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Abstract
Recent developments in imaging techniques now facilitate local field measurements (e.g. strain, temperature, etc.). In this 
study, we identify the spatial distribution of material properties and local stress fields using an inverse identification method 
based on the constitutive equation gap (CEG). The CEG concept is based both on minimization of a cost function equal to 
the sum of the potential and complementary energies, and on the deviation between the measured and computed strain fields. 
We propose a new approach for identifying heterogeneous property fields (mechanical parameters and stress) using a secant 
elastoplastic tensor and a measured strain field obtained by full-field measurement. The reliability of the method is 
checked using finite element simulation data as reference full-field measurements. The method is then applied on noisy 
displacement fields to assess its robustness. Finally, the developed inverse method is tested on real measured data.

Keywords Inverse method . Material identification . Elastoplasticity . Full field measurement

Introduction

Full-field kinematic measurements (digital image correlation,
interferometric techniques, grid methods, etc.) [1] offer a very
rich tool to gain insight into and characterize the micro-
mechanical behavior of materials. Local displacement fields
and overall loadings on the boundary allow identification of

constitutive law parameters via the resolution of an inverse prob-
lem [2–5].

Themechanical behavior identification techniques can be
classified in five main categories (see [6] for an overview):
the finite element model updating method (FEMU) [7–13],
the reciprocity gap method (RGM) [14, 15], the constitutive
equation gap method (CEGM) [16–18], the virtual field
method (VFM) [19–27] and the equilibrium gap method
(EGM) [28, 29].

We focus here on the CEGM to identify the constitutive
law and its mechanical parameters for heterogeneous mate-
rials. This method — initially proposed by Ladeveze [30] to
estimate errors in finite element simulations — was used by
Constantinescu [31] and Geymonat [32] to identify elastic
parameters and spatial stress distributions. Latourte [33] pro-
posed an incremental version of the CEGM that introduces
tangent and secant stiffness tensors to identify a distribution
of elastoplastic fields. In the latter reference, the variational
method is, however, limited to linear hardening behaviors
and the stress field formulation (Airy functions) is only
adapted to simple geometries and regular meshes.
Furthermore, the two-step identification of plastic parameters
(yield stress and hardening modulus) implies that the size of
the plastic zone remains constant at every load step. The
method proposed here intends to overcome these difficulties
in order to describe both multilinear hardening behaviors of
materials and complex geometries.
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The proposed CEGM is based on the minimization of an
energy norm expressing the gap between a measured displace-
ment field and a finite element computed one. This energy
norm has to be understood in the sense of an elastoplastic
secant stiffness tensor Bs

——
. This tensor is expressed as a func-

tion of both the elastic and plastic material properties and of
the loading path. This tensor is equal to the standard elastic
tensor Be

——
for an elastic step (Hooke’s law). The identification

method proposed in this paper allows simultaneous identifi-
cation of the entire set of plastic parameters.

Section 2 presents the CEGM framework where we
propose a general presentation of the identification meth-
od and we describe the elastic and plastic identification
principles. In section 3, we detail the identification proce-
dure and its numerical implementation. In section 4, the
efficiency of the proposed approach is examined using
reference measurements numerically obtained with the
COMSOL Multiphysics finite element code. In the last
section, the performance of the method in identifying ma-
terial property fields is illustrated with experimental data.

Constitutive Equation Gap Method

Optical measurement techniques applied to full-field measure-
ments are becoming increasingly popular in research labora-
tories because of the density of information they provide. The
development and application of identification methods based
on full-field measurements is an active research field that cap-
italizes on the large amount of data produced by imaging
techniques. This study focuses on the identification of
elastoplastic models. Hereafter, we describe the general prin-
ciples of CEGM and then introduce the general concepts cho-
sen to describe elastoplastic behavior.

General Presentation of CEGM

The procedure is presented within a 2D framework (plane
stress) since the applications addressed here are related to thin
flat samples. Only three in-plane strain components were thus
investigated and only three material parameters were locally
(i.e. on a given material domain) identified using a single
displacement field. By taking several time steps into account,
it was possible to increase the number of parameters that could
be identified in each material domain.

The CEGM uses a statically admissible stress field σc
n
—

in-

volving a secant stiffness tensor Bs
n

——

determined at each load

step n:

σc
n—
¼ Bs

n—— : ε
c
n—

ð1Þ

where the strain tensor εcn—
is expressed as:

εcn
—

¼ ε— ucn
!� �

ð2Þ

with ε( ) standing for the small strain operator and ucn
!

representing the displacement field. We use the classical vec-
tor representation of the stress and strain tensors (Voigt’s no-
tation) such that the fourth order elastic and elastoplastic ten-
sors are represented by symmetric matrices.

We considered a quasi-static problem over a domainΩwith
stress-free boundaries ∂Ωi, boundaries ∂Ωj loadedwith overall

known forces R
!

j and boundaries with prescribed displace-
ments ∂Ωu satisfying ∂Ωj ∪ ∂Ωi ∪ ∂Ωu = ∂Ω, ∂Ωj∩ ∂Ωi =∅,
∂Ωi∩ ∂Ωu =∅ and ∂Ωj∩ ∂Ωu =∅:

div σc
n
— ¼ 0

!
in Ω

R
!

j ¼ ∫∂Ω jσ
c
n— n! ds on ∂Ω j

σc
n— n!¼ 0

!
on ∂Ωi

ucn
!¼ umn

�!
on ∂Ωu

8>>>>><
>>>>>:

ð3Þ

where umn
�!

stands for the measured displacement at load step n
and n! is the outer unit vector.

For a sequence of N successive load steps, the CEG func-
tional (FCEGM) depends on two sets of parameters, i.e. the

displacement field ucn
!

and the mechanical material parameters
on which Bs

n——
depends, and reads:

FCEGM ucn
!
Bs
n
——

� �
¼ ∑

N

n¼1
∫Ω ε ucn

!� �
−ε umn

�!� �� �
: Bs

n
——

: ε ucn
!� �

−ε umn
�!� �� �

dΩ

ð4Þ
Note that for a heterogeneous material the secant tensor de-
pends on both the load step n and the spatial position.

This procedure is applicable to any identification problem
in which the secant tensor can be analytically expressed as a
function of the material parameters and the loading state.
Depending on the material behavior, the secant tensor can take
different forms. In the next two sections, we describe the ex-
pressions of this tensor in the case of pure elasticity and
elastoplasticity.

Description of the Secant Tensor: Case of Cubic
Elasticity

In the case of cubic elasticity with a plane stress hypothesis,
the standard Hooke stiffness tensor can be written as:

Be

——
¼

b1 b2 0
b2 b1 0
0 0 b3

2
4

3
5 ð5Þ



with b1 ¼ E=1−ν2 , b2 = vb1 and b3 = 2G. The quantities E, v
and G are the Young modulus, the Poisson ratio and the shear
modulus, respectively. This tensor depends only on three ma-
terial parameters (b1, b2 and b3) that have to be determined
using equation (4).

