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Abstract—Axes are the main components of coordinate systems
representations. They play a critical role for the visual analysis
of multi-dimensional data. However their representation seems
to have always be considered self evident, with oriented lines
crossing at an origin, completed with labels such as ticks and
names. Such classical representation show limits when it comes
3D visualization and immersive analytics (IA), mainly because
orthogonal projection of points on linear axes is hard in a
3d environment, and because the user can move and the axes
get out of her field of view. In this paper we propose a task-
based definition of axes and coordinate systems representation,
as well as a tentative design space for coordinates systems
representation in immersion. We also present an exploratory user
study we carried out to compare three grid-based representations
of coordinate systems for multidimensional data analysis with 3D
scatterplots.

Index Terms—immersive analytics, multi-dimensional data,
coordinate systems, axes, virtual reality, user study

I. INTRODUCTION

In the data visualization pipeline, the mapping step consists
in transforming multidimensional data into a visual abstrac-
tion, from which concrete views can then be created by further
representing data points on a screen [1]. However the focus on
data should not make us forget that such mapping is always
done with respect to a space defined by a coordinate system,
which also has to be represented on the screen for users to
be able to make sense of datapoints [2]. Cartesian coordi-
nate systems are grid based and allow to draw scatterplots,
barcharts, gantt diagrams, etc.; while polar systems are circle-
based (distance and angle being the main coordinates), and
can be used for radar charts or chord diagrams. A coordinate
system representation role is to provide the frame of reference
from which data points coordinates (hence data values) are to
be understood. The most important visual components of coor-
dinate system representations are usually one or several axes,
which are usually represented as lines. Those representations
seem to have always be considered self evident in 2D, and
coordinate system representations and axes as such are not
really discussed in the literature, or even in textbooks such
as [3].

Immersive analytics (IA) is an emerging research field
which aims to explore ”the applicability and development
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of emerging user interface technologies for creating more
engaging and immersive experiences and seamless workflows
for data analysis applications” [4]. 3D data representations are
critical components of Immersive Analytics, that are rendered
on 3D devices such as stereoscopic displays, CAVEs, VR or
AR headsets. Users can experience those representations from
two positions, being either external to the data, or immersed
within it. It has long been recognized [5] that in any case
such visualizations are hard for users to understand because
they lack sufficient information to perceive relative positions of
objects, to evaluate metrics and distances, or to project points
on axes. When it comes to immersion, users can nevertheless
change their point of view, alleviating some of these perception
difficulties. This may however come at the cost of the frame
of reference getting out of sight.

While most of the IA systems proposals since the 90’ have
been based on simple extensions of 2D representations of
coordinate systems (for instance using three orthogonal axes
for a 3D Cartesian system), our initial concern is that those
extensions may not be adapted to immersive analytics. If
some works have acknowledged the need of going further, for
instance by adding grids as way of complementing axes [6], we
claim that the development of Immersive Analytics calls for a
renewed understanding of coordinate system representations,
that may lead to potentially fruitful new representations, as
well as the elicitation of best practices and guidelines for IA
systems design.

Our contributions in this paper are the following: we pro-
pose to get back to the basic user tasks the representation of a
coordinate system is meant to allow, and come up with three
main tasks: understand space, get information, and search for
data. We also propose an early design space for coordinate
systems representation in immersive analytics based on seven
dimensions. Finally we present an exploratory study com-
paring three orthonormal coordinate system representations
based on a grid cube for multidimensional data analysis of
3D scatterplots.

II. RELATED WORK

The 1977 staple book ”How numbers are shown” [2]
provides a definition for a ”coordinate grid”: ”[it] is based
on two rectilinear bisecting straight lines: the horizontal axis
is called the abscissa or x-axis; the vertical axis is called the
ordinate or y-axis. The point of intersection of the two axes is



known as the origin[...]”. Axes are therefore a critical part of
a coordinate system representation, and their representation
as lines is clearly stated. Such definition of axes is inline
with those of the Cambridge Dictionary1: ”a fixed line on a
graph used to show the position of a point”, or the Merriam-
Webster2: ”one of the reference lines of a coordinate system”.
[2] also provides a few guidelines on axis representation, e.g.
”the grid size should be as large as possible” or ”axes should
be numbered in the range 0.1 ≤ N ≤ 100”. In the ”Grammar
of graphics” [7], axes belong to the ”guide” category, together
with legends and titles. Guides ”help us associate categories
or quantities with aesthetics”, and axes are ”position guides”
that have scales, rules, and labels.

