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1. Introduction 1.1. The mobile sampling problem. In this article, we consider the reconstruction of a compactly supported function from samples of its Fourier transform taken along certain curves, that we call spiraling. This problem is relevant, for example, in magnetic resonance imaging (MRI), where the anatomy and physiology of a person are captured by moving sensors.

The Fourier sampling problem is equivalent to the sampling problem for bandlimited functions -that is, functions whose Fourier transform are supported on a given compact set. The most classical setting concerns functions of one real variable with Fourier transform supported on the unit interval [-1/2, 1/2], and sampled on a grid ηZ, with η > 0. The sampling rate η determines whether every bandlimited function can be reconstructed from its samples: reconstruction fails if η > 1 and succeeds if η 1 [START_REF] Unser | Sampling-50 years after shannon[END_REF]. The transition value η = 1 is known as the Nyquist sampling rate, and it is the benchmark for all sampling schemes: modern sampling strategies that exploit the particular structure of a certain class of signals are praised because they achieve sub-Nyquist sampling rates.

The sampling theory for bandlimited functions extends to high dimension and irregular sampling geometries [START_REF] Beurling | Local harmonic analysis with some applications to differential operators[END_REF][START_REF] Duffin | A class of nonharmonic Fourier series[END_REF][START_REF] Landau | Sampling, data transmission, and the nyquist rate[END_REF], and it is instrumental in the analysis of sampling schemes arising from continuous curves [START_REF] Benedetto | Nonuniform sampling and spiral MRI reconstruction[END_REF]. The key notion is the Beurling density of a set, which measures the average number of samples per unit volume.

Beurling's density, however, does not properly reflect the acquisition cost when samples are taken along continuous trajectories. In this case, a more relevant metric is the average length covered by a curve, as a proxy for scanning times [START_REF] Boyer | On the generation of sampling schemes for magnetic resonance imaging[END_REF][START_REF] Chauffert | Variable density sampling with continuous trajectories[END_REF][START_REF] Singh | Active learning for adaptive mobile sensing networks[END_REF][START_REF] Unnikrishnan | Sampling and reconstruction of spatial fields using mobile sensors[END_REF][START_REF] Unnikrishnan | Sampling high-dimensional bandlimited fields on low-dimensional manifolds[END_REF]. For example, when sampling a function bandlimited to a compact set Ω ⊂ R 2 along equispaced parallel lines with direction v ∈ S 1 ,

L v,η = {t v + ηk v ⊥ : t ∈ R, k ∈ Z},
the critical sampling rate is dictated by the separation between lines η > 0, and by the measure of the maximal cross section of Ω by hyperplanes perpendicular to v [START_REF] Unnikrishnan | Sampling and reconstruction of spatial fields using mobile sensors[END_REF][START_REF] Unnikrishnan | Sampling high-dimensional bandlimited fields on low-dimensional manifolds[END_REF]. With the introduction of an adequate notion of path-density, similar results hold also for arbitrary families of parallel lines [START_REF] Gröchenig | On minimal trajectories for mobile sampling of bandlimited fields[END_REF].

The analysis of general sampling trajectories in terms of length and density is very subtle and challenging, and little can be said in full generality [START_REF] Gröchenig | On minimal trajectories for mobile sampling of bandlimited fields[END_REF]. Nevertheless, a solution to the mobile sampling problem is expected to be possible for concrete parametric families of curves.

1.2. Necessary and sufficient recovery guarantees for spiraling curves. A first contribution of this article is to give sharp necessary and sufficient conditions for Fourier sampling for a parametric family of curves, that we call spiraling. The main examples of these curves are the Archimedes spiral We identify the precise Nyquist rate of these curves in terms of the density parameter η. To be specific, we say that Γ, the image of a curve, is a Fourier sampling trajectory for Ωor a sampling trajectory for the Paley-Wiener space P W 2 (Ω) -if the following continuous sampling inequality holds:

(1.3) A f 2 2 Γ | f (ξ)| 2 dH 1 (ξ) B f 2 2 , f ∈ L 2 (Ω),
where A, B > 0 are stability constants, and H 1 is the one dimensional Hausdorff (length) measure (see [START_REF] Jaming | An uncertainty principle and sampling inequalities in Besov spaces[END_REF][START_REF] Ortega-Cerdà | Sampling measures[END_REF]). Equivalently, Γ is a sampling trajectory if it contains a discrete sampling set (see Section 1.4).

Our first result reads as follows.

Theorem A. Let Ω ⊂ R 2 be a convex centered symmetric body.

(i) If diam(Ω)η < 1, then the Archimedes spiral A η and the collection of concentric circles O η are sampling trajectories for P W 2 (Ω). (ii) If diam(Ω)η > 1, then neither the Archimedes spiral A η nor the collection of concentric circles O η are sampling trajectories for P W 2 (Ω).

Part (i) in Theorem A is due to Benedetto and Wu in the context of pointwise sampling [START_REF] Benedetto | Nonuniform sampling and spiral MRI reconstruction[END_REF]. Our contribution is mainly in (ii). 1.3. Compressible signals and sampling below the Nyquist rate. Having identified the Nyquist rate of spiraling curves, we look into undersampling. Modern sampling schemes exploit the fact that many signals of interest are highly compressible, and this information is leveraged to sample below the Nyquist rate. For example, functions defined on the unit square, and obeying a variation bound F(W ) := {f ∈ L2 ([-1/2, 1/2] 2 ) : var(f ) W } are compactly represented in a wavelet basis. Here, the resolution parameter W essentially controls the number of active wavelet coefficients [START_REF] Cohen | Nonlinear approximation and the space BV(R 2 )[END_REF][START_REF] Donoho | Compressed sensing[END_REF]. 1The stability of sampling schemes restricted to such signals is expressed by the inverse condition number

2 inf{ f -ĝ L 2 (µ Γ ) : f, g ∈ F(W ), f -g 2 = ε},
where µ Γ := H 1 | Γ is the arc-measure. Since, ε -1 F(W ) = F(ε -1 W ), and F(W ) ⊂ F(W )-F(W ) ⊂ F(2W ), the analysis of the condition number for small ε reduces to the large W asymptotics of the stability margin:

A(Γ, F(W )) := inf{ f L 2 (µ Γ ) : f 2 = 1, f ∈ F(W )}.
According to Theorem A, the critical value for the reconstruction of functions defined on the unit square with either A η or O η is η = √ 2/2. We consider spirals with density slightly under the critical value and prove the following.

Theorem B. Let η = (1 + ε) √ 2/2 with ε ∈ (0, 1), and Γ = A η or Γ = O η . Then for W > 0, A(Γ, F(W )) C(εW ) -1/2 (ln 2 (εW ) + 1),
where C > 0 is a universal constant.

Theorem B thus sets a limit to the capacity of spirals to acquire all compressible signals below the Nyquist rate. Informally, it says that when undersampling by a small factor (1 -ε), one can only recover functions up to resolution W ≈ ε -1 with a stable condition number.

A variant of Theorem B can be formulated in terms of the Haar wavelet. Let Σ N,J be the class of functions on [-1/2, 1/2] 2 with N non-zero Haar coefficients, all of them taken with scale at most J. We have the following estimate.

Theorem C. Let W 1, η = (1 + ε) √ 2/2 with ε ∈ (0, 1) and Γ = A η or Γ = O η . Then for N 1, A(Γ, Σ N,J ) CN -1/6 ε -1 ln 4 (CN ),
where

J = C ln(ε -1 N ) and C > 0 is a universal constant.
Informally, Theorem C says that when undersampling by a small factor (1 -ε), one can recover at most N ≈ ε -6 Haar coefficients with a stable condition number.

Theorem C complements related results that limit the wavelet-sparsity of discrete signals that can be sampled on unions of parallel lines [START_REF] Bigot | An analysis of block sampling strategies in compressed sensing[END_REF]. Let us mention that the sparsity model Σ N,J is rather crude. Modern results in sparse recovery exploit the fine multiscale structure of the wavelet coefficients of natural signals [START_REF] Adcock | The quest for optimal sampling: computationally efficient, structure-exploiting measurements for compressed sensing[END_REF].

The same fundamental stability restrictions expressed by Theorems C and D also apply to any posssible discretization of the continuous sampling trajectories -see Theorem D below.

1.4. Overview. The problem of sampling the Fourier transform of a compactly supported function is equivalent to the sampling problem for the Paley-Wiener space of bandlimited functions. We make essential use of Beurling's sampling theory. The sufficient sampling condition in Theorem A follows from Beurling's gap covering Theorem [START_REF] Beurling | Local harmonic analysis with some applications to differential operators[END_REF], as done in [START_REF] Benedetto | Nonuniform sampling and spiral MRI reconstruction[END_REF]. The necessary condition in Theorem A is more challenging: little of the ample literature on necessary conditions for sampling [START_REF] Balan | Density, overcompleteness, and localization of frames. I. Theory[END_REF][START_REF] Führ | Density of sampling and interpolation in reproducing kernel Hilbert spaces[END_REF][START_REF] Gabardo | Convolution inequalities for positive Borel measures on R d and Beurling density[END_REF][START_REF] Gabardo | Weighted convolution inequalities and Beurling density[END_REF][START_REF] Iosevich | A Weyl type formula for Fourier spectra and frames[END_REF][START_REF] Iosevich | How large are the spectral gaps?[END_REF][START_REF] Landau | Sampling, data transmission, and the nyquist rate[END_REF][START_REF] Landau | Necessary density conditions for sampling and interpolation of certain entire functions[END_REF][START_REF] Nitzan | Revisiting Landau's density theorems for Paley-Wiener spaces[END_REF] is applicable to sampling on curves, because the new relevant metric (length) is fundamentally different from the one corresponding to pointwise sampling (cardinality) [START_REF] Gröchenig | On minimal trajectories for mobile sampling of bandlimited fields[END_REF].

Our main results show that spirals behave qualitatively like unions of parallel lines. While the analysis of sampling on parallel lines is based on periodization arguments [START_REF] Unnikrishnan | Sampling and reconstruction of spatial fields using mobile sensors[END_REF][START_REF] Unnikrishnan | Sampling high-dimensional bandlimited fields on low-dimensional manifolds[END_REF] and cross sections of the Fourier spectrum [START_REF] Gröchenig | On minimal trajectories for mobile sampling of bandlimited fields[END_REF], in order to treat spirals, we develop approximate versions of those tools. The main observation is that an adequate sequence of translates of a spiral converges to a union of parallel lines, locally in the Hausdorff metric. This allows us to apply Beurling's characterization of sampling in terms of weak limits [START_REF] Beurling | Local harmonic analysis with some applications to differential operators[END_REF][START_REF] Beurling | The collected works of Arne Beurling[END_REF][START_REF] Seip | Interpolation and sampling in spaces of analytic functions[END_REF].

