
HAL Id: hal-01898426
https://hal.science/hal-01898426

Submitted on 18 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Performance Evaluation of Stochastic Real-Time
Systems with the SBIP Framework

Ayoub Nouri, Braham Lotfi Mediouni, Marius Bozga, Jacques Combaz,
Saddek Bensalem, Axel Legay

To cite this version:
Ayoub Nouri, Braham Lotfi Mediouni, Marius Bozga, Jacques Combaz, Saddek Bensalem, et al.. Per-
formance Evaluation of Stochastic Real-Time Systems with the SBIP Framework. International Jour-
nal of Critical Computer-Based Systems, 2018, 8 (3-4), pp.340-370. �10.1504/IJCCBS.2018.096439�.
�hal-01898426�

https://hal.science/hal-01898426
https://hal.archives-ouvertes.fr

Performance Evaluation of Stochastic Real-Time
Systems with the SBIP Framework

Ayoub Nouri1, Braham Lotfi Mediouni1, Marius Bozga1, Jacques Combaz1,
Saddek Bensalem1, and Axel Legay2

1 Univ. Grenoble Alpes, CNRS, Grenoble INP??, VERIMAG 38000 Grenoble, France
2 INRIA, Rennes, France

Abstract. The SBIP framework consists of a stochastic real-time component-
based modelling formalism and a statistical model checking engine. The
former is built as a stochastic extension of the real-time BIP formal-
ism and enables the construction of stochastic real-time systems in a
compositional way. The statistical engine implements a set of statistical
algorithms for the quantitative and qualitative assessment of probabilis-
tic properties. The paper provides a thorough introduction to the SBIP
formalism and the associated verification method. In a second part, it
surveys several case studies about modelling and verification of real-life
systems, including various network protocols and multimedia applica-
tions.

Keywords: stochastic systems, real-time systems, component-based systems,
formal models, generalised semi-Markov processes, BIP, statistical model check-
ing, performance evaluation

1 Introduction

Stochastic models are of paramount importance in system design as they allow
to capture uncertainties in systems behaviours and to account for variability
induced by systems environments. Such models offer, in addition, a mean for
high-level reasoning and for dealing with complex systems in an abstract and
quantitative fashion. This is highly recommended, especially during the first
phases of the design process, where the number of design choices is quite large.
Modelling formalisms enabling to incorporate stochastic aspects are thus sub-
stantial.

In model-based design, it is recommended to rely on the same modelling
formalism to handle both performance aspects, e.g., energy consumption, and
functional behaviour, e.g., timing constraints. This enables to perform func-
tional verification and performance evaluation in a consistent manner. Many
real-life systems operate under stringent timing constraints, e.g., real-time sys-
tems, which have the particularity to fail when missing well specified deadlines.

?? Institute of Engineering Univ. Grenoble Alpes

Modelling formalisms that enable to capture both stochastic behaviour and tim-
ing constraints are essential for building faithful system models at a high-level
of abstraction, and to allow for their trustworthy assessment.

In this paper we present the SBIP framework which offers a stochastic real-
time modelling formalism and a statistical model checking (SMC) engine for
quantitative assessment of systems properties. The paper is an extended ver-
sion of (Nouri et al., 2016a) that generalises the current stochastic modelling
formalism (Nouri et al., 2015). We rely on the BIP (Behaviour, Interaction, Pri-
ority) framework (Basu et al., 2006) which allows for building heterogeneous and
complex system models in a compositional fashion.

The stochastic real-time BIP formalism allows for building components as
stochastic timed automata and to compose them by using multi-party inter-
actions in order to build the final system. In these components, time evolves
continuously and is modelled by using the classical clock construct, introduced
in timed automata (Alur and Dill, 1994). The proposed formalism enables for
associating system events with timing constraints, e.g., an event only occurs in a
particular time interval. The latter can be further annotated with urgency tags,
which specify their level of urgency. Furthermore, in order to express uncertainty
regarding events occurrences, it is possible to associate them with probability
density functions. Hence, the precise moment of executing an event is scheduled
according to that density function.

In the SBIP modelling formalism, we consider two types of events, namely
timed and stochastic. The former are associated with time constraints expressed
as lower and upper bounds over clocks valuations, as in timed automata. These
events are scheduled with respect to a uniform or an exponential probability
distribution as it is generally the case in several existing modelling formalisms.
Although several probabilistic behaviours, e.g., phase-type can be approximated
by an exponential density, many real-life systems do not follow such a probabilis-
tic evolution. Restricting to these density functions is not a realistic assumption
in our opinion. To overcome this lack, we introduce stochastic events, which may
be scheduled with respect to arbitrary density functions, e.g., Normal, Poisson.

Enabling arbitrary probability density functions adds more complexity at
the level of the mathematical construction induced by this model. An important
reason for restricting to exponential probability densities is their particularity of
being memoryless, which generally induces Markovian models. That is, the choice
of the next system state only depends on the current one. Conversely, arbitrary
density functions are not generally memoryless and hence induce models taking
into account the system history when moving to the next state. This leads to
more general models, which in our case is a Generalised Semi-Markov Process
(GSMP) (Kulkarni, 2011).

The SMC engine provided by the SBIP framework for stochastic models as-
sessment implements well known statistical analysis algorithms, namely hypoth-
esis testing (Younes, 2005a) and probability estimation (Hérault et al., 2004).
Statistical model checking is a novel technique proposed as a trade-off between
purely analytical verification techniques and purely simulation-based methods.

It requires, as in the classical model checking setting, to build an operational
model of the stochastic system of interest and to provide a formal specifica-
tion of the property to verify, generally using temporal logic. SMC explores a
sample of the stochastic model execution traces produced through simulation in
order to estimate the probability for the system to satisfy that property. This
statistical approach is receiving an increasing attention and is being adopted in
a wide range of application domains such as in biology (David et al., 2015a),
for the assessment of communication protocols (Basu et al., 2010a), multimedia
applications (Raman et al., 2013), and avionics (Basu et al., 2010b).

Outline The remainder of the paper is organised as follows. We discuss some
related works in Section 2. Section 3 introduces the stochastic real-time BIP for-
malism and its simulation semantics. Section 4 recalls some principles of statisti-
cal model checking and presents the temporal logic used in the SBIP framework.
Technical details about the structure of the SMC engine and its implementation
are provided in Section 5. In Section 6, we survey the main case studies realised
with the SBIP framework, and Section 7 concludes the paper.

2 Related Works

Several frameworks exist for modelling and analysing stochastic systems. In this
paper, we restrict ourselves to discuss frameworks following a model checking-like
procedure. Other methods related to the Queuing Theory and Network Calculus
are beyond the scope of this discussion. The considered frameworks generally
differ in three points, namely, the expressiveness of their modelling formalism,
the proposed analysis technique, and the properties specification language they
offer.

For instance, Uppaal-smc (David et al., 2015b; Jegourel et al., 2016) sup-
ports Stochastic Timed Automata (STAs), which are general models including
Discrete and Continuous Time Markov Chains (DTMCs and CTMCs) for sys-
tem modelling and Weighted Metric Temporal Logic (WMTL) for properties
specification. In addition to DTMCs and CTMCs, Prism (Kwiatkowska et al.,
2011) allows to model Markov Decision Processes (MDPs) and Probabilistic
Timed Automata (PTAs). For properties specification, it allows to use Prob-
abilistic Computation Tree Logic (PCTL/PCTL*), Continuous Stochastic Logic
(CSL), Linear-time Temporal Logic (LTL).

Other tools like Vesta (Sen et al., 2005) support, in addition to DTMCs and
CTMCs, algebraic specification languages, i.e., PMaude (Kumar et al., 2003).
PlasmaLab (Jegourel et al., 2012) is a modular statistical model checker that
may be extended with external simulators and checkers. Its default configuration
accepts discrete-time models specified in the Prism modelling language and
properties expressed in Probabilistic Bounded LTL (PBLTL). Ymer (Younes,
2005b) is one of the first frameworks to implement hypothesis testing algorithms.
It considers GSMPs and CTMCs specified using a dialect of the Prism modelling
language, and accepts both PCTL and CSL for requirements specification.

Our framework enables to model DTMCs, MDPs, and GSMPs. From a mod-
elling perspective, it differs from Prism as the latter considers PTAs – as the
underlying probabilistic and timed model – which incorporate non-determinism
and are generally analysable using numerical probabilistic model checking. From
this point of view, the SBIP framework is closer to the Uppaal-smc and the
Ymer frameworks. The latter allows to model GSMPs, whereas we consider
GSMPs with fixed-delays events as in (Brázdil et al., 2011). The Uppaal-smc
provides a general stochastic timed semantics, i.e., STAs, however it is only lim-
ited to exponential and uniform density functions. Furthermore, the stochastic
real-time BIP formalism allows for specifying urgency types on systems events.
For properties specification, we rely on PBLTL for the moment, but we are
planning to consider more expressive logics such as WMTL.

3 Stochastic Real-Time BIP

The stochastic real-time BIP framework reconciles the real-time and stochastic
extensions of the BIP (Basu et al., 2006) framework. We recall that BIP has
been introduced as a component-based framework where systems are obtained by
composition of untimed atomic components with multi-party interactions, and
coordinated using dynamic priorities. RT-BIP (Abdellatif et al., 2013) extended
BIP with real-time features and has (dense) real-time semantics based on timed
automata concepts (Alur and Dill, 1994). S-BIP (Nouri et al., 2015) extended
BIP with stochastic features and has (discrete) stochastic semantics based on
Markov chains.

