
HAL Id: hal-01898243
https://hal.science/hal-01898243

Submitted on 18 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimal cell transport in straight channels and networks
Alexander Farutin, Zaiyi Shen, Gaël Prado, Vassanti Audemar, Hamid

Ez-Zahraouy, Abdelilah Benyoussef, Benoit Polack, Jens Harting, Petia M
Vlahovska, Thomas Podgorski, et al.

To cite this version:
Alexander Farutin, Zaiyi Shen, Gaël Prado, Vassanti Audemar, Hamid Ez-Zahraouy, et al.. Optimal
cell transport in straight channels and networks. Physical Review Fluids, 2018, 3 (10), �10.1103/phys-
revfluids.3.103603�. �hal-01898243�

https://hal.science/hal-01898243
https://hal.archives-ouvertes.fr


PHYSICAL REVIEW FLUIDS 3, 103603 (2018)

Optimal cell transport in straight channels and networks

Alexander Farutin,1,2 Zaiyi Shen,1,2 Gael Prado,1,2 Vassanti Audemar,1,2 Hamid Ez-Zahraouy,3

Abdelilah Benyoussef,3 Benoit Polack,4,5 Jens Harting,6,7,8 Petia M. Vlahovska,9

Thomas Podgorski,1,2 Gwennou Coupier,1,2,* and Chaouqi Misbah1,2,†
1Université Grenoble Alpes, LIPHY, F-38000 Grenoble, France

2CNRS, LIPHY, F-38000 Grenoble, France
3Laboratoire de Matière Condensée et Sciences Interdisciplinaires, Faculty of Sciences,

Mohammed V University of Rabat, 10000 Morocco
4Laboratoire d’Hématologie, CHU, F-38000 Grenoble, France

5TIMC-IMAG/TheREx, CNRS UMR5525, Université Grenoble Alpes, F-38000 Grenoble, France
6Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich, Fürther

Strasse 248, 90429 Nürnberg, Germany
7Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513,

5600MB Eindhoven, The Netherlands
8Faculty of Science and Technology, Mesa+ Institute, University of Twente,

7500 AE Enschede, The Netherlands
9Engineering Sciences and Applied Math, Northwestern University, Evanston, Illinois 60208, USA

(Received 4 May 2018; published 11 October 2018)

Flux of rigid or soft particles (such as drops, vesicles, red blood cells, etc.) in a
channel is a complex function of particle concentration, which depends on the details
of induced dissipation and suspension structure due to hydrodynamic interactions with
walls or between neighboring particles. Through two-dimensional and three-dimensional
simulations and a simple model that reveals the contribution of the main characteristics
of the flowing suspension, we discuss the existence of an optimal volume fraction for cell
transport and its dependence on the cell mechanical properties. The example of blood is
explored in detail, by adopting the commonly used modeling of red blood cells dynamics.
We highlight the complexity of optimization at the level of a network, due to the antagonist
evolution of local volume fraction and optimal volume fraction with the channels diameter.
In the case of the blood network, the most recent results on the size evolution of vessels
along the circulatory network of healthy organs suggest that the red blood cell volume
fraction (hematocrit) of healthy subjects is close to optimality, as far as transport only is
concerned. However, the hematocrit value of patients suffering from diverse red blood cel
pathologies may strongly deviate from optimality.

DOI: 10.1103/PhysRevFluids.3.103603

I. INTRODUCTION

Lab-on-a-chip technologies allow for high throughput analysis or manipulation at the level of
single particles, in particular biological cells or droplets. They are now part of the scientific and
industrial landscape. While most concepts have been initially developed on dilute suspensions, the
possibility of manipulating more concentrated suspensions is now explored [1–3]. The expected
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gains in throughput have to be evaluated in light of the potential decrease of the process efficiency,
due to cell-cell interactions [4], screening of the controlling external field (e.g., in acoustophore-
sis [3]), etc. In addition, substantially increasing particle concentration will eventually lead to
an increase of the viscosity which will often lead to a decrease in the particle flux, far before
nonreversible events like clogging occur [5].

This points to the question of the existence or not of an optimal volume fraction of particles that
would optimize their transport for given boundary conditions like pressure difference at the inlet
and outlet of a channel network, as considered here.

This question naturally arises also in blood vascular networks which have a complex architecture,
and where oxygen is delivered to tissues via the red blood cell (RBC) hemoglobin. About 40%–45%
of blood volume is composed of RBCs (in the macrocirculation). Given its medical importance, e.g.,
in blood transfusion, the existence of an optimal hematocrit (optimal volume percentage of RBCs)
has been extensively discussed in the physiology and hemorheology literature [6–13].

