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Mixed-Critical Systems Design with
Coarse-grained Multi-core Interference

Peter Poplavko, Rany Kahil, Dario Socci, Saddek Bensalem, and Marius Bozga
?

VERIMAG

Abstract. Those autonomic concurrent systems which are timing-critical
and compute intensive need special resource managers in order to ensure
adaptation to unexpected situations in terms of compute resources. So-
called mixed-criticality managers may be required that adapt system re-
source usage to critical run-time situations (e.g., overheating, overload,
hardware errors) by giving the highly critical subset of system functions
priority over low-critical ones in emergency situations. Another challenge
comes from the fact that for modern platforms – multi- and many- cores –
make the scheduling problem more complicated because of their inherent
parallelism and because of “parasitic” interference between the cores due
to shared hardware resources (buses, FPU’s, DMA’s, etc.). In our work-
in-progress design flow we provide the so-called concurrency language
for expressing, at high abstraction level, new emerging custom resource
management policies that can handle these challenges. We compile the
application into a representation in this language and combine the re-
sult with a resource manager into a joint software design used to deploy
the given system on the target platform. In this context, we discuss our
work in progress on a scheduler that aims to handle the interference in
mixed-critical applications by controlling it at the task level.

Keywords: bandwidth interference, multi-core, embedded multiproces-
sor, mixed criticality

1 Introduction

In this paper we present our work-in-progress design flow for scheduling and
deployment of software designs for embedded systems. Modern embedded appli-
cations constitute so-called nodes of distributed systems, i.e., they communicate
via buses and networks with other applications (nodes). We consider systems
that are not only timing-critical, i.e., subject to hard real-time constraints, but
also mixed-critical, i.e., able to sustain highly-critical functions even under harsh
compute-resource shortage situations. The latter is desirable if the system has to
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be autonomic [26], i.e., able to operate in open and non-deterministic environ-
ments. An example of an autonomic mixed timing-critical system is a “fleet of
UAV’s (unmanned air vehicles) [7]” that coordinate with the leader UAV within
strict time bounds to avoid mutual collision. Such systems should not only be
correctly specified but also schedulable in real-time. The point is that control
tasks in many applications are augmented by complex computations that can
load the processor significantly (e.g., computer vision, trajectory/route calcula-
tion, image/video coding, graphics rendering). In such cases, to meet the high
computational demands inside the nodes while keeping their energy consump-
tion, cost and weight manageable it is important to consider multi- (2-10) or
even many-core (x100’s cores/‘accelerators’) platforms.

A major obstacle for schedulability analysis of multi-core applications is
‘bandwidth interference’ [2], i.e., blocking due to conflicts in simultaneous ac-
cesses to shared hardware resources, such as buses, FPU’s, DMA channels, IO
peripherals. Next to interference, the other dimensions in the scheduling problem
are (i) possible lack of preemption support in many-core systems, (ii) inter-task
precedences (dependencies), commonly implied from the application’s model of
computation (MoC) and (iii) switching between normal and emergency mode in
mixed-critical scheduling. To be able to address all these dimensions at the same
time we propose simplifications which make the scheduling problem amenable
for known heuristic methods with some adaptations.

We also put the proposed scheduling approach into the context of our work-
in-progress design flow, which offers not only scheduling but also deployment
on the platform. The deployment is ensured by a compilation tool-chain that is
by construction customizable to various MoCs and online scheduling policies by
mapping them to an expressive intermediate ‘concurrency’ language.

In Section 2 we introduce one-by-one the main pillars of our design flow, such
as MoCs and mixed-criticality. Section 3 introduces the structure and assump-
tions of the proposed flow and illustrates it via a small synthetic application
example. Section 4 gives a basic explanation of the scheduling algorithm and
discusses the results. Section 5 concludes the paper and discusses future work.

2 Background

2.1 Models of Computation

To manage concurrency and coordination between tasks in parallel and dis-
tributed environments Models of Computations (MoCs) have been proposed in
the literature. They permit the application designer to define the structure and
organize the tasks and their communication channels in a way that resembles
high-level specifications (functional diagrams). MoCs intend to abstract the ap-
plication’s behavior from any implementation detail. Figure 1 shows an example:
a part of an industrial avionics application modeled in a MoC called Fixed Pri-
ority Process Network (FPPN) [18].