Coordinate system representation modes have been some-
what considered ”self-evident” in data visualization, mostly
based on linear or circular axes, within established data
visualization idioms. Tufte’s [8] proposals for data-ink ratio
enhancement have put the attention on the necessity to fo-
cus on data rather than on axes systems and accompanying
material. A few works addressed side elements of coordinate
systems representations, for instance tick labels positioning,
or definition of best minimum and maximum values for each
axis [9], [10]. Grids and helpers are also used in practical data
visualization, for instance additional line(s) that show specific
values or zones. However they usually qualify as annotations
of a data visualization rather than being part of its coordinate
system representation. On a side note, some works specifically
aimed at studying how axes as such could be considered
as primary components for defining coordinate systems for
multi-dimensional data analysis, where lines represent the
datapoints. Parallel coordinates [11] is a classical idiom, but
other 2D representations have been proposed [12], [13].

Focusing now on Immersive Analytics, there have been
a number of system proposals for multi-dimensional data
analysis, for which coordinates system representations had to
be designed. Even though the term ”immersive analytics” has
only been defined in 2015 [4], immersive technology has been
used since the nineties to analyze multi-dimensional data [14].
To the best of our knowledge, all of these systems did make
use of axes for their coordinate systems representations. Most
of them used a Cartesian orthogonal data visualization cubic
volume, either with the origin at the corner [6], [14]–[18],
or at the center [19], [20] of the cubic volume. The IDEA
system [21] explored the use of a cylindrical coordinate
system. ImAxes [22] allowed the user to manipulate axes as
representations of data attributes, and create various immersive
visualizations, such as 2D and 3D scatterplots and parallel
coordinates. In most of those systems, axes are simple lines
which can be curved for cylindrical or spherical coordinate
system [21]. Most of those lines have a simple white color,
but some systems do use color conventions for axes such
as (red for x, green for y, and blue for z) [17], [18] or
(purple, green and white) [19]. Origins in those coordinate

1https://dictionary.cambridge.org/
2https://www.merriam-webster.com/

system representation are not emphasized, they are simply the
intersection of all 3 axes. ImAxes [22] and IDEA [21] both
use arrows representations for axes. 2D grids are of common
use to help users make sense of the volume. Those grids are
always placed on a face of the cubic data volume, hence most
of the time they connect two axes together [15], [16], [18],
with the exception of [20] where they are independent from
the axes. Axes labels are in general represented with text in
the vicinity of the related axis. Some systems only provide
axis names [17], [19], other add minimum and maximum
values [6], [22], and values through regular ticks [15], [18],
[20], [21]. Some IA systems propose additional spatial hints to
help the understanding of the immersive world: VRMiner [17]
uses a different color (blue) for the ground face of the cubic
volume, Symanzik et al. [14] use a checkerboard for the
ground.

None of these IA papers justified their choice for axes
representation. If a few papers commented on the importance
of selecting relevant dataset attributes (e.g. numerical) to be
mapped to each axis [17], [18], none did question the classical
representation with lines and labels.

III. A TASK-BASED DEFINITION OF COORDINATE
SYSTEMS REPRESENTATION

From what precedes it should be clear that most of IA
systems proposals did adapt 2D representations of coordinates
systems to 3D immersive settings, without further discus-
sion of the rationale behind their choices. Moreover, to our
knowledge only a few of them have been evaluated on their
efficiency for immersive data analysis, and none was evaluated
with regards to the choices related to its coordinate system
representation. If Immersive Analytics are to become widely
used there is both a need for theoretical work on coordinate
systems representation in immersive settings, and practical
work on system design and evaluation, leading to effective
guidelines for those representations.

Our proposal is that a task-based definition of coordinate
systems representations can be useful to help reflect about
and design such representations, as it would take into account
what axes are used for, rather than focus straight away on
how they are represented. Such an approach seems inline with
that of [7] who considered axes as position guides rather than
representations.

The definition we propose is that a Coordinate System
Representation is a component of a data visualization which
serves as a tool for the reader to a/ understand the visualization
space, b/ get information about data points, and c/ search
for data points. In that context, an axis is a sub-component
of a coordinate system representation that is linked to one
coordinate. An axis may support some of the tasks by itself,
or in conjunction with other axes. Besides axes, other ancillary
sub-components of coordinate systems representation may
provide help to the user to conduct these task, such as grids
or minimaps. Let us detail the tasks.