Optimality in living systems is a subtle question to be tackled with care. In addition to oxygen
transport, blood has many other biological functions such as thermoregulation, lymph production,
immune response, or carbon dioxide, nutrients, and waste transport. Yet, it is still worth asking
whether RBC transport (and as a corollary oxygen transport) is optimum or not and, more
importantly, what is the impact of cell mechanical properties or network architecture characteristics
on optimal transport. Understanding these questions may help understanding situations of hypoxia
in relation with pathological evolution of these parameters, or provide hints toward developing
artificial blood.

In this paper, we consider blood as a reference example. We shall first explore the impact of
variations in the properties of red blood cells on the overall transport property (cell flow rate). More
precisely, we investigate the role of cell mechanical properties, that of reduced volume—more or
less deflated cell—with incompressible membrane, as well as the role of membrane (the case of
capsules). In a second part, we will analyze the effect of network geometry on the cell flow rate.
Finite-size effects of the cells plus the existence of cross-stream migration (lift) of hydrodynamic
origin generally lead to nonuniform distribution of the flowing particles [14–18], which in turn leads
to a decrease of volume fractions in smaller channels (called the Fåhræus effect for blood [19,20]),
and uneven distribution of cells in a network of small channels, due to peculiar phase separation
effects at the level of bifurcations [21–24]. This points to the fact that a global optimality at the level
of a network is probably not the consequence of an optimization at each level, but most likely as a
nonlocal compromise involving different levels of vessel branches.

In the case of blood flow, we find that optimality cannot be reached in all the vessels of the
circulatory system at the same time. For straight channels it is found that the optimal hematocrit
(RBC volume fraction) matches the actual hematocrit in large arterioles, in the range 100–200 μm
(for humans the arteriole range is 10–200 μm [25]). For a vessel network (mimicking the real
vasculature), we find that the cell flux is dominated by these arterioles and larger vessels, and that
the hematocrit (as defined in routine blood tests) of a healthy subject is close to optimality.

Solving blood distribution problems in silico is challenging and highly nontrivial because of
the complex nature of blood flow: it involves many deformable RBCs moving and interacting
in blood vessels with complicated geometry [26–30]. Recent advances in computational power
and novel simulation approaches, however, are beginning to make the task tractable and the
bottom-up simulations of blood flow (by explicitly accounting for blood elements) are becoming
realistic [30]. Computational approaches based on continuum formulations [17,31–43] or particle-
based models [44–50] have been successfully applied to simulations of the flow of single and many
RBCs. These simulations have revealed that many phenomena in blood flow such as platelet and
leukocyte margination, plasma skimming, and clustering [17,20,51–55] have a purely mechanistic
origin. For example, plasma skimming and hematocrit decrease in the microcirculation (Fåhræus
effect) [20] arise from a cross-streamline migration of RBCs due to local flow perturbation by the
deformable RBCs [32,56,57]. Many experiments have pointed to and continue to reveal a plethora
of effects on the individual and collective behaviors of RBCs under flow [23,28,58–61].
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We investigate stationary blood flow properties using both numerical simulations and analytical
studies covering a wide volume fraction range. While in the arterioles the pulsatile nature of flow
has not been fully damped yet, the associated Womersley number is of order 0.05 [62]; therefore
at each moment the velocity profile is similar to that of the stationary case. In the simulations we
use two models for cells: (i) a three-dimensional (3D) model accounting for both bending energy
and in-plane shear elasticity, and solved by the lattice Boltzmann method (LBM). This 3D model
will be also used to consider capsules with extensible membranes, while RBC ones are not; (ii) a
two-dimensional (2D) model based on the LBM which accounts for membrane bending elasticity
that shows the same trends, offering a faster tool to explore wider ranges of parameters. These
simulations are completed by a discussion based on a simple model that incorporates the most
important features of the rheology and structure of a suspension, which can be used to anticipate the
impact of the variations of cell or network parameters.

II. MATERIALS AND METHODS

We represent cells as either a contour endowed with bending energy immersed in a 2D fluid, or
as a surface having both bending energy and shear elasticity in a 3D fluid. The simulation uses a
2D [48] and 3D [63] lattice Boltzmann method. The bending energy is given by E = (κ/2)

∫
H 2dA

with H the mean curvature, dA the arclength in 2D or area in 3D, and κ the bending rigidity
modulus. In 3D, the membrane has additionally a shear elastic energy written as μs (I 2

1 + 2I1 −
I2)/12 + καI 2

2 /12, where μs is the shear elastic modulus and κα is the area dilation modulus. I1 and
I2 are the in-plane strain invariants (see [63]).