Description of the Secant Tensor: Case of Prager
Elastoplasticity

The Prager linear kinematic hardening model formulated un-
der the plane stress assumption involves two parameters: a
yield stress σ0 and a hardening modulus h. The corresponding
behavior reads (implicit scheme and notations from [34]):

σcn
— ¼ Be

——
: εn—−εn

p
—

� � ð6Þ

with a yield function f depending on the back-stress tensor Xn
—
at

step n:

f σc
n
—
;Xn
—

� �
¼ σc

n
—
� Xn

—

� �
eq
−σ0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηnT——

: P−− : ηn—

q
−

ffiffiffi
2

3

r
σ0≤0 ð7Þ

where subscript ()eq stands for the von Mises equivalent stress,
and:

P ¼ 1

3

2 −1 0
−1 2 0
0 0 6

2
4

3
5 and ηn

—
¼ σc

n—− Xn
—

ð8Þ

The incremental flow rule reads:

Δεnp
—— ¼ Δγn

∂ f
∂σc

n
—

¼ Δγn P : ηn—
ð9Þ

where Δγn represents the plastic multiplier at load step n.

Finally, the back-stress increment ΔXn——
reads:

ΔXn—— ¼ 2

3
hΔγnηn—

ð10Þ

From these equations, we deduced the expression of σc
n—
by:

σcn
— ¼ Be

——

−1 þ Δγn
1þ 2

3 hΔγn
P——

" #−1
: εcn—− εnp—

� �
þ Δγn

1þ 2

3
hΔγn

P——
: X n——

2
64

3
75ð11Þ

Equation (11) is established for any situation where the
initial state (Xn—

and εnp—
) and the plastic increment (Δγn) are

known. In our situation, we adopt a secant formulation for
plasticity and we assume that the initial state corresponds to
vanishing plastic deformations and back-stress. The incre-
mental plastic strains and back-stresses become significant
when plasticity develops. Their variations are governed by
equations (9) and (10).

For a plastic step with no initial hardening (i.e. X n—
¼ 0 and

εnp— ¼ 0 ), an explicit formula for the elastoplastic secant ten-

sor Bs
n was obtained:

σcn
—

¼ Bs
n——
: εcn—

ð12Þ

where

Bs
n ¼ Be−1 þ Δγn

1þ 2
3 hΔγn

P

" #−1
ð13Þ

This tensor Bs
n—— could be expressed with respect to the

elastic parameters (E, G and ν) and plastic parameter Kn at
load step n:

Bs
n ¼

E 1þ 2KnEð Þ
3K2

nE2−2KnE ν−2ð Þ þ 1−ν2
E ν þ KnEð Þ

3K2
nE2−2KnE ν−2ð Þ þ 1−ν2

0

E ν þ KnEð Þ
3K2

nE2−2KnE ν−2ð Þ þ 1−ν2
E 1þ 2KnEð Þ

3K2
nE2−2KnE ν−2ð Þ þ 1−ν2

0

0 0
2G

1þ 12KnG

2
6666664

3
7777775

ð14Þ

with Kn defined as:

Kn ¼ Δγn σ0ð Þ
3þ hΔγn σ0ð Þ ð15Þ

The plastic parameter Kn depends both on the plastic ma-
terial parameters (the yield stress σ0 and the hardening
modulus h) and on the local mechanical loading (through
Δγn). Note that the secant tensor is equal to the elastic tensor
when the plasticity does not evolve, i.e. when Kn = 0.

Furthermore, both tensors have always the same structure
(even when plasticity occurs) as they are symmetric with
two equal components “11” and “22” and vanishing compo-
nents “13” and “23” (in the matrix representation).

Substituting the expression of Δγn(σ0), we have:

Kn ¼ 1

2h
1−

ffiffiffi
2

3

r
σ0=αn

 !
ð16Þ



where the quantity αn is given by:

αn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σc
n


 �T
: P—— : σc

n—

� �r
ð17Þ

It is possible to rewrite the plastic parameter Kn as a func-

tion of the norm of the equivalent plastic deformation εpn

��� ���
which is easily accessible in the Finite Element description
and as a function of two independent plastic parameters aK
and bK (depending only on σ0 and h):

Kn ¼ aK*
εpn
—

����
����

bK þ εpn
—

��� ��� with aK ¼ 1

2h
and bK ¼ σ0

h
ð18Þ

with εpn

��� ��� equal to:
εpn—

��� ��� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3
εpxx—

2 þ εpyy—
2 þ εpxx— þ εpyy—

� �2
þ 2εpxy—

2

� �s
ð19Þ

Expressions (1.16) to (1.18) of the elastoplastic secant ten-
sor Bs

n show that it is not possible to simultaneously identify

the couple (h, σ0) using a single load step for a homogeneous
test. The identification of these quantities requires either two
load steps for a homogeneous stress field, or a single load test
for a non- homogeneous stress field.

Minimization of the CEG Functional

In this section, the computation and minimization of the CEG
cost function are detailed. The convexity property of the cost
function was proved in the elastic case by Geymonat [23].
Since the secant tensor has the shape of a cubic elastic tensor,
this property extends to the elastoplastic case as soon as the
secant tensor remains positive-definite. This property allows
the use of a relaxationmethod for successively minimizing the
functional with respect to its first argument (i.e. the displace-

ment field ucn
!

associated with the stress field σc
n ) and then to

its second argument (i.e. the material properties introduced in
the expression of the secant tensor Bs

n ).

The separate convexity property ensures the existence and
uniqueness of the global minimum of the optimization prob-
lem and the existence of a unique solution for each minimiza-
tion. These minimizations were performed within the finite
element framework. The elastic and plastic properties were
consecutively identified. The developed algorithm consists in:

1/ identifying the elastic properties,
2/ determining the time step at which the plasticity locally
occurs,

3/ identifying the plastic properties starting from this plas-
ticity onset.

These three steps are described hereafter.

Spatial Discretization of the Fields Involved
in the Identification

As already noted, three fields have to be defined in order to
compute the CEG functional: the phase distribution (account-
ing for the mechanical property heterogeneity), the stress
fields, and the experimental displacement fields obtained by
DIC. These three fields are discretized on different meshes
with adapted shape functions. The corresponding meshes are
‘nested’ one into each other: the ‘DIC mesh’ is a subdivision
of the ‘stress mesh’, which is itself built as a subdivision of the
‘mechanical properties mesh’ (see Fig. 1). The shape func-
tions used to describe the fields on these three meshes are
different. The stresses are determined via a FE computation
using bilinear displacement elements. The local DIC compu-
tation is here performed using bilinear shape functions (higher
order descriptions are available). The continuity of the dis-
placement field is enforced by averaging the displacement
on the mesh vertexes. Finally, the mechanical properties are
constant on each material domain.