First, coordinate system representations are used to un-
derstand the visualization space: they define the limits of



TABLE I: Summary of the tasks coordinate systems representations must allow a user to carry.

Understand the Space Get information about datapoints Search for datapoints
limits coordinates of a point from a specific value for one attribute
scale coordinates of a group of point from specific values for several attributes
semantics difference between points from interval values for one attribute
get ones position inside the space difference between groups of points from interval values for several attributes

the space dedicated to data visualization, as well as the
scale of the representation. From them users can get the
semantics of the space and the associated mapping: ranges of
values, represented attributes, etc. Those representation also
help users understand their current positions in the space.
One’s current position is implicit in 2d data visualization: it is
the external viewer position, which remains stable along the
analysis. However in 3D and immersive environments for data
analysis, users can navigate anywhere, and coordinate systems
representation are also important for user orientation.

Second, coordinate system representations are used to get
information about data points, a task that is usually done with
respect to axes. Each axis usually encodes one data attribute,
thus providing semantics to a data point in the data space with
respect to the attribute it represents. Users must be able to ex-
tract data points attributes values information at will, at least to
get approximations, without further interaction such as details-
on-demand. Therefore, coordinate system representations must
allow users to determine the coordinates of a point or a group
of points, e.g. finding the upper and lower limit of a cluster.
Moreover, data analysis is also about comparing data, so those
representations must provide ways for users to perform relative
comparison between a pair or group of points.

Third, coordinate system representations are used to search
for data points. Starting from a known value of an attribute,
or from several values of several attributes, users need first
to know if there are data points that exactly or roughly
correspond, then get access to those data points. Data points
can also be searched with value intervals.

Table I provides a summary of the tasks coordinate system
representations as tools must allow a user to carry out.

We should make two remarks here. First, one should note
that this definition is not limited to 3D or immersive environ-
ments, and holds as well for more classical data visualizations.
Second, in this definition we did not insist on interaction, as we
want to focus on representations of coordinates systems that
permit to carry out those tasks in a ”direct” way. In standard
2D screen environment, this means direct visual perception,
in immersive analytics however, we extend this directness of
perception to head or body movements that help users adjust
their point of view, as well as to other perceptual channels
such as audition or touch.

In the remaining paragraphs of this section we discuss some
of the IA related works we have seen in Section 2, with
regards to our definition, and the tasks their coordinate system
representations need to support.

IA systems that put the user outside of the data volume

usually fulfill the ”understand the space” tasks requirements.
[18] for instance use axes, 2D grids and labels to provide in-
formation about the limit of the space, its scale, and semantics.
User can easily orient, likely due to similarity with external
user position of classical screen-based 2D data visualization.
ImAxes [22] uses a similar approach with small sized, close
representations to ensure the viewer can easily see the whole
coordinate system representation. However when the user is
fully immersed in the data volume, understanding the space
may become quite a challenge. The Wizard system [19]
provides very limited cues for the user to understand the space
limits and scale with only 3 axes with an origin centered
in the data volume, associated with labels placed next to
the axes. No others cues are available to help users grasp
their positions inside a fully dark world, that is why a mini
map had to be added. VRMiner [17] provides cues to detect
the limit of the space through a wireframe representation of
the data volume, the ”ground” face uses a different color,
and each axis has a specific color to help both orientation
and semantic understanding of the space. However, no tick
label are available that would provide information about the
scale of the space, an issue that is not present in IDEA [21].
Nonetheless, all those proposal share the issue that spatial cues
can easily get out of the user field of view when the user
navigate inside the data volume.

All systems rely on users projecting points on the axes
to carry out the tasks related to ”getting information about
data points”. While some are using ticks on axes [21], [22],
other display 2D grids on the faces of the data volume [15],
[16], [18], [20]. A 2D grid is likely to improve projection
by simplifying the process of getting the values on the 2 axes
once the projection of a point is done on the grid, however this
first projection remains an issue. Indeed, projection remains
complex when the user is not aligned with one of the main
directions of the coordinate system, a common situation when
immersed in the data volume.