In the newly proposed stochastic real-time BIP formalism, atomic compo-
nents are defined as timed automata extended with stochastic timing constraints.
Composition is performed as in BIP using multi-party interactions, that is, n-
ary synchronisation among component actions. Priorities are not supported. The
underlying semantics is defined as a Generalised Semi-Markov Process (GSMP)
where the interpretation of time is dense.

We start by defining the syntax of our model at the level of components
and their composition. Then, we present the underlying stochastic simulation
semantics.

3.1 Stochastic Real-Time Components

Stochastic real-time BIP components are essentially timed automata with ur-
gencies, augmented with a new form of stochastic guards on clocks.

Let ∆ be a set of density functions, that is, functions ρ : R≥0 → R≥0 such
that

∫∞
0
ρ(t)dt = 1. We denote by dom(ρ) = {t | ρ(t) 6= 0} the definition domain

of ρ, that is, the set of values with a non-zero probability to occur. Let X be a set
of clocks. We consider timed constraints (guards) ct and stochastic constraints
(guards) cs on X, defined by:

ct ::= true | x ∼ k | x− y ∼ k | ct ∧ ct cs ::= x ./ ρ

where x, y ∈ X, k ∈ R≥0, ∼ ∈ {<,≤,=,≥, >} and ρ ∈ ∆. The meaning of
timed constraints is as usual. A stochastic constraint x ./ ρ holds iff x ∈ dom(ρ).
Nonetheless, in contrast to a timed constraint, it will enforce the specific stochas-
tic distribution ρ on the values of x used to effectively satisfy the constraint, when
used as a transition guard.

Definition 1. A stochastic real-time BIP component B is an extended timed
automaton (L,X, P, T, `0), where L is a finite set of locations, `0 ∈ L is the
initial location, X is a finite set of clocks, P is a finite set of ports, and T is
a finite set of transitions. Every transition is of the form (`, p, gu, r, `′), denoted

for more convenience as `
p gu r−−−−→ `′, where `, `′ ∈ L are the source and target

locations, p ∈ P is the triggering port, gu is a constraint g on X with an urgency
u ∈ {lazy , delayable}, and r ⊆ X is the set of clocks to be reset.

The only noticeable difference between our definition of components and the
timed automata concerns the meaning to control the progress of time. Usually,
timed automata rely on location invariants and/or specific types of locations
(e.g., committed) to explicitly constrain the time progress. In our case, we rely
on urgency types of transitions with the following intuitive meaning. A delayable
transition (abbreviated to d) prevents time progress at the upper time bound in
g, i.e., time is enabled to progress in the source location at most to that bound.
In contrast, a lazy transition (abbreviated to l) does not have any impact on the
time progress. Such a transition might not be fired at all in spite of the upper
bound in g, i.e., time is enabled to progress indefinitely in the source location.

We call a port timed (resp. stochastic) if it appears on transitions with timed
(resp. stochastic) constraints. We tacitly restrict to components where every port
is either timed or stochastic, but not both. Moreover, we restrict to components
that are time-port deterministic, i.e., for a given source location `, time t and
port p, only one target location `′ can be reached.

Example 1. The Sender component shown in Figure 1a has control locations
s0, s1, ports send, fail, recover and clocks x, y. This component starts in s0,
where it may send data periodically in a specific time slot, defined through the
timed constraint [0 ≤ x ≤ 3]d. The Sender component may fail when executing
the stochastic port fail. The latter is associated with the guard [y ./W(λ, k)]d,
where W(λ, k) is the Weibull probability density function with parameters λ, k,
and dom(W) ⊆ R≥0. This guard indicates that the component fails after some
time scheduled according to W(λ, k). After a failure, the component recovers
after some delay in [3 ≤ x ≤ 4]d, where it goes back to s0 and starts sending
again according to the same time constraints.

Example 2. Figure 1b shows a second component, namely the Receiver, which
has control locations r0, r1, ports recv, alarm, back and one clock z. The Re-
ceiver starts in location r0, where z is set to 0. From this initial location, the
component either receives some data through the self loop on r0 labelled by the
timed port recv (recv is a timed port with a guard set to true, i.e. it might be
taken whenever the component is in r0), in which case z is reset to 0. Or, it

may fire the timed transition labelled by the port alarm and moves to location
r1, where the recv port is not enabled. One may think of this behaviour as a
degraded mode, e.g., energy saving with an alarm. Note that the alarm port is
associated with the timed constraint [1 ≤ z ≤ 3]l. Since the latter is lazy, the up-
per bound 3 could be ignored and the alarm transition might not be fired. From
location r1, the component takes transition back after a delay specified through
[1 ≤ z ≤ 2]d, to r0 and starts receiving again. This transition is delayable so it
must be taken at most at z = 2.

send

send

x := 0
y := 0

[0 ≤ x ≤ 3]d

x := 0

[y ./W(λ, k)]d
fail

recover

x := 0

y := 0

[3 ≤ x ≤ 4]ds0

s1

fail recover

x := 0

(a) Sender

z := 0

[1 ≤ z ≤ 3]l
alarm

back
recv
z := 0

recv

r0

r1

alarm

z := 0

z := 0
[1 ≤ z ≤ 2]d

back

(b) Receiver

Fig. 1: Examples of stochastic real-time BIP components

3.2 Composition of Stochastic Real-Time Components

Stochastic real-time components are composed using multi-party interactions.
An interaction represents a strong synchronisation (i.e, rendez-vous) between
transitions located in different components.

Given n stochastic real-time components (Bi)i=1,n, with disjoint sets of ports
Pi, we define interactions a as subsets of ports from ∪ni=1Pi, where:

– |a∩Pi| ≤ 1, for every i = 1, . . . , n, i.e., each component Bi participates in a
by at most one port Pi,

– a contains either one stochastic port and any number of timed ports with
true guards, or any number of timed ports with arbitrary timed guards.

Consequently, an interaction is associated with a guard obtained by the conjunc-
tion of the guards of the participating ports. An interaction is called stochastic if
it contains a stochastic port, and timed otherwise. The timed ports participating
in stochastic interactions are restricted to have precisely true guards. Intuitively,
this ensures that the execution time for such interactions is solely determined
by the stochastic port. While this restriction could be avoided at the price of
slightly increasing the complexity of the forthcoming stochastic semantics, it
has limited impact on the modelling capabilities – none of examples considered
actually required other types of interaction beyond the two categories above.

Definition 2. A stochastic real-time BIP system is defined as the composition
γ(B1, ..., Bn) of n components B1, ..., Bn with a set of interactions γ.

Example 3. Consider the composition of the Sender and Receive components
shown in Examples 1 and 2. The composition is operated through the interaction
{send, recv}, which relates the send port of the Sender with the port recv of the
Receiver. Figure 2 shows the two components and how they interact through
the interaction {send, recv}. The nominal behaviour is when the Sender sends
data to the Receiver through interaction {send,recv}. However, the former may
fail when interaction {fail} takes place, which is potentially detected by the Re-
ceiver. The latter emits an alarm and switches into a non-receiving mode by
executing interaction {alarm}. The two components resume their normal activ-
ity after some delay, through interactions {recover} and {back} respectively.

send

send

x := 0
y := 0

[0 ≤ x ≤ 3]d

x := 0

fail

recover

x := 0

y := 0

[3 ≤ x ≤ 4]d

z := 0

[1 ≤ z ≤ 3]l
alarm

back
recv
z := 0

recv

Sender Receiver

s0

s1

r0

r1

fail recover alarm

z := 0

z := 0
[1 ≤ z ≤ 2]d

back

x := 0

[y ./W(λ, k)]d

Fig. 2: Composition of two stochastic real-time BIP components

We further introduce some additional notations for defining the underlying
operational semantics of a stochastic real-time BIP system. Let γ(B1, ..., Bn) be
a stochastic real-time BIP system, where Bi=1,...,n = (Li, Xi, Pi, Ti, `

0
i).

Definition 3. We define states s as couples (`,v), where ` = (`1, ..., `n) ∈
L1 × ... × Ln is a global location, and v : ∪ni=1Xi → R≥0 is a vector of clocks
valuations.

We define d-succ((`,v), a) as the discrete successor (partial) function that
computes the successor of a state (`,v) when taking an interaction a. Let a =
{pi}i∈I such that I denotes the set of indices of the components participating
in a. We define d-succ((`,v), a) = (`′,v′) whenever:

– for every i ∈ I, there exists an enabled transition `i
pi g

ui
i ri−−−−−−→ `′i of Bi, that

is:
• either gi is a timed constraint which is satisfied by the valuations of the

concerned clocks, i.e. v|Xi
|= gi, where v|Xi

is the projection of the set
of clocks on the subset of clocks that are used in gi, or

• gi is a stochastic constraint x ./ ρ and v(x) ∈ dom(ρ).
– all these transitions are simultaneously executed, that is, clocks are reset

v′(x) = 0 for all x ∈ ∪i∈Iri and stay unchanged v′(x) = v(x) otherwise.
– all the components that do not participate in a remain unchanged, that is,

for every j 6∈ I it holds `j = `′j .

If no successor by interaction a exists at state (`,v), we define d-succ((`,v), a) =
⊥.

We define t-succ((`,v), t) as the time successor function that computes the
successor of a state (`,v) for a time progress of t. It is a total function and is
defined as t-succ((`,v), t) = (`,v + t). That is, it increases all the clocks in v by
the amount of time t.