In order to apply weak-limit techniques to curves, we first need to connect pointwise and continuous sampling. We provide a variation of a result from Ortega-Cerdà on sampling measures [START_REF] Ortega-Cerdà | Sampling measures[END_REF], and show that, under mild regularity assumptions, the continuous sampling inequality (1.3) is equivalent to the existence of a sampling set contained in the sampling trajectory Γ -see Section 3.1 for precise definitions.

Theorem D. Let Γ ⊂ R d be a regular trajectory, and Ω ⊂ R d bounded with positive measure. Then Γ is a sampling trajectory for P W 2 (Ω) if and only if there exists a discrete set Λ ⊂ Γ sampling for P W 2 (Ω).

Theorem D shows that two common formulations of the mobile sampling problem are equivalent [START_REF] Unnikrishnan | Sampling and reconstruction of spatial fields using mobile sensors[END_REF][START_REF] Unnikrishnan | Sampling high-dimensional bandlimited fields on low-dimensional manifolds[END_REF]. As a further consequence of Theorem D, the sampling relation (1.3) also expresses the stability of a vast collection of sampling schemes, where functions are sampled on finite portions of the sampling trajectory Γ, and are reconstructed within a precisely described numerical accuracy [START_REF] Adcock | On stable reconstructions from nonuniform Fourier measurements[END_REF][START_REF] Adcock | Computing reconstructions from nonuniform Fourier samples: Universality of stability barriers and stable sampling rates[END_REF][START_REF] Strohmer | Fast reconstruction methods for bandlimited functions from periodic nonuniform sampling[END_REF][START_REF] Sun | Nonuniform average sampling and reconstruction of signals with finite rate of innovation[END_REF], and leads to well-understood truncation errors [START_REF] Iosevich | A Weyl type formula for Fourier spectra and frames[END_REF][START_REF] Iosevich | How large are the spectral gaps?[END_REF] and implementation strategies [START_REF] Gelb | A frame theoretic approach to the nonuniform fast Fourier transform[END_REF][START_REF] Gröchenig | Irregular sampling, Toeplitz matrices, and the approximation of entire functions of exponential type[END_REF][START_REF] Platte | Fourier reconstruction of univariate piecewise-smooth functions from non-uniform spectral data with exponential convergence rates[END_REF][START_REF] Viswanathan | On reconstruction from non-uniform spectral data[END_REF]. Moreover, any sufficiently dense set Λ ⊂ Γ is an adequate discretization -cf. Remark 3.2.

As a second step we show that spirals suffer from approximate aliasing. Aliasing is the name given in signal processing to the artifacts produced by sampling on a lattice below the Nyquist rate. Aliasing is also the most obvious obstruction to subsampling compressible signals, and, heuristically, the success of sub-Nyquist sampling schemes relies on the fact that they avoid regular patterns [START_REF] Candès | Quantitative robust uncertainty principles and optimally sparse decompositions[END_REF][START_REF] Lustig | Compressed sensing MRI[END_REF]. We quantify the rate of converge of spirals to parallel lines and derive approximate aliasing for the curves A η (1.1) and O η (1.2). As a consequence we obtain an upper bound on the stability margin for the reconstruction of functions of bounded variation (Theorem B) or of functions that have few active Haar coefficients (Theorem C). These results underscore the need for a certain level of randomness in structured sampling [START_REF] Boyer | Compressed sensing with structured sparsity and structured acquisition[END_REF] and for refined multiscale models [START_REF] Adcock | Breaking the coherence barrier: a new theory for compressed sensing[END_REF][START_REF] Adcock | The quest for optimal sampling: computationally efficient, structure-exploiting measurements for compressed sensing[END_REF] that apply to generic signals.

This article is organized as follows: in Section 2 we review standard notions from sampling theory and provide preliminary results; in Section 3 we derive the characterization of sampling trajectories (Theorem D) and introduce spiraling curves; in Section 4 we give necessary and sufficient conditions for sampling on spiraling curves, and prove Theorem A; in Section 5 quantify the rate of convergence of spirals to collections of parallel lines and explore consequences on approximate aliasing; and in Section 6 we prove the results on sub-Nyquist sampling, Theorems B and C. For points on R 2 we will use the notation x = (x 1 , x 2 ), and additionally, vectors on S 1 will be written as d, l, and if d = (x 1 , x 2 ) we set d ⊥ = (-x 2 , x 1 ). Clockwise rotations in R 2 will be denoted by R 2πθ with θ ∈ [0, 1) and where 2πθ is the angle of rotation. Unless otherwise stated, measures on R d are assumed to take values in [0, +∞].

Throughout the paper, for A, B ∈ R, A B means that there exists a constant C > 0 independent from A and B such that A CB. For functions (or measures) f, g, f g means that f (x) Cg(x) for all x where f and g are defined. Further, A B, means A B A (and the same for functions or measures). When we want to particularly stress the dependence of the implicit constant C on other factors we may write instead C p , C γ , C Ω,p , . . . .

Convex bodies.

A set Ω ⊂ R d is called a convex body if it is convex, compact and has non-empty interior. A convex body is called centered if 0 ∈ Ω • and symmetric if Ω = -Ω. We will frequently use the fact that, for a convex centered symmetric body Ω,

(2.4) Ω ⊂ (1 + ε)Ω • and (1 -ε)Ω ⊂ Ω • , ε ∈ (0, 1).
2.3. Paley-Wiener spaces. Let us begin by recalling the definition of the standard function spaces involved in sampling theorems. Here and thereafter we will consider the normalized version of the Fourier transform:

f (ξ) = R d e -2πiξ•x f (x) dx
for f : R d → R integrable. The Fourier transform is then extended to Schwartz distributions in the usual way.

Definition 2.1. Let Ω ⊂ R d be a compact set of positive measure and 1 p ∞. We define P W p (Ω) as the subset of L p (R d ) consisting of Fourier transforms of distributions supported in Ω.

The classical Paley-Wiener space corresponds to p = 2, while p = ∞ yields the Bernstein space. This latter space models possibly non-decaying bandlimited signals, although it has some disadvantages for signal processing, such as lack of invariance under the Hilbert transform. (A remedy to some of these obstacles has been proposed in [START_REF] Lyubarskii | Bandlimited Lipschitz functions[END_REF].)

These spaces can also be characterized in terms of entire functions of exponential type. This is the so-called Paley-Wiener Theorem, see, e.g., [START_REF] Young | An introduction to nonharmonic Fourier series[END_REF]Theorem 2.18]. Theorem 2.2. Given a convex centered symmetric body Ω ⊂ R d and 1 p ∞, there exists a constant c > 0 depending only on Ω such that every f ∈ P W p (Ω) can be extended to an entire function with

|f (x + iy)| e c|y| , x, y ∈ R d .
Paley-Wiener functions also enjoy the following norm control of their analytic extensions on horizontal lines. 

(Ω) if f p f p (Λ) , f ∈ P W p (Ω),
where

f p (Λ) = λ∈Λ |f (λ)| p 1/p , if p < ∞, and f ∞ (Λ) = sup λ∈Λ |f (λ)|. A set Λ ⊂ R d is separated if its separation inf λ,λ ∈Λ,λ =λ |λ -λ |
is positive, and it is relatively dense if its gap (or hole) gap(Λ) := sup

x∈R d inf λ∈Λ |x -λ| is finite.
The most effective sufficient condition for sampling bandlimited functions in high dimension is formulated in terms of gaps, and is due to Beurling [START_REF] Beurling | Local harmonic analysis with some applications to differential operators[END_REF][START_REF] Beurling | The collected works of Arne Beurling[END_REF] -see also [START_REF] Benedetto | Nonuniform sampling and spiral MRI reconstruction[END_REF][START_REF] Olevskii | On multi-dimensional sampling and interpolation[END_REF].

Theorem 2.4. Let Λ ⊂ R d and R > 0. If gap(Λ) < 1/(2R) then Λ is a sampling set for P W ∞ ( BR/2 (0)).
The value 1/(2R) in Theorem 2.4 is critical in the sense that there exists a set Λ with gap(Λ) = 1/(2R) that is not sampling for the spectrum BR/2 (0). On the other hand, as examples of Theorem 2.4 we note that

(2.5) gap(A η ) = gap(O η ) = η/2,
see e.g. [6, Example 2], and hence these sets are sampling for P W ∞ ( BR/2 (0)) whenever ηR < 1. While Theorem 2.4 applies to arbitrary sets, sometimes it is convenient to work with separated sets. We state without proof the following elementary lemma. Lemma 2.5. Let Λ ⊂ R d , and R > gap(Λ). Then there exists a separated set Λ ⊂ Λ such that gap(Λ ) R.

2.5.

Sampling with different norms. The following classical result shows that the sampling problems associated with P W 2 and P W ∞ are almost equivalent. See [START_REF] Olevskii | On multi-dimensional sampling and interpolation[END_REF]Theorem 2.1] for a simple proof.

Theorem 2.6. Let Λ ⊂ R d be a separated set, Ω ⊂ R d a compact set of positive measure and ε > 0.

(i) If Λ is sampling for P W 2 (Ω + Bε (0)) then it is sampling for P W ∞ (Ω).

(ii) If Λ is sampling for P W ∞ (Ω + Bε (0)) then it is sampling for P W 2 (Ω).

As an application, we obtain the following corollary for convex bodies.

Corollary 2.7. Let Λ ⊂ R d be a separated set, Ω ⊂ R d a convex centered symmetric body and ε ∈ (0, 1). (i) If Λ is sampling for P W 2 (Ω), then it is sampling for P W ∞ ((1 -ε)Ω). (ii) If Λ is sampling for P W ∞ (Ω), then it is sampling for P W 2 ((1 -ε)Ω). Proof. By (2.4), (1 -ε)Ω ⊂ Ω • . Since Ω is compact, this implies that dist((1 -ε)Ω, (Ω • ) c ) > ε ,
and, therefore, (1 -ε)Ω + Bε (0) ⊂ Ω. The conclusions now follow from Theorem 2.6.

2.6. Characterization of sampling with weak limits.

Definition 2.8. A set Λ ⊂ R d is called a set of uniqueness for P W p (Ω) if f ∈ P W p (Ω) with f | Λ = 0 implies f ≡ 0.
Sampling sets are sets of uniqueness. The converse is not true, but it is a remarkable insight due to Beurling, that it is still possible to characterize a sampling set through the uniqueness of what are called its weak limits. Definition 2.9. Let Λ ⊂ R d be a closed set and let {Λ n } n 1 be a sequence of closed sets. Then we say that {Λ n } n 1 converges weakly to Λ if for all R, ε > 0 there exist n R,ε such that

Λ n ∩ (-R, R) d ⊂ Λ + B ε (0), Λ ∩ (-R, R) d ⊂ Λ n + B ε (0), hold for all n n R,ε . In this case we write Λ n w -→ Λ.
The type of weak limits that are needed to characterize sampling sets are those resulting from translates. We will denote the set of weak limits of translates of Λ by W (Λ). Hence, Λ ∈ W (Λ) if and only if there exists a sequence

{x n } n∈N ⊂ R d such that Λ + x n w -→ Λ .
Theorem 2.10 (Beurling, [8, Theorem 3, pg. 345]). Let Ω ⊂ R d be a convex centered symmetric body and let Λ ⊂ R d . Then Λ is a sampling set for P W ∞ (Ω) if and only if for all weak limits Λ ∈ W (Λ), Λ is a set of uniqueness for P W ∞ (Ω).