In the figure we see (1) tasks, e.g., ‘HighFreqBCP’, etc., annotated by pe-
riods, (2) inter-task channels, e.g., between ‘DopplerConfig’ and ‘SensorInput’,
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Fig. 1. Application modeled in a MoC: Flight Management System in FPPN

and (3) precedence relation between tasks, e.g., ‘HighFreqBCP’ has higher prece-
dence than ‘BCPConfig’. The application consumes data from input buffers,
e.g., ‘AnemoData’, and produces the results to output buffers, e.g., ‘BCP Data’.
The buffers are supposed to keep the slots for input and output data available
during the whole interval between the task arrival and the deadline. As a MoC,
FPPN should define the partial ordering of execution and interaction of concur-
rent activities (tasks), and this is done via the precedence relation, which ensures
predictable inter-task communication.

Next to FPPN, many MoCs have been proposed in the literature for embed-
ded multi-core systems, to name just a few: MRDF (multi-rate data-flow, often
named SDF – Synchronous Dataflow) [14], Prelude [8], SADF (scenario-aware
data-flow) [25] and DOL-Critical [11].

2.2 Resource Managers and Concurrency Language

An important property of autonomic embedded systems is their ability to adapt
themselves to unexpected phenomena [26]. When a system is compute-intensive
(which should be the case when a multi-core implementation is necessary) and
time-critical it has to be able to adapt itself to exceptional shortage in compute
resources. In real-time systems, ‘resource managers’ are software functions that
monitor utilization of compute resources and ensure such adaptation. For this
they apply different mechanisms, such as mixed-criticality, QoS management,
DVFS (Dynamic Voltage and Frequency Scaling), etc.. Especially the mixed-
criticality approaches are gaining more an more interest and have a high rele-
vance for collective adaptive systems [7]. A resource manager is an integral part
of an online scheduler i.e., a middleware that implements a customized online
scheduling policy.

Unfortunately, there is a considerable semantical gap between the online
schedulers and the middlewares that implement MoCs, even though both define
software concurrency behavior. We aim at a common approach that can ensure
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consolidation, by representing both types of middleware in a language that is
expressive enough such that it can encompass all possible concurrency behav-
iors for real-time systems, including their timing constraints. We refer to that
common language as concurrency language (or backbone language) [23].

We believe that for autonomic timing-critical systems a proper choice of con-
currency language is a combination of procedural languages and task automata.
The latter are timed automata extended with tasks [3, 10]. Timed-automata
languages in general are known to be convenient means to specify resource man-
agers, such as QoS [1] and mixed criticality [20].

In our design flow the concurrency language is BIP. Under ‘BIP’ we mean in
fact its ‘real-time dialect’ [1], designed to express networks of connected timed
automata components. In [6] BIP was demonstrated relevant for distributed
autonomic systems. In [11] it was extended from timed to task automata, by
introducing the concept of self-timed (or ‘continuous’) automata transitions,
i.e., transitions that have non-zero execution time, to model task execution.

In our approach, the applications are still programmed in their appropriate
high-level MoC because in many cases an automata language, though being
appropriate for resource managers, may still be too low-level for direct use in
application programming. Instead, we assume automatic compilation of higher-
level MoCs into the concurrency language. Due to well-known high expressive
power of automata to model concurrent systems this must be possible for most
MoCs. In an ideal case, the compilation would be configured by a user-defined
set of grammar rules for automatic translation of the user’s preferred MoC into
automata.

2.3 Concurrency Language based Representation of System Nodes

Figure 2 gives a generic structure of a concurrency language model of a distributed-
system node running an application expressed in a certain MoC. We also zoom
into the BIP model of an important component.
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Fig. 2. Concurrency Language Representation of a Timing-critical Application

The basic components of the model are automata, i.e., finite-state machines
that can interact with other components by participating in a set of interactions
with other automata as they make discrete transitions (basic steps of execution).
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In our model, we have one automaton per application task and one per inter-
task channel, and also an automaton to control each task – the so-called task
controller. There is also an automaton that ensures proper task execution order
according to MoC semantics, we refer to that component as MoC controller. One
can also introduce an automaton that would further restrict the ordering and the
timing of task executions – the online scheduler. This component would impose
user-programmed scheduling policy. Note that automata can be hierarchical,
i.e., they can represent a composition of more primitive automata.