Fig. 1 Example of meshes used to describe: (a) the material properties
(here 4 physical domains associated with 4 phases) (b) the elastic stress
field (138 elements) (c) the plastic stress field (552 elements) and (d) the
DIC-measured displacement field (2208 elements)



Moreover, it is possible to use different stress meshes
in both elasticity and plasticity. We assume that stress
gradients can be higher in plasticity than in elasticity
due to possible plastic localization. The ‘plastic mesh’ is
thus a subdivision of the ‘elastic mesh’ in order to reduce
the influence of noise on the identification, while main-
taining a convenient description of the stress gradients. To
conclude, four meshes were introduced, from coarse to
fine: (1) the ‘material mesh’ or ‘phase mesh’ (see Fig.
1a), (2) the ‘elastic identification mesh’ (see Fig. 1b),
(3) the ‘plastic identification mesh’ (see Fig. 1c) and (4)
the ‘DIC mesh’ (see Fig. 1d).

The ‘material mesh’ example in Fig. 1a shows that the
grains were grouped in four phases corresponding to four
material areas. In case of a heterogeneous material involving
nk material domains, the CEG functional reads:

FCEGM ucn
!
;Bs

n——

� �
¼ ∑

k¼1

nk

∑
N

n¼1
∫Ωk ε

— ucn
!� �

−ε— umn
�!� �� �

: Bs
k;n
——

: ε
— ucn

!� �
−ε— umn

�!� �� �
dΩ ¼ ∑

k¼1

nk

Fk
CEGM ucn

!
;Bs

k;n——

� �
ð20Þ

where Bs
k;n represents the secant tensor in the kth material

domain at time step n. Note that this quantity also depends
on the position in the case of plasticity.

Elastic Properties Identification

At a given load step N, the elastic properties identification
consists first in estimating the stress field σc

n at any 1 ≤ n ≤N
starting from a given mechanical property field and second in
updating the property field in order to reduce the CEG cost
function FCEGM. These two operations are iteratively applied
until convergence.

Calculation of the Stress Field σc
n

At any load step 1 ≤ n ≤N, the measured displacement field

umn
�!

, the location of the stress-free and loaded boundaries
and the overall loadings are assumed to be known. The CEG
functional is minimized with respect to the displacement field

ucn
!
. We underline that at each loading step n, the FE solution of

a heterogeneous elastic problem is used to compute the dis-
placement field in both elasticity and plasticity. The algorithm
is initialized with a set of non-vanishing arbitrary material
parameters leading to an initial elastic stiffness tensor B0.

The form of the constitutive law was here given by
the equation (17) with Kn = 0. Before starting the mini-

mization, the displacement fields umn
�!

were projected (in
the least-squares sense) for each loading step on the

elastic mesh. Since the ‘elastic’ mesh was, by construc-
tion, coarser than the DIC mesh, this projection
consisted in filtering the displacements obtained by cor-
relation, with the characteristic size of the filter being
linked to the scale ratio between the two meshes. The
cost functional was then minimized with respect to its
first argument under the global and local equilibrium
assumptions:

ucn
!¼ argmin FCEGM :;Bs

n
——

� �
ð21Þ

This first step in the minimization process allows the
selection of one of many possible displacement fields,

ucn
!

and the corresponding standard admissible stress
field, σc

n.

Determination of the material properties

After computing the set of displacement fields ucn
!
, the stress σc

n

is computed from the behavior law. In elasticity, the determi-
nation of material properties is explicit and corresponds to the
stationarity of the CEG functional FCEGM with respect to the
material parameters.

For plane displacement measurements and a given material

domain (k), the stationarity of Fk
CEGM with respect to its sec-

ond argument leads to three equations allowing the determi-
nation of the elastic parameters Ek, vk and Gk. Equation (5)
shows that the elasticity tensor can be written as a function of
parameters b1, b2 and b3. As proposed in [24, 25], the material
minimization is performed analytically using the bi parame-
ters, and the elastic constants are determined by expressing Ek,
vk and Gk with respect to the bi.

Convergence criterion

For a given load step N, the procedure is stopped when the
following convergence criterion on the elasticity tensor is
reached on every material domain k (i and i + 1 denote two
successive iterations, ϵe is about 0.001 and Ak k2 stands for
the L2-norm of any tensor A ):

Be
k;N
——

� �
iþ1

− Be
k;N
——

� �
i

����
����
2

< ϵe Be
k;N
——

� �
iþ1

����
����
2

ð22Þ

Moreover, during this elastic properties identification, the on-
set of plasticity is checked.



Detection of plasticity onset

The detection of the last elastic load step, denoted Ne,
consisted in estimating the variation in the elastic tensor
over each material domain k:

∃k; Be
k;Neþ1———————— −

Be
Ne————

����
����
2

> ϵp Be
k;Neþ1————————

����
����
2

ð23Þ

where ϵp was typically about 0.05. The elastic parame-
ters are updated to match those identified at this step,
and we consider that the plasticity starts at step Ne + 1.
Once at least one material domain reached plasticity, the
elastic identification procedure is stopped and the plastic
identification starts. Consequently, any significant
change in the identified secant tensor is related to the
onset of plasticity. This strategy has two main advan-
tages: (i) the plasticity detection is independent of any a
priori for the yield stress, and (ii) it is defined by in-
troducing a single parameter quantifying the relative
change in the identified secant tensor. This change is
independent from the chosen set of elastic parameters.

The minimization algorithm for the elastic identification is
summarized in Fig. 2.

Plastic Identification

The plastic identification requires knowledge of the stress
state through the (load-dependent and unknown) plastic pa-
rameter Kn in order to estimate the secant tensor. Since this
parameter Kn depends on the local loading path, it is not con-
stant over each material domain and has to be identified for
each element of the stress mesh.