We will use the following compactness result. See, e.g., [START_REF] Gröchenig | Deformation of Gabor systems[END_REF]Section 4] for proofs.

Lemma 2.11. Let Λ ⊂ R d be a separated set and {x n } n 1 ⊂ R d . Then there exist a subsequence {x n k } k 1 and a separated set Λ ⊂ R d such that Λ + x n k w -→ Λ . 2.7. Sampling measures. A Borel measure µ on R d is said to be sampling for P W p (Ω) if f p f L p (µ) , f ∈ P W p (Ω),
where

f L p (µ) = ( R d |f (x)| p dµ) 1/p if 1 p < ∞, and f L ∞ (µ) = ess sup µ |f |.
Viewed in this way, a set Λ is sampling when the associated point measure δ Λ := λ∈Λ δ λ is a sampling measure. Let us first notice that sampling measures are uniformly bounded: Lemma 2.12. Let Ω ⊂ R d be a convex centered symmetric body and 1 p < ∞. Let µ be a sampling measure for P W p (Ω). Then, for all R > 0, sup

x∈R d µ(B R (x)) < ∞. Proof. First note that it is enough to construct f 0 ∈ P W p (Ω) such that |f 0 | χ (-R,R) d ,
where the implied constant may depend on R. Indeed, once f 0 is given, we define f x (t) := f 0 (t -x) and note that f x (ξ) = e -2πixξ f 0 (ξ) so that f x ∈ P W p (Ω). Moreover, since µ is sampling and 1 p < ∞, we get

µ(B R (x)) µ((x -R, x + R) d ) f x p L p (µ) f x p p = f 0 p p . Next, to construct f 0 , we take ε > 0 such that (-ε, ε) d ⊂ Ω. If we find ϕ ∈ P W p (-ε, ε) such that, for every R, |ϕ| χ (-R,R) then f 0 (x 1 , . . . , x d ) = ϕ(x 1 ) × • • • × ϕ(x d ) will do. Now let ψ := χ (-ε/2,ε/2) * χ (-ε/2,ε/2) so that -ψ has support (-ε, ε); -ψ = ϕ 0 where ϕ 0 (t) = sin(πεx) πx 2 ; hence, in particular, ϕ 0 ∈ P W p (-ε, ε); -ϕ 0 is continuous, nonnegative, and ϕ 0 (x) = 0 if and only if x = k/ε, k ∈ Z \ {0}.
Finally, we set ϕ(x) := ϕ 0 (x) + ϕ 0 (x + 1/2ε). Then ϕ is a continuous function in P W p (-ε, ε) that never vanishes. This means that, for every R > 0, ϕ χ (-R,R) . The proof is thus complete.

We now show that for any sampling measure we can extract a weighted sampling set. The argument mirrors that of [START_REF] Ortega-Cerdà | Sampling measures[END_REF] for functions on the Bargmann-Fock space.

Theorem 2.13. Let Ω ⊂ R d be a convex centered symmetric body, 1 p < ∞ and µ a Borelian measure in R d . Let r > 0 and {Q r n } n a (measurable) covering of R d with finite multiplicity and sup n diamQ r n r, and set µ * r := n µ(Q r n )δ a r n where a r n ∈ Q r n are arbitrary points.

Then there exists a constant C Ω,p > 0 such that µ is sampling for P W p (Ω) if and only if µ * r is sampling for P W p (Ω) when r < C Ω,p . Remark 2.14. Note that, in any direction of the Theorem, sup x∈R d µ(B R (x)) < ∞ holds for all R > 0. Indeed, if µ is sampling for P W p (Ω), this is Lemma 2.12. On the other hand, if µ * r is sampling for P W p (Ω), Lemma 2.12 applied to µ * r reads sup

x∈R d µ * r (B R (x)) < ∞ for all R > 0, and thus µ(B ρ (x)) Q r n ∩Bρ(x) =∅ µ(Q r n ) µ * r (B ρ+r (x)) C ρ,r , ∀ρ > 0, x ∈ R d , since {Q r n } n is a covering with sup n diamQ r n r. Proof of Theorem 2.13. Let f ∈ P W p (Ω). First note that since {Q r n } n is a covering of R d of finite multiplicity then (2.6) R d |f (x)| p dµ(x) n Q r n |f (x)| p dµ(x). It follows that, µ is sampling if (2.7) R d |f (x)| p dx n Q r n |f (x)| p dµ(x),
and by definition µ * r is sampling if

(2.8) R d |f (x)| p dx n |f (a r n )| p µ(Q r n ).
Next, using the inequality (a + b)

p 2 p-1 (a p + b p ) in each Q r n , we see that n Q r n |f (x)| p dµ(x) 2 p-1 n Q r n |f (x) -f (a r n )| p + |f (a r n )| p dµ(x) I(r) + n |f (a r n )| p µ(Q r n )
where

I(r) := n Q r n |f (x) -f (a r n )| p dµ(x). Similarly, n |f (a r n )| p µ(Q r n ) = n Q r n |f (a r n )| p dµ(x) 2 p-1 n Q r n |f (x) -f (a r n )| p + |f (x)| p dµ(x) I(r) + n Q r n |f (x)| p dµ(x).
Hence, to prove that (2.7) and (2.8) are equivalent for some small value of r it is enough to show that I(r) is also sufficiently small. Precisely, we will now show that there exists a function φ(r) with φ(r) → r→0 0 such that (2.9)

I(r) φ(r) R d |f (x)| p dx.
We proceed to prove (2.9). Since f ∈ P W p (Ω) then, by Theorem 2.2, it has a complex extension f (x + iy) which is an entire function of exponential type (with constants depending on Ω). Hence, in particular, f is harmonic on C d and satisfies the mean value theorem that we write in the form

f = f * 1 |B 1 (0)| χ B 1 (0) . Further, iterating this formula, we get f = f * ϕ with ϕ = 1 |B 1 (0)| χ B 1 (0) * • • • * 1 |B 1 (0)| χ B 1 (0)
. Finally, notice that if we iterate sufficiently many times, ϕ is a compactly supported function of class C 1 . Thus, for each and let x ∈ Q r n we may write

|f (x) -f (a r n )| p = |(f * ϕ)(x) -(f * ϕ)(a r n )| p R d ×R d |f (y + iz)(ϕ(x -y -iz) -ϕ(a r n -y -iz)| dy dz p . Let r 0 > 0 be such that supp(ϕ) ⊂ B r 0 (0). Since |x -a r n | diamQ r n
r and both x and a r n are real, then the function

ϕ(x -y -iz) -ϕ(a r n -y -iz) is supported in A r (x) := {y + iz ∈ C d : |y -x| < r + r 0 , |z| < r 0 }. This gives us |f (x) -f (a r n )| p Ar(x) |f (y + iz)(ϕ(x -y -iz) -ϕ(a r n -y -iz)| dy dz p .
Next, we apply Hölder's inequality

|f (x) -f (a r n )| p ϕ(x -• -i•) -ϕ(a r n -• -i•) p L p (Ar(x)) Ar(x) |f (y + iz)| p dy dz, where 1/p + 1/p = 1. We bound ϕ(x -• -i•) -ϕ(a r n -• -i•) p L p (Ar(x)
) by using the fact that ϕ ∈ C 1 c and then applying the Mean Value Theorem

|ϕ(x -y -iz) -ϕ(a r n -y -iz)| r ∇ϕ ∞ , which holds for all y + iz ∈ C d . Therefore ϕ(x -•, •) -ϕ(a r n -•, •) p L p (Ar(x))
r p |A r (x)| p/p r p (r + r 0 ) dp/p r dp/p 0 =: φ(r).

Running the sum over all n we get

I(r) = n Q r n |f (x) -f (a r n )| p dµ(x) φ(r) n Q r n Ar(x) |f (y + iz)| p dy dz dµ(x) φ(r) R d Ar(x) |f (y + iz)| p dy dz dµ(x) = φ(r) R d |z|<r 0 |x-y|<r+r 0 |f (y + iz)| p dy dz dµ(x).
since {Q r n } n has finite multiplicity. Tonelli's theorem then implies

I(r) φ(r) R d |z|<r 0 |x-y|<r+r 0 dµ(x)|f (y + iz)| p dz dy φ(r) R d |z|<r 0 |f (y + iz)| p dz dy since sup x∈R d µ(B r+r 0 (x)) < ∞ (cf. Remark 2.

14). Finally applying Theorem 2.3 we get

I(r) φ(r) R d |f (x)| p dx.
Eventually multiplying φ(r) by constants, this gives (2.9).

Remark 2.15. Note that the only impediment to extend Theorem 2.13 to the case p = ∞ is Remark 2.14 (which does not apply for p = ∞). However, if we suppose in addition that sup x∈R d µ(B R (x)) < ∞ for some R > 0 (which is a weaker condition to the conclusion of Remark 2.14) then we get back the result of Theorem 2.13.

3. Sampling trajectories and spiraling curves 3.1. Sampling trajectories. A curve is a measurable map γ : R → R d (which we do not require to be continuous). A trajectory Γ is the image of a curve: Γ := γ(R). The restriction of the one-dimensional Hausdorff measure to Γ is denoted µ Γ := H 1 Γ . A trajectory Γ is called regular if there exists r 0 > 0 such that for all r r 0 there is a constant c r > 0 for which (3.10) inf

x∈Γ µ Γ (B r (x)) c r , and 
(3.11) sup x∈R d µ Γ (B r 0 (x)) < +∞.
A trajectory Γ is called a sampling trajectory for P W p (Ω) if µ Γ is a sampling measure, i.e.,

f p p Γ |f (x)| p dH 1 (x), f ∈ P W p (Ω),
with the usual modification for p = ∞.

Characterization of sampling trajectories.

Using the general result we proved for sampling measures, Theorem 2.13, we can show how to extract a sampling set from a sampling trajectory. This is Theorem D presented in the Introduction and that we recall here for the convenience of the reader:

Theorem D. Let Γ ⊂ R d be a regular trajectory, Ω ⊂ R d bounded with positive measure.
Then Γ is a sampling trajectory for P W 2 (Ω) if and only if there exists Λ ⊂ Γ sampling for P W 2 (Ω). Moreover, Λ can always be chosen to be separated.