In Figure 2 we zoom into a task controller for periodic tasks whose deadline
is equal to the period. It consists of a cyclic sequence of states, with initial state
‘S0’ and first transition ‘Arrive’, which models task arrival and is followed by
transition ‘Start’, which corresponds to starting a new iteration of task execution,
called a job. The ‘Start’ transition is followed by ‘Finish’ transition when the job
finishes. After the finish, the deadline-check transition ‘Deadline’ is executed.
The deadline is checked as follows: upon task arrival a so-called clock variable x
is reset to zero. This variable acts as a timer indicating the time elapsed since
the last clock reset. After the job has finished we check whether the deadline D
was respected, i.e., whether x ≤ D.

Note that in our design flow the given task controller is both time- and event-
driven, as the tasks arrive periodically (in a time-driven way) but start when
the MoC controller would enable the ‘Start’ interaction, thus indicating that the
task predecessors have finished (in an event-driven way).

2.4 Multi-core Interference Aspects

When dealing with multi-core platform architectures as targets for timing criti-
cal applications a particular serious problem arises. Spontaneous unpredictable
or hardly predictable ‘parasitic’ timing delays – ‘interference’ – manifest them-
selves when multiple cores run in parallel. Interference appears when cores await
response from resources that are in use by other cores.

The concerned resources can be either hardware or protected logical (soft-
ware) resources. Shared hardware resources that can cause interference are global
buses, bus bridges and switches, coprocessors, peripherals, and even FPU’s (if
they are shared between cores to save on-chip area). Software shared resources
are, for example, mutex-lock segments in the source code and calls for mutually
exclusive services in the system runtime environments.

Interference can be coarse-grain or fine-grain. In the former case the accesses
to the shared resource occurs in ‘coarse’ blocks, called superblocks [15], which
occur just once or a few times per task execution. Often a task has one superblock
to read all the input data from global to local memory at the start and to write
the data at the end. Fine-grain interference is sporadic and can occur a large
number of times per task execution, e.g., bus accesses due to loads/stores in the
memory.

In a design flow for mono-core systems the ‘worst-case execution time (WCET)
analysis’ conveniently precedes ‘schedulability analysis’, as the task WCETs do
not depend on the schedule. On the contrary, in a multi-core system, because of
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interference task execution delay may significantly change depending on which
tasks are scheduled on the other cores. Therefore part of task WCET analysis
may have to be re-done when schedules are analysed, which is a major obstacle
in the design of timing-critical systems based on multi-cores [2].

Luckily, coarse-grain interference can be controlled by scheduling the su-
perblocks in a way that the resource conflicts are eliminated. To achieve this, in
a ‘controlled’ schedule superblocks are executed sequentially. At the same time,
uncontrollable fine-grained interference can be for as much as possible trans-
formed into coarse-grained one by ‘concentrating’ the resource-access intensive
parts of source code together into coarse-grained superblocks, which can be con-
trolled. The controlled interference approach is well-known in the literature. For
example, in [24], coarse-grained blocks of accesses to global bus are considered
as special sub-tasks which are scheduled in an optimal static order.

In our scheduling algorithm we assume controlled coarse-grained interfer-
ence, whereas the remaining fine-grained interference that could not be trans-
formed into coarse-grained one is assumed to be taken into account either via
extra WCET margins or, more conservatively, by modeling complete tasks as
superblocks. In addition, though different resources (e.g., different FPU’s and
different memory banks) can be accessed independently and though different
superblocks can have different timing costs, we make a simplifying assumption
that there is only one shared resource and the duration of all superblocks is the
same, we denote it δ. In a way, we consider superblocks as instances of a special
task whose WCET is δ.