Initial estimation of parameter Kn

Assuming an overall radial and monotonic loading (see
Figure 3), a secant elastic identification is performed at each
plastic step, thus allowing a simultaneous access to the secant
elastic stiffness tensor at various time steps (n >Ne) for each
material domain (k) and a compatible stress field for each load
step n (σc

n ). The corresponding parameters are denoted with the
subscript "es" (Ees

k;n, ν
es
k;n and Ges

k;n ) since they differ from the

actual elastic constants (Ek, νk, Gk) identified at time step Ne.
At this stage, a plastic parameter Kk, n can be estimated for

each material domain k and at each plastic step n. Assuming that
the plastic properties are homogeneous at the initialization step
over each material domain and equalizing for each domain k and
at each plastic step n the identified secant elastic tensor to the
secant elastoplastic tensor, the plastic parameter Kk, n is found as
the only unknown of a three equation system solved in a least
squares sense:

Ees
k;n

1−νesk;n
2

Ees
k;nν

es
k;n

1−νes2
0

Ees
k;nν

es
k;n

1−νesk;n
2

Ees
k;n

1−νesk;n
2 0

0 0 Ges
k;n

2
666664

3
777775 ¼

Ek 1þ 2Kk;nEk

 �

3Kk;n2Ek2−2Kk;n νk−2ð Þ þ 1−νk2
Ek νk þ Kk;nEk

 �

3Kk;n2Ek2−2Kk;nEk νk−2ð Þ þ 1−νk2
0

Ek νk þ Kk;nEk

 �

3Kk;n2Ek2−2Kk;nEk νk−2ð Þ þ 1−νk2
Ek 1þ 2Kk;nEk

 �

3Kk;n2Ek2−2Kk;nEk νk−2ð Þ þ 1−νk2
0

0 0
2Gk

1þ 12Kk;nGk

2
66666664

3
77777775

ð24Þ

This leads via equation (14) to a first estimate of the secant

elastoplastic tensor Bs
k;n

� �
0

for all loading steps n greater

than Ne. Again, this first estimate of the secant elastoplastic
tensor is assumed to be homogeneous over each material do-
main at each loading step.

Identification of Plastic Properties Once this secant
elastoplastic tensor is initialized, the local plastic parameters
and stress fields can be identified. The determination of the
plastic parameters is performed in two consecutive minimiza-

tions: first with respect to the displacement field ucn
!

associated
with a statically admissible stress field σc

n and second with

respect to the secant tensor Bs
n to identify the material

parameters. The first minimization is done in the same
manner as during the elastic identification, while chang-
ing only the stress mesh (see Figure 1c). Once the dis-
placement fields are calculated for all plastic loadings,
the plastic parameters are determined via the second ‘ma-
terial’ minimization. The second minimization step con-
sists in minimizing FCEGM (1.20) with respect to param-
eters aK and bK. Unlike the elastic identification, the
obtained system of two equations with two unknowns
is not linear. This system is numerically solved using a
gradient-based algorithm. The existence and unicity of
the solution is not ensured. If no solution is found or if
the identified parameters are not physically acceptable
(i.e. negative), the material domain is assumed to remain
elastic.



From the parameters aK and bK at a given load step, the
local values of parameters K and α are computed using the
expressions (1.17), (1.18) and (1.19) on each plastic mesh
element. In the case of a linear kinematic hardening model,
it can be shown that the following relation is affine with a
slope equal to h (hardening modulus) and an ordinate at the
origin equal to σ0 (yield stress):

ffiffiffi
3

2

r
αi
n ¼ f 2

ffiffiffi
3

2

r
Ki

nα
i
n

 !
ð25Þ

At any plastic time step n >Ne, σ0 and h are determined for
each domain by performing a linear regression on the set of

pairs 2
ffiffi
3
2

q
Ki

nα
i
n;

ffiffi
3
2

q
αi
n

� �
associated with all elements i of the

considered material domain. The quantity 2
ffiffi
3
2

q
Ki

nα
i
n is the

local equivalent plastic strain while
ffiffi
3
2

q
αi
n is the effective

von Mises stress.
The graph in Figure 4 concerns a given material domain

and each cross represents a calculated value, after conver-
gence, for a given element of the plastic mesh at a given time
step. The elements that weakly deform (using a criterion sim-
ilar to that given in Equation (23)) are plotted as red circles and
are not included in the linear regression. Here again, we intro-
duce a threshold defined by reference to the maximum plastic
deformation below which it is considered that the plastic de-
formation is too small to achieve a reliable identification. The
theoretical answer (straight line) is superimposed in Figure 4.

This procedure is done iteratively until convergence using again
a relative norm of the difference between the secant tensors iden-
tified at two consecutive iterations. At convergence, we obtain the
stress tensor σc

n, the hardening modulus h, the yield stress σ0, the

secant elastoplastic tensorBs
n and the fieldsKn andαn for all plastic

steps n>Ne. The iterative procedure is presented in Figure 5.

Multilinear Behavior The previous approach can be straightfor-
wardly extended to the case of multilinear kinematic hardening
since the expressions of the secant elastoplastic tensor (1.16 -
1.17) remain valid even if the behavior is not associated to a

Fig. 2 Elastic identification
algorithm for a given load step N

Fig. 3 Secant elastic identification for a given material domain k



linear kinematic hardening, the curve
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cor-

responding then to the hardening law of the material.
At that point, we define the classes onwhich the multilinear

hardening has to be determined. These classes correspond to

the limits of the deformation intervals in which the hardening
curve is discretized.

The Figure 6a shows the couples
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obtained after the initialization procedure of parameter

Fig. 5 Plastic identification
algorithm

Fig. 4 Example of a curve αi
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obtained at two time

steps in a heterogeneous test



Kn. These values are obtained using FE-generated data
associated with a homogeneous tensile test with bilinear
hardening (yield stress σ0 = 300 MPa, h1 = 10 GPa, σ1 =

400 MPa, h2 = 2 GPa) on a dog-bone specimen In this
figure, the green circles represent the hardening classes
used fo r the in i t i a l i za t ion of the mul t i l inea r

Fig. 6 a Identification data and
hardening classes at the first
iteration. b Example of a curve
α = f (K ∗α) obtained for a
heterogeneous test on a material
having bi-linear hardening (nu-
merical test)



identification. Note that the classes could be irregular. It
is important to mention here that in this example the
real transition between the two hardening regimes was
compatible with the hardening initialization classes.
With this choice, it was possible to capture the real
material constants.

For a given iteration and for the mth class, we isolate the

points in the plane
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belonging to that

class and we identify the hardening characteristics (km and
σm) in class m by linear regression.

If the identified parameters of two constitutive classes (m
and m + 1) are close enough, i.e.:

hmþ1−hmj j
hmþ1

< δhardening ð26Þ

we considered that both classes corresponded to a single hard-
ening and they are merged, otherwise they are considered as
two different hardenings. The parameter δhardening is user-
defined (typically 0.05) and quantifies the minimal hardening
variation between two consecutive classes. The criterion used
to quantify the hardening evolution can be modified to also
take into account changes in the ordinate at the origin σm
between two consecutive classes.

Figure 6b shows the couples
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obtained

after convergence of the algorithm. This figure shows that the
proposedmethod allows correct identification of the two hard-
ening segments. This procedure enabled automatic determina-
tion of hardening segments in the material response.

