Hence we may apply Lemma to deduce

/H(FA,F()) = H(UFAL{*, (FO)P &® (Fo)Q)
=HUD XU, (Tr)p ® (Ta)g) + H((TN)p, To)r) + H((Tr)q: (To)q)

=100 (TP & (TN )U) + H(Ta)ps (To)p) + H((Ta)e: (To)g)  (116)
Combining (IL.6) with the energy lower bound (@.35]) we obtain

Z(\)
Zp(N)

—log = H(Ty,Tg) + A2 Tr[WrnTy]
= H(I\, (Ta)p @ (Fa)g) + H(TA) e, (Fo)p) + H((T'A)g, (Fo)g)

/ (uldpip () + o(1). (11.7)
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Here recall that pp  is the lower symbol of (I'y) p. By the Berezin-Lieb inequality (@4) and
the classical variational principle ([LI0), we refine (@3] to

H((TN)p, (To)p) + - D [uldpp(u)

> Hcl(MP,A7MP,o)+/ Drc[uldpp(u)
P$H

=Ha(ppr, p') —log </ e~ Prlul duao(”)) - (11.8)
P
where ppg is the corresponding lower symbol of (I'g) p and

e~ Pl dpp o (u)
nyg e~ Pr() dupp(v)

dp/ (u) = (11.9)

Note that from (@.I3]) we know that

16— 'l L1 (pgy — O (11.10)
We have already proved in (.17 that

—log </ e~ Pl dup,o(u)> > —log </ ~Diclul dﬂo,K(u)> +o(1). (11.11)
P$H P$H

Putting (IT7), (IT8]) and (ITII)) together, we find that

Z(\)
Zop(A)

—log 2o > (DU (0P @ (M) U ) + (g, (To)g) + Halkra, )

—log (/Pﬁ e~ Prlul duovK(u)> +o(1). (11.12)

Comparing with the the upper bound (I0.I8]):

—bg% < —log < /P . e—DK[“}duo,Kw)) +o(1),

we obtain
H(TaU* (T ® (Ta)Q )U) + H(Ta)qs (To)o) + Halupa i) = 0. (11.13)
Thanks to the (quantum and classical) Pinsker inequalities (see [36] and [85] Section 5.4]),
HAB) 2 3T A= B, Haltrw) > (- wl@)
the convergence (II.I3]) implies the desired convergences (IL.1J), (IT.2]) and

lupx = 1L psy — 0.

The latter bound and (IT.I0) imply (IT3]) by the triangle inequality. O
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11.2. Hilbert-Schmidt convergence of all density matrices. In this subsection we de-
rive the Hilbert-Schmidt convergence for all density matrices using the additional condition

@3).

Lemma 11.2 (Hilbert-Schmidt convergence of all density matrices).

Let h > 0 satisfy (0)-@ED)-ES) and let w satisfy @EQ). Then in the limit X — 0%, for all
k> 1 we have

AP k! Fg\k) — / [uFY (k| dpu(u)

strongly in the Hilbert-Schmidt space 62(.6@]5).

We will need a uniform bound on all density matrices in the Hilbert-Schmidt norm. This
is the only place where we need the condition (LJ]).

Lemma 11.3 (Hilbert-Schmidt estimate).
Let h satisfy ([@0), @R) and let w satisfy [@I). Then for every k > 1, we have

e, <.

Proof. From the positivity e *"(z,y) > 0 and AW™ > 0, a standard argument using the
Trotter product formula (see e.g. [I34] Theorem VIIL.30] or [I5I, Theorem 1.1]) and the
relative bound on partition functions in Lemma [E.14] we obtain the kernel estimate
k k
0< FE\ (X V) < Ckré N (Xp; Va).

See e.g. [107, Lemma 4.3] for a detailed explanation. Consequently, for every k > 1 we have
the Hilbert-Schmidt estimate

k
kp(k) r®| — A 1k
HA L) H62 < G H)\ Fo ‘62 =G (M —1)®k ||, < Gellh ™ llse-
Note that the bound is uniform in A and depends on h only via Tr[h~2]. O

Next, we have

Lemma 11.4 (From states to density matrices, Hilbert-Schmidt estimate).
Let T',TV be two states on Fock space that commute with the number operator N'. Then for
all k > 1, we have the Hilbert-Schmidt norm estimate on the associated density matrices

2k
Ir® 02, < O (Tr P - 1)) (Z (Il + Hrwuez)) . (11.14)

Proof. Let Aj, be a non-negative Hilbert-Schmidt operator on $®* and A}, the associated
second-quantized operator on the Fock space from Definition 211 Using (2.6]) we have

Tr [Ak(r“f) - 1“’(’6))} (2 - ‘Tr [Ak(l“ r’)”
(Tryr r \) (Tr [ AL — r’yD
(Tr|F r |) (Tr [ 20 4T )D (11.15)
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On the n-particle sector, we can compute explicitly

2
E (Ak)ih...n‘k = § (Ak‘)ih---%(Ak)jl,---,jk
1< <...<ip<n 1< <...<ip<n
1< <. <jr<sn
min{2k,n}

- Z Z (Be)irin,... iy
=k

1<i1 <. <ig<n

where By is an operator on $%5¢ defined by
(Bo)12,...0 = Z (Ar)i,.in (Ak)jr i (11.16)

1<ii <. <ip</t
A 1<j1§---<jk<5
{i1,ik YOI 1, gk y={1,- €}

Therefore we have
2k
A2 = Z B,
l=k
where By is the second quantization of By, as in Definition 2] again.