Finally, we define the function succ((`,v), t, a) that computes the succes-
sor of a state (`,v) when taking an interaction a after the time progress of
t, which is a partial function defined as the composition succ((`,v), t, a) =
d-succ(t-succ((`,v), t), a).

Definition 4. The operational semantics of a stochastic real-time BIP system
is defined as the timed transition system T = (S, s0,−→S) where

– S is the set of states, and s0 is the initial state,
– −→S⊆ S × (γ ∪ R≥0)× S are transitions defined by the two rules

Discrete
d-succ((`,v), a) = (`′,v′)

(`,v)
a−→S (`′,v′)

Time

t > 0,
∀a delayable. (∃t′. succ((`,v), t′, a) 6= ⊥)⇒ (∃t′′ ≥ t. succ((`,v), t′′, a) 6= ⊥)

(`,v)
t−→S (`,v + t)

That is, according to the first rule, an enabled interaction can be fired at the
current instant and the state updated. According to the second rule, time can
progress as long as all enabled delayable interactions remain enabled. Note that

a run of T is an infinite sequence σ = s0s1s2 · · · , such that si
ti,ai−−−→S si+1, for

some ti ∈ R≥0 and ai ∈ γ, for all i ≥ 0.

3.3 Stochastic Simulation Semantics

So far, we introduced the concepts of stochastic real-time BIP components and
presented their composition from an operational viewpoint. In this section, we
show how this model embraces a stochastic semantics in terms of a Generalised
Semi-Markov Process (Kulkarni, 2011).

GSMPs are stochastic process descriptions for a large class of discrete-event
systems. A configuration of the GSMP is usually determined by a state and a set
of active events, every one associated with a remaining lifetime, i.e. the amount
of time during which it remains active. The choice of the event to be executed
follows a race policy, which consists of selecting the event having the smallest re-
maining lifetime. The execution itself occurs when the remaining lifetime reaches
0 and triggers a state change and moreover, an update of the set of active events.
That is, several events could become inactive and therefore removed from the
set, or could become active, and therefore added to the set. In the latter case,

the remaining lifetime is randomly chosen according to a (usually dense support)
probability density function associated to the event.

The stochastic real-time BIP semantics follow the same intuition by consid-
ering interactions defined at composition as the GSMP events. Moreover, the
associated probability density functions are obtained from the explicit density
functions used in stochastic guards of stochastic interactions or by some default
densities (uniform or exponential) in the case of timed interactions. In the re-
mainder of this section we introduce the stochastic simulation algorithm and
define precisely the different densities and sampling procedures.

Stochastic Simulation Algorithm As for a GSMP, our simulation keeps
track of the remaining lifetime of each interaction in order to implement the
race policy. To this end, we define configurations as follows.

Definition 5. We define a configuration z as a couple 〈(`,v),w〉, where (`,v)
is a state (as in Definition 3) and w : γ → R≥0 ∪ {∞} is a vector of remaining
lifetime of interactions.

For an interaction a, the value w(a) represents the remaining lifetime at the cur-
rent global location ` and a is said to be active if w(a) <∞. Moreover, we need
to identify dependencies between interactions. As explained for the GSMPs, the
execution of an interaction might activate and/or deactivate other interactions.
In the case of stochastic real-time BIP we consider that an interaction a has an
impact on another interaction b, denoted by a . b, iff the guard of b changes due
to the execution of a, that is, either because b has different timing constraints
at the location(s) reached after executing a, or because a resets some clocks ex-
plicitly involved in one of the constraints of b (before or after executing a). It is
worth mentioning that, according to this definition, any interaction b activated
or deactivated due to the execution of a is considered to be impacted by a.

Algorithm 1 below presents the stochastic execution dynamics of a stochastic
real-time BIP system. The algorithm shows how to move from one configuration
zk = 〈(`k,vk),wk〉 to another zk+1 = 〈(`k+1,vk+1),wk+1〉, starting from an ini-
tial configuration z0 = 〈(`0,v0),w0〉. The first part of the algorithm computes
this initial configuration as a vector `0 of the initial locations of components
Bi of the system, a vector of initial valuations of the clocks v0, and a vector
of initial remaining lifetimes of interactions w0. In the latter, each interaction b
which is not enabled at the initial state, i.e., ∀t.succ((`0,0), t, b) = ⊥, is assigned
an infinite remaining lifetime, each enabled interaction b, is assigned a remain-
ing lifetime through the sampling function Rb((`0,v0)), which will be formally
defined in the next sub-section.

The main loop of the algorithm is executed while there are still active in-
teractions in wk. Each iteration determines the next configuration zk+1 from
the current one zk. Given the current configuration, active interactions race to
determine which one will be executed, i.e., the one with the minimum remaining
lifetime in wk. Given the winning interaction ak and its remaining lifetime tk,
we compute the successor state (`k+1,vk+1) by using the succ function defined

input : γ(B1, . . . , Bn), where Bi=1,...,n = (Li, Xi, Pi, Ti, `
0
i)

output: An execution trace

/* Compute the initial state (`0,v0) */

`0 := (`01, . . . , `
0
n) /* `0i is the initial location of Bi */

v0 := 0 /* 0 is the vector of initial clocks valuations */

/* Compute the initial remaining lifetime */

foreach interaction b ∈ γ do

w0(b) :=

{
∞ if ∀t. succ((`0,0), t, b) = ⊥
Rb((`0,v0)) if ∃t. succ((`0,0), t, b) 6= ⊥

/* Compute the initial configuration z0 */

z0 := 〈(`0,v0),w0〉
k := 0

/* Main loop: computes zk+1 from zk */

while ∃b ∈ γ. wk(b) 6=∞ do

/* Race: determines the interaction ak to execute */

Let tk = mina∈γwk(a), and let ak be the associated min event

/* Update successor state */

(`k+1,vk+1) := succ((`k,vk), tk, ak)

/* Update remaining lifetime for interactions */

foreach interaction b ∈ γ do

wk+1(b) :=


wk(b)− tk if ¬(ak . b)
∞ if ak . b and ∀t. succ((`k+1,vk+1), t, b) = ⊥
Rb((`k+1,vk+1)) if ak . b and ∃t. succ((`k+1,vk+1), t, b) 6= ⊥

/* Compute the next configuration zk+1 */

zk+1 := 〈(`k+1,vk+1),wk+1〉
k := k + 1

end

Algorithm 1: Stochastic Simulation Algorithm

earlier. Finally, the remaining lifetimes of interactions are updated in this new
state. Three cases can be distinguished for updating the vector of remaining
lifetimes wk+1.

1. if interaction ak has no impact on b, then the remaining lifetime of b at
(`k+1,vk+1) is its remaining lifetime at (`k,vk) decreased by tk, i.e., the
amount of time progress,

2. if interaction ak has an impact on b, and b is not active at (`k+1,vk+1), then
wk+1(b) is set to ∞, that is, will not race in this new configuration,

3. if interaction ak has an impact on b, and b is active at (`k+1,vk+1), then its
remaining lifetime is sampled according to the function Rb((`k+1,vk+1)).

Note that the enumerated settings include the case where new interactions are
becoming active at (`k+1,vk+1). The reason is that any such interaction b is
seen to be impacted by ak as explained earlier.

It is worth explaining that the difference between interactions impacted by
the executed interaction ak and the non impacted ones, regarding the sampling
operation is as follows. The former interactions involve ports of a shared compo-
nent (i.e. involved in two or more interactions with different components), thus
by executing ak the system state changes (potentially, the location of the shared
component changes, some clocks are reset, etc.) and they need to be re-sampled
as they are really seen as new interactions. For the latter interactions, from their
point of view nothing has changed but time has evolved, so we do not need to
re-schedule them (by re-sampling) but just to update their remaining lifetime
accordingly.

The Sampling Procedure The sampling function Rb((`k+1,vk+1)) used in
Algorithm 1 computes the remaining lifetime for each interaction b when entering
the state (`k+1,vk+1) by taking interaction ak from the state (`k,vk). It depends
on the type of interaction b, that is timed or stochastic, and delayable or lazy. For
the sake of simplicity, we define the sampling procedure in two phases: (1) in this
subsection, we define the sampling procedure without detailing the underlying
probability density function, (2) in the next subsection, we will define how the
density function is actually computed.

First let us consider the partitioning of interactions in a configuration 〈(`,v),w〉
as either fixed-delay interactions, denoted F or variable-delay interactions, de-
noted V. Fixed-delay interactions are induced by timed interactions having equal-
ity on their associated time constraints (also potentially by stochastic interac-
tions following them), whereas variable-delay interactions are timed or stochastic
interactions with an interval of possible remaining lifetime values.

F = {a ∈ γ | w(a) 6=∞, ∃!t. succ((`,v), t, a) 6= ⊥}
V = {a ∈ γ | w(a) 6=∞} \ F

Based on this partitioning, the sampling function for an interaction b when
entering a new state (`,v) is as follows.

Rb((`,v)) =


t if b ∈ F is delayable and enabled at t

if X then t else ∞ if b ∈ F is lazy and enabled at t
F−1ρ̃b (Y) if b ∈ V is delayable

if X then F−1ρ̃b (Y) else ∞ if b ∈ V is lazy

where X ∼ B(1
2) is a random Bernoulli variable over {true, false}, i.e., true

and false have a probability 1
2 , Y ∼ U(0, 1) is a random variable with standard

uniform distribution, and F−1ρ̃b is the inverse cumulative distribution function
(CDF) of the probability density function ρ̃b associated to b at (`,v).