Providing information of the axes value is mandatory for
users to be able to ”search for data points”, so solutions that
do not provide tick label or 2D grid cannot be used for these
tasks [6], [14], [17], [19]. Otherwise conclusions are similar
to those related to the ”get information” tasks: 2D grids seem
to be facilitating tools, but the task of constructing projected
lines from axes so to aim at invisible zones where data points
could then be found is far from easy.

From this analysis, we can see that designing coordinate
system representations that satisfyingly fulfill all the tasks we
proposed is hard, and that there is room for improvement. In
the next section we propose a first version of a design space



Dimensions Attributes

Type of coordinate system
cartesian
cylindrical
spherical

Modality of representation*

visual
audition
touch
smell
...

User positions with regards to the data* external
immersed

Dependency to the user position* dependant
independent

Reachability
arm’s reach
few steps reach
long distance reach

Data orientation variability* whole data
subset of data

Complexity variability* permanence
level of details

TABLE II: Summary of our design space proposal for
coordinate systems representation in IA. Dimensions marked

with * are non exclusive.

for coordinate system representations, and in Section V we
present an exploratory study with a few proposals building
upon the use of 2D grids.

IV. TOWARDS A DESIGN SPACE FOR COORDINATE
SYSTEMS REPRESENTATION IN IA

In this section we make some proposals towards the building
of a high-level design space for coordinate systems repre-
sentations in immersive analytics. We then provide some
illustrations of its use.

A. Design Space Proposal

Mac Lean et al. [23] define a design space as ”an explicit
representation of a structured space of design alternatives and
the considerations for choosing among them different choices
in the design space resulting in different possible artifacts”.
Our preliminary proposal is organized around 7 dimensions
summarized in table II. For each of them we provide various
possibilities, that we discuss with regards to the tasks we
proposed earlier.

Type of coordinate system obviously has influence on rep-
resentation. Cartesian, cylindrical, or spherical coordinate sys-
tems can be used for immersive analytics of multi-dimensional
data.

Modality of representation is related to the sense(s) that
can be used to perceive the coordinate system. Visual repre-
sentation is by far the most common one but IA offers the
possibility to embody the user in the immersive environment
opening up potential for other senses, i.e. audition and touch.
Senses may also be combined, for instance 2 axes may be vi-
sually displayed while a third one could use a sound metaphor.
Visual representation allows to cover all tasks: the space limits
are usually delimited by a visual cube and information can
be accessed through direct projection. However, perceptible

information is limited by the user field of view. That is why
audition and touch could be used to keep perceiving systems
of axes while vision is already used to focus on data points.

User position with regards to the data also provides
constraints on the way the representation can be designed.
As already seen, the user can have a position that is external
to the data, for instance considering it at a small distance;
or immersed within the data, and surrounded by data points.
A third possibility would be internal and immersed implying
the user can navigate freely between external and internal
positions. Being external to the data may facilitate global
understanding of the visualization space, while immersion may
facilitate getting information from data points, as it becomes
possible to navigate to an ideal position for the information
extraction task at hand.

Dependency to user position states if the coordinate system
representation is dependent or independent of the position of
the user. External user independence seems a natural choice,
but we can imagine that if the user can move around the
data then the axes or grids may adjust to ease the reading,
e.g. always placing grids behind datapoints, from the user
perspective. For immersed users an independent position will
facilitate understanding of the space and mental map building.
However axes may get out of the field of view, and adapting
their position to both user position and orientation would
ensure information about the coordinate system is always visu-
ally available. Having both datapoints and coordinate system
always visible at the same time would facilitate information
extraction from datapoints, as well as searching for specific
data. Combinations are possible, e.g. making some elements
of the representation react to user position, while other remain
independent.

Reachability is related to the distance of the whole co-
ordinate system representation from the user. Arm’s reach
corresponds to a small representation that the user can observe
and interact with with minimal movement. Few steps reach
induces middle to human scale sized room volumes where only
a few steps are required to access the entirety of the volume.
Long distance reach is for systems that require important
motion for exploring the data volume, with both physical -
if the tracked space is big enough- and virtual locomotion.

Data orientation variability states whether the coordinate
system representation presents information that concern the
whole of the data, is tailored to a subset of it, or can
provide information on both (a kind of focus+context based
representation of coordinates). Being oriented towards the
whole dataset can facilitate visualization space understanding,
by providing limits and global volume of visualization. Data
selection can be manual, or computed from proximity to user
position. Obviously, an orientation towards a subset of data
would be beneficial to get information, at the cost of limiting
the understanding of the space, due to the change in the
representation to fit the selection. Searching for data points
would be limited to the part of the coordinate system represen-
tation that is accessible within the selection. Considering both
orientations may prove useful by stabilizing the representation



of the coordinate system for whole data and the understanding
of the space (at the potential expense of information overload),
while allowing to focus and get information on data points at
hand.