We impose a pressure difference �p between the inlet and outlet of a straight channel of length
L and width W for several values of volume fraction �t . The channel widths range from W = 2R,
where R is the cell effective radius, up to W = 64R, thus covering the range of in vitro applications
and the capillary to arteriole scale for the blood network. In the absence of cells the flow is of a
Poiseuille type. Periodic boundary conditions are considered in the longitudinal direction and also in
the third direction in 3D. In 2D (3D) the volume fraction in the channel, called tube volume fraction
�t , is defined as �t = NA/A (NV/V ) where N is the number of cells in the channel, A the area
of the cell, and V the volume, whereas A and V designate the total area and volume of the channel.
η is taken as 1.2 m Pa s (plasma viscosity), and the enclosed fluid within cells is taken to have the
same viscosity. The precise values of the viscosity contrast have little influence on the results, as
shown below. We define the capillary numbers (which are a measure of the flow strength over the
cells mechanical resistance) associated with bending and shear elastic modes as Ca = η〈γ̇ 〉R3/κ

and Cs = η〈γ̇ 〉R/μs , with 〈γ̇ 〉 = 2Umax/W , where Umax is the maximum velocity in the channel
in the absence of cells. As a reference, we have taken κ � 3 × 10−19 J and μs � 4 μN/m, close
to that known for RBCs [64]. We define in 2D R = √

A/π , and in 3D R = [3V/(4π )]1/3 as the
typical cell radius. For a healthy RBC we have R � 2.7 μm.

We will explore values from 0.09 to 90 for Ca in 2D and from 0.2 to 0.9 for Cs in 3D. This latter
range corresponds to that found for red blood cells, considering typical vessel diameters of human
capillaries and arterioles (about 5–10 μm and 10–200 μm, respectively [25]) and typical maximal
velocities in capillaries and arterioles (1–10 mm/s) [65].

We define (in 2D) the reduced area ν2D ≡ (A/π )/(p/2π )2 (with p the perimeter and A the
enclosed area) and the reduced volume (in 3D) ν ≡ [V/(4π/3)]/[A/4π ]3/2. For a healthy RBC,
ν is reported to be in the range �0.6–0.64 [66,67]. Here, we chose as a reference ν = 0.64, as in
other simulation papers of the literature [30,61,68]. Higher values will also be explored. For blood,
several diseases (spherocytosis, ellipsocytosis) correspond to the high value of ν, close to 1. ν = 1
plus an incompressible membrane also corresponds to the case of a suspension of hard spheres. In
2D, we choose ν2D = 0.7, which is the reduced area of the section along the main axis of a prolate
spheroid of reduced volume 0.6.

Finally, we varied κα/μs between 1.25 and 125 to explore the effect of area dilation. The value
125 is our reference case and is large enough to preserve the membrane area locally and corresponds

103603-3



ALEXANDER FARUTIN et al.

W=10μm
W=20μm
W=40μm
W=80μm

W=160μm

Φt=19% t=49%
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Q
C

/Q
0

Φt
Φ

FIG. 1. (2D simulations) Left panel: Normalized cell flow rate as a function of volume fraction for
channels with different widths. Full lines are a guide for the eyes. Ca = 0.9 and the reduced area is ν2D = 0.7.
Center and right panels: snapshots of the suspension for two different volume fractions in the five considered
channels.

to red blood cells, while lower values allow one to consider the case of what is usually called elastic
capsules.

III. OPTIMAL FLUX IN A STRAIGHT CHANNEL

Throughout the paper, we focus on the cell flow rate QC normalized by the flow rate of the
cell-free fluid Q0 under the same pressure gradient. In the simulations, the flow rate QC is calculated
by counting the number of cells that cross a given section in the channel, averaged over long runs.

A. Simulation results

a. Role of flow characteristics. We investigate first the effect of flow strength (measured by the
capillary number) and channel width. These simulations are performed in 2D.

Figure 1 shows that QC/Q0 exhibits a maximum as a function of volume fraction �t . It illustrates
the effect of channel width on the corresponding optimal volume fraction �o. The results show that
�o varies between 0.3 in large enough channels (W = 160 μm) to about 0.4 in smaller channels
(W = 10 μm). The corresponding cell flux also increases when the channel gets narrower. This
shift of the cell flow rate curves is related to the increase of the effective viscosity with the channel
diameter. This effect is known for blood as the Fåhræus-Lindquist effect [20]. It stems from the
fact that the thickness of the cell-free layer near the walls depends only weakly on the channel
diameter, as it is essentially the result of local interactions. Therefore, the relative contribution of
this low-viscosity layer to the effective viscosity of the whole fluid becomes less and less important
as the channel diameter increases.