Remark 3.1. Although the statement concerns P W 2 , we remark that the following proof is still valid for any P W p with 1 p ∞.

Proof. Due to Theorem 2.13 it is enough to show that there exists a separated set Λ ⊂ Γ such that its point measure

δ Λ = λ∈Λ δ λ is equivalent to µ * r = n µ Γ (Q r n )δ a r
n where a r n ∈ Q r n and {Q r n } n is a covering of finite multiplicity of R d with sup n diamQ r n < r, and r is small enough. Moreover, in this case we can discard those

Q n which do not meet Γ (since µ Γ (Q n ) = 0 when Q n ∩ Γ = ∅)
, and just consider coverings of Γ.

Given r > 0, let {a r n } n ⊂ Γ be maximal with respect to |a r n -a r m | r, n = m. Hence, the family {B r (a r n )} n is a covering of Γ with finite multiplicity (the covering number being bounded by 4

d ). Next, set µ * r := n µ Γ (B r (a r n ))δ a r n and Λ r := {a r n } n . Taking r < r 0 (3.10) reads µ Γ (B r (a r n ))
c r for all n, and therefore µ * r n δ a r n = δ Λr . On the other hand, when r < r 0 the condition (3.11) reads sup n µ(B r (a r n )) < ∞ so that also µ * r δ Λr . In sum for all r < r 0 we can construct a finite multiplicity r-covering {Q r n } n together with a separated set Λ r such that µ * r = λ∈Λr µ Γ (Q r n )δ λ λ∈Λr δ λ = δ Λr . Remark 3.2. The proof of Theorem D shows that if Γ is a sampling trajectory, then any separated and sufficiently dense Λ ⊂ Γ is sampling for P W 2 (Ω).

Theorem D shows the equivalence of two possible models for the mobile sampling problem [START_REF] Gröchenig | On minimal trajectories for mobile sampling of bandlimited fields[END_REF][START_REF] Unnikrishnan | Sampling and reconstruction of spatial fields using mobile sensors[END_REF][START_REF] Unnikrishnan | Sampling high-dimensional bandlimited fields on low-dimensional manifolds[END_REF]. As a consequence, sampling trajectories lead to concrete reconstruction strategies and numerical implementations, where a finite set of samples is used, and reconstruction is achieved within a precise numerical accuracy [START_REF] Adcock | On stable reconstructions from nonuniform Fourier measurements[END_REF][START_REF] Adcock | Computing reconstructions from nonuniform Fourier samples: Universality of stability barriers and stable sampling rates[END_REF][START_REF] Gelb | A frame theoretic approach to the nonuniform fast Fourier transform[END_REF][START_REF] Strohmer | Fast reconstruction methods for bandlimited functions from periodic nonuniform sampling[END_REF][START_REF] Sun | Nonuniform average sampling and reconstruction of signals with finite rate of innovation[END_REF][START_REF] Viswanathan | On reconstruction from non-uniform spectral data[END_REF].

Spiraling curves.

Let us now describe precisely what we mean by a spiraling trajectory. The properties we list below have been chosen so that several natural sampling strategies are covered. Concentric circles and the Archimedes spiral will be shown to satisfy these properties (see Proposition 3.4). Other examples are depicted in Figure 3.

A regular trajectory Γ is called spiraling if the following conditions hold: (i) (Escape cone). There exist α ∈ (0, 1/4) and β ∈ (0, 1) such that the portion of Γ contained in the cone The number τ := η 1 -l, d 2 is called the asymptotic separation of Γ. For short, we say that Γ is a spiraling trajectory with asymptotic velocity d and asymptotic separation τ . Note that those parameters may not be unique.

Remark 3.3. The class of spiraling curves is invariant under rotations. Indeed, if we rotate a spiraling curve by angle of 2πθ 0 with θ 0 ∈ [0, 1) then the resulting curve is spiraling with parametrization in the escape cone with β = β -θ 0 , α = α, and

γ(θ) = (ρ(θ) cos 2πθ, ρ(θ) sin 2πθ), θ ∈ k [k + β -α, k + β + α],
where ρ(θ) = ρ(θ + θ 0 ). The rotated curve has asymptotic velocity R 2πθ 0 d, while the parameters of asymptotic equispacing η, ρ 0 and the asymptotic separation τ remain unaltered.

Further, spiraling curves are also invariant under some reasonable smooth perturbations of the escape cone. More precisely, let us first assume that β = 0 so that the escape cone is S α,0 and let f : S α,0 → S α ,0 be a C 2 one-to-one function. Assume the following:

(i) f ((ρ cos 2πα, ±ρ sin 2πα)) = (ρ cos 2πα , ±ρ sin 2πα ), i.e. f sends the boundary of S α,0 to the boundary of S α ,0 . (ii) There exists a function ϕ : R → R for which f (x 1 , 0) = (ϕ(x 1 ), 0) and ϕ is asymptotically affine, that is, ϕ(x 1 ) -

(ax 1 + b) → 0 when x 1 → +∞ for some constants a > 0, b 0. (iii) If ρ : [-2πα, 2πα] → [0, +∞) then the curve f ((ρ(θ) cos 2πθ, ρ(θ) sin θ)) ad- mits a parametrization in polar coordinates (ρ(θ) cos 2πθ, ρ(θ) sin 2πθ) with ρ : [-2πα , 2πα ] → [0, +∞).
Note that, as f is one-to-one, sends the bisector on itself and it behaves asymptotically like the increasing linear function ax 1 + b in (x 1 , 0), f asymptotically preserves radial monotonicity. (iv) The Jacobian of f is uniformly bounded from above and below, i.e. there exist

A, B > 0 such that A|y| |J x f (y)| B|y| for all x ∈ S α,0 , y ∈ R 2 . Moreover J (x 1 ,0) f → M when x 1 → +∞, and M d = (1, 0). (v)
The Hessian of f goes to 0 when x → ∞, i.e. H x f → 0 when |x| → +∞.

Then, if Γ is a spiraling trajectory with asymptotic velocity d and asymptotic equispacing η, f (Γ) is a spiraling trajectory with asymptotic equispacing aη and asymptotic velocity

M d |M d|
. As a consequence, we have for example that, combining these smooth perturbations with rotations, spiraling curves are invariant by any linear invertible transformation in R 2 .

Examples of spiraling curves.

Proposition 3.4. Let η > 0. Then, the Archimedes spiral A η and the union of circles O η are spiraling trajectories with asymptotic separation η. Further, any d ∈ S 1 can be taken as the asymptotic velocity.

Proof. Step 1 (Regularity). We show first that A η and O η are regular trajectories in the sense of § 3.1. We define ρ 1 (θ) := ηθ and ρ 2 (θ) := k∈N ηkχ [k,k+1) (θ) so that

A η = {(ρ 1 (θ) cos 2πθ, ρ 1 (θ) sin 2πθ) : θ 0}, O η = {(ρ 2 (θ) cos 2πθ, ρ 2 (θ) sin 2πθ) : θ 0}.
Let us begin by proving that (3.10) holds for A η . Take r ∈ (0, 1) and x ∈ A η and assume initially that |x| r/2. Then

µ(B r (x)) µ(B r/2 (0)) = r/2 0 ρ 1 (θ) 2 + (2πρ 1 (θ)) 2 dθ r/2 0 2πρ 1 (θ) dθ = πr 2 /4.
For |x| > r/2, we proceed as follows. Let y ∈ B r (x) ∩ A η and write 

x = (ρ 1 (θ 0 ) cos 2πθ 0 , ρ 1 (θ 0 ) sin 2πθ 0 ), θ 0 0, y = (ρ 1 (θ) cos 2πθ, ρ 1 (θ) sin 2πθ), θ 0. Therefore, |x -y| |ρ 1 (θ 0 ) cos 2πθ 0 -ρ 1 (θ) cos 2πθ| + |ρ 1 (θ 0 ) sin 2πθ 0 -ρ 1 (θ) sin 2πθ|
θ 0 +r 0 θ 0 -r 0 ρ 1 (θ) 2 + (2πρ 1 (θ)) 2 dθ θ 0 +r 0 θ 0 -r 0 2πρ 1 (θ) dθ = 4ηπθ 0 r 0 ρ 1 (θ 0 ) 1 + ρ 1 (θ 0 ) r = |x| 1 + |x| r r 2 2 + r r 2 3
since |x| > r/2, and r ∈ (0, 1). In conclusion, for ever r < 1 and every x, µ(B r (x)) r 2 .

The argument for O η is similar, this time replacing ρ 1 (θ) with ρ 2 (θ). We now show (3.11), beginning again with case of A η . Note first that it is enough to bound µ A η (B r (x)) uniformly for x ∈ A η , and some r > 0. Indeed, since gap(A η ) = η/2, for every y ∈ R 2 , there exists x ∈ A η such that B r (y) ⊂ B r+η/2 (x). In addition, any ball of radius R > r can be covered with (2R/r + 2) 2 balls of radius r (by taking a covering {B r (a n )} n maximal with respect to |a n -a m | r as in the proof of Theorem D).

Let x = (ρ 1 (θ 0 ) cos 2πθ 0 , ρ 1 (θ 0 ) sin 2πθ 0 ) and let r := min{η/100, 1}. If |x| 100 we simply bound µ A η (B r (x)) µ A η (B 101 (0)). Let us assume then |x| 100. We claim that

(3.14) B r (x) ∩ A η ⊂ {(ρ 1 (θ) cos 2πθ, ρ 1 (θ) sin 2πθ) : θ ∈ (θ 0 -1/|x|, θ 0 + 1/|x|)}. Indeed, if y = (ρ 1 (θ) cos 2πθ, ρ 1 (θ) sin 2πθ) ∈ B r (x) ∩ A η , η|θ 0 -θ| = |ρ 1 (x) -ρ 1 (y)| = ||y| -|x|| |x -y| < r η/100,
and therefore |θ 0 -θ| 1/100. Secondly, since |x -y| < r, a clockwise rotation by the angle of y gives 

|x -y| = |ρ 1 (θ 0 ) cos 2π(θ 0 -θ) -ρ 1 (θ)| 2 + |ρ 1 (θ 0 ) sin 2π(θ 0 -θ)| 2 < r,
µ A η (B r (x)) θ 0 +1/|x| θ 0 -1/|x| ρ 1 (θ) 2 + (2πρ 1 (θ)) 2 dθ θ 0 +1/|x| θ 0 -1/|x| ρ 1 (θ) + 2πρ 1 (θ) dθ = θ 0 +1/π|x| θ 0 -1/π|x| η + 2πηθ dθ 2η |x| + 4πηθ 0 |x| 1.
Since |x| 100 and ηθ 0 = |x|. The proof for O η follows similarly.