On the other hand, since Ay, is a Hilbert-Schmidt operator on $H®<¥, we can prove that
By is a Hilbert-Schmidt operator on $®+¢ and

IBells> < Crll Al (11.17)
To prove (III7), let us come back to the definition (IT.I6]). Consider a general ¢-particle

operator of the form

A= (Ar)xy(Ak)x,z
with (X,Y), (X, Z) are k-particle variables. If the kernel of (A4y) is (Ax)(X,Y; X', Y’), then
the kernel of A is

AX,Y,Z;X'Y' 7" = /dX”(Ak)(X,Y;X”,Y’)(Ak)(X”,Z;X’,Z’).
By the Cauchy-Schwarz inequality we have
IAX,Y, Z; X"Y', Z|? < (/dX”\(Ak)(X,Y;X”,Y’)F) (/dX”\(Ak)(X”,Z; X’,Z’)F).
Therefore,
|AZ: = /dXdeZdX’dY’dZ’\A(X, Y, Z; XY, Z")?
< / dXdYdzadx'dy'dz' < / dX”|(Ak)(X,Y;X”,Y’)|2) X

(/ dX"|(Ap)(X", Z; X/,Z’)IQ)

2
= (/ dXdeX’dY’|(Ak)(X,Y;X’,Y’)|2) = || A||&:.

We thus obtain (IT.I7) immediately from the definition (IT.16]).
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Using (IT.I7), we can estimate

2k 2k
Tr |AfT] = 2 [B.T| = gTr [Bir )]
2k 2k
<Y IBelle2 IT9 g2 < Crll Akl > ITY |2 (11.18)
=k =k

Inserting (ITI8) and a similar estimate for I' in (IT.I5) we arrive at

2k
T [4,0® — 0] | < Oyl A (T - 1) (Z (Ir® e + Hrwu@)) . (11.19)

This being true for any k-body Hilbert-Schmidt operator Aj leads to the desired bound

(ITI4) by duality. O
Now we are ready to conclude the

Proof of Lemma[IL.2. Let
Ty =u* ((P)\)P ® (FA)Q>L{.

From the action (5.20]) of the partial isometry U on creation/annihilation operators one can
compute that

fg\k) = P®kfg\k)P®k + Q®kF&k)Q®k + Cross (11.20)

where Cross is a sum of finite coefficients (depending only on k) times terms of the form
Cross; = A?jlrg\jl)A?jl ®R...® Afbjlfg\jl)Al@jl (11.21)

where zlizl ji = k and A; = P or (Q, but not all A; are simultaneously equal to P or Q.
The precise expression does not matter for us, but we have already used the expressions for
k=1,2, so let us write them explicitly once more:

V= prip+Qrig,
T = po2r® po2 4 o212 4 prVp e QriVQ + eriVQe PriVp.  (11.22)

From formula (IT20) and the uniform bound |[[\T)||g2 < C in Lemma T3] we deduce
the similar bound for I'y:

INTP sz < C, Vh> 1
Therefore, using the state convergence (I1.2) and Lemma [IT.4] we obtain
k(pk) _ 7k
v - T )HGQ -0, Vk>1. (11.23)
Thus it remains to prove the convergence for fg\k)
After multiplying (IL20) by A*, the main claim is that the P-localized term (first term)
converges to the desired limit strongly in &2, while the Q-localized term (second term)

converges to 0 strongly in &2. Combining these two facts, the cross-terms must also converge
to 0 strongly in &2.
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Analysis of the P-localized term. We use the quantitative quantum de Finetti theo-
rem 5.8 Recalling the lower symbol up y of (I'y)p, we have from (.27
k—1
k
k k k k(k k k (¢ 4
/Pﬁ\u@’ YuF| dpp () = A* kI PEFTR POk L AFpr - <€>P® TOPY @, 1 gi-tpys-
=0
(11.24)
From the lower symbol expression (IT.24)), taking the Hilbert-Schmidt norm on both sides,
then using the uniform bound in Lemma IT3l and the fact that dim(P$) < CAZ < 271,
we find that for every k > 1,

NP k| pokT (k) pok _ / [u®EY (k| dpp(u)|| = 0. (11.25)
P$H &2
Consequently,
[ W6 dupaw)| <. (11.26)
P$ &2

A similar estimate with up ) replaced by g in (IT.4) holds thanks to the operator inequality
/ W) (W dfi < C / Y (| dpg e = CRI(PR—1)EE. (11.27)
P9 P