Figure 2 shows that the maximum of QC/Q0 is quite sensitive to the flow strength Ca: the optimal
volume fraction �o increases from 0.3 to more than 0.4 over three orders of magnitude of increase
in Ca . The corresponding cell flux increases in the same proportion. These results can be considered
as a consequence of the increased cell deformation that makes the suspension less viscous (shear
thinning behavior).

b. Role of cell properties. We now turn to the effect of modifications of the cell properties, which
is explored through 3D simulations. Figure 3 shows that a spherical shape of the cells lowers both
the optimal �o and the maximum cell flow rate. For example, when the reduced volume ν passes
from 0.64 to 0.99 the maximal carrying capacity drops by about 25%. This is attributed to the fact
that cells are less deformable because of the nearly spherical shape reducing their ability to squeeze
and accommodate high �t . Moreover, cross-stream migration is suppressed and the cell-free layer
diminishes, leading to increased flow resistance.
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FIG. 2. (2D simulations) Normalized cell flow rate as a function of volume fraction for a channel width
W = 20 μm and different Ca . Reduced area is ν2D = 0.7.

When membranes are incompressible, reduced volume determines the ability of cells to deform.
This ability can also be lost by an alteration of the mechanical property (e.g., shear elasticity) of
the membrane. For example, in sickle cell and malaria diseases, the RBC elastic modulus can be
significantly higher (up to about three times higher [64]) than within healthy subjects. An increase
of the elastic modulus is equivalent to a decrease of the capillary number. Our data in Fig. 2 show
that a reduction of the capillary number leads to a significant decrease of the cell flow rate.

The role of membrane compressional elasticity on the maximum cell flow rate is explored in
Fig. 4. The green data correspond to incompressible membranes. To explore the effect of variations
of the area dilation modulus κα (violet data), we have selected an initial reduced volume ν = 1 (the
same for all cells) and performed several simulations, each time with different elastic properties
(κα/μs between 1.25 and 125). Each cell within the same uniform suspension (i.e., all cells have
the same properties) experiences different shear stress and thus will be more or less stretched.
The average actual reduced volume within the suspension is shown as a filled square, whereas
the horizontal bars show the distribution of reduced volume for each simulation (i.e., for a given
stretching elastic coefficient). One sees that a moderate extensibility κα/μs ≈ 1.25, allowing an
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FIG. 3. (3D simulations) Left: The normalized cell flow rate as a function of tube volume fraction �t for
different reduced volumes. Viscosity contrast is 1 and the channel width W is 40 μm = 14.8R; the channel
length along the flow direction is about 11.7R, and is equal to 6.2R in the orthogonal direction. Cs = 0.18.
A, B, and C are snapshots of suspension configurations for the three different reduced volumes shown for the
corresponding optimal volume fraction.
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FIG. 4. (3D simulations) Green line: Optimal flux and optimal volume fraction as a function of the
actual reduced volume (3D simulations) for incompressible membranes (from Fig. 3). Violet lines: the same
simulation with stretchable capsules. For each simulation the compressional elasticity κα/μs has been varied
in order to allow for different average reduced volume 〈ν〉. Each capsule experiences different shear stresses
within the channel, and thus has a different surface area (and thus reduced volume); the horizontal bars provide
the distribution width of reduced volumes within the same suspension. Cs = 0.18, as in Fig. 3.

average decrease of the reduced volume of the capsules from 〈ν〉 = 1 to ≈0.9, leads to a maximum
flow rate max(QC/Q0) ≈ 0.2 equivalent to that of healthy incompressible red blood cells, even
though the capsules are quasispherical. Interestingly, the cell flow rate is more important for
stretchable capsules than for nonstretchable cells having the same reduced volume. The ability to
deform leads to better accommodation to the flow stress, with different shapes within the suspension.

B. Analytical model

We develop an analytical model that captures the computational observations for the dependence
of QC on tube volume fraction �t . This analytical model provides a means for a quick estimate
of the optimal volume fraction and insight into the mechanisms that control the phenomenon, as
explored by our simulations. We adopt a continuous two-fluid model for suspension flow. Such
an approach has already proved to give interesting insights for other problems related to blood
flow [69–71]. Here, we consider an inner core containing a homogeneous suspension of volume
fraction � surrounded by a cell-free layer of thickness e, flowing in a tube of radius R0 = W/2. For
given tube volume fraction �t , � = �t (

R0
R0−e

)2.
The cell flux is

QC (�t ) = �

∫ R0−e

0
v(�, r )2πrdr, (1)

and the total flux is given by

QT (�) =
∫ R0

0
v(�, r )2πrdr. (2)

For a given pressure gradient (flow strength), the Stokes velocity profiles v(�, r ) in the outer
cell-free annulus and in the core can be evaluated. Assuming that the core fluid is a homogeneous,
dense suspension of concentration �, its relative viscosity η̄ ≡ η(�)/η0 can be estimated from
the Krieger-Dougherty law η̄ = (1 − �/�m)−[η]�m , where �m is the maximum fraction, [η] is the
intrinsic viscosity, and η0 is the viscosity of the cell-free fluid [72]. This law was chosen since it is
simple enough to allow discussion on how it should evolve with the cell properties, but accurate
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FIG. 5. The particle flow rate as a function of tube volume fraction for channels with different diameter
calculated from our minimal model. We took e0 = 2 μm, [η] = 5/2 as for rigid spheres and for RBCs in
physiological conditions [78], and �m is chosen as equal to 1 considering that the cells are deformable and can
be squeezed.