For fixed-delay interactions (b ∈ F), if b is delayable, the sampling function
Rb((`,v)) returns the single time value t that satisfies the guard gb. Whereas, if
b is lazy, a discrete choice according to X is first performed to determine whether
b will be considered and scheduled to t, or not considered and scheduled to ∞.

The sampling function in the case of variable-delay interactions (b ∈ V) is
slightly more involved since it requires choosing from an interval of time values.
The same treatment with respect to the urgency types of interactions is per-
formed i.e., a discrete choice on X is used to consider a lazy interaction or not.
The time value is obtained by sampling according to the probability distribu-
tion ρ̃b. Technically, this corresponds to computing the inverse CDF (F−1ρ̃b) on a
random value Y uniformly distributed in the interval [0, 1]. The detailed defini-
tion of the probability density function ρ̃b, in the case of timed and stochastic
interactions, is given below.

Density Functions for Variable-delay Interactions In this subsection, we
define the density function ρ̃b associated with a variable-delay interaction b at a
state (`,v). We recall that such an interaction may be either timed or stochastic.
For the former case, since no density function is explicitly specified on guards,
the function ρ̃b is obtained from a uniform or exponential density function. For
the latter case, the function ρ̃b is obtained from the density function associated
with the guard of b.

ρ̃b(t) =



1
u− l · 1[l ≤ t ≤ u] if b is timed with guard gb true on [l, u]

that is, vb + t |= gb iff t ∈ [l, u]
λe−λ(t−l) · 1[l ≤ t] if b is timed with guard gb true on [l,∞)

that is, vb + t |= gb iff t ∈ [l,∞)
ρ(vb(x) + t)∫ ∞
vb(x)

ρ(s)ds
if b is stochastic with guard [x ./ ρ]

where 1[t ∈ D] is the identity function, which gives 1 if t ∈ D, and 0 otherwise.
The first two cases correspond to timed interactions. We distinguish two

situations in this setting, (i) when interaction b is timed and has a right-bounded

guard, i.e., u is finite, the sampling in the interval [l, u] is done uniformly, (ii)
when the timed constraint is of the form [l,∞), the sampling is done according to
the exponential density function. In both scenarios, the time t to sample must
be within the interval specified by the time constraint. Stated differently, the
current valuations of clocks in vb increased by the sampled time t must satisfy
the guard gb.

Remark that for (i) and (ii), i.e., for timed interactions, the time constraint
gb may involve several clocks (potentially because of the composition, recall
that an interaction involves several ports). Moreover, when entering a new state
(`,v), the concerned clocks vb may have valuations different from 0. Hence, the
computation of the final time bounds u, l in which the time t will be sampled,
for b, either uniformly or exponentially is more involved. Generally, given a
guard gb of the form

∧
i(li ≤ xi ≤ ui) and the valuations vb(xi), the bounds

of the sampling interval of b are actually computed as l = max(li − v(xi)) and
u = min(ui − vb(xi)) as illustrated in the next example.

Example 4. The situation depicted in Figure 3 shows a global state of the system
(`,v), where the valuations of clocks x and y are respectively v(x) = 1 and
v(y) = 2, and the time constraint is [(2 ≤ x ≤ 6) ∧ (2 ≤ y ≤ 5)]d. For the clock
x, the remaining lifetime interval tx is computed as (2−1) = 1 ≤ tx ≤ (6−1) = 5.
Similarly, for y, (2 − 2) = 0 ≤ ty ≤ (5 − 2) = 3. Hence, the obtained sampling
interval [l, u] is max(1, 0) ≤ t ≤ min(5, 3). Note that guards of the form x−y ∼ k
have the same interpretation since the difference x− y is constant over time as
both clocks evolve identically.

[(2 ≤ x ≤ 6) ∧ (2 ≤ y ≤ 5)]d

(`, (v(x) = 1,v(y) = 2))

1 2 3 4 5 6

1

5

1 ≤ tx ≤ 5v(x) = 1

3

0 ≤ ty ≤ 3

time

v(y) = 2

1 ≤ t ≤ 3

Fig. 3: Computation of upper and lower bounds in the case of timed interactions;
l = max(1, 0) = 1 and u = min(5, 3) = 3, hence the sampling will be uniform in
[1, 3].

The third case in the definition of ρ̃b(t) concerns variable-delay interactions
obtained from a stochastic interaction b with a guard [x ./ ρ]d. In this scenario,
the sampling is done in dom(ρ) according to a potentially shifted and normalised
density function. This transformed function takes into account the case where
the clock valuation of x, i.e., v(x) is not 0 when entering the state (`,v). Below
is a concrete illustration of the transformation.

Example 5. The transformation is illustrated in Figure 4, where ρ(t) is a Nor-
mal density function and v(x) = 1. The function is first shifted to the current
valuation of x, i.e., ρ(1 + t). Since this shifted function is no longer a proper
probability density function, i.e., its area is lower than 1, it is normalised, i.e.,
divided by

∫∞
1
ρ(s)ds.

ρ(t)

P
ro
ba
bi
li
ty

t

v(x)

P
ro
ba
bi
li
ty

t

ρ̃(t) = ρ(1+t)∫∞
1 ρ(s) ds

Shift and

Normalise

0 1 0

[x ./ ρ]d

(`,v(x) = 1)

Fig. 4: Shifting and normalising a Normal density function in the case of stochas-
tic interactions

3.4 An Example of Stochastic Simulation

In Figure 5, we illustrate the stochastic semantics on Example 3 of the Sender-
Receiver. We actually show a specific execution trace by sampling particular
time values in each configuration. In this figure, configurations are of the form
〈(si, rj), (v(x),v(y),v(z)), (w({send, recv}),w({fail}),w{recover},w({alarm}),
w({back}))〉. In each configuration, newly sampled remaining lifetimes are de-

noted by a box t , and updated remaining lifetimes are either ∞ or underlined
t according to the definition of the sampling function Rb . To make the example
readable, we only show the discrete transition, i.e. induced by the uniform choice
over lazy interactions.

In this example, there are two possible initial configurations corresponding to
the choice of considering the lazy interaction alarm 〈(s0, r0), (0, 0, 0), (1.3 , 7.4 ,∞, 2.8 ,∞)〉
or not 〈(s0, r0), (0, 0, 0), (1.5 , 6 ,∞,∞,∞〉 at the beginning. Both configura-
tions have the same global location and clocks valuation (s0, r0), (0, 0, 0), but dif-
fer in their sampling of the remaining lifetime of the initially racing interactions,
namely {send, recv}, {fail} and {alarm}. In one case (left branch), we have
(1.5, 6,∞,∞,∞), i.e., alarm is scheduled at ∞, while in the second case (right
branch), (1.3, 7.4,∞, 2.8,∞), i.e., alarm is scheduled at 2.8. Note that the proba-
bility to start in one of these configurations corresponds to the probability to get
the sampled remaining time values weighted by a half. For the sake of simplicity,
we preferred to detail only one branch of the execution trace, i.e., the one on the
left in Figure 5. The complete execution trace shown in the example consists of

the sequence of transitions
1.5,{send,recv}−−−−−−−−−−→ 3,{send,recv}−−−−−−−−−→ 1.5,{fail}−−−−−−→ 1.5,{alarm}−−−−−−−−→ 1.3,{back}−−−−−−→ 0.7,{recover}−−−−−−−−−→ 0.5,{send,recv}−−−−−−−−−−→,

which corresponds to two send-receive operations, followed by a fail of the
Sender, which is detected by the Receiver that emits an alarm and moves

〈(s0, r0), (0, 0, 0), (1.3 , 7.4 ,∞, 2.8 ,∞)〉〈(s0, r0), (0, 0, 0), (1.5 , 6 ,∞,∞,∞)〉

〈(s0, r0), (0, 1.5, 0), (3 , 4.5,∞,∞,∞)〉

1.3, {send, recv}

〈(s0, r0), (0, 4.5, 0), (2.3 , 1.5,∞,∞,∞)〉

1
2

1.5, {fail}

〈(s1, r0), (0, 6, 1.5), (∞,∞, 3.5 ,∞,∞)〉

〈(s0, r0), (0, 1.3, 0), (2.6 , 6.1,∞, 1.5,∞)〉

〈(s1, r0), (0, 6, 1.5), (∞,∞, 3.5 , 1.5 ,∞)〉

〈(s1, r1), (1.5, 7.5, 0), (∞,∞, 2,∞, 1.3)〉

1.5, {alarm}

〈(s1, r0), (2.8, 8.8, 0), (∞,∞, 0.7, 3 ,∞)〉

1.3, {back}

1.5, {send, recv}

3, {send, recv}

〈(s1, r0), (2.8, 8.8, 0), (∞,∞, 0.7,∞,∞)〉

0.7, {recover}

1
2

.5, {send, recv}

3.5, {recover}

0.7, {recover}

〈(s0, r0), (0, 0, 0.7), (.5 , 10 ,∞, 2.3,∞)〉

Fig. 5: Illustration of the stochastic simulation semantics on Example 3

to a degraded mode then gets back to its normal working mode, followed by a
recover of the Sender, and finally another send-receive operation.

3.5 Additional Modelling Features

It is worth mentioning that the proposed model can be extended to allow for
handling the usual cost/reward structures and data variables. For the sake of
simplicity, we refrain from providing formal details for these additional modelling
features and briefly provide some intuitions.