Complexity variability is related to various ways the
coordinate system representation can change in complexity.
With regards to permanence, one can for instance imagine
that the representation could disappear entirely to facilitate
data remaining the center of attention [8], [24] for patterns
detection, and appear temporarily when the user needs it.
This brings of course additional questions on how to make
such representation appear, e.g. through active or passive
user interaction, and how to manage the transition. Another
variability could be on the details the coordinate system rep-
resentation provides. An axis could for instance have various
levels of ticks and labels available so as to allow increasing
or decreasing information extraction precision.

It is important to note that these dimensions are certainly
not complete, nor definitive, and that this design space has to
be refined. Our proposal nonetheless already provides a basis
to design coordinate systems representations for IA. In the
following examples we rapidly show its capability to describe
a classical representation, and present 2 potential directions
for design as illustrations.

B. Examples

Our first example is a standard proposal that can be found
in the literature: a Cartesian coordinate system composed of
3 axes represented as lines with 2D grids linking all axes
effectively creating 3 faces for the whole cubic volume, with
labels placed in the vicinity of axes both for the axes names
and tick values. The cubic volume is small enough for the
outside user to be able to see the full coordinate system
representation at all time. The corresponding values on the
dimensions of our design space are: Cartesian coordinate,
visual representation, external user position, independence of
the user position, at arm’s reach, whole data orientation, and
no variable complexity.

Our second example still uses a Cartesian coordinate sys-
tem with a visual representation oriented towards the whole
dataset, mainly composed of 3 linear axes. This time the user
is immersed within the data volume, and the position of the
axes are dependant of the user position and orientation using
the following method: if the user can see one edge of the
cubic volume, then one axis corresponds to this edge while
the two others use the perpendicular faces to ensure the user
can see them; if no edge is in the field of view, then the
principal face in the user field of view is used to define 2 axes
while the 3rd one is perpendicular to the face and placed at
their intersection (see fig. 1). Further investigation would be
required to determine precisely the axis movement law based
on the field of view movement. In this example complexity
of the representation is variable, i.e. the user can change the
transparency of the axes, show/hide the semantics label, the
tick labels, and the axes ticks. The corresponding values on

the dimensions of our design space are: Cartesian coordinate,
visual representation, immersed user position, dependency of
the user position, long distance reach, whole data orientation,
and no variable complexity.

Fig. 1: Illustration of example 2: on the left the user can see
an edge of the cubic volume, on the right he cannot, user

position dependant resulting axes in red.

Our third example uses a spherical coordinate system com-
bining visual and audio modalities, for a user immersed within
the data volume, and no variable complexity. Both angular
axes, latitude and longitude, are represented by curved lines
with arrows, placed on the limits of the spherical data volume
(see fig. 2). Axes become semi-transparent for the intervals
that contain no selected data points. Moreover the origin of
the sphere emits a continuous sound which allows the user
both to locate the center of the data volume, and evaluates
its distance from him, getting information about the third
axis (radius). The corresponding values on the dimensions of
our design space are: Spherical coordinate, visual and sound
representation, immersed user position, independence of the
user position, a few steps reach, subset of data orientation,
and controlled complexity both on permanence and level of
details.

V. A STUDY ON GRID CUBES

We have seen in the previous sections that classical 3 axes
visual representations of Cartesian coordinates systems have
problems with regards to the tasks a user needs to perform, all
the more so when she is immersed in the data. Before putting
to the test radically new designs such as examples 2 and 3
in the previous section, we wanted to experiment with the
possibility to enhance those classical 3 axes representations
for user orientation and information extraction.

A. Rationale

In this exploratory study we compare how users behave
when analyzing data in 3 different conditions for coordinate
system representation. As the most common representation
proposal for 3D scatterplots analysis is to use 3 axes and
3 grids on each of the 3 main planes, our first design is
meant to facilitate user orientation by using 6 grids, hence
creating a complete cube around the user (condition 1). We
extend this first design by focusing on space perception: in



Fig. 2: Illustration of example 3: the black parts of axes are
based on the selected data points (red). The origin of the

sphere emits a continuous sound.

condition 2 we add information to the grid cube so as to
facilitate 3D projection with 3D axes; in condition 3 we aim at
facilitating ”natural” evaluation of distances by using a human
scale environment. Table III provides a summary of the 3
conditions, which will be detailed in the next section. User
tasks focus on getting coordinate information from one, or
between two data points.