Next, for every Hilbert-Schmidt operator X > 0 on H®**, we can estimate

[ ([ 1) s — ) | 2

/ (W, Xu®*) (dpp — ) ()
P$

<(/ I Xl ailw) ( ldur - alw))

< (/Pﬁ(u®2k,X ®Xu®2k>(dlup7)\ + dﬁ)(u)) |,UP,)\ — 1|(P$)

2

=[x o X ([ W s + i) )|l =7 (PS)

<X @ Xle2

|1 s + i)
P$

Here in the last estimate we have used (IL3]) and (IT.26]). By duality we deduce that

/ ) (| (e — ) ()
P$

Thus, by the triangle inequality,

lp — i|(PH) — 0.
62

—0. (11.28)
62

AF gl pERT (R pek / W) (k| di(u)|| - 0. (11.29)
P$H G2
Therefore, for all k£ > 1,
APt pERT(F) pek / @)V (| dp(u)|  — 0. (11.30)
62
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Analysis of the @Q-localized term. Using Lemma [[T.4] Lemma [[T3] and (IT.I)) we can
estimate

HQ@@k)\k (F(Ak) _ ng)) Q®k‘ 2

2

X (0 = )|

&2 - &2

2k
< O (Tr|(My)g = Moel) - (100G ez + Do)V l2) =0 (11.31)

for all £ > 1. From (II.30) and (II3T) we can go back to (IT20]), control all the cross

terms, and conclude that
‘ 62

for all k£ > 1. The desired convergence of fg\k) then follows from (I[I23]) and the triangle
inequality. This concludes the proof of Lemma O

— 0

N RIT®) / Y (u) dpu(u)

11.3. Trace class convergence of relative one-body density matrix. To conclude the
proof of Theorem 2] it remains to prove the convergence of the relative density matrices
in the trace class norm.

Lemma 11.5 (Trace class convergence of the relative one-body density matrix).

Let h > 0 satisfy ([&6)-@ED)-@ES) and let w satisfy @ED). Then in the limit T = A\~ — oo,
for all k > 1 we have

M(E0 = 1) > [ o)l it diofw)

strongly in the trace class space G'(8)).
Proof. Denote

= A (T -T0) Xoi= [ ) ul(dit) = duo(w).

Note that Xy is a trace class operator, thanks to (0.I3). From Lemma [IT.2] we have the
Hilbert-Schmidt convergence X, — Xy. Moreover, the uniform estimate in Theorem
ensures that |2 X \h!'/?||g2 < C. Let

Pp=1p<r, Qr=1-PFP,=1p>r.
By the triangle and Cauchy-Schwarz inequalities we can bound
[ X2 = Xoller < [PL(Xx — Xo)ller + Qe Xnller + [QrXoller
< 1Pzl 1Xx = Xolle + 1R 2Qrh™" 2|2 |12 X3k ?|le2 + |Qr Xo e
For any fixed L > 0, taking A\ — co we get
hfilsélp 1Xx = Xoller < 127 2Qrh ™l g2 + |QLXo e
N

Then taking L — oo in the latter estimate and using h™! € &2, Xy € &' we get

lim || X =0.
lim |1 X e

This concludes the proof of Lemma [IT.5] and hence that of Theorem O
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Remark 11.6 (Relative higher density matrices).

If Tr(h™!) = +oo0, then the difference \* (Fg\k) - Fék)) is not bounded in trace class for every
k > 2. For brevity we only explain this for £k = 2, in the homogeneous case in dimension

d = 2. We prove that )\2(11&2) - fg?)) converges to 0 in trace class, but )\Z(fg?) - FgQ)) is not
bounded in trace class, where I'y = U* (T'x)p ® (T'0)q) U.
First, in two dimensions we have since Tr(h™P) < oo for any 1 < p < 2 (see (B.37)), from

the energy estimates (O.I8]) and (I0.I8]), we can use

1Qh Mgz = I Thza h o2 < /AL Tr(h?).

and optimize over A, to get the explicit bound

Z
‘—log ) + log </ e~ Pxlul d,uo,K(u)N < CON (11.32)
Zo(A) P
for a small constant > 0. Consequently, repeating the proof of (IT.2]) we have
Tr|ry — fA( <OTM2, (11.33)

Since A¥ Tr((M*)r,) diverges like |log A|¥ due to (557) and (537), we can deduce from
([II33) and Lemma [[1.7] below that

2) =2
Tr‘A2<r§> —r§>)( - 0.
On the other hand, from (II.22]) we can write
Vo Qi )P o0 - () -rr) s (-tarf'a).

By Lemma the first term )\P(I’g\l) — F(()l))P converges in trace class to a nontrivial
limit. However, the second term )\QI’(()I)Q in unbounded in trace class since Tr(h™!) = +o0.
Therefore, \? <fg\2) —I’(()Q) is unbounded in trace class. Thus we conclude that A2 (Fg\z) —I’(()Q))

is unbounded in trace class, in the 2D homogeneous case. o
In the above remark, we have used the following result (c.f. Lemma [IT.4)).