In the next section, we present the validation of the proce-
dure for identifying heterogeneous property fields using data
from finite element simulations on different types of struc-
tures. These numerical data are intentionally corrupted using
white Gaussian noise to check the robustness of procedure
with respect to perturbations.

Inverse Problem Resolution: Numerical Data

In this section, the numerical simulations are conducted with
COMSOLMultiphysics software to obtain manageable inputs
for the identification procedure. The local in-plane compo-
nents of the displacement field are extracted at the nodes of
the finite element discretization and the overall loadings are
extracted at the outer boundaries. The identification method is
tested on numerical examples concerning both homogeneous
or heterogeneous materials subjected to uniaxial tensile test.
Moreover, the robustness of the method is illustrated by study-
ing its sensitivity on noisy data.

Finite Element Models

The identifications are carried out on two numerical tests.

(i) The first test (specimen 1) concerned a standard tensile
test performed at constant velocity on an isotropic
elastoplastic material (Young modulus E = 210 GPa,
Poisson ratio v = 0.3, yield stress σ_0 = 300 MPa and
hardening modulus h = 1 GPa). The material parameters
are identified using data associated with four load steps
(one in the elastic domain, and three in the plastic one).
Although the material was homogeneous, the identifica-
tion is conducted in four material domains to illustrate the
ability of the method to deal with low contrast materials
(Figure 7).

(ii) The second test (specimen 2) corresponds to a polycrys-
talline metallic material consisting of four phases (“R”
red, “O” orange, “Y” yellow and “G” green) randomly
distributed in a tessellation and associated with four dif-
ferent sets of material parameters (Figure 8).

As previously mentioned, four different meshes are
used for the identification method (see Figure 9 for
the first test).

Different meshes are used for the direct computation of
the reference displacement fields and for the inverse iden-
tification. However, the modeling error is cancelled by
using the same mechanical models in the direct computa-
tion and in the identification procedure. The choice of
DIC mesh and stress mesh (definition of refinement ratios
in particular) is crucial in the identification process. The
DIC mesh has to be chosen to limit DIC measurement
errors (model error, interpolation error, etc.) [35], the
stress mesh (elastic and plastic) has to be fine enough to
catch the stress gradients and the material mesh has to be
compatible with the heterogeneity of the material.

Fig. 7 Geometry and properties of the first specimen (300 mm radius,
100 mm height, 10 mm width at the center and 1 mm thickness)



For the direct computation, the constant vertical dis-
placement is prescribed on the lower and the upper
boundaries of the specimen, in-plane rigid body motion
are avoided prescribing the horizontal displacement of
one node of the structure, and the other boundaries are
stress-free. These boundary conditions are applied to both
geometries tested in this section. Direct calculations are
performed under small perturbation and plane stress

assumptions. The investigated mechanical properties cor-
respond to isotropic elastoplastic behavior with linear or
multilinear kinematic hardening.

Homogeneous Structure with Heterogeneous Fields:
First Specimen

The shape of specimen 1 provides heterogeneous mechanical
fields for a homogeneous material and thus allows a validation
of the method in a slightly heterogeneous situation. This spec-
imen is also used to analyze the sensitivity of the identification
method on the identification mesh, on the initialization param-
eters and on the measurement noise.

Identification on identical meshes

First we use identification meshes (displacement and stress)
similar to the one used for direct calculation. The geometry is
divided into four material domains (Z1, Z2, Z3, Z4)
(Figure 10a) wherein the material parameters are assumed to
be constant while the direct computation is performed on a
homogeneous material. The identification is performed at one
load step in the elastic response and at three steps in the plastic
response (see time-strength curve in Figure 10b). The initial
values in the elastic identification algorithm are set to about
the half of the values imposed in the direct calculation (E0 =
100 GPa et v0 = 0.15). No initial values have to be chosen for
plastic parameters since they are determined during the secant
elastic identification.

Table 1 summarizes the results of the elastoplastic identifi-
cation for the four material domains (Z1 to Z4). The identified
values are very close to the reference values. The maximum
relative error is about 3% for the hardening modulus k (other-
wise for a single material domain it is about 1%). The elastic
constants and the elastic limit are identified with very good
accuracy (less than 0.5% relative error).

One loading step is sufficient to identify elastic properties
but considering more loading steps can improve the accuracy
of the linear identification in the case of noisy experimental
data. For the plastic identification, three loading steps are here
overabundant since a low heterogeneity is expected in the
mechanical fields and a single step could have been possible.
The identified parameters corresponded to a homogeneous
material: the four material domains (zones 1-4) are identified
with very similar coefficients (3% maximum relative error,
Table 1). The identification procedure converges in 6-8 itera-
tions (elastic and plastic) and the calculation time is about 8-
10min for complete identification (calculation performed on a
HP Z820 Workstation).

In the sequel, we systematically represent the mean stress
per element. Figure 11a and b show the accuracy between the

axial stresses obtained by direct calculation σm
yy

� �
and by

Fig. 9 First specimen: ‘DIC’ mesh with 3072 quadrangular elements

used to obtain the measured displacement fields denoted umn
�!

at each
loading step (a), ‘plastic’ mesh with 768 elements used to describe the
stress field in the plastic identification step. (b), ‘elastic’ mesh with 192
elements used to describe the stress fields in the elastic identification (c)
and four material domains (d)

Fig. 8 Geometry and properties of the polycrystalline specimen
consisting of four phases (R, O, Y, and G) and 12 grains (b1 to b12)



identification σc
yy

� �
, the relative error being less than 3%.

Figure 11c shows the von Mises stress of the absolute error.
Note that the highest error levels are located in the corners of
the specimen where the stress gradients are the strongest.
These errors can be explained by the fact that the meshes used
for the ‘elastic’ (192 elements) and ‘plastic’ (768 elements)
identifications are coarser than those used for the simulation
(3072 elements).

Sensitivity to the initial set of the elastic identification

The method only required the choice of a set of initial material
parameters. The sensitivity of the procedure to these initial
values is checked on three initial sets. The convergence speed
is also highlighted. The material constants are identified on a
single material domain. The results are presented in Table 2.

The three sets of initial values correspond to: (i) a very
soft material, (ii) a material with consistent elastic prop-
erties (i.e. in the correct order of magnitude compared to
the reference values), and (iii) a non-physical material
(Poisson ratio greater than 0.5). In general, deviations in
the identified values are very small (less than 0.1%), ex-
cept for the hardening modulus (about 3%). They corre-
spond to less than 1 MPa for the elastic modulus and for
the yield stress. They reach about tens of MPa in the
hardening modulus. This table shows that the identified
parameters are in good agreement with the reference
values whatever the initial set and that the identification
procedure is stable with respect to this initial set. In addi-
tion, the computational time is not significantly affected
by the initial set choice.