enough to describe viscosity evolution with cell concentration: the Quemada law, a particular
case of Krieger-Dougherty law, describes well the bulk behavior of blood [71]. To first order, e

is independent of w, at least for w > 15 µm [73], and is mainly determined by the balance between
the lift flux and the diffusive flux. This can be seen in the central and right panels of Fig. 1. Due to
the linear relationship between the diffusion constant and local volume fraction [60,74], we assume
that the thickness of the outer cell-free layer decreases linearly as volume fraction increases, an
assumption which is validated in the literature [17,23,73]. Consequently, we set e = e0(1 − �t /�m)
where e0 is a constant characterizing the cell-free layer at low volume fraction. Strictly speaking,
this model is not valid for very low fraction where e is expected to converge to w/2. Despite the
oversimplification, this model captures the main features as long as we focus on large enough �

so that hydrodynamic interactions among cells counterbalance the effect of walls. This is indeed
the range where the optimal volume fraction is expected. Note that very few interaction events
are sufficient to balance the lift force, because the latter strongly decreases with distance to the
wall [60,75–77]. Finally,

QC

Q0
= QC

QT (� = 0)
= �(R0 − e)2

{
R2

0 + [2η̄(�) − 1](2eR0 − e2)
}

η̄(�)R4
0

, (3)

where e and � are the functions of �t given above.
Figure 5 illustrates the prediction of this reduced model. As in simulations, it is seen that the

optimal volume fraction increases with the confinement, and so does the corresponding cell flux.
Had we assumed a fixed cell-free layer, independent of �t , we would then have missed the fact (data
not shown, already shown in Ref. [9]) that optimal volume fraction increases with confinement.

We now exploit further the results of this simplified model to help with proposing scenarios
for the evolution of the optimal volume fraction with some cell or flow properties (see Fig. 6).
The evolution of the optimal volume fraction with the reduced volume, seen in Fig. 4 (obtained
numerically), can be understood by using our minimal model: if one considers less deflated cells,
the intrinsic viscosity [η] is not expected to vary too much since it is equal to 5/2 for spheres
and close to that value for RBCs [78]. On the other hand, inflating cells leads to a decrease of the
maximal packing fraction �m, and to a decrease of the size of the cell-free layer e0 [75,77,79]. Both
effects lead to to a decrease of the optimal volume fraction and of the associated cell flux (Fig. 6,
bottom and top panels), in agreement with Fig. 4.

Upon an increase of the capillary number, one expects the size of the cell-free layer to increase
because of the increase of cell deformation and the resulting lift force [60], and the intrinsic viscosity
to decrease, characterizing generic shear-thinning behavior of capsule suspensions. As seen in
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FIG. 6. RBC flux according to our minimal model. The reference configuration is W = 30 µm (left) or
W = 1000 µm (right), e0 = 2 µm, [η] = 5/2, and �m = 1. Top panel: e0 is varied; middle panel: [η] is varied;
bottom panel: �m is varied.

Fig. 6, top and middle panels, both effects lead to an increase of the optimal volume fraction, in
agreement with Fig. 2.

Another situation which is classically explored in the literature regarding RBC deformation is to
act on the viscosity of the suspending fluid [23,59,60,78,80]. By increasing the external viscosity the
lift forces are expected to increase [60,81], hence the cell-free layer thickness also increases [23].
The impact on the rheology is less trivial. Contrary to drops for which the intrinsic viscosity is a
monotonous function of external viscosity, the subtle interplay between inner fluid dynamics and
the deformations allowed by the presence of the membrane lead to a nonmonotonous function in the
case of cells with membranes [78,82]. Both for structuring [23] and for rheology [83] effects, the
effect of decreased external viscosity is strongly reduced by a concentration increase. In particular,
cells that would tumble in a dilute suspension tends to tank-tread when the cell concentration
increases, as they would do in a more viscous suspending fluid. All in all, we can see in Fig. 7,
that our 2D simulations show that in reality the flux does not depend much on the viscosity ratio
between the inner and the outer fluid.
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FIG. 7. (2D simulations) Normalized cell flow rate as a function of volume fraction for channels with
different widths and two different viscosity ratios λ between the inner fluid and the external fluid. Ca = 0.9
and reduced area is ν2D = 0.7.

IV. OPTIMAL FLUX IN A NETWORK

The preceding results can be used to infer the flux of particles in a network. However, one must
keep in mind that volume fraction is in general not a conserved quantity in a network (say from one
branch of the network to another), or even in a straight tube of varying section. As a preliminary,
we discuss this point first before presenting our results of flow rate in a network.