A cost/reward structure in this model can be obtained in a straightforward
manner by adding a data-structure in our simulation algorithm and associate it
with states and interactions. Since in our model we know how long the system
remains in each state (as we keep track of the remaining lifetimes of interactions),
and which interactions are executed; we can, by specifying unit cost/reward
for states and interactions, compute the global cost for each execution trace of
the system. For instance, in the previous example, assume that we have this
modelling feature and that we specified a cost of a fail to be 2, and the cost of
remaining in a failure mode as 1 per time unit. The total cost of the fragment of
the execution trace shown in Figure 5 will be 5.5. That is, 2 (the fail interaction
cost) plus [(1.5 + 1.3 + 0.7)× 1] (the total time spent by the Sender component
in a failure mode, i.e., from executing interaction fail to executing interaction
recover.

4 Statistical Model Checking

In this section we briefly recall the statistical model checking technique. We start
by an overview of the temporal logic used to specify systems properties and then
we describe a set of well known SMC algorithms.

4.1 The PBLTL Temporal Logic

We first recap Bounded Linear-time Temporal Logic (BLTL) and then define
its probabilistic extension. BLTL is an extension LTL (Baier and Katoen, 2008)
where temporal operators can be bounded. The BLTL formulas that can be
defined from a set of atomic propositions P are the following.

– true, false, p, ¬p, for all p ∈ P;

– φ1 ∨ φ2, φ1 ∧ φ2;

– Nφ1, φ1U
tφ2.

where N is the next operator, Ut is the bounded until operator, φ1 and φ2 are
BLTL formulas, and t is a positive integer. We also consider the usual temporal
operators, namely, the bounded eventually Ftφ = trueUtφ, and the bounded
always Gtφ = ¬(trueUt(¬φ)).

The semantics of a BLTL formula is defined with respect to an execution
trace π = s0s1 . . . in the usual way (Clarke et al., 1999). Roughly speaking, an
execution trace π = s0s1 . . . satisfies Nφ1, which we denote π |= Nφ1, if state s1
of π satisfies φ1. The execution π satisfies φ1U

tφ2, which we denote π |= φ1U
tφ2,

iff there exists a state si with i≤t that satisfies φ2 and all the states in the prefix
from s0 to si−1 satisfy φ1.

In the SBIP framework, the properties specification language for stochastic
systems is a probabilistic variant of BLTL denoted PBLTL. More precisely, it
consists of a BLTL formula preceded by a probabilistic operator P. Using this
language, it is possible to formulate two types of queries on a given stochastic
system as follows.

1. Qualitative queries : P≥θ[φ], where θ ∈ [0, 1] is a probability threshold and
φ is a BLTL formula, also called path formula,

2. Quantitative queries : P=?[φ], where φ is a BLTL formula, also called path
formula.

Note that it is possible through these queries to either determine if the prob-
ability for the system to satisfy φ is greater or equal to the threshold θ (using
1), or to ask for the actual probability for the system to satisfy that property
φ (using 2). For instance, the PBLTL formula P=?[G

1000(p)] stands for ”What
is the probability that the atomic proposition p is always satisfied?”. In this
example, the path formula G1000(p) specifies that the length of the considered
traces (i.e., the number of transitions to consider) is 1000.

4.2 The Main SMC Algorithms

We now present a model checking procedure to decide whether a given stochastic
system B satisfies a property φ. Statistical model checking refers to a series
of simulation-based techniques that can be used to answer two questions: (1)
Qualitative: is the probability for B to satisfy φ greater or equal to a certain
threshold θ? and (2) Quantitative: what is the probability for B to satisfy φ?
Both questions can serve to decide a PBLTL property.

The main approaches (Hérault et al., 2004; Younes, 2005a) proposed to an-
swer the qualitative question are based on hypothesis testing. Let p be the prob-
ability of B |= φ, to determine whether p ≥ θ, we can test H : p ≥ θ against
K : p < θ. A test-based solution does not guarantee a correct result but it is
possible to bound the probability of making an error. The strength (α, β) of a
test is determined by two parameters, α and β, such that the probability of ac-
cepting K (respectively, H) when H (respectively, K) holds is less or equal to α
(respectively, β). Since it is impossible to ensure a low probability for both types
of errors simultaneously (see Younes (2005a) for details), a solution is to use an
indifference region [p1, p0] (with θ in [p1, p0]) and to test H0 : p≥ p0 against
H1 : p≤ p1.

Several hypothesis testing algorithms exist in the literature. Younes (2005a)
proposed a logarithmic based algorithm that, given p0, p1, α and β, implements
the Sequential Ratio Testing Procedure (SPRT) (see Wald (1945) for details).
When one has to test θ≥1 or θ≥0, it is however better to use Single Sampling
Plan (SSP) (see Bensalem et al. (2010); Hérault et al. (2004); Younes (2005a) for
details) that is another algorithm whose number of simulations is pre-computed
in advance. In general, this number is higher than the one needed by SPRT,
but is known to be optimal for the above-mentioned values. More details about
hypothesis testing algorithms and a comparison between SSP and SPRT can be
found in (Bensalem et al., 2010).

In (Hérault et al., 2004) Peyronnet et al. propose an estimation procedure
(PESTIMATION) to compute the probability p for B to satisfy φ. Given a
precision δ, Peyronnet’s procedure computes a value for p′ such that |p′ − p|≤δ
with confidence 1− α. The procedure is based on the Chernoff-Hoeffding bound
(Hoeffding, 1963).

The efficiency of the above algorithms is characterised by the number of
simulations needed to obtain an answer. This number may change from system
to system and can only be estimated (Younes, 2005a). However, some generalities
are known. For the qualitative case, it is known that, except for some situations,
SPRT is always faster than SSP. PESTIMATION can also be used to solve the
qualitative problem, but it is always slower than SSP (Younes, 2005a). If θ is
unknown, then a good strategy is to estimate it using PESTIMATION with a
low confidence and then validate the result with SPRT and a strong confidence.

It is worth mentioning that the statistical model checking technique is known
to work for purely stochastic system model, i.e., non-determinism free. The
stochastic real-time BIP modelling formalism guarantees that all non-determinism
is resolved through stochastic choices over interactions. SMC can be extended to

handle non-deterministic models, e.g., MDPs, in which case it provides an inter-
val of probabilities of satisfaction a given property, by exploring all the possible
schedules of the non-deterministic model.

5 The BIPSMC Engine

5.1 Architecture

The BIPSMC engine implements several statistical testing algorithms for stochas-
tic systems verification, namely, Single Sampling Plan (SSP), Simple Probability
Ratio Test (SPRT) (Wald, 1945; Younes, 2005a), and Probability Estimation
(PESTIMATION) (Hérault et al., 2004). Figure 6 shows the most important
modules of the tool and how they interact together in order to perform statis-
tical model checking. The tool takes as inputs a stochastic model description in
the stochastic BIP real-time format, a PBLTL property to check, and a set of
confidence parameters required by the statistical test.

S Simulator
- executable -

BIP Compilation

 Φ Monitor
- executable -

SMC Core
Hypothesis Testing/

Probability Estimation
- executable -

System S
-Stochastic BIP -

OK / KO
trace verdict

OK / KO
Global Verdict

execution
trace

Property Φ
- PBLTL -

PBLTL Compilation

Parameters
ϑ, δ , (α , β)

triggers

produces

collects trace
length n

Inputs

Probability
Estimation

Outputs
The Statistical Model Checking Engine

Fig. 6: The BIPSMC Architecture

During the initial phase, the tool performs a syntactic validation of the
PBLTL formula through a parser module. Then, it builds an executable model
and a monitor for the property under verification. Next, it will iteratively trigger
the stochastic BIP engine to generate execution traces which are monitored to
produce local verdicts. This procedure is repeated until a global decision can be
taken by the SMC core module (that implements the statistical algorithms). As
our approach relies on SMC and since it considers bounded LTL properties, we
are guaranteed that the procedure will eventually terminate.

It is worth mentioning that in our implementation, atomic propositions of
PBLTL properties are constructed from the system variables. For instance, the

PBLTL formula P=?[G
1000(abs(Master.tm−Slave.ts) ≤ 160)] stands for ”What

is the probability that the difference between master variable tm and slave vari-
able ts is always under the bound 160 ?”. In this example, Master.tm and
Slave.ts are systems variables pertaining to components Master and Slave re-
spectively. Note that properties specification language offers the possibility to
use built-in mathematical functions. In the example above, the abs() function is
used to compute the absolute value of (Master.tm− Slave.ts).

5.2 Technical Details and Availability

BIPSMC is fully developed in the Java programming language. It uses JEP
2.4.1 library (http://www.singularsys.com/jep/index.html, under GPL li-
cense) for parsing and evaluating mathematical expressions, and ANTLR 3.2
(http://www.antlr.org/) for PBLTL properties parsing and monitoring. At
this stage, BIPSMC only runs on GNU/Linux operating systems as it relies on
the BIP simulation engine. The current release of the tool has been enriched
with a graphical user interface for more convenience (see Figure 7 for a screen
shot). The current version also includes support for the BIP2 language (http:
//www-verimag.imag.fr/New-BIP-tools.html) while still ensuring compati-
bility with the previous version. The model checker is available for download from
http://www-verimag.imag.fr/Statistical-Model-Checking.html, where ad-
ditional information (video tutorial) on how to install it and to use it can also
be found.

Fig. 7: Screen shot of the BIPSMC graphical user interface.