TABLE III: Experimental conditions

Condition 1 Cubic volume with 2D grid on each faces
Condition 2 Condition 1 + transparent 3D grid inside the volume
Condition 3 Condition 1 + real-life elements with normalized

dimension outside the volume

B. Experimental material

Dataset. We used the same dataset for all three conditions.
To build it we chose the classical ”wine” dataset and used
ImAxes [22] to quickly test various combinations of attributes
for 3D scatterplotting. We chose a particular combination
of dimensions (pH, alcohol, and total sulfure dioxyde) that
resulted in a graph which both showed no clear correlation,
and filled the entire volume nicely (all sub-part of the data
volume had datapoints and density was not uniform. We then
randomly selected 1000 datapoints.

Data mapping. Each datapoint is represented as a sphere
(fig. 6), following Ammoura et al. recommendation to limit
occlusion [16]. Datapoints positions are then based on co-
ordinates computed from the original dataset using linear
interpolation from 0 to 10.

Condition 1 environment is a cube of 10× 10× 10 m with
dark gray textured faces (fig. 3). We chose this size to be large

enough to reach the limit of stereoscopic depth perception.
The origin is placed in one lower corner of the cubic volume,
and represented as a small white sphere. All 3 axes are
represented by thin black cylinders using a direct coordinate
system representation with the y-axis going upward. Each axis
has a label at its extremity indicating X, Y, or Z, and every 2
meters a label displays the value at this location. A 2D grid
is displayed on every face of the cubic volume with a 1 meter
step. An additional color is added to every line of the 2D grids
going from white (at the end corresponding to 10) to dark blue
(at the other end). The gradient is aimed at helping read grids
and their value orientation, see fig. 3 for an illustration. We
chose blue as it is the best color for color gradient perception
and so as to not saturate our environment with colors, since
colors can also be used for data representation.

Fig. 3: Condition 1 corresponds to a cubic environment of
10m*10m*10m with 2D grids displayed on each face. Each
line of the 2D grid has a color gradient starting from white
(representing a value of 10 of the parallel axis) to dark blue

(representing a value of 0).

Condition 2 environment is based on the first one, with
the addition of a 3d grid that occupies the whole data volume
(fig. 4). The 3d grid is composed of thin cylinders meant to
provide both orientation and depth cues information based on
their size. Those cylinders are positioned every 2 meters, a step
we chose after several trials, so as not to disrupt data analysis
by adding too much information. A transparent material is
applied to the 3d grid to limit data points occlusion. The
motivation behind this condition was to provide information
that could facilitate 3D projection, hence improving precision.

Condition 3 environment also reuses the axes system and
2D grids of the first condition, with the addition of real-life
elements that provide additional human-related natural spatial
cues (fig. 5). We increased the world volume to 12× 12× 10
m to get further space for adding those elements outside of
the main data volume. The represented human environment



Fig. 4: Condition 2 adds a 3d grid on top of condition 1
environment.

is a lobby of an apartment building. 3 floors are available
respectively placed at 0, 4, and 7 meters on the Y-axis.
Elevators are present on the front wall, and apartment doors on
the side walls, at the exception of one side wall on the ground
floor which features mailboxes. The back wall has an entrance
door at the ground floor and windows on the upper floor. Plants
have also been placed on one side wall to break the symmetry.
All added elements have standardized dimensions, e.g. 2 × 1
m for apartment doors, or 0.5 × 0.5 m for mailboxes. Last,
we changed the floor texture to a PVC lino with beige color
since our early tests showed condition 1 floor color (plain dark
gray) did trouble the understanding of the new dimensions of
the volume. This color change was also in line with apartment
building inspiration. The motivation behind this condition was
twofold. First we thought that the use of spatial cues in all
directions could improve how fast the user located herself in
the volume. Second, we were willing to observe if the use
of real-life elements for abstract data analysis could have an
impact on the behaviour of users, e.g. if users would become
more mobile or use their body more naturally.