Lemma 11.7 (From states to density matrices, trace-class estimate).
Let T, T be two states on Fock space that commute with the number operator N'. Then for
all ¢,¢' > 1 with 1/qg+1/¢' =1 we have

Te|0®) — )| < (v |0 — 1)) V7 (Tr[/\/qk(r + r')]) e (11.34)
Proof. We write
o0 o0
r=ac. r=gea,
n=0 n=0
where G,,, G}, are operators on the n-particle sectors, and denote

Gslk) = Trk+1~>n [Gn] .
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By Holder’s inequality we may estimate
Tr|T®) — Zn Tr |G — G'(k |

1/q

o0 l/q/ o
< (z mie o) (Sl - o)
n=0 n=0
00 1/¢ oo 1/q
< <Z Tr |G, — G'n]> (Z n*(Tr G, —i—TrG’n))
n=0

n=0

= (Tr|T - r/|)1/q/ <Tr[/\/q’“(1“ + F’)]) Ve .

12. CONCLUSION OF THE PROOFS

Theorem [B.Ilis a particular instance of Theorem .2l It remains to explain how to deduce

Theorem [3.4] from Theorem

Proof of Theorems[3.4l Theorem [3.4]essentially follows from Theorem A2 with h = —A+V)
where V) solves the counter-term problem ([B.20). To be precise, the Gibbs state

Ty = Z(\) le M (12.1)
with

Hy = dl(h) + % /[R (k) ‘dl“(e“”) - <dI‘(eik'm)>f0

? 1
dk, Tg=——e MM,
Zo(A)
can be treated by following exactly the proof of Theorem (all estimates depend on h
only via Tr[h~2], which is bounded uniformly thanks to the convergence ([3.27)) and we have

~ - z
A <F>\ - F0> = —log N()\) = —logzy + o(1) = —log </ eD*[“}dqu\(u)) +o(1), (12.2)
Zo(N)
2
Tr | AP kI TS /|u®k Wk |dpy(u)| —0, Vk>1, (12.3)
Tr |\ (r“ r“ /|u (ul (dp(u dﬂovA(u))‘ 0. (12.4)
Here 19, is the Gaussian measure constructed from h = —A+V)y, Dy, p1z, 25 the correspond-

ing renormalized energy, interacting Gibbs measure and partition function, respectively. We
emphasize in the notation that these objects still depend on .
Moreover, the analysis in [60, Section 3] shows that

logz, — 1 12.5
ogzy — logz (12.5)

and
/|u®k><u®k|d,u>\( = +/|u®k (u®*|dp(u) strongly in &> (12.6)
0
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with z and p the partition function and interacting Gibbs measure associated with h =
—A+Vjp. Indeed, both the partition function and correlation functions (= kernels of reduced
density matrices) based on —A + V) can be computed from a perturbative expansion whose
coefficients clearly converge to those of the corresponding expansion based on —A + Vj,
using (B27). A similar argument is used at the end of [60, Proof of Lemma 3.1]. On the
other hand, the remainder terms of both expansions are controlled using only the Hilbert-
Schmidt norms of (—A + V3)~! and (=A + V5)~! as in [60, Lemma 3.3]. The desired
convergences then follow from Borel summation as described in [60, Appendix A].

For the strong trace-class convergence of the relative one-particle density matrix, observe

first from (B.I3]) that
[ 1l @) dpo -+ di — d) (12.7)

is uniformly bounded in trace-class (for the difference duy(u) — dpg » we also use Tr[(—A +
V\)~?] is bounded uniformly). Hence we can assume that it converges weakly-* in &' to 0.
Then, testing against a bounded operator A yields a quantity converging to 0 uniformly in
the operator norm of A, by the techniques in [60] again. We deduce that the trace-norm
of (I2Z7) converges to 0, which shows that it must converge to 0 strongly in trace-norm.
Putting differently, we have

[ 1wl i) = dio) > [l (dtu) = duo) stwongly in &' (128
as desired. O

APPENDIX A. THE COUNTER-TERM PROBLEM

In this appendix we discuss the counter-term problem in detail.

A.1. Hartree versus reduced Hartree energy functional. We recall that to any one-
body density matrix v > 0 one can associate a unique Gaussian state

e—dl'(a)
r—=_°
TrS [e—dF(a)]

on the Fock space which has the one-particle density matrix T'}) = ~ [8, 155]. The unique

corresponding one-body operator a is given by
1 1
< a=log * 1 (A1)
ev —1 ot

Then its energy terms and entropy can be expressed as in (3.21]), resulting the Hartree free
energy

’y:

Fip) = Te(-A+V —vp) + 5 [ [ 2@y - pny) dody

A
+5 // w(e —y)|y(z;y)Pdedy — T Tr [(1+7)log(1 +7) — ylog ]
Thus if we are interested in equilibrium states minimizing the free energy, in the quasi-free
class this leads to the following variational problem

Fl= inf FH[. (A.2)
y=7*20
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When @ > 0, the functional F[y] turns out to be strictly convex. Hence, with the confining
potential V' it admits a unique minimizer 4, that defines a unique corresponding quasi-free
state in Fock space T'H (the proof is the same as that of Lemma [3.2]). The optimal density
matrix solves the nonlinear equation

H{ (—A—i—V—y—i—)\pH*w—i—)\XH) }‘1
~ =< exp -1

T
where p(2) = yH(2; ) is the density and X! is the exchange operator with integral kernel
XM(ayy) = wla =y (z;y).