6 Case Studies

While still at the prototype level, the SBIP framework has been used to evalu-
ate several large-scale systems that cover different application domains. In this

section we survey some of these studies and discuss their results. The first two
studies consider the modelling and assessment of multimedia applications, while
the three remaining present networking application and protocols. For the sake
of conciseness, we show for some of them how the underlying models are built
in the proposed stochastic formalism. We also refer to the original publications
for further details such as the verification times.

6.1 An MPEG2 Decoder Subsystem

In this study, the SBIP framework is used to check QoS properties of an MPEG2
decoder subsystem part of a video streaming application (Raman et al., 2013).
This work is about finding a good trade-off, when designing the multimedia sys-
tem, between the required sizes of the system buffers and the quality of delivered
videos. It is known in the literature that an acceptable amount of quality degra-
dation – defined as less than two consecutive frames within one second – can be
tolerated in order to reduce buffers sizes (Raman et al., 2013). The study will
consist to assess this requirement.

write push pop read write push pop read

Player

(Rate, Delay)

PlayoutBuffer

(Size)

Processor

(Frequency)

InputBuffer

(Size)

Generator

(BitRate)

Fig. 8: The abstract MPEG2 decoder model.

The model in Figure 8 is used to represent the considered MPEG2 subsystem.
It shows its different parts, namely, the Generator, the Input and the Playout
buffers, the Processor, which decodes the input videos macro-blocks, and the
Player device. In this study, quality degradation is seen as a buffer underflow,
which occurs whenever the Player device fails to read sufficient macro-blocks
from the Playout buffer. Note that the amount of underflow is impacted by the
parameter Delay of the Player, that represents the delay after which it starts
playing the decoded video frames.

l3
l0l0 l1

l1l2
l2

gen frm

ft = ‘B‘

x+ +

gen frm

ft = ‘P ‘

x+ +

gen frm

ft = ‘B‘

x+ +

gen frm [x == 12]

ft = ‘I‘

x+ +

mbt = ft

gen mb

[x < 330]

[x == 330]
x = 0

read

gen frm

[x ∈ [3, 6, 9]]

x++;

gen frm
ft

gen mb
mbt

read
ft

read

write write

l0

write

mbs = fmbt()

read
mbt mbs

l1[y ./ ρmbt]
d

y := 0

y := 0

x = 0 x = 0

x+ +

Fig. 9: The Generator compound component. The probability density function
ρmbt captures the arrival delays of videos macro-blocks.

Figure 9 shows the detailed behaviour of the Generator component. The
latter models the arrival of encoded videos macro-blocks to the MPEG2 de-
coder subsystem in a stochastic fashion. This component is made of three sub-
components operating as follows. The first component (left) generates frames
following the MPEG2 GOP pattern (Raman et al., 2013). Each frame is then
decomposed, in the second component, into 330 macro-blocks, which are finally
transmitted to the third component that models the macro-blocks stochastic
arrival time to the input buffer with respect to ρmtb.

Some of the obtained results in this study, using the SMC technique, are illus-
trated in Figure 10. The latter shows three different curves, each corresponding
to a different analysed video, namely cact.m2v, mobile.m2v, and tennis.m2v,
having the same resolution of 352 × 240. Each curve shows the evolution of
the probability that the quality degradation is always less than two consecutive
frames within one second, for different values of the Delay parameter. This re-
sult helps to determine the right Delay parameter to use. Note that for these
experiments, the BIPSMC engine required about 44 to 7145 traces each time and
spent around 6 to 8 seconds in average to check the property with a confidence
bound of 10−2.

0 100 200 300 400 500

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

InitialbPlayoutbDelayb(ms)

P
(l
o

s
s
b<

b2
bc

o
n

s
e

c
u

tiv
e

bf
ra

m
e

s
)

cact.m2v

mobile.m2v

tennis.m2v

Fig. 10: Probability of avoiding quality degradation in three different videos for
increasing values of the Initial Playout Delay.

6.2 Image Recognition on Many-cores

In this case study, the SBIP framework is used as part of the design of an em-
bedded system consisting of the HMAX image recognition application deployed
on the STHORM many-core architecture (Nouri et al., 2014, 2016b).

The HMAX model algorithm (Mutch and Lowe, 2008) is a hierarchical com-
putational model of object recognition – in input images – which attempts to
mimic the rapid object recognition of human brain. The case study focuses on

C2 (max)

S2 (grbf)

C1 (max)

S1 (ndp)

SI (scaled images)

Layer name

RI (raw image)

Fig. 11: HMAX overview.

the first layer of the HMAX model algorithm, denoted S1 in Figure 11, as it is
the most computationally intensive.

The goal of the study is to explore several design parameters with respect to
timing constraints, that is, the overall execution time, and the time to process
single lines of an input image. More precisely, the analysis consists of proba-
bilistically quantifying the requirement that the overall execution time is always
lower than a given bound, denoted ∆, and that the variability in the process-
ing time of successive lines is always bounded by Ψ . To this extent, the above
requirements were respectively specified in BLTL as φ1 = Gl(to < ∆), where to
is the monitored overall execution time, and φ2 = Gl(|ts| < Ψ), where ts is the
difference between the processing time of successive lines.

Worker

Worker

Worker

… x 14

Splitter Joiner Main Main

Processing Group

…

…

Fig. 12: The abstract BIP model of the HMAX application S1 layer.

The parametric stochastic BIP model of the S1 layer of the HMAX model
algorithm is shown in Figure 12. In this model, every image is handled by one
processing group consisting of a single Splitter, one or more Worker processes,
and a single Joiner, communicating through FIFO channels. The computation of
the entire S1 layer is coordinated by a single Main process. In this model, several
image scales (obtained by scaling at different sizes the input image as required by

the HMAX algorithm) are handled concurrently by different processing groups,
and the processing is pipelined using a pipelining rate denoted PR. Figure 13
shows the detailed BIP model of the Worker component using the new proposed
stochastic semantics.

[steps != 0]

end_write_databegin_write_data

end_read_databegin_read_data

read(data_fifo_in, &data)

begin_write_data

write(data_fifo_out, data)

compute_filter(&data)

steps−−

end_write_data

end_read_data[status == _exec] begin_read_data

[steps == 0]

status = _cfg

[status == _cfg]

read_conf

read(conf_fifo, &config)

read_conf

config

status = _exec

steps = config.steps

data

data

status = _cfg

`2

`7

`3`0

[x ./ ρw]
d

[x ./ ρc]
d

x := 0

x := 0

x := 0x := 0

[x ./ ρr]
d

`1
`5

`4

`6

Fig. 13: The stochastic BIP model of the Worker component, ρr, ρc, ρw are re-
spectively the probability density functions of the time to read, to compute, and
to write data.

The aforementioned performance requirements, i.e. φ1 and φ2, were checked
for different pipelining rates PR = {0, 2} (experiments have shown that different
greater values of P do not impact the time of interest.) and different values of
the bounds ∆,Ψ . In this experiment, the sizes for the FIFO channels Main-
Splitter= 10 KB, Splitter-Worker= 112 B, Worker-Joiner= 336 B, and Joiner-
Main= 30 KB (see Figure 12) were chosen arbitrarily to fit the STHORM L1
memory of a single cluster.

Table 1: Probabilities to satisfy φ1 for different bounds ∆ and a fixed pipelining
rate PR = 0.

∆(ms) 572.75 572.8 572.83 572.85 572.89 572.91 572.95

P(φ1) 0 0.28 0.57 0.75 0.98 0.99 1

Nb. of traces 66 1513 1110 488 171 89 66

Table 1 shows the probabilities of satisfying the first requirement φ1 for
different values of ∆, in the case where PR = 0. The table also reports, in
the third raw, a performance metric, that is, the number of traces that were
necessary for the Hypothesis Testing SMC algorithm to decide each time. For

instance, based on these results, one can conclude that the expected overall
execution time for processing one image scale is bounded by ∆ = 572.91ms with
probability equal to 0.99.

2090 2100 2110 2120 2130 2140

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Ψ (µs)

Pr
ob

ab
ilit

y

(a) PR = 0

2270 2280 2290 2300 2310 2320

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Ψ (µs)

Pr
ob

ab
ilit

y

(b) PR = 2

Fig. 14: Probability to satisfy φ2 for PR ∈ {0, 2}.

Figure 14 shows the probabilities to satisfy the second requirement φ2 when
varying the time bound Ψ for two values of the pipelining rate PR. Figure 14a is
obtained with no pipelining, i.e. (PR = 0), whereas Figure 14b is obtained with
PR = 2. One can note that the two curves show similar evolution, albeit the
curve in Figure 14b is slightly shifted to the right, i.e. the values of Ψ in this case
are greater than those of Figure 14a. This actually means that this configuration
induces more processing time variation between successive lines. We recall that
when PR = 0, all the processes are perfectly synchronised which yields small
variation over successive lines processing time. Using PR > 0 however leads to
greater variation since it somehow alters this synchronisation. Concretely, Fig-
ure 14 shows that without pipelining, we obtain smaller expected time variation
(of processing successive lines). For instance when PR = 0, Ψ = 2128µs with
probability 0.99, whereas for PR = 2, Ψ = 2315µs with the same probability.
One may conclude that, in this case study, a pipeline implementation will not
help enhancing the system throughput.