A particular form of such interference that manifests itself in our design ap-
proach is called engine interference [11]. In our concurrency model, governed by
automata, one can distinguish task-concurrency control operations which corre-
spond to discrete transitions of the automata components that constitute the
system. All discrete transitions are coordinated via a single control thread called
the engine. Suppose that δ is the worst-case time to handle one discrete transi-
tion. Then the runtime overhead of task concurrency control operations can be
conveniently modeled as interference between superblocks of size δ. In addition
to the necessary accesses to the engine needed to coordinate task concurrency,
each coarse-grained block of accesses to any resource can be, in principle, dele-
gated to the engine as well. For this, the compiler would have to represent each
superblock as a discrete transition or, if it is large, as a sequence of transitions.
Therefore, the engine interference can be generalized to subsume other forms of
coarse-grained interference.

In the present work, engine interference is the only form of interference that
is automatically modelled by our tools. Compared to [11], the novelty is that
in the present work we control this form of interference in the scheduling. Our
scheduling algorithm assumes that there is one shared resource, and we model the
engine as such. Further, it assumes that all superblocks are explicitly represented
by special tasks with equal WCET δ, and we model the task-controller transitions
as such.
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To manage the remaining fine-grained interference we advocate the time-
triggered scheduling approach, i.e., letting the tasks start at fixed time instances
even if previous tasks finish earlier. This approach does not make worst-case
response-times of tasks worse, while it significantly reduces the complexity of a
fine-grain interference analysis (which would compute the WCET margins) and
improves its accuracy. The point is that when tasks do not shift their execution
earlier upon earlier completion of previous tasks the number of task pairs that
can potentially run in parallel (and hence interfere) is significantly reduced,
which effectively cuts the number of analysis cases to be covered.

2.5 Mixed-Criticality Aspects

In adaptive autonomous systems one has to provide for unexpected situations.
In terms of scheduling this means allocating worst-case amount of resources with
a significant extra margin. To damp the high costs that such margins incur, the
allocated extra resources are given, ‘on an interim basis’, to less-critical and less
important functions in the system which can be stopped at any time to free
up the resources in the case when highly-critical and highly-important functions
need them. This reasoning leads to a generic resource management approach
commonly referred to as mixed-criticality, see Figure 3.

Utilization, %

Normal Mode

Sh.Resources

Proc. Cores HI LO

HI LO mode switch

Utilization, %

Emergency Mode

Sh.Resources

Proc. Cores HI LO

HI

Fig. 3. Mixed-criticality Resource Management

We currently consider a common case of having just two levels of criticality.
Less-critical functions are given low criticality level, commonly denoted ‘LO’.
Highly-critical functions are given high criticality level, commonly denoted ‘HI’.
For example, in a UAV system LO can correspond to mission critical and HI to
flight-critical functions.

As shown in Figure 3, in case of emergency the HI tasks get high resource
utilization margins. However in normal mode of operation these margins are
never used and are given to LO tasks. Only when emergency situation occurs
where HI tasks need more resources a ‘mode switch’ from normal to emergency
mode is performed by the resource manager whereby the extra margins are
‘claimed’ by HI tasks. In our approach, the respective resource management
policy is implemented in concurrency language as part of the ‘online scheduler’
automaton component [20].

There are two distinct approaches to free up the resources from LO tasks in
the case of mode switch. The first approach is dropping the LO tasks (i.e., in-
stantaneous aborting them with possibility to resume their execution later on).
The second approach is putting the LO tasks in degraded mode, i.e., signalling
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them to do less computations and accesses to shared resources at the cost of the
lower output quality or missed deadlines. A major challenge in mixed criticality
scheduling is that the mode switch may occur at any time not known in advance
and that it is required to guarantee schedulability no matter whether and when
the switch occurs [5].

As explained in the previous section, to better handle interference we use
the time-triggered scheduling, to be more specific, we use STTM (static time
triggered per mode) online policy [5, 22], which is a generalization to mixed-
criticality scheduling. In this policy, the normal and the emergency modes each
have a time-triggered table. A switch from normal to emergency table can occur
at any time instant, while it should be guaranteed that if HI critical tasks need
to claim their extended resource budgets reserved for unpredictable situations
then they will always get them in full amount. Though this appeared to be by
far not trivial, in [22] we have proved theoretically and experimentally that this
approach is as optimal in the worst case as the event-triggered approach.