Sensitivity to mesh size

The dependence of the identification procedure according to
the mesh size turns now to be investigated in specimen 1. An
identical mesh is chosen for the elastic, plastic and DIC identi-
fication. Three different mesh sizes (coarse, normal and fine)
are investigated. The mesh used for the direct computation has
2944 bi-linear quadrangular elements, while the coarse, normal
and fine meshes have respectively 358, 1432 and 1958 qua-
drangular elements. Table 3 summarizes the obtained results.

The main conclusion is that the use of a finer mesh im-
proved the plastic identification results since stress gradients
are more accurately estimated. When the identification stress
mesh is similar to that used for the direct computation, the
identification error tends to vanish. As expected, the compu-
tation time increases with size of the problems.

Fig. 10 Material meshes (a) and
load steps used for identification
(b)

Table 1 Parameters identified by the inverse method

Parameters E (GPa) v k (GPa) σ0 (MPa)

Reference value 210.00 0.30 1.00 300.00

Z1 209.80 0.30 1.03 298.49

Relative error (%) 0.10 0.00 3.00 0.50

Z2 210.05 0.30 0.99 299.51

Relative error (%) 0.02 0.00 1.00 0.16

Z3 210.12 0,30 1.00 299.38

Relative error (%) 0.06 0.00 0.00 0.21

Z4 209.86 0.30 0.99 299.60

Relative error (%) 0.07 0.00 1.00 0.13



Robustness to measurement noise

The above results (sections 4.2.1 to 4.2.3) were obtained using
the displacement fields directly extracted from the FE simula-
tion. Since experimental measurements are never noise-free
and inverse methods are known to be very sensitive to noise,
we add here to FE-computed displacement fields some
Gaussian white noise (standard deviation γ). Three different
noise amplitudes are investigated: the “reference” noise level
(σu ¼ σr

u ¼ 0:01 pixels ), the “low” noise level (σu ¼ 2σr
u )

and the “high” noise level (σu ¼ 4σr
u ). The conversion from

metric dimension to pixels is performed based on the assump-
tion that the specimen length corresponded to the size of the

CCD sensor, i.e. here 4864 pixels. The “reference” noise level
is consistent with typical errors obtained by DIC for weakly
heterogeneous fields [26].

A statistical analysis is performed by comparing the iden-
tification results obtained using 50 different draws of displace-
ment noise, and computing the average and standard deviation
of the identification error on the material constants. Focusing
on this noise error, we perform the analysis on a rectangular
sample submitted to a uniform uniaxial stress field. The rect-
angle dimensions are chosen in accordance to the other spec-
imen dimensions. The identification study is performed using
one material domain. The finite element mesh is identical to
the mesh used to describe the displacements obtained by cor-
relation. These two grids consist in 448 quadrangular ele-
ments. The mesh includes 28 elements for elastic identifica-
tion and 112 elements for plastic identification. Two cases are

Fig. 11 Transversal stress of the
last loading step obtained by: FE
calculation σm

yy (a) and by iden-

tification σc
yy (b) and the von

Mises stress of the absolute error
(c)

Table 2 Sensitivity to the initial settings: specimen 1

Parameters E (GPa) v k (GPa) σ0(MPa)

Reference value 210.00 0.30 1.00 300.00

Initial value 1 1.00e-09 1.00e-09 …….. ……..

Identified value 209.74 0.30 1.03 300.10

Relative error (%) 0.12 0.00 3,00 0,03

Iterations 7 7 8 8

Initial value 2 155.00 0.15 …….. ……..

Identified value 209.77 0.30 1.03 300.10

Relative error (%) 0.11 0.00 3.00 0.03

Iterations 7 7 6 6

Initial value 3 420.00 0.60 …….. ……..

Identified value 209.84 0.30 1.03 300.09

Relative error (%) 0.08 0.00 3.00 0.03

Iterations 8 8 6 6

Table 3 Sensitivity to the mesh density

Parameters E (GPa) v k (GPa) σ0(MPa)

Reference value 210.00 0.30 1.00 300.00

Coarse mesh

Identified value 209.42 0.30 1.03 300.09

Relative error (%) 0.10 0.00 3.00 0.03

Normal mesh

Identified value 209.94 0.30 0.99 302.79

Relative error (%) 0.03 0.00 1.00 0.93

Fine mesh

Identified value 209.94 0.30 1.00 299.63

Relative error (%) 0.03 0.00 0.00 0.12



investigated. The first one consists in direct use of the noisy
displacements for identification while the second one used
filtered displacements (projection in a least square sense of
the noisy displacements on the stress elements).

Table 4 shows the results obtained without filtering.
Naturally, the identification error (average and standard devia-
tion) increases with the noise amplitude. The error on the elastic
constants is significantly higher than for the plastic constants:
for a fixed noise level, the signal-to-noise ratio is lower in the
elastic case (in metallic materials, plastic deformations are typ-
ically about 10−2, while elastic deformation is about 10−3). As
often observed, the Poisson ratio is more sensitive to noise. For
the reference noise level, the identification error on the elastic
constants is relatively high (greater than 10%), while the error
on the plastic constants is more acceptable (less than 3%). This
result can be explained by two reasons. First, the relative error
on the elastic deformation is higher than the one associated with
plastic deformation. Second, the plastic mesh is finer than the
elastic mesh; consequently, one can expect the stress field to be
better approximated using the (fine) plastic mesh than the
(coarse) elastic mesh.

Table 5 shows the results obtained by keeping the same
stress discretization and filtering the displacement data. It
shows that the identification precision was improved (around
6% maximum relative error on the elastic constants). The
filtering improved the identification while retaining the
method’s ability to describe heterogeneous stress fields.

Identification of Heterogeneous Parameters
and Stress Distribution: Coarse-Grained
Polycrystalline

In this section, we focus on identifying heterogeneous mate-
rials. The 12 polyhedral “grains” sample (see Figure 8) con-
sists in four phases (each regrouping three grains) associated
with different material parameters. The behavior of each phase
is assumed to be isotropic with a J2-elastoplastic kinematic
hardening behavior.

In this identification, we used a single load step for the
elastic identification and ten load steps for the plastic identifi-
cation (see Figure 12a). The mesh size used for the identifica-
tion was different from the one used for the direct calculation.