Step 2 (The other conditions). We choose d ∈ S 1 and verify that A η and O η satisfy the conditions of §3.3 with asymptotic velocity d. Write d = (-sin 2πθ 0 , cos 2πθ 0 ) with θ 0 ∈ [0, 1), and β = 2πθ 0 . Thus l = d ⊥ = (cos 2πθ 0 , sin 2πθ 0 ). We start with A η . For the escape cone (3.12), we choose any α ∈ (0, 1/4), and parametrize the portion of the curve inside the cone with γ = γ A η as in (3.13), and using the function ρ 1 (θ) = ηθ restricted to each [k + θ 0 -α, k + θ 0 + α], k ∈ N. Then ρ 1 (θ) is strictly increasing and in particular the monotonicity condition is satisfied. Also, the curvature

κ A η (θ) = 2 + (2πθ) 2 η(1 + (2πθ) 2 ) 3/2
converges to 0 as θ → ∞. Hence, the asymptotic flatness condition holds. For the asymptotic equispacing condition, we let ρ 0 := ηθ 0 and simply note that

ρ 1 (k + β) = ρ 1 (k + θ 0 ) = η(k + θ 0 ) = ηk + ρ 0 ,
for all k ∈ N, so there is nothing to prove. Finally, we check that d is the asymptotic velocity:

lim k γ A η (k + β) |γ A η (k + β)| = lim k γ A η (k + θ 0 ) |γ A η (k + θ 0 )| = lim k ρ 1 (k + θ 0 )(cos 2πθ 0 , sin 2πθ 0 ) + 2πρ 1 (k + θ 0 )(-sin 2πθ 0 , cos 2πθ 0 ) ρ 1 (k + θ 0 ) 2 + (2πρ 1 (k + θ 0 )) 2 = lim k (cos 2πθ 0 , sin 2πθ 0 ) + 2π(k + θ 0 )(-sin 2πθ 0 , cos 2πθ 0 ) 1 + 2π(k + θ 0 ) 2 = (-sin 2πθ 0 , cos 2πθ 0 ) = d.
We now consider O η . Since this curve is rotation invariant, we may assume that d = (0, 1) and l = (1, 0). The escape cone (3.12) is then parametrized with β = 0 and any α ∈ (0, 1/4) by setting

ρ 2 (θ) = k ηkχ [k-α,k+α] (θ)χ [k,k+1) (θ). Then ρ 2 (θ + k) is increasing for any θ ∈ [-α, α] and κ O η (θ) = k 1 ηk χ [k-α,k+α] (θ)χ [k,k+1) (θ)
. Therefore the monotonicity and asymptotic flatness conditions hold. The asymptotic equispacing condition also holds with ρ 0 = 0 because ρ 2 (k) = ηk for all k ∈ Z. Lastly, we calculate the asymptotic velocity: Proposition 3.5. Let Γ be either the spiral A η or the concentric circles O η . Then, there exists an independent constant C > 0 such that for all 1 p ∞, R > 0 and f ∈ P W p ( BR (0))

lim k γ O η (k) |γ O η (k)| = lim k ρ 2 (k)(1, 0) + 2πρ 2 (k)(0, 1) ρ 2 (k) 2 + (2πρ 2 (k)) 2 = lim k 2πk(0, 1) 2πk = (0, 1) = d.
f L p (µ Γ ) C(η -1/p + R 1/p ) f p
with the usual modifications when p = ∞. Moreover, the same conclusion holds for the rotated Archimedes spirals R 2πθ 0 A η .

4.

Necessary conditions for sampling on spiraling curves 4.1. General results. In this section we derive necessary conditions for sampling on spiraling curves, comparing the asymptotic equispacing of such a curve to the diameter of the Fourier spectrum. The following key lemma shows that spiraling curves can be locally approximated by unions of lines. Proof. Throughout the proof we use the notation of §3.3.

Step 1. Reduction of the problem.

Let us first slightly simplify the setting. Since the notion of spiraling trajectory is invariant under rotation, we may assume that the escape cone is S α,0 , thus, β = 0 and

l = i := (1, 0). We then write d = (d 1 , d 2 ). As 1 = | d| 2 = d 2 1 + d 2 2 and d is not collinear with l, then d 2 = 0. Thus i = d 1 d -d 2 d ⊥ and d ⊥ = d 1 d 2 d -1 d 2 i. It follows that, if η = τ /|d 2 |, then L d,τ = L d,η := {s d + ηj i : s ∈ R, j ∈ Z}. Note that τ = η|d 2 | = η 1 -d 2 1 = η 1 -d, l 2 .
Step 2. Reparametrization of the trajectory.

We set Λ k := Γ -(η k , 0) and, from now on, we fix R, ε > 0. Our aim is to show that there exists k 0 (depending on R, ε) such that; for all k k 0 ,

Λ k ∩ (-R, R) 2 ⊂ L d,η + B ε (0), (4.16) L d,η ∩ (-R, R) 2 ⊂ Λ k + B ε (0). (4.17) First, a simple computation shows that L d,η ∩ (-R, R) 2 ⊂ L 0 := {t d + ηj i : |t| T R , j = -J R , . . . , J R } with T R = R |d 2 | and J R = 2R η 1 + | d 1 d 2 |
. Instead of (4.17), we will thus prove (4.18)

L 0 ⊂ Λ k + B ε (0).
Next, as η k → +∞ and L 0 is a bounded set, there is a k 1 such that, if k k 1 , the translate of the escape cone by η k contains L 0 . Moreover, as η k -kη → ρ 0 , we can assume that, for k k 1 , |η k -kη -ρ 0 | < ε/2. From now on, we will assume that k k 1 .

For each n let ψ n : I n → R 2 be a re-parametrization by arc-length of γ(θ) on the interval [n -α, n + α] such that 0 ∈ I n and ψ n (0) = γ(n) = (η n , 0). Write I ± n = I n ∩ R ± . As the restriction of ψ n to I - n joins the line R(cos α, -sin α) to the point (η n , 0) and η n → +∞, it follows that the length of I - n , |I - n | → +∞. Similarly, |I + n | → +∞. (See Figure 4).

ηn → +∞ Figure 4.
The arc-length of ψ n is at least as large as twice the distance of η n to S α,0 .

Therefore, there exists n 1 such that, for all n n 1 ,

[-2T R , 2T R ] ⊂ I n .
A Taylor expansion of ψ n at 0 reads

|ψ n (t) -(η n , 0) -tψ n (0)| |t| 2 2 sup s∈In |ψ n (s)|.
This implies

(4.19) |ψ n (t) -(η n , 0) -t d| |t| • |ψ n (0) -d | + |t| 2 2 sup s∈In |ψ n (s)|.
On the other hand, by definition we know that

ψ n (0) = γ (n) |γ (n)| , sup s∈In |ψ n (s)| = sup s∈[n-α,n+α] κ(s).
As γ is a spiraling curve, lim n |ψ n (0) -d | = lim k sup s∈In |ψ n (s)| = 0 and lim n η n -ηn = ρ 0 . Therefore, there exists n 2 n 1 such that, for n n 2

|η n -ηn -ρ 0 | < ε/6, |ψ n (0) -d| < ε/(12T R ), sup s∈In |ψ n (s)| < ε/(12T 2 R ). It then follows from (4.19) that, for all t ∈ [-2T R , 2T R ], for n n 2 (4.20) |ψ n (t) -(ηn + ρ 0 , 0) -t d| < ε/2.
In other words, the trajectory stays at distance at most ε/2 from the segment joining the lines {x 2 = -R} to the line {x 2 = R}, passing through the point (ηn + ρ 0 , 0) and directed by d. See Figure 5.

Step 3. Proof of (4.18). We are now in position to prove (4.18). Let j ∈ {-J R , . . . , J R } and n = k + j. If k k 1 + J R then n k 1 so that (4.20) holds, that is

|ψ k+j (t) -((k + j)η + ρ 0 , 0) -t d| < ε/2 for t ∈ [-T R , T R ]. Additionally, if k n 2 + J R , |η k -kη -ρ 0 | < ε/2. Altogether, |t d + jη i -(ψ k+j (t) -η k i)| |t d + ((k + j)η + ρ 0 , 0) -ψ k+j (t)| + |kη + ρ 0 -η k | < ε which is exactly (4.18).
Step 4. Proof of (4.16).

It is a bit more complicated to identify the pieces of the trajectory that go through a given square. The first part of this step consists in identifying those pieces.

We want to prove that, given R, ε > 0 for k sufficiently large

(Γ -(η k , 0)) ∩ (-R, R) 2 ⊂ L d,η + B ε (0). Defining Q k,R := (η k -R, η k + R) × (-R, R), this can be rewritten as (4.21) Γ ∩ Q k,R ⊂ {t d + (ηj + η k ) i : t ∈ R, j ∈ Z} + B ε (0).
First, let n 0 be the smallest n ∈ N for which {ψ n (t) :

t ∈ I m } ∩ Q k,R = ∅.
In particular (η k , 0) is at distance at most R from the trajectory of ψ n 0 (t). As η k → +∞ when k → ∞, this implies that n 0 → ∞ when k → ∞. Then, we can take k large enough so that n 0 k ρ , where k ρ is the constant of radial monotonicity. This means that

Γ ∩ Q k,R ⊂ n kρ {ψ n (t) : t ∈ I n } ∩ Q k,R ,
and thus we can use the monotonicity property to order from left to right all trajectories {ψ n (t) : t ∈ I n } which intersect Q k,R (see Figure 6). From now on, we will assume that n k ρ for any piece of trajectory {ψ n (t) : t ∈ I n } considered. Now, let us reduce the picture. For this, we temporarily fix k and write z = η k , z ± = z ± R, τ = z + /z -. As η k → +∞, we can choose k so that τ is as near to 1 as we want.

Let D ± = R + (z -, ±R) ∪ {(0, 0)} for the half-lines starting at 0 and through the leftcorners of Q k,R and let S be the subcone delimited by these half-lines (and containing the positive x 1 -axis).

Let

a = z --ε -2R|d 1 /d 2 |.
The choice of a has been made as follows: let a be the line through (a, 0) and directed by d, and set

A := a ∩ {|x 2 | 2R}. Then A ⊂ {x 1 z --ε} and A ∩ {x 1 = z --ε} = ∅. Similarly, let b = z + + ε + 2R|d 1 /d 2 | = z -+ ε + 2R (1 + |d 1 /d 2 |).
Again, let b be the line directed by d through (b, 0) and set

B := b ∩ {|x 2 | 2R}.
Additionally, here we define

C := b ∩ S. Then -B is at distance at least ε on the right of Q k,R , that is, B ⊂ {x 1 z + + ε}. Moreover B ∩ {x 1 = z + + ε} = ∅. Also B ⊂ {x 1 b + 2R|d 2 /d 1 |} and B ∩ {x 1 = b + 2R|d 2 /d 1 |} = ∅.
In particular, B joins the boundaries of the strip {z

+ + ε x 1 b + 2R|d 2 /d 1 |}. -C is included in the strip { bd 2 z -d 2 +Rd 1 R x 1 bd 2 z -d 2 -Rd 1 R}. Note that, when k → +∞, b, z -→ +∞ but b/z -→ 1. It follows that, for k large enough, C ⊂ B.
Note also that, if k is large enough, then A, B, C are included in the larger escape cone, see Figure 7. 