3 Work-in-progress: Design Flow

3.1 Underlying Paradigm

There is neither a single MoC nor a single online scheduling policy that would be
recognized universal for all timing-critical systems. This is especially the case for
multiprocessor and distributed systems and when interference, task-dependency
and mixed-criticality challenges are to be considered. The policies and MoCs will
continue intensive evolution whereas industrial systems need rapidly adjustable
implementations, while the corresponding analysis techniques need a basis to es-
tablish formal proofs for them. Therefore our target design flow is customizable,
at least conceptually, to different MoCs and policies by compiling the MoC and
representing the scheduling policy in a common task-automata based concur-
rency language, for which, in our design flow, we use BIP. Therefore, we do not
create a custom middleware specialized for FPPN MoC and for STTM schedul-
ing policy, but instead we express them in BIP [23, 11]. The BIP implementation
of the system on top of BIP runtime environment (RTE) should not leave the
underlying platform any significant real-time scheduling decision freedom but
should map the user-programmed scheduling policies to basic operating system
mechanisms, like threads and dynamic priorities [11, 27].

The main contribution of the present paper is handling coarse-grained in-
terference in the context of mixed-critical systems with precedence constraints
between multi-rate tasks. We address the complex problem by practically mean-
ingful simplifications. We assume that the task system is synchronous-periodic
or can be over-approximated as such by periodic servers. A synchronous sys-
tem can be represented by a semantically-equivalent static task graph, [4, 18],
conveniently presentable to a list-scheduling heuristic, which, in turn, has rep-
utation of reasonable performance for comparable instruction-level scheduling
problems [13]. Moreover, we present a design flow where applications can be both
programmed and scheduled. Other design flows that have this property, e.g., [3,
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7, 8, 11, 12, 16], do not take into consideration all the aspects we do but in re-
turn offer other features, e.g., distributed-system/network support or expressive
power. We compare to [11] in the next section. Related scheduling techniques [4,
5, 10, 15, 21, 22, 24, 25] also have some restrictions, while in return offering im-
portant theoretical properties and features. We discuss related work further in
extended version of this paper [17].

3.2 Flow Structure and Assumptions

Our target design flow is shown in Figure 4. At the input we take the appli-
cation specified as a MoC instance (i.e., a network of task elements connected
to channel elements and annotated by parameters) and functional code for the
tasks. From the MoC instance the tools derive a task-graph for offline schedul-
ing. The task graph describes the application hyperperiod in terms of job nodes
and precedence edges. The ‘jobs’ are task executions and the precedences are
derived from the semantics of the given MoC. The application is translated into
concurrency language – BIP. The schedule obtained from the offline scheduler is
translated into parameters of the online-scheduler model specified in BIP.

The joint application-scheduler model (with a basic structure as previously
outlined in Figure 2) is translated by the BIP compiler into a C++ executable.
The executable is linked with BIP RTE (the ‘engine’) and executes on a platform
on top of the real-time operating system.

When running on the platform, the binary executable encounters interfer-
ences, as discussed in Section 2.4. Handling interference requires a feedback loop
from the binary executable to the offline scheduler tool. Next to the worst-case
execution times (WCET’s) of tasks, the worst-case execution time δ of coarse-
grained superblocks should be obtained and back-annotated at the input of the
scheduler tool, and then the flow should be re-iterated (at most once, as the
‘pure’ WCET should not depend on the schedule).

We put the following requirements on our target design flow. We assume
FPPN as application MoC. The offline scheduler should support non-preemption,
precedence constraints implied from the FPPN and take into consideration
coarse-grained interference. The online scheduler should support task migration
and task dropping. The online scheduling should be based on STTM scheduling
policy for mixed criticality.