6.3 The Precision Time Protocol – IEEE 1588

In this study, the Precision Time Protocol (PTP) is deployed as part of a dis-
tributed heterogeneous communication system in an aircraft (Basu et al., 2010a).
The protocol is used to synchronise the clocks of the different devices of the sys-
tem. The reference clock is given by a specific device on the network, designated
as the Master. This synchronisation is essential to guarantee a correct behaviour
of the whole system.

The SBIP framework was used to check the accuracy of clocks synchronisa-
tion, which is defined as the absolute value of the difference between the reference

clock θm of the Master and the clock θs of a Slave device. Figures 15 and 16 show,
respectively, the architecture of the stochastic BIP model used to check this re-
quirement, the stochastic behaviour Channel A and the deterministic behaviour
of the Slave components.

sync

Channel AMaster

followup

reply

request

rcv followup

rcv sync

rcv reply

snd followup

snd sync

snd reply

sync

Slave

followup

reply

request

Channel B

snd request rcv request

Fig. 15: The abstract PTP model; composed of a Master and a single Slave
device.

t1

t1

t4

rcv sync

xs := 0

rcv followup

xf := 0 [xs ./ ρs]
d

snd sync

rcv followup

xf := 0

[xf ./ ρf]d
snd followup

rcv reply
xr := 0

snd reply

t1

t1

t4

[xs ./ ρs]
d

snd sync

[xr ./ ρr]
d

l4

l0

l1

l2 l3

l5

snd sync

snd followup

snd replyrcv reply

rcv followup

rcv sync

(a) Channel A

followup

sync

t2 := φs

reply

o := (t2 + t3 − t1 − t4)/2

φs := φs − o

request

t3 := φs

t1

t1

t4

t4

l0

l1

l2

l3

sync

followup

reply

request

(b) Slave

Fig. 16: A detailed view of the Channel A and the Slave Components

For this model, we want that the deviation between the two clocks remains
always under some given bound ∆. Since the model is stochastic, we want to
estimate the probability for this to be true, for different values of ∆, and for each
Slave device in the system (with respect to its position in the network, captured
through the density functions ρr, ρs, and ρf). The goal is to find the value of ∆
that gives the highest probability.

The synchronisation requirement is expressed in PBLTL as follows, P=?[G
1000(abs(θm−

θs) 6 ∆)]. The ultimate goal of the study is to compute the minimal bound ∆
that ensures full synchronisation, i.e, the synchronisation of all the Slaves clocks
in the network with the Master clock, with probability 1.

The results illustrated in Figure 17 show the probability evolution of the
devices synchronisation (in the y-axis) with respect to various time bounds in
micro seconds (in the x-axis). We can see different curves corresponding to several
devices identified through their addresses in the network. We recall that the
synchronisation is guaranteed for a specific device whenever its curve reaches
probability 1. Thus, we can conclude from these experiments that the minimal
bound ∆ that ensures full synchronisation is 120µs.

Bound

0 20 40 60 80 100 120 140

P
ro

ba
bi

lit
y

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(0,0)

(1,0)

(2,0)

(2,3)

(3,0)

Fig. 17: PTP accuracy analysis results

6.4 Wireless Sensor Network

The SBIP framework has been used to verify several networked systems based on
different technologies, CAN-based (Lekidis et al., 2013), Sensor Network using
Wi-Fi (Lekidis et al., 2015a), and IoT applications (Lekidis et al., 2015b). We
briefly present its utilisation for the modelling and analysis of a Wireless Sensor
Network (WSN) case study.

This case study concerns an audio streaming application over a Wi-Fi net-
work, where several nodes equipped with microphones produce different audio
streams, which are transmitted to a base station equipped with a speaker to
play the received audio. The goal of the study is to ensure the synchronisation
between the different nodes of the network in order to guarantee a consistent
audio output. To this extent, a Phase Locked Loop (PLL) synchronisation pro-
tocol is deployed as part of the application nodes. The protocol works as follows.

The base station broadcasts periodically a frame containing the hardware clock
value to all the nodes through the network. Each node applies the PLL synchro-
nisation mechanism, to construct a software clock, that serves to keep its local
clock synchronised with the received one.

TICK

READ

speaker

SEND RECV

RECV

REQ REQ

RECV

Sbuffer

TICK

SEND RECV

CLK_RECV

LOCAL_CLK

CLK_REQ

CLK_RES

Slave
micro

LOCAL_CLK

AUDIO_SEND

CLK_REQ

CLK_RES

Mbuffer WiFi
Mclock

GET_CLK

Sclock

CLK_SEND

TICK synchro
TICK

Master

PLL

Fig. 18: SBIP model of the Wireless Sensor Network

A BIP model of this application, following a Master-Slave architecture, was
built. As shown in Figure 18, it consists of a Master component that represents
the base station, a Slave component that represents a particular node in the
network, a Wi-Fi component modelling the Wi-Fi communication channel, and
two buffer components, namely Mbuffer and Sbuffer. In this model, the period
of broadcasting the hardware clock is fixed to T = 5s. Each node uses its local
clock to time-stamp the produced audio frames, so that the base station is able
to reproduce the received audio frames in the correct order. The synchronisa-
tion accuracy is defined as the difference between the hardware clock and the
computed software clock in each node and is required to be lower or equal to
1µs.

The WSN application implementation was generated from the functional
model shown in Figure 18 and deployed over three UDOO (http://www.udoo.
org/features/) nodes, each consisting of a computational core, a Wi-Fi card,
and a sound card. The wireless network is supported by the Snowball SDK
(http://www.calao-systems.com/articles.php?pg=6186), which is used as
an Access Point (AP). This implementation is used to learn the probability
distributions that characterise the communication delays in order to build the
stochastic BIP model used later for analysis.

Two sets of experiments were conducted, focusing on equally important re-
quirements for the design of multimedia sensor networks. The first concerns the
utilisation of the buffer components regarding the audio streaming capturing
and reproduction in the system. The second focuses on the clock synchronisa-
tion accuracy. For the second requirement, the difference between the Master
clock θm and the software clock, computed in every Slave θs, without the im-
pact of the audio capturing and reproduction, is observed. Both requirements
were described as probabilistic temporal properties, using PBLTL. The obtained
results are presented hereafter.

●●●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●

●●

●●●

0 100 200 300 400 500 600 700 800 900 1000

0
20

40
60

80
10

0

size(Sbuffer)

P
ro

ba
bi

lit
y(

%
)

(a) P (φ1) when increasing the Sbuffer
size

●●●

●●●

●

●

●

●

●●

0 160 320 480 640 800 960 1120 1280 1440 1600

0
20

40
60

80
10

0

Initial playout delay (ms)

P
ro

ba
bi

lit
y(

%
)

(b) P (φ2) as function of the playout delay

Fig. 19: Probability results for properties φ1 and φ2

We evaluated the property of avoiding buffers overflow (respectively under-
flow) by considering the following property φ1 = Gl(SSbuffer < MAX) (respec-
tively φ2 = Gl(SMbuffer > 0)), where SSbuffer (respectively SMbuffer) indicates
the size of the Slave (respectively the Master) buffer, and MAX is a positive
integer value which represents the capacity of the buffer. The left curve in Fig-
ure 19 shows the probability of avoiding an overflow in the Sbuffer, i.e, P (φ1), for
different values of MAX. One can conclude that a value of MAX = 400 ensures
that P (φ1) = 1. It was observed during the experiments that the probability
of underflow in the Mbuffer, i.e. P (φ2), depends on the initial playout delay,
that is, the delay after which the Master starts consuming from the Mbuffer.
Figure 19 shows this probability evolution when increasing this delay. One can
observe that P (φ2) = 1 is obtained for delays greater than 1430 ms.

The property of the synchronisation accuracy between the different nodes
of the network and the Master was formalised as φ3 = Gl(|(θm − θs) − A| <
∆), where A indicates a fixed offset between the Master and each computed
software clock, and ∆ is a fixed non-negative number denoting a specific time
bound. The goal was to check the requirement that synchronisation accuracy
∆ ≤ 1µs. For a fixed offset A = 100µs, the observed bound ∆ was always greater
than the expected 1µs. In order to find a new bound ∆ for the synchronisation
accuracy with an offset A = 100µs, the SBIP framework was used to estimate
the probability of φ3. The goal is to find the smallest bound ∆ that satisfies
P (φ3) = 1. Different values of ∆ between 10µs and 80 µs were explored. The
obtained result was that, for the considered setting, the smallest bound that
ensures the synchronisation is ∆ = 76µs.

6.5 Avionics Full-DupleX Switched Ethernet

SBIP has been also used for the analysis of QoS properties of the Avionics Full-
DupleX switched Ethernet (AFDX) (Basu et al., 2010b). The AFDX protocol
was proposed as a solution to resolve problems due to the spectacular increase
of the quantity of communication and thus of the number of wires in avionics
network. The main idea behind AFDX is to simulate point-to-point connections
between all the devices in a network using Virtual Links (VL). For such systems,
one challenge is to guarantee bounded delivery times on every VL.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000

P
ro

ba

Bound (micro sec)

E.S. 1
E.S. 2
E.S. 3
E.S. 4
E.S. 5

(a) Probability of having a delay lower
than some bound for the configuration
(X = 10).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

P
ro

ba

Bound (micro sec)

E.S. 1
E.S. 2
E.S. 3
E.S. 4
E.S. 5

(b) Probability of having a delay lower
than some bound for the configuration
(X = 20).

Fig. 20: Results of latency analysis for the AFDX case study. Notice that the
results for E.S.2, E.S.3, E.S.4 and E.S.5 are the same (for X = 10 and 20) and
thus their respective curves are superposed.