In the limit A\ — 0 with 7" = 1/, the quasi-free state I'!' is rather badly behaved. Its
density p™ diverges very fast. However, it turns out that, although p™(z) depends on z, its

growth as A — 0 is more or less uniform in x and can be captured by

1 1 dk
H K . . — _
e~ ) = sty e = o [ ey (49)
provided that
v =Aw(0)o; — k. (A4)

Recall that Agf()) diverges in dimension d > 2 but it does not depend on x by translation
invariance of —A + k. On the other hand, the exchange term AXH typically stays bounded,
for instance in the Hilbert-Schmidt norm.

This suggests to simplify things a little bit by removing the exchange term as we did
in the paper, that is, to consider the simplified minimization problem associated with the
reduced Hartree or, simply, mean-field free energy ([B:22]) which, we recall, is given by

P =T (-8 +V =)+ 5 [ [ @t -y dedy
—TTr[(1+~)log(1+7) —vlogn]

By doing so we will pick as reference state a quasi-free state which is not the absolute
minimizer of the true quantum free energy in the quasi-free class. However, manipulating
states depending only on a potential simplifies the analysis. Fortunately, it turns out to be
sufficient for our purpose, as justified in Lemma [3.2] which we now prove.

A.2. Proof of Lemma Under our assumptions, the first eigenvalue of the Friedrichs
realization of h = —A + V is positive. In addition, we have

Tr[e /7] < (277)_d/ e PIT dp/ e V@IT g < o0,
Rd R4
by the Golden-Thompson inequality, see [149, Section 8.1]. The same properties hold if we
shift V' by v € R and only keep the positive part. Then we obtain
Tr((=A+(V =v)4)7) = TTr((1+7)log(1 +7) —vlog~)
1 A2 (V-u)y
> 3 Tr (—Avy) + T Tr (log (1 —e T >> (A.5)

for all v > 0. The last expression is the minimum free energy associated with —A/2+ (V —
V)+.
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In order to prove that the functional FMF is bounded from below, it therefore remains
to show that

A
~ [V =)@+ 5 [ ] wle = o) ddy

is bounded from below, uniformly in p > 0, under the assumption that @ > 0 and w # 0 (if
w = 0 then the Lemma holds true trivially). Since w € L'(R%), we can find a ky € R? and
a small radius r > 0 such that the continuous non-negative function w is at least equal to
w(ko)/2 on B(kg,r). We then choose ¢ in the Schwartz class such that ¢ > 0 and ¢ > 0
with supp(®) C B(kg,r). Since V' > 0 and V' — +o0 at infinity, the function (V' — v)_ has
compact support and is bounded by v,. Therefore, we have

(V—-v)-<C¢p

for C = [~ }(V -
deduce

A
- /Rd(V —v)-p+ §/Rd /Rdw(w —y)p(z)p(y) dz dy
C? [ |gk))? C?||1 217

A
>-C - - dody > —— VL k> ——— 2
Rdprrz/Rd /Rdw(w y)p()p(y) dedy > o5 ) (ko)

Combining with (A5]) we find as stated that

v)_ H Loo(rd) < OO After completing the square and using @ > 0, we then

inf FMFly] > —o0,
nf PN
for all v € R.
Let us now prove the existence of a minimizer. Writing

FN = PN+ Try > inf FURW] + Te(y),

where we have displayed the parameter v for convenience, we obtain that minimizing se-
quences {7, } for FMF are necessarily bounded in the trace-class. In particular, ||v,| is also
bounded. In addition, the inequality (A5 implies that Tr(—A)y, is bounded. From the
Hoffmann-Ostenhof inequality [87]

2

T(-A)y > [ |90 )| do

Rd

and the Sobolev inequality, we deduce that p,, is bounded in LP"/2(R%) where p* = 400 in
dimension d = 1, p* < oo arbitrarily in dimension d = 2 and p* = 2d/(d — 2) in dimensions
d > 3. Hence, up to extraction of a subsequence, we have 7, — 7 weakly-* in &' and
Py — py weakly in LY(R?) N LP7/2(R?). Using Fatou’s lemma and the concavity (hence
weak upper semi-continuity) of the entropy, we obtain that v is a minimizer for .7-"},VIF . The
nonlinear equation ([324]) follows from classical arguments. Then, according to (AI]), V)
must solve (3.20) because the minimizer vM¥ is the one-body density matrix of the quasi-free
state associated with dT'(—A + V)). O
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A.3. Comments on Theorem Let us briefly discuss Theorem B3l In [60], Section 5],
the existence of the solution V) to (8.:20]) was established by means of a fixed-point argument
(which requires that d < 3 and that « is sufficiently large). The fixed point is performed in
the (complete) metric space