A. Tube and reservoir volume fraction

Starting from a large reservoir filled with a suspension of volume fraction �r , one generally
observes that the fraction decreases once the suspension enters a smaller channel. This effect, which
is called the Fåhræus effect [19] for blood, results from the tendency of cells to accumulate in the
center of the vessel (due to the wall-induced migration), acquiring thus a higher mean velocity than
that of the suspending fluid and leading to a diluted flow in small channels: �t < �r . By contrast,
in large channels, the relative effect of the wall-induced migration is negligible and the cells are
homogeneously distributed within the channel section, implying �t � �r .

By considering the conservation of particle flux, the reservoir volume fraction can be calculated
from the results of a simulation or of the minimal model in a given tube: if 〈VC〉 denotes the mean
velocity of cells and 〈VT 〉 that of the whole suspension (cells plus the suspending fluid) in the tube,
the total flow rate of cells across a section A of the tube is given by QC = 〈VC〉A�t and that of the
whole suspension is given by QT = 〈VT 〉A. The ratio of QC to QT provides the volume fraction of
cells found at the entrance or at the exit, �r . We have thus the following relation:

�r = QC

QT

= �t

〈VC〉
〈VT 〉 . (4)

In Fig. 8 the �t values for �r = 0.45 are indicated for our minimal model, and one clearly sees
first that the discrepancy between �t and �r increases with the confinement, and second that in a
network fed by a given value of �r , the flux can be suboptimal in some branches and superoptimal
in others.

This is true also in the vascular network: Pries et al. considered in Ref. [52] a fit of experimental
data to proposean empirical relationship between the effective viscosity of blood in a cylindrical
tube of diameter W and the tube hematocrit (=volume fraction in red blood cells) �t , as well as
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FIG. 8. The particle flow rate as a function of tube volume fraction from our minimal model (same data as
in Fig. 5). In addition, the red line indicates the �t value corresponding to a reservoir volume fraction �r of
45% for the corresponding model. Blue and green lines correspond to high �r (80%) and low �r (25%).

between this tube hematocrit and the reservoir hematocrit �r . Both functions ηp(�t ) and �r (�t )
are given in [52]. The relative RBC flow rate at constant pressure drop is then given by QC/Q0 =
�r (�t )

ηp (�t=0)
ηp (�t ) .

Figure 9 shows this relative RBC flow rate as a function of the tube hematocrit for different
channel diameters. The existence of an optimal hematocrit is highlighted, which increases with the
confinement. The same holds for the maximum RBC flow rate. Note that the value of this maximum
as well as its position are well captured by our minimal model (Fig. 5).

The usually referenced hematocrits, measured in medical blood tests, are in the ranges 0.34–0.45
and 0.39–0.49 for women and men, respectively [84], and correspond to values encountered in
macrocirculation. The red points in Fig. 9 show the tube hematocrit that would result from the
�r = 0.45 reservoir (systemic) hematocrit.

Patients suffering from a low or high level of hematocrit (anemia and polycythemia, respectively)
are clearly far from optimality. Indeed, if the reservoir hematocrit is small enough (�r = 0.25), as
happens in severe anemia disease (blue line in Fig. 9), or large enough (�r = 0.8) as is the case in
polycythemia vera (green line in Fig. 9), then the tube hematocrit does not cross any optimal value
when varying the tube diameter. In the anemia disease case the hematocrit remains suboptimal,

FIG. 9. The RBC flow rate as a function of the tube hematocrit for channels of different diameters
calculated from Pries empirical model [52]. The red line indicates the �t value corresponding to a reservoir
hematocrit of 45%. Blue and green lines correspond to high �r (80%, polycythemia) and low �r (25%,
anemia).
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FIG. 10. Sketch of the model network considered in Sec. IV B.

while it remains superoptimal in the polycythemia disease. In the first case the attained maximal
flow rate in arterioles is about 25% lower than in healthy subjects, while the situation is more severe
in the second case where the reduction can attain about 60%.

Back to the healthy case, one notices that the tube hematocrit �t corresponding to �r = 45% is
optimal in large channels until W = 60 μm, which corresponds to the medium diameter range
of human arterioles. This is interesting inasmuch as two-thirds of the oxygen is known to be
delivered in the arteriolar trees [85] before reaching capillaries. On the contrary, in capillaries, the
tube hematocrit is suboptimal for a reservoir hematocrit of 45%. This shows that optimality in a
network can probably not be the result of local optimality everywhere in the network. The relative
contribution of each branch to the overall particle flux must therefore be estimated.