A = [A 1 , A 2 ], B = [B 1 , B 2 ], C = [C 1 , C 2 ]. Next, recall from (4.20) that, if n is large enough, then for |t| 2T R , |ψ n (t) -(ηn + ρ 0 , 0) -t d| < ε/2.
In particular, as a, b → +∞ when k → +∞, if k is large enough, then this holds for a/η < n < b/η. In other words, for those n's, the part of the trajectory {ψ n (t) : |t| 2T R } stays at distance less than ε/2 of the segments {(nη + ρ 0 , 0) + t d : |t| 2T R }. Those segments are all included in the rhombus delimited by A, B and the lines {x 2 = ±2R}. In particular, they all join the 2 boundaries of the cone S. Further, the monotonicity property shows that the curves {ψ n (t) : |t| 2T R } ∩ S are ordered from the left to the right when n goes from a/η to b/η. Now let {ψ m (t) : t ∈ I m } be a piece of the trajectory that intersects Q R . It therefore also intersects S. From the monotonicity property {ψ m (t) : t ∈ I m } is either -on the left of {ψ a/η (t) : t ∈ I a/η } ∩ S -or on the right of {ψ b/η (t) :

t ∈ I b/η } ∩ S -or one of {ψ n (t) : t ∈ I n } ∩ S, a/η < n < b/η.
But, in the first two cases, {ψ m (t) : t ∈ I m } would not intersect Q R so that the only trajectories that may intersect Q R are {ψ n (t) :

t ∈ I n } ∩ S, a/η < n < b/η. Further note that, when |t| = 2T R , (4.20) implies that |ψ n (t)| ∈ {|x 2 | 2R -ε/2} ⊂ {|x 2 | > R} provided we choose ε < 2R. It follows that Γ ∩ Q k,R ⊂ a/η<n<b/η {ψ n (t) : |t| 2T R }. In summary Γ ∩ Q k,R ⊂ a/η<n<b/η {(ηn + ρ 0 , 0) + t d : |t| 2T R } + B ε/2 (0).
To end with, note that since lim k ηn+η k η(n+k)+ρ 0 = 1 uniformly for any n ∈ (a/η, b/η) then, for k large enough,

Γ ∩ Q k,R ⊂ a/η<n<b/η {(η(n + k) + η k , 0) + t d : |t| 2T R } + B ε (0),
which is (4.21). Then (4.18) follows.

Proposition 4.2. Let Γ be a spiraling trajectory with asymptotic velocity d ∈ S 1 and asymptotic separation τ > 0. Let Ω be a convex centered symmetric body such that

{t d ⊥ : t ∈ [-1/2τ, 1/2τ ]} ⊂ Ω • .
Then Γ is not a sampling trajectory for P W 2 (Ω).

Proof. Suppose on the contrary that Γ is a sampling trajectory for P W 2 (Ω). By Theorem D, there exists a separated set Λ ⊂ Γ that is a sampling set for P W 2 (Ω). By Lemma 4.1, L d,τ ∈ W (Γ). Therefore, there exists a sequence

{x k : k 1} ⊂ R 2 such that Γ + x k w -→ L d,τ
. By Lemma 2.11, we may pass to a subsequence, and assume that Λ +

x k w -→ Λ , for some set Λ ⊂ R 2 . Since Λ ⊂ Γ, it follows that Λ ⊂ L d,τ . Since {t d ⊥ : t ∈ [-1/2τ, 1/2τ ]} ⊂ Ω • , there exists r > 1/2τ such that {t d ⊥ : t ∈ [-r, r]} ⊂ Ω, and we can take 0 < ε < 1 such that {t d ⊥ : t ∈ [-1/2τ, 1/2τ ]} ⊂ {t d ⊥ : t ∈ [-(1 -ε)r, (1 -ε)r]} ⊂ (1 -ε)Ω.
As Λ is a sampling set for P W 2 (Ω), by Corollary 2.7, it is also a sampling set for P W ∞ ((1ε)Ω). Therefore, by Theorem 2.10, Λ is a uniqueness set for P W ∞ ((1 -ε)Ω). However, the non-zero function

f (x) := sin π τ x, d ⊥ satisfies f ≡ 0 on L d,τ -cf. (4.
15)-and therefore on Λ , and supp( f

) ⊂ {t d ⊥ : t ∈ [-1/2τ, 1/2τ ]} ⊂ (1-ε)Ω.
This contradiction shows that Γ cannot be a sampling trajectory for P W 2 (Ω).

4.2.

Application to concrete curves. We now have all the elements to prove our sampling result, Theorem A, for the Archimedes spiral and the concentric circles. Let us recall the statement and then prove it.

Theorem A. Let Ω ⊂ R 2 be a convex centered symmetric body. (i) If diam(Ω)η < 1, then the Archimedes spiral A η and the collection of concentric circles O η are sampling trajectories for P W 2 (Ω). (ii) If diam(Ω)η > 1, then neither the Archimedes spiral A η nor the collection of concentric circles O η are sampling trajectories for P W 2 (Ω).

Proof. Let Γ be either A η or O η . Note first that (4.22) Ω ⊂ Bdiam(Ω)/2 (0).

Indeed, if x ∈ Ω then by symmetry -x ∈ Ω and thus, 2 x = x -(-x) diam(Ω). For (i), assume that diam(Ω)η < 1, and let ε > 0 and η > η be such that η (1 + ε)diam(Ω) < 1. We know from (2.5) that gap(Γ) = η/2. By Lemma 2.5, there exists a separated set Λ ⊂ Γ with gap(Λ) η /2. Since gap(Λ)diam( B(1+ε)diam(Ω)/2 (0))

η 2 (1 + ε)diam(Ω) < 1 2 .
Theorem 2.4 implies that Λ is a sampling set of P W ∞ ( B(1+ε)diam(Ω)/2 (0)). Finally, applying Theorem 2.6, we have that Λ is a sampling set for P W 2 ( Bdiam(Ω)/2 (0)) and thus for P W 2 (Ω). We invoke Theorem D to conclude that Γ is a sampling trajectory for P W 2 (Ω). For (ii), we first note that exists d ∈ S 1 such that

{t d ⊥ : t ∈ [-diam(Ω)/2, diam(Ω)/2]}
is contained in Ω. Indeed, by compactness, we can select x ∈ Ω with maximal norm.

Then Ω ⊂ B x (0), and hence diam(Ω)

2 x = x -(-x) diam(Ω). Thus, x = diam(Ω)/2. Letting d ⊥ := x/ x , convexity reads {t d ⊥ : t ∈ [-diam(Ω)/2, diam(Ω)/2]} ⊂ Ω.
Now suppose that diam(Ω)η > 1 and take ε ∈ (0, 1) such that

(1 -ε) -1 1/(2η) = diam(Ω)/2. Therefore, {t d ⊥ : t ∈ [-1/(2η), 1/(2η)]} ⊂ (1 -ε)Ω ⊂ Ω •
where we used (2.4). By Proposition 3.4, Γ is spiraling with asymptotic velocity d and asymptotic separation τ = η. We invoke Proposition 4.2 and conclude that Γ is not a sampling trajectory for P W 2 (Ω).

Approximate aliasing

5.1. Rates of convergence for weak limits. We introduce the following class of curves.

Definition 5.1. Let η > 0, λ > 0 and Ω ⊂ R 2 a convex centered symmetric body. We say that a regular trajectory Γ belongs to the class C(η, λ, Ω) if there exists a constant C Γ for which, given ε, R > 0 there is one y ∈ R 2 such that

(i) (Γ -y) ∩ (-R, R) 2 ⊂ (ηZ × R) + B ηε (0), (ii) |y| C Γ R 2 ε , (iii) λ -1/p f L p (µ Γ )
f p for all f ∈ P W p (Ω) with 1 p ∞.

We now prove that the curves A η and O η belong to this type of classes. For technical reasons we extend this result to any rotation R 2πθ 0 A η . As a first step, we show the following lemma, which quantifies the convergence in Lemma 4.1.

Lemma 5.2. Let η > √ 2/2 and θ 0 ∈ [0, 1). Then there exists a constant C independent from η and θ 0 such that given R 1 and 0 < ε < 1/2 the inclusion

(R 2πθ 0 A η -(η(n + θ 0 ), 0)) ∩ (-R, R) 2 ⊂ ηZ × R + B ε (0)
holds for all n Cε -1 R 2 . The same inclusion holds for O η , translating instead by (ηn, 0) and eventually taking a larger constant.

Proof. Let x = (ηθ cos 2π(θ -θ 0 ), ηθ sin 2π(θ -θ 0 )) ∈ R 2πθ 0 A η ∩ (R × (-R, R)) with x 1 > η(θ 0 + 1/4). Then, there exists k ∈ N such that k -1/4 < θ -θ 0 < k + 1/4. We will prove (5.23)

|x 1 -η(k + θ 0 )| 33R 2 k .
Assuming this for a moment, let us show how the lemma would then follow. Let n 2R and take y ∈ (R 2πθ 0 A η -(η(n + θ 0 ), 0)) ∩ (-R, R) 2 . Write y = x -(η(n + θ 0 ), 0)) with x ∈ R 2πθ 0 A η . Then x 1 > η(n + θ 0 ) -R, and since n 2R, R 1 and 2η > 1, we have x 1 > η(θ 0 + 1/4). Further, taking the same k as before,

η(n + θ 0 ) -R < x 1 = ηθ cos 2π(θ -θ 0 ) ηθ|cos 2π(θ -θ 0 )| ηθ η(k + 1/4 + θ 0 ). This yields k > n -1/4 -R/η > n/2 -R 2 /ε
since n 1 and η > 1/2 > ε. Hence, taking n

68R 2 ε 2R we get k > 33R 2 ε
and then (5.23) 

reads |y 1 -η(n -k)| = |x 1 -η(k + θ 0 )| < ε. Therefore, y ∈ ηZ × R + B ε (0), as claimed.
Let us now prove (5.23). Using the same notation as before for

x ∈ R 2πθ 0 A η ∩ (R × (-R, R)) with x 1 > η(θ 0 + 1/4), we have k -1/4 < θ -θ 0 < k + 1/4, -R < ηθ sin 2π(θ -θ 0 ) < R.
In particular, since arcsin(θ) is a strictly increasing function and |arcsin(θ