The main reason of assuming non-preemption is lack of support of preemption
in the current version of BIP language and RTE engine. Though preemption can
be modeled and simulated [20], it cannot yet be executed in real-time mode.
This is subject of future work. A justification for considering non-preemption is
frequent lack of support of preemption in multi-core platforms that have a large
number (> 8) cores (so-called many-core platforms and graphical accelerators).

In our design flow we reuse certain elements from our previous ‘DOL-BIP-
Critical’ flow [11] which was co-developed in collaboration with partners. The
name of the MoC involved in that flow was DOL-Critical. It is closely related to
FPPN, and the same specification language, named DOL-C, is currently used
to specify instances of both FPPN and DOL-Critical models. FPPN has more



10 P. Poplavko, R. Kahil, D. Socci, S. Bensalem, M. Bozga

mixed-critical application

multi-core platform

MoC instance 
specification

(DOL-C XML)

app2bip compiler offline scheduler

bip2cpp compiler

executable

application controllers + tasks + online scheduler (BIP)

BIP RTE  (Engine)

functional 
code 

(C/C++)

task graph -interference 
model

engine runtime 
overhead

global bus periferals, 
coprocessors, 
FPUs, DMAs

the sources of 
interference 

(shared resources) 

Fig. 4. Work-in-progress Design Flow

general notion of task precedence than DOL-Critical, as it supports precedences
between any pair of tasks, and not only between equal-rate periodic tasks.

There were essential differences in the scheduling assumptions taken in the
previous flow, where the tasks were executed essentially in as-soon-as-possible
(ASAP) fashion i.e., immediately after the previous task mapped to the same
partition. Instead we impose time-triggered start of each task, which should
significantly simplify the analysis of bandwidth interference. The offline scheduler
of previous flow had the advantage of supporting time partitioning, degraded
mode and excluding the interference between HI and LO criticality levels.

Currently in our work-in-progress we have a version of the offline scheduler
that satisfies the desired criteria, except that the interference models presented
at the input of this tool are currently restricted to those for BIP engine interfer-
ence of implicit-deadline periodic task controllers. Though advanced interference
detection methods are known in related work [19], we still miss them in our flow.
If such tools were available we could adapt or extend the δ-interference model
assumed in the offline scheduler. Next to this, the online scheduler is not yet
properly integrated, as it still does not support dropping and task migration,
though such features are within reach, e.g., we demonstrate a restrictive form of
BIP-component migration in [11] and thread API’s offer means for dropping.

In the remainder of the paper we discuss the currently available tools and
illustrate their use by concrete examples. For multi-core experiments presented
here, we use a LEON4 platform with four cores implemented on FPGA, using
RTEMS OS with symmetric multiprocessing. For this platform, as measurements
show, the worst-case execution time of one BIP interaction step takes: δ = 1 ms.

3.3 An Example Illustrating the Flow

Figure 5 gives a synthetic application example with three tasks. The ‘split’ task
puts two small (a few bytes) data items to the two output channels and sleeps
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for around 1 ms to imitate some task execution time. Tasks ‘A’ and ‘B’ read
the data. Task ‘A’ sleeps alternately for 6 ms and 12 ms, to model ‘normal’ and
‘emergency’ workload levels. This task models a high-criticality task. Task ‘B’
supports two modes of execution: normal and degraded. In normal mode it sleeps
for 6 ms, in degraded mode it skips all execution, even reading the input data.
This task models a low-criticality task.

All tasks have the same periodic scheduling window, with period and deadline
being 25 ms. In a real application, this would correspond to the time during which
the two imaginary input data buffers should be read, computations should be
done and the output buffers should be written.
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Fig. 5. Three-Task Example: MoC (left), Ordinary Task Graph (middle) and Mixed-
critical Task Graph

The middle part of the figure gives the ‘ordinary’ (i.e., non mixed-critical)
variant of the task graph. Every task is represented by a job. The jobs are
numbered: Ji = J1, J2, J3 and annotated by their worst-case execution times.
Their individual arrival times Ai and deadlines Di are the same in this example.
The right part of the figure corresponds to the ‘mixed-critical’ variant of the
same graph. The execution times of highly-critical tasks are represented by a
two-valued vector: normal-mode time and emergency-mode time.