B. Particle flux in a network

We consider a simplified network consisting of N levels enumerated as i = 1 . . . n (see Fig. 10).
Level 1 consists of one straight cylindrical channel. Each channel of level i has radius Ri and length
Li. It divides symmetrically into two channels of level i + 1. At each step, the cell and plasma fluxes
also split symmetrically, so that �r is a conserved quantity [we recall that �r is defined in Eq. (4)
and is not to be confused with the actual hematocrit in a given branch of the network, which is the
tube hematocrit]. We consider a fixed pressure drop �P between the inlet of the level-1 channel
and the outlets of the level-n channels. Assuming bifurcation junctions do not contribute to pressure
drop, one straightforwardly obtains

QC = �rQT = �r�P

{
n∑

i=1

2−i+1 8Liη(�r , Ri )

πR4
i

}−1

. (5)

It is seen that the contribution of each channel depends on the detailed evolution of lengths
and radii along the network. In addition, as already discussed, η(�r , Ri ) is generally an increasing
function of Ri , therefore η(�r , Ri )/R4

i may depend on Ri in a complex way. We now illustrate this
complexity for the case of blood flow.

Recently, the relationships between radii Ri and lengths Li for living organisms have been
discussed in detail using a statistical analysis based on 3D imaging in human subjects [86].
Adapted to our case of dichotomous and symmetric branching, these relationships can be written as
R

1/a

i = 2R(i + 1)1/a and L
1/b

i = 2L(i + 1)1/b, where a and b are exponents that can be extracted
from fitting of in vivo data. Using the recursive formulas Ri = 2−a(i−1)R1 and Li = 2−b(i−1)L1 we
find

QC = �r

πR4
1�P

8L1

{
n∑

i=1

2(4a−b−1)(i−1)η(�r , Ri )

}−1

. (6)

The factor 2(4a−b−1)(i−1) thus expresses the relative contribution from level i. According to [86],
a value for a in the range 1/3–1/2 yields a good description of real data, with a = 1/3 for small
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FIG. 11. The RBC flow rate as a function of the reservoir hematocrit for a model network (see text) for
different values of b extracted from literature and empirical rheology law given in Ref. [52]. The curves are
similar to those for large channels that would be obtained from Fig. 9 by considering �r instead of �t . Small
values of b give more weight to the smallest vessels, hence an increase of the optimal hematocrit. Still, the
contribution of large vessels is predominant.

vessels (Ri < 1 mm) and a = 1/2 for large vessels. An exponent-based scaling for the lengths is
not as strongly supported by the data, since different measurements yield exponent b in the range
0.17–1.40. However, it is interesting to observe that for a and b within the aforementioned ranges,
the exponent 4a − b − 1 can be either negative or positive, indicating that the major contributions
can come from large or from small vessels depending on the exponent sign. Since the effective
viscosity significantly depends on the tube radius only when the radius is smaller than about 1
mm [52], we focus on the case a = 1/3, which is also consistent with Murray’s law [87]. In that case,
a realistic network geometry is likely to fall within a category where 4a − b − 1 = 1/3 − b < 0
(since this is consistent with most available data for b), that is, a configuration where the flux would
be regulated by large vessels.

In order to be more quantitative and include the dependency of the viscosity with the vessel
radius, we consider in Fig. 11 a network starting from a channel of about 1 mm with successive
bifurcations down to 5 μm, and plot the RBC flow rate as a function of reservoir hematocrit, as
given by Eq. (6). Except for small b values, the curves are quantitatively closer to those obtained
for large vessels than for small vessels (see Fig. 9), confirming that the dominant contribution arises
from the largest vessels of the network. This would point to the fact that optimization of oxygen
transport capacity may be regulated upstream of the microcirculation, close to the transition zone
between small arteries and arterioles. Caution is, however, necessary since the situation is less clear
for a = 1/2, for instance.

This result also implies that the optimal hematocrit �0 is around known physiological values.
However, given the dispersion of experimental data, the possibility for a positive exponent 4a −
b − 1 = 1/3 − b is not to be excluded, in which case narrow channels would have more weight
than larger vessels. A systematic analysis of the vessel size distribution in organs is needed before
drawing more conclusive answers. In addition, the regularly branched network considered here is
not the rule. For example, and as pointed out in Ref. [88], it has been shown that the network of
vessels of a tumor, which grows much more rapidly than that of normal tissues, is chaotic and
entangled, in contrast to the hierarchical branching pattern adopted here. More complex modeling
for the geometry can be developed to account for this richness [89–91]. Handling this complexity
and the different scales requires one to pay specific attention to the computational feasibility and
accuracy, which may lead to the development of more complex flow models through specific
assumptions which can be validated by our approach. For instance, in [91], the inhomogeneities and
resulting nonlinearities due to complex cell partitioning in the capillary bed are explicitly neglected.
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Indeed, while experimental studies of tube flow [11,19,92] yielded minimal values for the ratio
�t /�r of about 0.7 for tubes of 20 and 10 μm diameters, in agreement with Pries law, in vivo
studies [12,93,94] have shown that this ratio can fall in the range 0.3–0.5 in the microcirculation.
These measurements have suggested that this is dependent on network topography and local flow
rates. Asymmetric partitioning at the level of bifurcations can lead to important hematocrit variations
between capillaries [53]. According to our network modeling, these variations should likely have
no strong impact on the issue of optimization, as they occur in channels that are expected to play
a minor role on the flux regulation. However, asymmetric partitioning of cells or asymmetry in the
network geometry may have a priori an impact on the overall resistance of the capillary bed, and
thus have a potential influence on optimality.