)| 2|θ| for θ ∈ [-1, 1], |θ -(k + θ 0 )| < 1 2π • 2R ηθ < R ηπ(k -1/4 + θ 0 ) < 2R ηπk
since θ 0 0, k 1. Next, using the triangle inequality and the fact that |cos θ -1| |θ| 2 /2 we get ), and R 0 > 0. Then, there exist a constant C > 0 independent of η and θ 0 such that the curves R 2πθ 0 A η and O η belong to the class C(η, C(R 0 + 1), BR 0 (0)). Moreover, the constant C γ = C R 2πθ 0 A η , C O η in Definition 5.1 is also independent of η, θ 0 .

|x 1 -η(k + θ 0 )| = |ηθ cos 2π(θ -θ 0 ) -η(k + θ 0 )| |ηθ cos 2π(θ -θ 0 ) -η(k + θ 0 ) cos 2π(θ -θ 0 )| + |η(k + θ 0 ) cos 2π(θ -θ 0 ) -η(k + θ 0 )| η|θ -(k + θ 0 )| + η(k + θ 0 )|cos 2π(θ -k -θ 0 ) -1| η|θ -(k + θ 0 )| + 2π 2 η(k + θ 0 )|θ -(k + θ 0 )| 2 2R πk + 4π 2 ηk 4R 2 (ηπk) 2 R k + 16R 2 ηk 33R 2 k , since 2η, R, k 1 > θ 0 . The proof for O η is similar. Proposition 5.3. Let η > √ 2/2, θ 0 ∈ [0, 1
Remark 5.4. The proof below also works for 0 < η √ 2/2 but then the constants C R 2πθ 0 A η and C O η depend on η. The reader may check that they satisfy a bound of the form Cη -1 .

Proof of Proposition 5.3. We treat only R 2πθ 0 A η , the case of O η being similar. Condition (iii) of Definition 5.1 follows from Proposition 3.5: since η > √ 2/2, for all f ∈ P W ( BR 0 (0))

f L p (µ Γ ) (η -1/p + R 1/p 0 ) f p (R 0 + 1) 1/p f p .
Conditions (i) and (ii) follow from the Lemma 5.2. Indeed, let ε, R > 0 be given and set ε := ηε. Without loss of generality, we can assume that ε ∈ (0, 1/2) and R 1. Taking y = (η(n + θ 0 ), 0) with n = C(ηε

) -1 R 2 , Lemma 5.2 gives (R 2πθ 0 A η -y) ∩ (-R, R) 2 ⊂ ηZ × R + B ηε (0), |y| 2Cε -1 R 2 ,
as desired. (5.24) var Ω (f ) := sup

Ω f divh : h ∈ C 1 c (Ω), h ∞ 1 .
When f belongs to the Sobolev space W 1,1 (Ω) integration by parts shows that var Ω (f ) = ∇f L 1 (Ω) .

Lemma 

∈ P W 2 (Q ∪ -Q) such that (i) g 2 = 1, (ii) η -1/2 g L 2 (µ Γ ) ζ, (iii) var( g) C max((η - √ 2/2) -1 , η) λ ζ 2 ln 4 C λ ζ 2 + 1 , (iv) g ∞ C max((η - √ 2/2) -1 , η), where C > 0 is a universal constant.
Proof. Let Q 0 be the square of vertices (-1, 0), (0, 1), (1, 0) and (0, -1). Take φ ∈ for some constant C 1 > 0. Note that, integrating in polar coordinates

P W 2 (Q 0 ) such that φ 2 = √ 2 
φ 1 2πC 1 ∞ 0 e -r 1/2 r dr = 4π ∞ 0 e -s s 3 ds = 24πC 1 .
Also, as φ ∈ P W 2 (Q 0 ) and the area of Q 0 is 2 and

φ 2 = φ 2 = √ 2/2, then Cauchy- Schwartz inequality gives φ 1 |Q 0 | 1/2 φ 2 = 1. Define g 0 (x) := β sin π η x 1 φ(βx) with β = min(1/(2η), √ 2/2 -1/(2η)). Note that, as η > √ 2/2, β > 0.
For ε, R > 0 to be fixed later take y = y(ε, R) as in Definition 5.1 and set g(x) := g 0 (x -y). Then (5.26) 

g(ξ) = e -2πiyξ 2βi φ(β -1 (ξ 1 -1/(2η)), β -1 ξ 2 ) -φ(β -1 (ξ 1 + 1/(2η)), β -1 ξ 2 ) := φ 1 -φ 2 .
As φ ∈ P W 2 (Q 0 ), the support of φ 1 is included in Q η := βQ 0 + (1/(2η), 0) and the support of φ 2 in -Q η . We claim that Q η ⊂ Q. To show this, we argue by cases on 1/(2η (1/(2η), -β) belong to Q. Also in this case 1/(2η) -β 0 and 1/(2η) + β = √ 2/2, so that, again, (1/(2η) -β, 0) and (1/(2η) + β, 0) belong to Q. Thus Q η ⊂ Q also in this case. Thus, in any case, supp(φ 1 ) ⊂ Q and supp(φ 2 ) ⊂ -Q, where Q is the cube defined in the hypothesis. Altogether,

g ∈ P W 2 (Q ∪ -Q). 1/(2η) β Qη Q 1/(2η) β Qη Q Figure 8. Sketch of both cases: 1/(2η) √ 2/4 (left), 1/(2η) √ 2/4 (right).
Since Q and -Q only intersect at 0, then φ 1 and φ 2 have disjoint support up to a set of measure zero. Hence, using Plancharel we obtain

g 2 2 = g 2 2 = φ 1 2 2 + φ 2 2 2 = 2 φ 2 2 = 1, which proves (i).
We now show that η -1 g L 2 (µ Γ ) is small enough for an appropriate choice of ε and R. 

|g 0 (x)| + βC 1 e -β 1/2 R 1/2 βC 1 (ε + e -β 1/2 R 1/2 ).
Since Q ∪ -Q ⊂ B2 (0), we can use the condition (iii) of Definition 5.1 together with interpolation to get

η -1 g 2 L 2 (µ Γ ) η -1 g L 1 (µ) sup x∈Γ |g(x)| λ g 1 sup x∈Γ |g(x)| = λ g 0 1 sup x∈Γ |g(x)| λ φ 1 β sup x∈Γ |g(x)| 24πλC 2 1 (ε + e -β 1/2 R 1/2 ).
And finally taking

ε = ζ 2 48πλC 2 1 , R = β -1 ln 2 (48πλC 2 1 /ζ 2 ), we conclude that η -1/2 g L 2 (µ Γ ) ζ, which is point (ii). Note that R 2 ε = C 2 λ ζ 2 β 2 ln 4 (C 2 λ/ζ 2 ) with C 2 = 48πC 2 1 .
To estimate the variation of g we use again (5.26) and the fact that φ is smooth and rapidly decreasing combined with Leibniz's rule:

var( g) = ∇ g 1 π|y|β φ 1 + ∇ φ 1 C 3 λ ζ 2 β ln 4 (C 2 λ/ζ 2 ) + C 4
where C 3 = πC 2 C Γ and C 4 = ∇ φ 1 . Also, (5.26) implies

g ∞ β -1 φ ∞ .
Finally we see that β -1 2 max((η -√ 2/2) -1 , η) and thus parts (iii) and (iv) follow by taking

C = max(C 2 , 2C 3 , C 4 , 2 φ ∞ ). Proposition 5.6. Let η = (1 + ε) √ 2/2 with ε ∈ (0, 1), and Γ = A η or Γ = O η . Then given ζ > 0, there exists f ∈ L 2 ([-1/2, 1/2] 2 ) such that (i) f 2 = 1, (ii) η -1/2 f L 2 (µ Γ ) ζ, (iii) var(f ) C(ε -1 ζ -2 ln 4 (Cζ -2 ) + 1), (iv) f ∞ Cε -1 , where C > 0 is a universal constant. Proof. By Proposition 5.3, R π/4 A η ∈ C(η, C, B2 (0)) for some constant C > 0. Set λ := Cη -1 so that R π/4 A η ∈ C(η, ηλ, B2 (0) 
). Then using Lemma 5.5, we can construct g ∈ L 2 (R 2 ) associated with R π/4 A η and a given constant ζ > 0. Define f := g • R -π/4 . We will prove that f satisfies the conditions (i) -(iv) of the Proposition.

As in Lemma 5.5, let Q be the cube defined by the vertices (0, 0), (

√ 2/4, √ 2/4), ( √ 2/2, 0) and ( √ 2/4, - √ 2/4). Since supp( g) ⊂ Q ∪ -Q and R -1 -π/4 (Q) = R π/4 (Q) = [0, 1/2] × [0, -1/2], R -1 -π/4 (-Q) = [-1/2, 0] × [0, 1/2], we have supp(f ) ⊂ [0, 1/2] × [0, -1/2] ∪ [-1/2, 0] × [0, 1/2] ⊂ [-1/2, 1/2] 2 .
Point (i) follows from the fact that rotations are norm-invariant transformations and

g 2 = 1. To see (ii) note that f = g • R T -π/4 and R T -π/4 (A η ) = R -1 -π/4 (A η ) = R π/4 A η .
The variation of f can be estimated by the chain rule and (iii) of Lemma 5.5:

var(f ) = ∇f 1 = ∇( g • R -π/4 ) 1 (∇ g) • R -π/4 1 ∇R -π/4 ∞ ∇ g 1 = var( g) max((η - √ 2/2) -1 , η) λ ζ 2 ln 4 C λ ζ 2 + 1.
Then (iii) follows by using the identities η = (1 + ε) √ 2/2 and λ = Cη -1 so that max((η -√ 2/2) -1 , η) = (η -√ 2/2) -1 = ε -1 and λ η -1 η 1. Since f ∞ = g ∞ , this argument also yields (iv). Since f 2 = 1, η -1/2 f L 2 (µ Γ ) ζ and η 1, we have that (6.28) A(Γ, F(Φ(T )))

f L 2 (µ Γ ) η 1/2 ζ ε -1/2 T -1/2 .
We claim that (6.29) T Φ(T ) ln 4 (εΦ(T )) + 1

, if T C -1 ε -1 e.

Indeed, if CεT e, then, since ε ∈ (0, 1),

CT Φ(T ) and T e/C.

Consequently, Φ(T ) T ln 4 (CεT ) + 1 T ln 4 (εΦ(T )) + T from which (6.29) follows. Combining (6.28) and (6.29), we conclude that (6.30)

A(Γ, F(Φ(T ))) ε -1/2 Φ(T ) -1/2 (ln 2 (εΦ(T )) + 1), provided that T C -1 ε -1 e.

