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This paper is about a first characterization of LCD skew constacyclic codes and some constructions of LCD skew cyclic and skew negacyclic codes over IF p 2 .

Introduction

One of the most active and important research areas in noncommutative algebra is the investigation of skew polynomial rings. Recently they have been successfully applied in many areas and specially in coding theory. The principal motivation for studying codes in this setting is that polynomials in skew polynomial rings exhibit many factorizations and hence there are many more ideals in a skew polynomial ring than in the commutative case. The research on codes in this setting has resulted in the discovery of many new codes with better Hamming minimum distances than any previously linear code with the same parameters.

On the other hand, constacyclic code over finite fields is an important class of linear codes as it includes the well-known family of cyclic codes. They also have many practical applications as they can be efficiently encoded using simple shift registers. Further, they have a rich algebraic structure which can be used for efficient error detection and correction.

Linear complementary dual (LCD) codes were introduced by Massey [START_REF] Massey | The condition for a cyclic code to have a complementary dual[END_REF]. They provide an optimum linear coding solution for the two-user binary adder channel, and in [START_REF] Massey | Linear codes with complementary duals[END_REF] it was shown that asymptotically good LCD codes exist. Since then, several authors have studied these codes ( [START_REF] Carlet | Euclidean and Hermitian LCD MDS codes[END_REF][START_REF] Güneria | Quasi-cyclic complementary dual codes[END_REF][START_REF] Li | Hermitian LCD codes from cyclic codes[END_REF][START_REF] Li | LCD cyclic codes over finite fields[END_REF][START_REF] Sharma | Enumeration formulae for self-dual, self-orthogonal and complementary-dual quasi-cyclic codes over finite fields[END_REF]). But until now just a few works have been done on LCD codes in the noncommutative case.

This paper is organized as follows. In Section 2, some preliminaries are given about skew constacyclic codes over finite fields and skew polynomial rings. In Section 3, conditions for the equivalency between skew constacyclic codes, skew cyclic codes and skew negacyclic codes are provided (Theorem 1). In Section 4, the notion of LCD skew constacyclic codes is introduced and we give some characterizations of their skew generator polynomials (Theorem 2 and Theorem 3). Section 5 focuses on the construction (Algorithm 4) and the enumeration (Proposition 7) of LCD skew cyclic and negacyclic codes of even lengths over IF p 2 . If p is odd, the Euclidean LCD skew cyclic codes of length 2p s and dimension p s over IF p 2 are all Hermitian LCD codes. Over IF p 2 , all MDS LCD skew codes of length ≤ min(1 + p 2 , 16) are obtained when p ∈ {3, 5, 7} (Tables 5, 6 and7) as well as all [2p, p] MDS LCD skew codes for p ∈ {3, 5, 7, 11} (Table 1).

Preliminaries

Let q be a prime power, IF q a finite field and θ an automorphism of IF q . We define the skew polynomial ring R as R = IF q [x; θ] = {a 0 + a 1 x + . . . + a n-1 x n-1 | a i ∈ IF q and n ∈ IN} under usual addition of polynomials and where multiplication is defined using the rule

∀a ∈ IF q , x • a = θ(a)x.
The ring R is noncommutative unless θ is the identity automorphism on IF q . According to [START_REF] Mcdonald | Finite Rings With Identity[END_REF], an element f in R is central if and only if f is in IF θ q [x µ ] where µ is the order of the automorphism θ and IF θ q is the fixed field of θ. The two-sided ideals of R are generated by elements having the form (c 0 + c 1 x µ + . . . + c n x nµ )x l , where l is an integer and c i belongs to IF θ q . Central elements of R are the generators of two-sided ideals in R [START_REF] Boucher | Skew-cyclic codes[END_REF]. The ring R is Euclidean on the right : the division on the right is defined as follows. Let f and g be in R with f = 0. Then there exist unique skew polynomials q and r such that g = q • f + r and deg(r) < deg(f ).

If r = 0 then f is a right divisor of g in R ( [START_REF] Mcdonald | Finite Rings With Identity[END_REF]). There exist greatest common right divisors (gcrd) and least common left multiples (lclm). The ring R is also Euclidean on the left : there exist a division on the left, greatest common left divisors (gcld) as well as least common right multiples (lcrm).

In what follows, we consider a positive integer n and a constant λ in IF * q . According to [START_REF] Boucher | Skew-cyclic codes[END_REF] and [START_REF] Fogarty | On Skew-Constacyclic Codes[END_REF], a linear code C of length n over IF q is said to be (θ, λ)constacyclic or skew λ-constacyclic if it satisfies ∀c ∈ IF n q , c = (c 0 , c 1 , . . . , c n-1 ) ∈ C ⇒ (λθ(c n-1 ), θ(c 0 ), . . . , θ(c n-2 )) ∈ C. Any element of the left R-module R/R(x n -λ) is uniquely represented by a polynomial c 0 +c 1 x+. . .+c n-1 x n-1 of degree less than n, hence is identified with a word (c 0 , c 1 , . . . , c n-1 ) of length n over IF q .

In this way, any skew λ-constacyclic code C of length n over IF q is identified with exactly one left R-submodule of the left R-module R/R(x n -λ), which is generated by a right divisor g of x n -λ. In that case, g is called a skew generator polynomial of C and we will denote C = g n .

Note that the skew 1-constacyclic codes are skew cyclic codes and the skew (-1)-constacyclic codes are skew negacyclic codes.