However, we expect this impact to be relatively small on the basis of the following argument.
Let us consider two parallel branches originating from a bifurcation. We can calculate explicitly the
effective resistance of this subnetwork by using Pries et al. viscosity law [52] and an adequate cell
splitting model [95], which gives the cell flux ratio between the two branches as a function of their
diameters ratio and the total flow rates ratio, in the case of upstream flow in stationary condition.
If the mean diameter and the mean length between the two branches are kept constant and equal to
the values given by the network scalings considered above, one finds that the resistance is always
smaller than 110% of that of the symmetric case; note that in most cases, an even smaller value is
found.

Cell splitting is controlled in a subtle way by the geometry and the rheology law, so that giving a
simple intuitive argument about the overall behavior is not an easy task. However, some key features
emerge from the following argument. First, we note that the conductance of the considered system
is the sum of the conductances of the two branches. Conductance is proportional to the radius to the
power 4, to the inverse of the branch length, and to the inverse of the viscosity, which is a quasilinear
function of hematocrit in the range of interest. It is therefore a convex function of each of the three
parameters (length, diameter, hematocrit) taken separately, which implies that any asymmetry in the
cell splitting or in the geometry will mainly result in an increase of the conductance (and decrease
of resistance and thus minor impact on optimality). Care must be taken, however. Since hematocrit
repartition depends on the geometry, the different parameters are not independent and the convexity
argument may not be entirely sufficient. Still it serves as a reasonable guideline.

Another point is worth being mentioned. In general, in a given branch of the microvasculature,
the RBCs distribution may not be centered, by lack of long enough distance between two successive
bifurcations; for instance, all cells may be close to one wall. In that case the partitioning will be
quite different from the case of fully centered distribution, discussed above. For a given geometry,
the convexity argument mentioned above clearly shows that the resistance will be lower than in the
homogeneous distribution. Typically, it will be controlled by that of the branch that receives fewer
cells.

This discussion suggests that even in nonidealized cases, the role of capillaries in the determina-
tion of the overall resistance and flux in a network is secondary compared to large vessels. Of course,
detailed numerical simulations are necessary to fully conclude about the impact of asymmetries,
beyond this simplified case of a two-branch network.

V. CONCLUSION

2D and 3D numerical simulations provided information on the behavior of cell flow rate as a
function of cell volume fraction in a straight channel. Based on a minimal model we highlight the
cell-free layer as a key element to understand the variation of the transport capacity of channels with
diameter. This leads to the conclusion that the transport capacity of a whole network depends on
its precise architecture, since two antagonist effects enter into play when traversing channels from
large to small ones: (i) when the diameter of a channel decreases, the cell volume fraction decreases;
(ii) at the same time, the value of the optimal cell volume fraction increases.
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For red blood cells, the cell flux is directly linked to the oxygen transport capacity. Interestingly,
the values obtained for the optimal hematocrit for vessel sizes corresponding to macrocirculation
and intermediate microcirculation (arterioles) are close enough to the corresponding physiologically
admitted values. Our analysis on a network where the weight of the contribution of each vessel has
been extracted from in vivo data shows that this range of vessels also determines the RBC flow rate,
indicating that the physiological values for the hematocrit are close to a kind of optimum in that
sense. Our analysis also indicates the locations where active regulation processes like vasodilation
or vasoconstriction are more likely to influence oxygen delivery.

Strong alterations are reported if the reduced volume of RBCs is increased, as is known for
elliptocytosis and spherocytosis diseases. Not only is the flow rate of RBCs reduced in this case
compared to the flow of healthy RBCs at the same hematocrit but also the optimal hematocrit is
observed to be significantly lower. The lower value of RBC flow rate within patients suffering these
diseases implies a severe collapse of oxygen delivery, which could lead to an increased heart load
in order to maintain appropriate perfusion levels. It is known that elliptocytosis and spherocytosis
diseases are accompanied by a reduction of the RBC count, a consequence of the spleen filtering.
Interestingly, our results show that this decrease of hematocrit probably improves oxygen delivery.

We put forward here the idea that a slightly stretchable encapsulating membrane (like polymer-
based capsules) would lead to a significant enhancement of oxygen transport capacity. The
information generated by this study may guide the development of new soft materials, such as
blood substitutes, and advance the tuning process and optimization of oxygen carriers. This study
can also be adopted for more general questions of suspensions transport.
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