Table 4 Sensitivity of the method to experimental noise: without filtering

Parameters E (GPa) v k (GPa) σ0(MPa)
Reference value 210.00 0.30 1.00 300.00

Noise
Amplitude: 1 ∗σu

Mean identified value 184.48 0.24 1.03 299.66

Relative error (%) 12.15 20 3 0.11

Standard deviation 1.93 GPa 0.01 33.5 MPa 0.67 MPa

Noise
Amplitude: 2 ∗σu

Identified value 142.27 0.16 1.12 298.70

Relative error (%) 32.26 46.66 12 0.43

Standard deviation 3.10 GPa 0.02 100 MPa 1.81 MPa

Noise
Amplitude: 4 ∗σu

Identified value 87.23 0.09 1.47 294.84

Relative error (%) 58.46 70 47 1.72

Standard deviation 2.82 GPa 0.02 160 MPa 2.77 MPa

Table 5 Sensitivity of the method to experimental noise: with filtering

Parameters E (GPa) v k (GPa) σ0(MPa)
Reference value 210.00 0.30 1.00 300.00

Noise Amplitude: 1 ∗σu Identified value 209.45 0.30 1.00 299.96

Relative error (%) 0.26 0 0 0.01

Standard deviation 1.28 GPa 0.006 7.17 MPa 0.15 MPa

Noise Amplitude:2 ∗σu Identified value 207.97 0.29 1.00 299.92

Relative error (%) 0.99 3.3 0 0.02

Standard deviation 2.58 GPa 0.01 13.3 MPa 0.26 MPa

Noise Amplitude: 4 ∗σu Identified value 202.62 0.28 1.01 299.84

Relative error (%) 3.51 6.6 1 0.05

Standard deviation 5.02 GPa 0.02 29.7 MPa 0.57 MPa



The mesh associated with the displacement fields consists in
13,072 elements (Figure 12b), while that used for the elastic
identification has 817 elements and the mesh for the plastic
identification consists in 3268 elements. The mesh of the di-
rect computation had 15,049 bi-linear elements. We also

assume that the phase distribution is known a priori (e.g.
through EBSD analysis). We associate a material domain to
each phase and identify the mechanical constants on each one.
In Figure 13, we compare the reference Young’s modulus and
hardening modulus with respect to those identified.

Fig. 13 Comparison between
identified and reference values of
Young’s Modulus and hardening
modulus: Young’s Modulus of
reference (a) and the calculated
(b), hardening modules of refer-
ence (c) and the calculated (d)

Fig. 12 Global loads and load steps used for identification (a) and mesh associated with the Bmeasured^ kinematic fields (b)



In Figure 13d, a maximum relative error of about 2% is
observed. The results of the identification for all parameters
are shown in Table 6.

Table 6 and Figure 13d show that the largest identification
errors were obtained with the hardening modulus. Table 6
indicates that, for each material domain, all the identified ma-
terial parameters were either always overestimated or always
underestimated.

Figure 14 compares the stress field identified at the last
plastic step to the one computed by FE simulation at the same

load step (reference field). The distribution and magnitude of
the identified stress are similar to those of the stress from the
FE simulation. Note, however, that the identified stress is
slightly higher in some elements than the computed one.
The stress gradients are properly transcribed except in areas
of high stress gradients near the grain boundaries. The stress
field identification is less accurate in the vicinity of triple
points. The grain shape and the boundary orientations with
respect to the loading direction have a significant influence
on the stress distribution.

Inverse Problem Resolution: Experimental
Data

This section presents the identification results obtained with
the experimental data.

Testing Conditions

The sample (Figure 15) is machined on a 2.6 mm thick DP600
dual phase plate obtained by hot rolling. This material con-
tains a hard phase of martensite dispersed in a ductile ferrite
matrix. A typical grain size is about 10 μm and the material
can reasonably be assumed to be homogeneous in its initial
state with elastoplastic behavior.

Figure 16 illustrates the prescribed mechanical loading.
The tests consist in a series of velocity-controlled loading/

Fig. 14 Transversal stress of the
last loading step obtained by: FE
calculation σm

yy (a) and by iden-

tification σc
yy (b) and the von

Mises stress of the absolute error
(c)

Table 6 Parameters identified by the inverse method for the four
polycrystal phases

Parameters E (GPa) v k (GPa) σ0(MPa)

Phase 1
Reference value 210.00 0.30 2.00 300.00
Identified value 208.218 0.298 1.963 299.831
Relative error (%) 0.85 0.67 2.04 0.05
Phase 2
Reference value 180.00 0.25 2.5 300.00
Identified value 178.058 0.249 2.442 299.585
Relative error (%) 1.09 0.40 2.32 0.14
Phase 3
Reference value 150.00 0.2 1.5 300.00
Identified value 151.226 0.200 1.539 300.670
Relative error (%) 0.81 0.00 2.60 0.22

Phase 4
Reference value 100.00 0.15 1.00 300.00
Identified value 102.062 0.152 1.035 301.013
Relative error (%) 2.02 1.3 3.5 0.33



unloading cycles with an increasing maximum load level.
Each cycle starts with a ten seconds pause at a null load level
to acquire images of the unloaded sample and the jack speed is
set at 0.1 mm.s−1 during loading and at 0.02 mm.s−1 during
unloading. The image acquisition frequency is set at 5 Hz.
Note that the identification is performed here without using
data associated with unloading steps.

Figure 17 illustrates the reference curve obtained using a
classical dog-bone specimen and identifying the elastoplastic
behavior on the stress-strain macroscopic response obtained
using DIC. The “gauge length” of the strain measurement was
110 mm.

Identification Result

The sample specimen is designed to generate controlled strain
localization due to the stress gradient along the specimen axis.
The loading and time steps for the identification are shown in
Figure 18.

The meshes used for the identification are shown in
Figure 19. Two multilinear elastic-plastic identifications are
performed, i.e. the first one on a single material domain
(Figure 19a) and the second on a ten material domains
(Figure 19b). The DIC mesh consists in 640 quadrangles.
The meshes for the elastic and plastic identifications
respectively consist in 40 and 160 elements.

Identification on one Material Domain

For the first identification, the identified elastic constant values
are equal to 173 GPa for the Young’s modulus and 0.18 for the

Poisson ratio. The identified yield strength (355 MPa) is in
agreement with the reference value (see Figure 20).

Five hardenings are identified and the identified elastoplastic
parameters are also in good agreement with the reference values.
The identified stress-strain curve is very similar to the reference
curve (error less than 3% in the hardening regime). Let us men-
tion that the identified curve is reconstructed for a uniaxial ten-
sile test using the identified parameters (yield stress, hardening
moduli, …). This curve is obtained assuming there is a single
material domain. It does not correspond to the response of a
specific location on the sample.

Figure 21 shows the identified stress distributions for the
last plastic step. The fields are heterogeneous and the gradi-
ents are consistent with the expected results, as depicted by the
different symmetries: the σc

xx and σ
c
yy stress fields are symmet-

ric with respect to the axes (O, x) and (O, y) and the σc
xy stress

field has a central symmetry with respect to the specimen
center O. The shapes of these ‘experimental’ stress fields are
very similar to those given by direct numerical simulation, and
the amplitudes of the stress components are, by construction,
compatible with the sample overall equilibrium. This confirms
the validity of the identification method.