For all conditions, a virtual circular platform (1.5m diame-
ter, see fig. 6, left.) is located at the feet of the user. It uses
a transparent light gray texture to limit occlusion of both the
data points and the environment, while providing a support to
limit user discomfort.

We used Unity3D to develop the environments, and an HTC
Vive as the virtual reality headset.

C. Experimentation Protocol

The participants had first to sign a consent form and answer
a demographic questionnaire, next they were equipped with the
VR headset, and got oral explanation about the tasks. They
went through 4 positions to discover the first environment
(center bottom, next to the origin, center, next to top corner),

Fig. 5: Condition 3 adds natural spatial cues on top of
condition 1 environment.

and then performed a set of tasks within, before repeating
the discovery and the tasks in the second and the third one.
Lastly they answered a post questionnaire, and an interview
wrapped-up the session. Each session lasted about half an hour.
The three conditions were proposed in a randomized order for
each participant.

Participant were asked to perform two different tasks after
being teleported to a position in the cube volume: 1/ determine
each coordinate (x,y,z) of a specific data point (highlighted
in red); 2/ determine the relative coordinates between two
datapoints highlighted in green and red respectively. For each
condition, task 1 was performed for 10 datapoints and task 2
for 5 datapoints couples.

Highlighted data and user positions were randomly chosen
from two sets of predefined point(s) / position associations.
The first set corresponds to task 1, it is composed of 100
point / position associations and was built by varying the
following criteria: distance of the point from the user (close,
medium, far), vertical distance of the point from the user
(bottom, medium, top), occlusion of the point (none, a little,
a lot), and distance of the point from the main grids of the
environment (close, far). The second set corresponds to task
2, it is composed of 50 associations and was built by varying
the following criteria: distance of point 1 from the user (close,
medium, far), distance of point 2 from the user (close, medium,
far), and distance between points (close, medium, far).

12 subjects (10 males and 2 females) from the University
of Nantes and the Design School of Nantes participated to the
study (mean age 25.8 ranging from 21 to 45). The experiment
was run on a computer equipped with a CPU Intel Xeon ES-
1630 v4 (3.70GHz), 16 Gb of RAM and a Nvidia GTX 1060
graphics card.



Fig. 6: Left: a scatterplot is presented in a cubic system of axes (1st experimental condition). Right: the same scatterplot
within the same system of axes now enriched with natural spatial cues (3rd condition).

D. Data

We collected data from a demographic questionnaire: gen-
der, age, experience in data analysis (4-points Likert scale),
and experience in virtual reality (idem). During the experi-
ment answers to the questions were provided orally by the
participant and captured in a spreadsheet by the examiner. As
soon as the last coordinate was given, time was automatically
recorded, and the user proceeded to the next point to analyze,
randomly chosen from the set of predefined points for the
current task. Qualitative feedback was collected at the end of
the session, with 3 questions that had to be answered for all
3 conditions. The first two questions were about how suitable
the environment was for the tasks, respectively task 1 and
task 2, on a 7-point Likert scale (7 being ”very suitable” and
1 ”not at all”). The last question was about how much they
liked experiencing the environment (7 being ”very enjoyable”
and 1 ”not at all”).

E. Results

We computed the accuracy error for each answer using the
Euclidean norm over the accuracy errors on the X, Y, and Z
axes. The means and standard deviations for each condition
are presented in table IV (a lower value indicated a better
performance both for accuracy error and completion time).
Qualitative answers results are presented with box plots in
figures 7, 8, 9. A Friedman’s test was conducted for each of the
7 dependant variables, i.e. accuracy error for task 1, accuracy
error for task 2, completion time for task 1, completion time
for task 2, and qualitative feedback for each question. We
used this non parametric test since our data was not respecting
the condition required to run an ANOVA. The independent
variables were the three conditions, resulting in a degree of
liberty of 2.

condition 1 condition 2 condition 3 χ2
E(2) p value

t1 - acc (m) 0.79 ± 0.55 0.83 ± 1.08 0.83 ± 0.97 3.62 0.164
t2 - acc (m) 1.07 ± 0.69 0.8 ± 0.84 0.99 ± 0.67 3.73 0.155
t1 - time (s) 31.9 ± 14.1 37.7 ± 15.2 32.6 ± 11.5 9.45 0.009*
t2 - time (s) 48.2 ± 22.8 52.6 ± 19.7 48.8 ± 18.6 3.9 0.142

TABLE IV: Means and standard deviations for accuracy
errors and completion times for each condition and tasks,
and chi square and p-value from Friedman’s test for each
dependant objective variable, significant result are in bold

using α = 0.05 as a threshold.