<1/ 2}

5V) = { € LR s o) = H——l

for the unknown u = V) — k and provides the Hilbert-Schmidt convergence

2
Tﬂ@A+wr%4—A+%rﬂ—m.
Our notation here is slightly different from [60] as we shift potentials by a constant. More-
over, since V) — k € B(V) we have
V Vv
2 V)\ — K < 3—

There remains to discuss the nonlinear equation (BE) for Vp, which we can rewrite in
the form

Vo=ws (Vartp[(=a+%) " = (—a+x)7"]). (A.6)

Here we just need to pass to the limit in the similar equation at A > 0

A A
=wx <V+“+p LA(AH&) — 1 AAtR) — 1]) :

Since we know that Vy,/V — V5 /V in L>, we have V) — Vj in LS. and it suffices to prove
the convergence of the density on the right side, which we denote for simplicity

A A
Vagoy o :
py (@) = |:6)\(—A+VA) “ 1 oMA+rm) _ 1] (23 2).

In [60, Eq. (5.21)] it is shown that

VN —k
v - V(x). (A7)

Hence from the dominated convergence theorem and the assumptions on w, it suffices to
prove that

o3 ()] < Ok

@) = ((—A+V) " = (—A+r) ") (@2)
almost everywhere. Applying again [60, Eq. (5.21)] we find that
V(z)

A A ‘
ACAH) 1 A-A+V) 1 (z;2) oo

which tends to 0 in L{® since (V) —Vp)/V — 0. Hence we can replace V) by Vj throughout.

loc

Next we write, following [60, Eq. (5.16)],

SA(—A+Vp) (1=s)A(—A+k)
/ ds/ dz———F—F— Ac (x;z)Vo(z))\e— z; ).
R4

< OR¥/2-2 "%

A—A+V0) _ 1 ANATR) _ (

Using that Vy > &, we have the pointwise bound on the operator kernels

SA(—A+V) es)\(quLn)

0 ———(7;2) <

AN—DtVo) _ 1\ A—A+R) (z:2)
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by the same argument as in Lemma [[T.21 and in [60, Eq. (5.17)]. Using [60, Lemma 5.4] we
see that we get a convergent domination. So by the dominated convergence theorem, the
strong local convergence of p;/“ follows from that of the kernels
A eM—A+V) 1
AT 1 (x;2) —
A es)\(fAJrli) 1
AaT 1) 7 TR e
In fact this convergence is strong in L?(R? x R?) since the corresponding operators converge

in the Hilbert-Schmidt norm, by [60, Lemma C.1]. Passing to the limit, this proves the
strong local convergence

1
el

(e = (a0

where in the last equality we have used the resolvent formula. The uniform bound (A7)
then allows to pass to the limit in the equation for V) and obtain (A6]). O

1
1
Vi
p)\()(.%') — — . dS/RddZT_i_‘/O(I'7Z)‘/()(Z)

A—0t

APPENDIX B. INTERPRETATION IN TERMS OF THE PHASE TRANSITION OF THE BOSE GAS

Here we reformulate and discuss our main results (Theorems B and B4]) in microscopic
variables and clarify the link with the phase transition of the infinite Bose gas.

B.1. Homogeneous case. We start with the homogeneous case which is the usual set-
ting in which the thermodynamics of the free Bose gas is formulated, see for instance [30,
Section 5.2.5], [I60} Sections 2.5.19-20] and [164], Chapter 4].

Let us consider the non-interacting Bose gas on the large torus LT¢ of side length L. In
the grand canonical setting we choose a chemical potential v < 0 and a temperature 7" > 0.
Our system is then represented by the Gaussian quantum state in Fock space, associated
with the one-particle operator (—Ayr, — v)/T where —Ap, is the L-periodic Laplacian. Its
one-body density matrix i

N
L —Ap —vU

e T 1

and the number of particles per unit volume is given by

d
! 1 T2 dk
Td —_—— — a .
L k@WZZd/L B‘WTﬂ —q Lo (2m)d /Rd ek?—v/T _q

The critical density for Bose-Einstein condensation is obtained in the limit /7 — 0~ and
it equals

d +00 ford=1,2
Tz dk B
. T = — d d B.1
pe(T) (27T)d/Rdek2—1 &(}l)<oo for d > 3. (B0
2472

30ur convention in this section is that all microscopic density matrices have a tilde, whereas the macro-
scopic ones do not.
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The grand-canonical model in infinite space stops to exist at ¥ = 0, where the one-body
density matrix converges weakly to
1

—A
eT —1

) = (B.2)
The corresponding infinite Gaussian state (properly defined over the C*-algebra of Canon-
ical Commutation Relations [30]) has the number of particles per unit volume equal to
pe(T).