The engine runtime overhead (as it will become clear later) constitutes 4δ
= 4 ms per task (in total 12 ms). Therefore, when assuming ordinary execution
times this example cannot run on a single core, as the total execution time
amounts to 12 + 1 + 12 + 6=31 ms, which is larger than the 25 ms deadline. The
offline scheduler evaluates the load (i.e., maximal demand-to-capacity ratio) of
this example to 31/25=124 %. Therefore it predicts that at least two cores are
necessary.

On the other hand, in the mixed-criticality case we consider the two execution
modes – normal and emergency – separately. In the normal mode Task ‘A’ has
execution time 6 ms, which is 6 ms less, and we have a load 25/25 = 100 %, for
which a single-core may be sufficient. In the emergency mode the execution time
of Task ‘A’ is again 12 ms, but we drop Task ‘B’, which saves us 6 + 4=10 ms
and leads to the load of 21/25=84 %, which again may be doable on a single
core. Thus, mixed criticality can help to use the cores more economically.

The tool generates the schedules for the ordinary graph and for the mixed-
critical one, as shown in Figure 6. Figure 7 shows the Gantt charts of executing
the two variants of the schedule on the LEON4 board.
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Fig. 6. Three-Task Example: Offline-Scheduler Solutions
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(b) Mixed-critical Execution Traces (Dropping J3 in the second period)

Fig. 7. Three-Task Example: Platform Execution Traces

In every Gantt chart the first line shows the execution of the BIP Engine
on ‘Core 0’. One may wonder why a whole core would have to be reserved to
a runtime environment. This is due to lack of support of preemption in current
BIP RTE. Moreover, it should be noted that in many-core systems (or graphical
accelerators), this is justifiable, as in practice there are plenty of cores available –
e.g., 16 per shared-memory cluster in [9] – and no preemption is allowed. On the
contrary, a platform such as LEON4 supports preemption and does not assume
one thread per core. For such platforms in future work we intend to interleave
high-priority engine control thread with a lower-priority task-execution thread
on Core 0. Note that the engine thread executes also the BIP components re-
sponsible for control operations, such as the task controllers, the MoC controller
and the online scheduler.

Recall that the shared resource on which interference-modeling is currently
supported by the tools is the engine. As we see in Figure 6, every task execution
is prefixed and suffixed by two δ-accesses to Core 0. In the ordinary schedule,
Task ‘split’ and Task ‘A’ are mapped to Core 1 and Task ‘B’ to Core 2.

The platform-measurement charts in Figure 7 show two periods, one in nor-
mal and one in emergency mode. The offline scheduler ‘ordinary’ solution as-
sumes the overall worst-case, whereas the mixed critical (MC) solution distin-
guishes two modes. Comparing the corresponding segments of Gantt charts of
the solutions and measurements we see a match, though not a perfect one. This
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is because the offline scheduler output is not yet supported as input to the on-
line scheduler. We see that in the emergency mode MC case the offline scheduler
drops task ‘B’ altogether, whereas the online scheduler still makes a short exe-
cution of Task ‘B’ in degraded mode.

Because of current temporary lack of tool integration we had to do man-
ual modifications in the concurrency model that was automatically generated
from FPPN, in order to ensure that the online behavior matches the offline solu-
tion. Note that a possibility for the user to refine the behavioral model by such
modifications is itself an attractive design-flow property. We made modifications
in the mixed-criticality variant of the design, in order to introduce the switch
from normal to emergency mode. We ensure that if Task ‘A’ executes beyond its
normal-mode execution time then Task ‘B’ is executed in degraded mode. These
modifications are shown in Figure 8.

S1a

S1
…

TC-A (D := 25ms)

S2
FinishA

S3

TC-modified-B (D := 25ms, ThrA := 16 ms)

S1b

StartB( `NORMAL’)

StartB( `DEGRADED’)
……

FinishAFinishA StartB FinishB

Fig. 8. Three-Task Example: Manual Modification Introducing a Mode Switch

We have modified the structure of the TC for Task ‘B’, which originally was
as shown in Figure 2, by introducing a new transition between the ‘Arrive’ and
‘Start’ for Task ‘B’. This transition is synchronized with ‘FinishA’ transition in
the TC of Task ‘A’. We check the value of clock ‘x’ which measures the time since
the begin of the current period. If this value is larger than a certain threshold
ThrA then ‘B’ is executed in degraded mode.