In order to check the latency requirements, two configurations having the
same characteristics but with different numbers of virtual links (X = 10 and
X = 20) were considered. This experiment consisted of using the Probability Es-
timation SMC algorithm with precision 0.01 and a confidence of 0.01 to estimate
probabilities for bounds in [0µs − 2000]µs for X = 10 and in [0 − 3000]µs for
X = 20. The obtained results are shown in Figures 20a and 20b for respectively
X = 10 and X = 20 links. The figures show that for both configurations, the
delivery time is bounded for all the considered End System (E.S), with different
bounds depending on the E.S position in the network. In the configuration with
20 VLs the delivery time is larger because of the number of VLs.

For this study, to get more confidence, we also used the Hypothesis Testing
SMC algorithms with a confidence of 10−10 and a precision of 10−7. The obtained
results consolidate the previous ones.

7 Conclusion

In this paper, we presented the SBIP framework that offers a stochastic real-
time modelling formalism that conciliate the RT-BIP and the stochastic BIP
models, in addition to a statistical model checking engine, called BIPSMC , for
the quantitative assessment of the built systems models.

The stochastic real-time BIP model enables to build stochastic timed au-
tomata and to compose through multi-party interactions. It offers a mean to ex-
press stochastic timing constraints over systems interactions by attaching prob-
ability density functions to the guards of ports composing them, and to specify
different urgency levels for them. As stated in the paper, this new model enables
to handle dense time, as opposed to the current stochastic semantics. It would
be thus interesting to consider a more expressive temporal logic than PBLTL,
in the SMC engine, in order to express more relevant timing requirements for
verification.

As shown along Section 6 of the paper, the SBIP framework has been used
to model and to analyse several case studies. Nevertheless, several ameliora-
tions are still ahead. Especially, to enhance the performance of the BIPSMC

engine compared to more mature tools like Prism (Kwiatkowska et al., 2011) or
Uppaal-smc (David et al., 2015b). A major foreseen amelioration is at the level
of the interface with the simulation engine.

Acknowledgements

The research leading to these results has received funding from the European
Unions Horizon 2020 research and innovation programme under grant agreement
no. 700665 CITADEL (Critical Infrastructure Protection using Adaptive MILS),
7300080 ESROCOS (European Space Robotics Control and Operating System)
and 730086 ERGO (European Robotic Goal-Oriented Autonomous Controller).

Bibliography

Abdellatif, T., Combaz, J., and Sifakis, J. (2013). Rigorous implementation of
real-time systems - from theory to application. Mathematical Structures in
Computer Science, 23(4):882–914.

Alur, R. and Dill, D. L. (1994). A theory of timed automata. Theor. Comput.
Sci., 126(2):183–235.

Baier, C. and Katoen, J.-P. (2008). Principles of Model Checking (Representation
and Mind Series). The MIT Press.

Basu, A., Bensalem, S., Bozga, M., Caillaud, B., Delahaye, B., and Legay, A.
(2010a). Statistical abstraction and model-checking of large heterogeneous
systems. In Forum for fundamental research on theory, FORTE’10, volume
6117 of LNCS, pages 32–46. Springer.

Basu, A., Bensalem, S., Bozga, M., Delahaye, B., Legay, A., and Siffakis, E.
(2010b). Verification of an AFDX infrastructure using simulations and prob-
abilities. In Runtime Verification, RV’10, volume 6418 of LNCS. Springer.

Basu, A., Bozga, M., and Sifakis, J. (2006). Modeling heterogeneous real-time
components in bip. In Proceedings of the Fourth IEEE International Con-
ference on Software Engineering and Formal Methods, SEFM’06, pages 3–12,
Washington, DC, USA. IEEE Computer Society.

Bensalem, S., Delahaye, B., and Legay, A. (2010). Statistical model checking:
Present and future. In RV, volume 6418 of LNCS. Springer.

Brázdil, T., Krčál, J., Křet́ınský, J., and Řehák, V. (2011). Fixed-Delay Events in
Generalized Semi-Markov Processes Revisited, pages 140–155. Springer Berlin
Heidelberg, Berlin, Heidelberg.

Clarke, E. M., Grumberg, O., and Peled, D. A. (1999). Model Checking. MIT
Press.

David, A., Larsen, K., Legay, A., Mikucionis, M., Poulsen, D. B., and Sedwards,
S. (2015a). Statistical model checking for biological systems. Int. J. Softw.
Tools Technol. Transf. (STTT), 17(3):351–367.

David, A., Larsen, K. G., Legay, A., Mikuăionis, M., and Poulsen, D. B. (2015b).
Uppaal smc tutorial. Int. J. Softw. Tools Technol. Transf. (STTT), 17(4):397–
415.

Hérault, T., Lassaigne, R., Magniette, F., and Peyronnet, S. (2004). Approxi-
mate Probabilistic Model Checking. In International Conference on Verifica-
tion, Model Checking, and Abstract Interpretation, VMCAI’04, pages 73–84.

Hoeffding, W. (1963). Probability inequalities. Journal of the American Statis-
tical Association, 58:13–30.

Jegourel, C., Larsen, K. G., Legay, A., Mikučionis, M., Poulsen, D. B., and
Sedwards, S. (2016). Importance Sampling for Stochastic Timed Automata,
pages 163–178. Springer International Publishing, Cham.

Jegourel, C., Legay, A., and Sedwards, S. (2012). A platform for high per-
formance statistical model checking — plasma. In Proceedings of the 18th
International Conference on Tools and Algorithms for the Construction and

Analysis of Systems, TACAS’12, pages 498–503, Berlin, Heidelberg. Springer-
Verlag.

Kulkarni, V. G. (2011). Introduction to Modeling and Analysis of Stochastic
Systems. Springer New York.

Kumar, N., Sen, K., Meseguer, J., and Agha, G. (2003). A rewriting based model
for probabilistic distributed object systems. In Najm, E., Nestmann, U., and
Stevens, P., editors, FMOODS, pages 32–46.

Kwiatkowska, M., Norman, G., and Parker, D. (2011). Prism 4.0: verification
of probabilistic real-time systems. In Proceedings of the 23rd international
conference on Computer aided verification, CAV’11, pages 585–591, Berlin,
Heidelberg. Springer-Verlag.

Lekidis, A., Bourgos, P., Djoko-Djoko, S., Bozga, M., and Bensalem, S. (2015a).
Building distributed sensor network applications using BIP. In 2015 IEEE
Sensors Applications Symposium SAS 2015, 2015 IEEE Sensors Applications
Symposium SAS 2015, Zadar, Croatia. IEEE.

Lekidis, A., Bozga, M., Mauuary, D., and Bensalem, S. (2013). A model-based
design flow for CAN-based systems. In 13th International CAN Conference,
iCC’13, Paris, France.

Lekidis, A., Stachtiari, E., Katsaros, P., Bozga, M., and Georgiadis, C. K.
(2015b). Using BIP to reinforce correctness of resource-constrained IoT ap-
plications. In 10th IEEE International Symposium on Industrial Embedded
Systems, SIES 2015, pages 245–253, Siegen, Germany. IEEE.

Mutch, J. and Lowe, D. G. (2008). Object class recognition and localization
using sparse features with limited receptive fields. International Journal of
Computer Vision, 80(1):45–57.

Nouri, A., Bensalem, S., Bozga, M., Delahaye, B., Jegourel, C., and Legay, A.
(2015). Statistical model checking QoS properties of systems with SBIP. Int.
J. Softw. Tools Technol. Transf. (STTT), 17(2):171–185.

Nouri, A., Bozga, M., Legay, A., and Bensalem, S. (2016a). Performance evalua-
tion of complex systems using the SBIP framework. In Proceedings of the 10th
Workshop on Verification and Evaluation of Computer and Communication
System, VECoS 2016, Tunis, Tunisia, October 6-7, 2016., pages 11–26.

Nouri, A., Bozga, M., Molnos, A., Legay, A., and Bensalem, S. (2014). Building
faithful high-level models and performance evaluation of manycore embedded
systems. In Twelfth ACM/IEEE International Conference on Formal Methods
and Models for Codesign, MEMOCODE 2014, Lausanne, Switzerland, October
19-21, 2014, pages 209–218.

Nouri, A., Bozga, M., Molnos, A., Legay, A., and Bensalem, S. (2016b). Astro-
labe: A rigorous approach for system-level performance modeling and analysis.
ACM Trans. Embed. Comput. Syst., 15(2):31:1–31:26.

Raman, B., Nouri, A., Gangadharan, D., Bozga, M., Ananda Basu, M. M., Legay,
A., Bensalem, S., and Chakraborty, S. (2013). Stochastic modeling and per-
formance analysis of multimedia socs. In International conference on Systems,
Architectures, Modeling and Simulation, SAMOS’13, pages 145–154.

Sen, K., Viswanathan, M., and Agha, G. A. (2005). Vesta: A statistical model-
checker and analyzer for probabilistic systems. In International Conference
on the Quantitative Evaluation of Systems, QEST’05, pages 251–252.

Wald, A. (1945). Sequential tests of statistical hypotheses. Annals of Mathe-
matical Statistics, 16(2):117–186.

Younes, H. L. S. (2005a). Verification and Planning for Stochastic Processes
with Asynchronous Events. PhD thesis, Carnegie Mellon.

Younes, H. L. S. (2005b). Ymer: A statistical model checker. In COMPUTER
AIDED VERIFICATION, CAV’05, pages 429–433. Springer.