The phenomenon of Bose-Einstein Condensation (BEC) is better understood in the
canonical setting with N particles, going back to the thermodynamic limit. In dimen-
sions d > 3, fixing the density N/L? = p > p.(T) one obtains a density matrix which has a
two-scale behavior [30, Sec. 5.2.5]. It contains a rank-one part with the diverging eigenvalue
LYp — p.(T)) and constant eigenfunction fo(z) = L~%?2, living at the macroscopic scale
(the Bose-Einstein condensate). When this rank-one operator is removed, the rest of the

density matrix converges weakly to I'S in (B2).

To understand the behavior of the system just before the phase transition, we have to look
at the simultaneous limit L — oo with 7 — 07, see [I60} Sec. 2.5.20.3]. At the macroscopic
scale (that is, after rescaling length by L), the (rescaled) one-particle density matrix equals

1
e ’r —1

and thus we see that the natural scaling for v is

(L) = -7 (B.3)
with a fixed k > 0, in all dimensions d > 1. We are therefore exactly in the setting studied
in this paper and in [103] with the choice

1
_ +
Mre L
The density matrix converges to
F(l)
TIZ [ /|u (u| dpiy (u (B.4)

strongly in the Schatten space GP(LQ(’]I‘d)) for all p > d/2 (p > 1if d = 1), where p, is the
classical Gaussian measure with covariance (—A + k)~!. Equivalently,

o

where p,; 7 is the Gaussian measure with covariance T'(—A + ) L. Similar properties hold
for higher density matrices.

Our conclusion is that, close to its phase transition, the free Bose gas is properly described
by the classical Gaussian measure j, 7 on T?¢ (macroscopic scale) where x describes the
speed at which the chemical potential 7 approaches 0 via (B.3]) or, equivalently, at which
the corresponding density approaches the critical density p.(7"). This elementary fact is
rarely mentioned in textbooks on Bose gases.

The speed at which the density approaches p.(T) is computed by using the following
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Lemma B.1 (Particle number of the free Bose gas).
In dimensions d > 1, we have for every fized k > 0

d

1 A2 dk wd(k) 1
Z . eME24R) — 1 - (27T)d /Rd R | + A +o ()‘ ))\%O"’ (B5)
ke2nZ

with the positive decreasing function

1
3 Z el ford=1,

o2 1€\ {0}
= 2 / g dt=4 VR (B.6)
d P g
€24\ {0} e > 7 ford=3
eZ3\{0}

The proof is provided below in Section [B.3l The integral in the first equality of (B.6]) is
the Fourier transform of (27)~%2(|k|? + k)1, that is, the Klein-Gordon Green function. In
dimensions d < 3, we can also write by Poisson’s formula

1 1 dp
(pd("i) - Z (‘k’Q + K - (27‘(‘)d /_ﬂ.,ﬂ)d m)

ke2nZd

but the sum is not absolutely convergent in dimensions d > 4. Since we have the expansions

1 ¢(3)

1 / dk_ Jaatajst oW ford=1,
(2m)? Jpa el —1 —18(0) 4 & 4 o), 0r ford=2,
4_\/5 + 0(a) g0+ for d = 3,
_ ;(fg) _Jloelapila oy, o0 ford=4,  (B7)
i %)a—i—o( a0+ ford>5

we find from (B.A]) that the density approaches the critical density p.(T') from below as

1 B
Tr[F(Ll)] (2\/E + 901(@) TL+o(L) for d =1,
Ld B oglK

L10g(L) + (pa(r) — BED) T4 o(1) for d =2,
(% - @3('“5)) % +o(L71) for d = 3,

d

T2( (¢ o O toe T )
d —

C(d dl)Tj —~ 4 o(L7?) ford>5
2d7 %

Note that ¢3(k) < v/k/(47) which is its behavior when x — 0.
So far our discussion applies to any dimension d > 1. Next we discuss the inclusion
of interactions for d < 3. In our work the potential w is introduced at the macroscopic
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level. Re-expressed in microscopic variables and taking 7" = 1 for simplicity, we obtain the
microscopic n-particle Hamiltonian

n

Hyp = Z(—AL — V), + % Z w <xj zm) : (B.9)

j=1 1<j<k<n

The interaction has the very small intensity L~* but varies on length scales comparable
with the size of the box. The form of the microscopic Hamiltonian (B.9) is the same in all
dimensions. The thermodynamic limit I. — oo of this model at fixed v < 0 is the same as
the non-interacting case. This is because we have the lower bound

n

EQL>§:4AQM—<Z+Zg»n

j=1

due to the fact that @ > 0 (for an upper bound on the free energy, use the non-interacting
state). We conclude that w does not, to leading order, change the phase diagram as com-
pared to the non-interacting case. The effect of w is only visible when zooming just before
the phase transition. From Theorem B.I], when the chemical potential goes to zero as
B(0) og(L) _ w
_— 1 f =2
_ N 5
L2 w(0)¢ (3) 1
gral, L7
then the behavior close to the transition is described by the nonlinear Gibbs measure p at
the macroscopic scale, which depends on w and k solving