Identification in ten Material Domains

For the second identification, we perform elastic identification
on a single material domain due to the poor signal-to-noise ratio
in the elastic strain fields. The identified elastic constants are
identical to those identified in the homogeneous case:
173GPa for theYoung’smodulus and 0.18 for the Poisson ratio.

Fig. 16 Overall strength (a) and
overall displacement imposed on
the cyclic test (b)

Fig. 15 Second specimen:
dimensions in mm



Figure 22 compares the plastic stress-strain curve for
the first and second identification and the reference re-
sponse. The hardening curves identified on each domain
are plotted in the “equivalent plastic strain-von Mises
equivalent stress” diagram using the identified parame-
ters. Here again, these curves do not correspond to the
response of a specific location on the sample. The ma-
terial responses are also reconstructed from the parame-
ters identified on each material domain. We mean that
the responses identified on each material domain are
very close to the one identified on a single domain
(on the same specimen) and also to the one determined
on the standard dog-bone specimen.

The ten responses indicate the symmetry in the iden-
tification results compatible with the stress and strain
gradients imposed by the sample geometry. The differ-
ences in the ten material responses are due to the fact
that the identification has been performed using a very
limited set of three load steps (each one corresponding

to one recorded image). For a given macroscopic load
step, the mechanical states of the material domains are
different due to the stress and strain gradients along the
sample axis: the center of the specimen being more
strained than the ends of the specimen. When the sam-
ple is divided into ten material domains, the gradients
within each material domain are very limited.

The space covered by the mechanical state (von
Mises stress vs plastic strain) and used in the identifi-
cation is discrete. When the mechanical fields are ho-
mogeneous on a given material domain for a given im-
age (or applied load), a single material state is obtained.
When the mechanical fields are heterogeneous on the
material domain, several material states are obtained
on a single image. Naturally, the higher the gradients
in the mechanical fields, the larger the set of material
states. In the situation presented in the paper, when the
sample is divided into ten material domains, the me-
chanical gradients are very limited on each domain.
Consequently, using the limited set of images, it is not
possible to perfectly describe the whole material states
and the identified properties are slightly different than
the “reference one”. Increasing the number of images
used in the identification would make this differences
vanish.

Finally, this result confirmed the homogeneity of the tested
material and demonstrated the ability of the method to identify
local material responses. Furthermore, the two identification re-
sults were in good agreement with the reference response iden-
tified in the same material but on a standard tensile specimen.

The identified stress distributions are realistic and consis-
tent with those given by the first identification (see Figure 23).
In this experiment, the heterogeneous stress field along the
sample axis is correctly identified.

Fig. 17 Reference stress-strain
curve for a simple traction test on
DP600 steel

Fig. 18 Global load measured during the test and load steps used for
identification



Conclusions and Prospects

In this study, a constitutive equation gap method was proposed
to identify heterogeneous multilinear elastoplastic behaviors.
The numerical formulation involved several regularization
levels. The first one consisted in the a priori description of the
material heterogeneity through the definition of the material
mesh. The second onewas obtained by differentiating the spatial
description of the identified stress gradients and the measured
displacement gradients using suitable displacement and stress
meshes. As the signal-to-noise ratio was different in elasticity
and plasticity, we proposed to adapt the spatial description to the
mechanical regime. The proposed method involved a cost func-
tion based on a variational approach that was separately convex.

This last property still ensured the existence of a minimum and
justified the use of a relaxation method for minimization of the
functional. In a first step, the elastic properties were calculated
explicitly by formulating the stationary of the cost function with
respect to isotropic or cubic elastic coefficients. Plasticity onset
detection allowed determination of the first plastic load step and
to assign the elastic constants. The plastic identificationwas then
performed. The main difficulty of this latter step concerned the
local and simultaneous identification of plastic parameters using
the stationarity of the constitutive equation gap functional with
respect to the secant elastoplastic tensor parameters.

The identification process required knowledge of the ge-
ometry, of the different meshes (used to describe the measured
displacements, the stress fields, andmaterial properties), of the

Fig. 19 Identification in one (a)
and ten material domains (b),
mesh for elastic identification (c),
for plastic identification (d) and
for correlation (e)

Fig. 20 Superposition of the
stress-strain curve identified in the
specimen and macroscopic refer-
ence curve



measured displacement fields, of the free surface locations,
and of the overall load levels on the loaded boundaries. All
of these quantities were assumed to be known. In addition, an
initial set of elastic parameters had to be introduced to initial-
ize the identification procedure. The identification procedure
did not require introduction of relevant initial values for iden-
tification of the plastic properties. They were obtained directly
by secant elastic identification. This algorithm was used for
plane problems for which the plane stress hypothesis held
true.

In order to validate the identification protocol, several nu-
merical examples providing access to heterogeneous deforma-
tion fields were proposed and the errors on the identified
elastoplastic parameter and on the stresses were quantified.

The deformation fields were obtained by derivation of the
numerically-obtained displacement fields potentially
perturbed by Gaussian white noise. The use of several meshes
for the elastic and plastic identification made it possible to
filter the noise by projecting the displacements on coarser
meshes chosen to describe the stress gradients.

These numerical tests allowed validation of the method on
several points. The first was the ability of the method to reli-
ably identify heterogeneous fields. The convergence stability
of the method with respect to the size of the mesh and the
choice of initialization parameters of the iterative procedure
was demonstrated. Finally, the robustness of the inverse meth-
od with respect to measurement noise was evaluated and val-
idated by the addition of Gaussian white noise.

Thereafter, the constitutive equation gap method was
applied on the resulting kinematic fields measured during
tensile tests on homogeneous specimens machined in the
same batch of material (DP600 steel). The sample geome-
try was chosen to induce a controlled axial stress gradient.
The identification was performed supposing a homoge-
neous or heterogeneous material. The identified parameters
and the identified stress fields using these two hypotheses
were consistent and in accordance with the homogeneity of
the tested material. The identification results were also
consistent with the material properties identified in a stan-
dard tensile geometry. As the proposed methodology was
validated in slightly heterogeneous situations, we are now
applying it to more heterogeneous situations such as crys-
tal plasticity on aluminum multi-crystals. In this situation,
the identification procedure could be further regularized by
correlating the material properties with the crystal orienta-
tion measured by EBSD.

Fig. 23 Stress fields σc identified in the longitudinal (a), shear (b) and
transverse (c) directions for the last plastic loading step

Fig. 21 Stress fields σc identified in the longitudinal (a), shear (b) and
transverse (c) directions for the last plastic loading step

Fig. 22 Superposition of the plastic stress-strain curve identified one
domain material (black), the reference curve (magenta) and in the ten
domain materials
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