Note that lim T →+∞ Φ(T ) = +∞, while Φ(C -1 ε -1 e) = ε -1 e + C. This means that any number W ε -1 e + C can be represented as W = Φ(T ), for some T C -1 ε -1 e. Therefore, (6.30) reads (6.27) for all W ε -1 e + C.

Finally, if W ε -1 e + C, then εW 1, and the right-hand side of (6.27) is 1. On the other hand, the Bessel bound in Proposition 3.5 implies that A(Γ, F(W ))

f L 2 (µ Γ ) (η -1/2 + (1/2) 1/2 ) f 2 f 2 1, since η 1. This completes the proof. A N,J (Γ) KN -1/6 ε -1 ln 4 (KN 1/3 ), where J = K ln(ε -1 N ), and K > 0 is a universal constant.

Proof. Fix N and let ζ = N -1/6 and take f ∈ L 2 ([-1/2, 1/2] 2 ) as in Proposition 5.6. Then where K > 0 is some universal constant. Let P J be the orthogonal projection onto the span of wavelets with 0 j J. Then f -P J f 1 2 -J var(f ) -see for example [14, Eq. 2.10] and the references therein, or [START_REF] Devore | Constructive approximation, volume 303 of Grundlehren der Mathematischen Wissenschaften[END_REF]. In addition, f -P J f ∞ f ∞ , and therefore interpolation yields f -P J f 2 2 -J/2 var(f ) 1/2 f 1/2 ∞ . Plugging (6.33) we get (6.35) f -P J f 2 2 -J/2 ε -1 L 1/2 2 -J/2 ε -1 L where we have also used the fact that L 1 > ε. Now set f N,J := P J f N ∈ Σ N,J , and combine (6.35) and (6.34) to obtain

f -f N,J 2 f -P J f 2 + P J f -P J f N 2 f -P J f 2 + f -f N 2 (2 -J/2 ε -1/2 + N -1/2 )L.
Hence, choosing J ln(ε -1 N ), (6.36) f -f N,J 2 N -1/2 L.

Step 2. Write A N,J = A N,J (Γ). Then, using (6.32) and the definition of A N,J , (6.37) for some constant K 0 > 0 and where we have also applied Proposition 3.5 to estimate f N,J -f L 2 (µ Γ ) . Now from (6.36), if

A N,J = A N,J f 2 A N,J f N,J 2 + A N,J f N,J -f 2 f N,J L 2 (µ Γ ) + A N,J f N,J -f 2 f L 2 (µ Γ ) + f N,J -f L 2 (µ Γ ) + A N,J f N,J -f 2 K 0 N -1/6 + K 0 f N,J -f 2 + A N,J f N,J -f 2 ,
N L 2 ,
and the implicit constant is large enough, then f -f N,J 2 < 1/2. Going back to (6.37) and re-applying (6.36) we get A N,J N -1/6 + N -1/2 L N -1/6 ε -1 ln 4 (CN 1/3 ).

Note that since L = ε -1 N 1/3 ln 4 (CN 1/3 ) + 1, then, for N L 2 to hold it is sufficient to have N ε -2 N 2/3 ln 8 (CN 1/3 ), or, equivalently, N ε -6 ln 24 (CN 1/3 ).

Hence, there is a constant C > 0 such that (6.31) holds if N C ε -6 ln 24 (C N 1/3 ). On the other hand, if N C ε -6 ln 24 (C N 1/3 ) then to prove (6.31) is enough to show A N,J 1, which, as in the proof of Theorem B, follows from the Bessel bounds in Proposition 3.5.

(1. 1 )

 1 A η := {(ηθ cos 2πθ, ηθ sin 2πθ) : θ 0} and the collection of concentric circles (1.2)O η := {(x, y) :x 2 + y 2 = η 2 k 2 , k ∈ N},see Figure1.

Figure 1 .

 1 Figure 1. Archimedes spiral (left) and concentric circles (right) with separation η.

2 .

 2 Preliminaries on pointwise sampling 2.1. Notation. Throughout this paper, we will adopt the following notation: on R d , |•| and •, • are the usual Euclidean norm and scalar product. For sets we will use diamE = sup x,y∈E |x -y|, dist(E, F ) = inf x∈E,y∈F |x -y|. The balls are denoted by B r (x) := {y ∈ R d : |y -x| < r}.

Theorem 2 . 3 .

 23 Let f be an entire function in C d with |f (x + iy)| M e c|y| for all x, y ∈ R d and where M, c > 0 are constants. If f (x) ∈ L p (R d ) with 1 p ∞ then for all y ∈ R d , R d |f (x + iy)| p dx e c|y| R d |f (x)| p dx with the usual modifications when p = ∞.

For

  

(3. 12 )Figure 2 .

 122 Figure 2. Sketch of an spiraling curve.

Figure 3 .

 3 Figure 3. A spiraling curve based on a set of parallel lines in a sector (left) and a spiraling curve made of concentric squares (right).

|ρ 1 (

 1 θ 0 )|(|cos 2πθ 0 -cos 2πθ| + |sin 2πθ 0 -sin 2πθ|) + |ρ 1 (θ 0 ) -ρ 1 (θ)|(|cos 2πθ| + |sin 2πθ|) (η + 4πρ 1 (θ 0 ))|θ 0 -θ| by the Mean Value Theorem. Let us set r 0 := r η+4πρ 1 (θ 0 ) , so that |θ 0 -θ| r 0 implies |x -y| < r. This allows us to bound the arc-length of B r (x) ∩ A η from below by µ(B r (x))

and in particular |ρ 1

 1 (θ 0 ) sin 2π(θ 0 -θ)| = |x||sin 2π(θ 0 -θ)| < r 1. Using the bound |sin 2π(θ -θ 0 )| |θ -θ 0 | -valid for |θ -θ 0 | 1/100, we conclude that |θ 0 -θ| |sin 2π(θ -θ 0 )| |x| -1 , and (3.14) follows. Now we can estimate,

3. 5 .

 5 Bessel bounds. The following Bessel bounds follow from [27, Theorem 3.2].

Lemma 4 . 1 .

 41 Let Γ be a spiraling trajectory with asymptotic velocity d and asymptotic separation τ . Then the collection of equispaced parallel lines(4.15) L d,τ := {t d + τ k d ⊥ : t ∈ R, k ∈ Z}is a weak limit of translates of Γ, i.e. L d,τ ∈ W (Γ).

Figure 5 .

 5 Figure 5. Illustration of (4.20).

Figure 6 .

 6 Figure 6. Curves in Q k,R ordered from left to right.

Figure 7 .

 7 Figure 7. The segments areA = [A 1 , A 2 ], B = [B 1 , B 2 ], C = [C 1 , C 2 ].

5. 2 .

 2 Quantitative aliasing. Having quantified the convergence in Lemma 4.1, we turn into the quantification of aliasing. While a union of lines with sub-Nyquist density leads to aliasing, we show that spirals suffer from approximate aliasing.Let us recall the definition of variation of a function f ∈ L 1 (Ω):

  |φ(x)| C 1 e -|x| 1/2

  First note that sup x∈ηZ×R+ Bηε(0) |g 0 (x)| βε φ L ∞ (R 2 ) βεC 1 . Then, combining this with condition (i) of Definition 5.1 and (5.25) we have sup x∈Γ |g(x)| = sup x∈Γ-y |g 0 (x)| sup x∈(Γ-y)∩(-R,R) 2 |g 0 (x)| + sup x / ∈B R (0) |g 0 (x)| sup x∈ηZ×R+ Bηε(0)

6 . 1 .

 61 Compressibility and sub-Nyquist sampling 6.Analog compressibility. We will now work on the cube [-1/2, 1/2] 2 . We recall the class F(W ) defined in the introduction:F(W ) := {f ∈ L 2 ([-1/2, 1/2] 2 ) : var(f ) W }.The relevant stability margin isA(Γ, F(W )) := inf{ f L 2 (µ Γ ) : f 2 = 1, f ∈ F(W )}. Let us now restate and prove Theorem B. Theorem B. Let η = (1 + ε) √ 2/2 with ε ∈ (0, 1), and Γ = A η or Γ = O η . Then for W > 0, (6.27) A(Γ, F(W )) K(εW ) -1/2 (ln 2 (εW ) + 1), where K > 0 is a universal constant. Proof. Let T > 0, set ζ := ε -1/2 T -1/2 and take f given by Proposition 5.6 associated to ζ. Then there exists a constant C > 0 such that var(f ) Φ(T ), where Φ(T ) := C(T ln 4 (CεT ) + 1).

6. 2 .

 2 Sampling wavelet-sparse signals. We work with the Haar basis inL 2 ([-1/2, 1/2] 2 ) constructed from the one in L 2 ([-1/2, 1/2]) by tensorization: from h 0 = χ [-1/2,1/2) and h 1 = χ [-1/2,0) -χ [0,1/2) one defines h e j,k (x) = 2 j/2 h e 1 (2 j x 1 -k 1 )2 j/2 h e 2 (2 j x 2 -k 2 ) with j 0, k 1 , k 2 ∈ Z 2 ∩ 2 j [-1/2, 1/2) 2 , e ∈ {0,1} 2 \ {(0, 0)}. We denote I the set of all such triples, and then define the sparsity classes as Σ N,J :=    (j,k,e)∈I c e j,k h e j,k : c e j,k ∈ C, #I N , 0 j J    and the corresponding stability marginA N,J (Γ) := inf f L 2 (µ Γ ) : f 2 = 1, f ∈ Σ N,J .Let us now restate and prove Theorem C.Theorem C. Let η = (1 + ε) √ 2/2 with ε ∈ (0, 1), and Γ = A η or Γ = O η . Then for N 1,(6.31) 

f 2 =Step 1 .

 21 1 and f L 2 (µ Γ ) N -1/6 , (6.32)var(f ) L := ε -1 N 1/3 ln 4 (CN 1/3 ) + 1 and f ∞ ε -1 . (6.33) Let us consider the class Σ N :=    (j,k,e)∈I c e j,k h e j,k : c e j,k ∈ C, #I N    of functions with at most N active Haar coefficients without restrictions on the scale. Let f N the best approximation of f in Σ N . Since the variation of f is bounded, we can use the following inequality from [14, Theorem 8.2]: (6.34) f -f N 2 KN -1/2 var(f ) N -1/2 L,

  1 p < ∞, Theorem 2.3 is referred as the Plancharel-Pólya inequality and for p = ∞ as the Phragmén-Lindelöf principle; see, e.g., [44, Theorem 2.11 and 2.16]. 2.4. Sampling sets and Beurling's gap theorem. A set Λ ⊂ R d is said to be sampling for P W p

See (5.24) for the definition of var(f ).

In standard terminology, the condition number of the sampling problem f |Γ → f is related to the reciprocal of this quantity.
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