+o(1) 0+ for d = 3,

K+ 1/13(0)10%7(:{) — w(0) pa(r) ford =2,

vy =

(B.10)
/-;—!-1/13(0)\4/—5 — w(0) p3(k) for d = 3,

More physical interactions are much bigger and have a much shorter range. Although a
universal behavior can still be expected at the phase transition, the phase diagram depends
on w at leading order and a mathematical treatment seems out of reach with the present
techniques. A simpler behavior is however expected in the dilute regime p — 0 with
p ~ T%? (Gross-Pitaevskii regime [48]). In dimension d = 3 and at our macroscopic scale,
the Gross-Pitaevskii limit corresponds to replacing Aw by Awy with wy(z) = A7 3w(z/)\) in
our many-particle Hamiltonian. In this case one would expect the phase transition to be
described by the (appropriately renormalized) nonlinear Gibbs measure u over the torus T3,
with w replaced by the Dirac delta 8mady where a is the scattering length of w [115] 114 48].
Proving such a result seems a formidable task.

B.2. Trapped gases. The theory of Bose-Einstein condensation for trapped gases is anal-
ogous to the homogeneous case, but the formulas are slightly different, see for instance [9],
[160L Sec. 2.5.15] and [49]. Here we only discuss the case V(x) = |z|® for simplicity. At the
microscopic scale the one-body Hamiltonian takes the form

?LL = —A+
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where L is now a parameter used to open the trap whenever the number of particles grows.
At fixed v < 0, the number of particles in the non-interacting Gaussian state is given by

1 1
Tr <6T—1(A+L—2—sxs§) _ 1) =Tr —T*l( 4425 _5)
e -1
+1)

LzT > dz dk
Lo @md //Rdmd e = (B

In the first equality we have rescaled lengths by the factor L(29)/5_which places the system
in a conventional semi-classical limit with effective parameter h = L~(2+5)/s — 0, hence the
second limit. Computing in the same manner the average against |z| one sees that the gas
is extended at the length scale

lgas ~ (L2T)(2T2) T3 (B.12)

Dividing by the effective volume (£gas)?, the density obtained in the thermodynamic limit

is therefore proportional to
T% da dk
(2m)? | Jpayga elklPHlzl*=v/T _ 1

Bose-Einstein condensation is obtained as before when /T — 0~, with the critical density

% dz dk
pc RXRE €|k‘2+|m|s

This is finite for all s > 0 in dimensions d > 2. In dimension d = 1, pL(T') is finite for s < 2
and infinite otherwise.

As before the Bose-Einstein condensate emerges in the limit L — oo in the canonical
setting, when N > p/(T)(£gas)?. The corresponding condensate wavefunction is the first
eigenfunction of —A 4+ L~27%|x|*. This is nothing but that of —A 4 |z|* dilated to the scale
L. Therefore, in this system the BEC length scale is L and it is always smaller than the
natural extension length £gas of the cloud in (B.12)), at a fixed temperature T' > 0. The two
coincide only in a sharp container (s = +00).

The Gaussian Gibbs measure based on h = —A + |z|® emerges at the BEC length scale
L, whenever the chemical potential is chosen as

- K
At this scale the one-particle Hamiltonian just becomes (—A + |z|* + k)/L? so that A\ =
1/(TL?) like in the homogeneous case. The arguments from [60] and Appendix [A:3 in the
non-interacting case give

1 @ T35 L4 / dk
s | ()= B
P R (2m)d Jga kPP +71z g
1 1

—A+|zl +r —A+sr

p

+TL? p [ (z) 4+ o(TL?) 00 (B.13)
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for every € R?. Here the density on the second line plays the role of ¢4 in the homogeneous
case. In particular we obtain all the same formulas as in (B.8]) with (k) replaced by

! (k) = Tr ! B
Palk) = —A+zI*+k —-A+k]|’

In the inhomogeneous case, interactions were introduced at the scale L of the BEC and the
interpretation is the same as in the homogeneous case.

B.3. Proof of Lemma [B.1l We write

A —nAh
M1 =) e

n=1

and obtain

1 1 dp
A Z AP HR) — 1 (2m)d /Rd eMlplP+r) —

ke2nzd
1
Ay e 3 o—mAR2 _ (27r)d/ e~ k=Dl )
— 7,7

nx=1 ke2nzd

We use Poisson’s formula

> fk) =

ke2rzd ( éeZd
—nAlz[? _ p—nAl? -
for f(z) = e ™" — e A" % x(x) where x = (271) ]1(,7“”)(1 and find

1 1 dp A e—n)\n 1o
)\ _ / — e AnX

This is a Riemann sum which converges to

_le?
> / 1 dt

€7 {0} (4rt)?

where the right side is the Fourier transform of k — (21)~%2(|k|?> 4+ r)~!, see [113]. O
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