4 Offline Scheduling Algorithm

For space reasons, here we just summarize the offline scheduling algorithm and
its results, more detailed description and related work analysis can be found in
extended version of this paper [17].

A scheduling problem instance consists of a DAG task graph obtained au-
tomatically from a MoC; we have seen examples in Figure 5. The nodes, Ji
are obtained from tasks and are annotated by parameters (Ai, Di, χi, Ci), where
[Ai, Di] give the job scheduling window (between arrival and deadline relative
to the hyperperiod), χi gives the job criticality level (‘LO’ or ‘HI’) and Ci is
a vector that gives the execution time in the normal and emergency modes.
The problem instance also includes the selected number of cores (not counting
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the engine core) and BIP engine discrete-transition execution time δ to model
interference.

The goal of the scheduling algorithm is to generate two time triggered schedul-
ing tables: for normal mode and emergency-mode. These schedules act online as
tables for time-triggered execution. For example, Figures 6(b) and 6(c) are ac-
tually graphical representation of these tables for the given example.

The scheduling tool first transforms the task graph by inserting special ‘satel-
lite’ jobs that model engine interference due to periodic task controller. Then
the normal-mode table is generated. This is done using list scheduling. The al-
gorithm has been adapted to take into account two types of resources: a single
control core and a pool of compute cores. In order to execute, every job needs
availability of one instance of both resource types to execute for δ time and
immediately it continues to execute only on the compute core for WCET time.
In normal mode, the priorities for selecting the next job to be scheduled are
obtained from fixed priority table that favors jobs that have HI criticality and
high difference between execution times in emergency and normal mode. Also
we favor jobs that have small deadline themselves or in their successors. The
results of list schedule simulation with normal job execution times are stored in
normal-mode table.

The emergency mode table is calculated, again by list scheduler, but now with
emergency execution times and only for HI jobs and HI-to-HI job precedences.
We ensure that at any moment a switch from normal to emergency mode may
take place while the HI jobs that are running at the moment of the switch may
continue running on the same cores. To this end, the schedule start times in the
normal mode are regarded as job arrival times in the emergency mode, whereas
we enforce the same core mapping and relative job execution order as in the
normal mode.

Our algorithm has the same (almost linear) algorithmic complexity as un-
modified list scheduling, since it adds constant amount of additional computation
for each job and precedence edge. Random benchmarks [17] confirm that for the
same level of computational workload mixed critical problems are significantly
harder to solve. At the same time we did not see significant sensitivity to the
workload component given by interference, which possibly means that we need
to improve the employed interference evaluation metric.

In future work we intend to investigate how to improve non-preemptive
scheduler for better support of mixed criticality. For reference we consider to
implement exact algorithm with exhaustive search. We intend to replace list
scheduling by topological permutation scheduling as it is a more powerful offline
global fixed-priority heuristic for the case where there is no preemption and jobs
have non-zero arrival times [13]. Also, in our previous works [21] and [22] for
preemptive case we realized more elaborate techniques than those in the current
algorithm for optimizing for mixed-criticality, we will investigate how to port
them to non-preemptive case. Integrating them directly into our design flow will
be considered after we extend our BIP framework for support of preemption.
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5 Conclusions and Future Work

In this paper we have proposed a scheduling algorithm and a work-in-progress
design flow for timing-critical multi-core applications, taking into account coarse-
grained interference, using the interference from the controlling run-time envi-
ronment as an example. In our design flow we demonstrate the concept of using
task automata as concurrency language, which can be used to program the cus-
tom resource managers, such as mixed-criticality ones. In future work we plan
to introduce the missing features into our design flow (especially, the runtime
environment to support task migration, dropping and migration). We also plan
to extend our interference models to other resources (e.g., buses and peripherals)
and to more general task controllers and models of computation.
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