To complete our analysis, pair wise comparison test were
conducted for any dependant variable that had a significant
result from the Friedman’s test. This resulted in condition 2
being significantly slower than condition 1 (p-value = 0.01),
users found condition 2 significantly better for the first task
than condition 1 (p-value < 0.001), condition 2 was found
significantly better for the second task than condition 1 (p-
value = 0.003), condition 3 was significantly preferred com-
pared to condition 1 (p-value = 0.018).

F. Discussion

Results indicate that using a 3D grid may have a negative
impact on speed when it comes to getting coordinate infor-
mation from data points, with no apparent benefit in accuracy.
However it is important to note that 11 participants preferred
the use of the 3D grid over the condition 1 to perform both
tasks. Moreover, 5 participants also commented in the post
task interview that using this 3D grid allowed them to define
directly a delta between two points for the second task while
in condition 1 and 3 they had to determine the absolute
coordinates of each point before computing the difference.
Comments seem to align with the better mean accuracy of



the condition 2 for task 2, even though no significant effect
could be found with the Friedman’s test. The one participant
not rating condition 2 over condition 1 was according to him

Fig. 7: Box plot of the qualitative result (7-point Likert
Scale) for the quality of the condition in regards to task 1.

Friedman’s test resulted in a chi square of 13.64 and a
p-value of 0.001*

Fig. 8: Box plot of the qualitative result (7-point Likert
Scale) for the quality of the condition in regards to task 2.

Friedman’s test resulted in a chi square of 10.71 and a
p-value of 0.005*

Fig. 9: Box plot of the qualitative result (7-point Likert
Scale) for the quality of the condition in regards to the user’s
enjoyment. Friedman’s test resulted in a chi square of 7.48

and a p-value of 0.024*

because: ”the 3D grid was distracting”. To solve this latest
issue, we can imagine the use of a non permanent 3D grid.

Condition 3 does not seem to provide any significant benefit
over condition 1 from the speed and accuracy perspective.
However users did rate condition 3 better than condition 1,
according to the mean value but with no significant effect.
This condition was significantly preferred by users compared
to condition 1. This shows a potential benefit for user engage-
ment, and one user even claimed that: ”I was more confident
about my answers when I was in the second environment”
(condition 3 for this specific user). Interestingly, 3 users
tried to use their own body as a reference metrics for the
second task, extending their arms or using their own size,
a behaviour that did not occur in the two other conditions.
So if our implementation of real life human cues may not
have been efficient, we consider that there are indications that
natural cues should not be abandoned and need further design
exploration.

Lastly, users never mentioned the color gradients on the
grids lines, that were supposed to help them know at all time
the orientation of each axis. So from users’ remarks we cannot
conclude if they actually served this purpose. The only element
of answer that may be related is that the beginning and the end
of an axis were inverted (e.g. giving an answer of 7 instead of
3) only 2 times out of the 360 answers provided for task 1. This
may a hint that the cubic system with the 6 grids (condition 1)
was sufficiently well designed to avoid such errors, however
we cannot say if the color gradient had an impact on it, which
calls for further study.

VI. CONCLUSION

In this paper we stated that the development of Immersive
Analytics, which is still in its infancy, calls for a renewed
understanding of coordinate system representations that may
lead to the elicitation of best practices and guidelines for
IA systems design. We proposed a task-based definition for
coordinate systems representations, as well an immersive ana-
lytics oriented design space, and an exploratory study around
the use of cubic grids for multidimensional data analysis.
More work is however still needed both for the design space,
which remains preliminary and calls for refinement; and for
the practical design, implementation, and test of coordinate
system representations in immersive settings.
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[21] A. Fonnet, F. Melki, Y. Prié, F. Picarougne, and G. Cliquet, “Immersive
Data Exploration and Analysis,” in Student Interaction Design Research
conference, Helsinki, Finland, may 2018, pp. 1–8.

[22] M. Cordeil, A. Cunningham, T. Dwyer, B. H. Thomas, and K. Marriott,
“ImAxes: Immersive Axes as Embodied Affordances for Interactive
Multivariate Data Visualisation,” in Proceedings of the 30th Annual
ACM Symposium on User Interface Software and Technology - UIST
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