The Hamming weight wt(y) of an n-tuple y = (y l , y 2 , . . . , y n ) in IF n q is the number of nonzero entries in y, that is, wt(y) =| {i :

y i = 0} |. The minimum distance of a linear code C is min c∈C,c =0 wt(c).
A IF q -linear transformation T : IF n q → IF n q is a monomial transformation if there exists a permutation σ of {1, 2 . . . , n} and nonzero elements α 1 , α 2 , . . . , α n of IF q such that

T (y 1 , y 2 , . . . , y n ) = (α 1 y σ(1) , α 2 y σ(2) , . . . , α n y σ(n) )
for all (y 1 , y 2 , . . . , y n ) in IF n q . Two linear codes C 1 and C 2 in IF n q are equivalent if there exists a monomial transformation T : IF n q → IF n q taking C 1 to C 2 (i.e. there exists a linear Hamming isometry [START_REF] Macwilliams | Combinatorial Properties of Elementary Abelian Groups[END_REF]).

The Euclidean dual of a linear code C of length n over IF q is defined as C ⊥ = {x ∈ IF n q | ∀y ∈ C, < x, y >= 0} where for x, y in IF n q , < x, y >:= n i=1 x i y i is the (Euclidean) scalar product of x and y. A linear code is called an

Eulidean LCD code if C ⊕ C ⊥ = IF n q , which is equivalent to C ∩ C ⊥ = {0}.
Assume that q = r 2 is an even power of an arbitrary prime and denote for a in IF q , a = a r . The Hermitian dual of a linear code C of length n over IF q is defined as

C ⊥ H = {x ∈ IF n q | ∀y ∈ C, < x, y > H = 0} where for x, y in IF n q , < x, y > H := n i=1 x i y i is the (Hermitian) scalar product of x and y. The code C is a Hermitian LCD code if C ∩ C ⊥ H = {0}. The skew reciprocal polynomial of g = Σ k i=0 g i x i ∈ R of degree k is g * = Σ k i=0 θ i (g k-i )x i . If g 0 does not cancel, the left monic skew reciprocal polynomial of g is g = (1/θ k (g 0 ))g * .
If a skew polynomial is equal to its left monic skew reciprocal polynomial, then it is called self-reciprocal.

Consider C a skew λ-constacyclic code of length n and skew generator polynomial g. According to Theorem 1 and Lemma 2 of [START_REF] Boucher | A note on the dual codes of module skew codes[END_REF], the Euclidean dual

C ⊥ of C is a skew λ -1 - constacyclic code generated by h where Θ n (h) • g = x n -λ and for a(x) = a i x i ∈ R, Θ(a(x)) := θ(a i )x i .
In particular, when λ is fixed by θ and n is a multiple of the order µ of θ, then h is fixed by Θ n and x n -λ is central, therefore one gets h

• g = g • h = x n -λ. If q = r 2 , the Hermitian dual C ⊥ H of C is generated by h where for a(x) = a i x i ∈ R, a(x) := a i x i .
The two following lemmas will be useful later.

Lemma 1 [4, Lemma 4] Consider h and g in R.

Then (h • g) * = Θ deg(h) (g * ) • h * .
The following Lemma is given in Theorem 6.3.7 of [START_REF] Fogarty | On Skew-Constacyclic Codes[END_REF] when x n -λ is a central element of R. We give a new proof and adapt it when x n -λ belongs to R.

Lemma 2 Consider C 1 and C 2 two skew λ-constacyclic codes of length n over IF q with skew generator polynomials g 1 and g 2 .

1. C 1 ∩ C 2 is a skew λ-constacyclic code of length n generated by lclm(g 1 , g 2 ). 2. C 1 + C 2 is a skew λ-constacyclic code of length n generated by gcrd(g 1 , g 2 ).
Proof. In the left R-module R/R(x n -λ), we identify the image of P in R under the canonical morphism R → R/R(x n -λ) with the remainder in the right division of P by x n -λ in R.

1. Consider g = lclm(g 1 , g 2 ) in R. As g 1 and g 2 divide on the right x n -λ, g divides

x n -λ on the right therefore the skew λ-constacyclic code C of length n generated by g is well-defined. Let c in R/R(x n -λ). Then c belongs to C 1 ∩ C 2 if and only if g 1 and g 2 divide c on the right in R, therefore c belongs to C 1 ∩ C 2 if and only if g divides c on the right in R and one concludes that

C 1 ∩ C 2 = C.
2. Consider g = gcrd(g 1 , g 2 ) in R. As g 1 and g 2 divide on the right x n -λ, g divides x n -λ on the right, therefore one can consider the skew λ-constacyclic code C of length n generated by g.

As g divides g 1 and g 2 on the right, C 1 and C 2 are subsets of C, therefore

C 1 + C 2 ⊂ C.
Conversely, consider c in C. As g divides c on the right, it follows by [START_REF] Ore | Theory of Non-Commutative Polynomials[END_REF]Theorem 4] that c = a • g 1 + b • g 2 for some a and b in R, therefore c belongs to

C 1 + C 2 .
3 The equivalency between skew λ-constacyclic codes, skew cyclic codes and skew negacyclic codes

Let q be a prime power, IF q a finite field and θ an automorphism of IF q . Consider λ in IF * q and n in IN * . For i in IN * and α element of IF q , the i th norm of α is defined as

N i (α) = θ i-1 (α) • • • θ(α)α.
In this section, we provide conditions on the existence of an isomorphism between skew λconstacyclic codes, skew cyclic codes and skew negacyclic codes. We start with the following useful lemma.

Lemma 3 Consider an element α of IF * q . The application

φ α : R -→ R f (x) -→ f (αx) is a morphism. Furthermore for all i in IN, φ α (x i ) = N i (α)x i .
Theorem 1 1. If IF * q contains an element α where λ = N n (α -1 ) then the skew λ-constacyclic codes of length n over IF q are equivalent to the skew cyclic codes of length n over IF q .

If IF *

q contains an element α where λ = -N n (α -1 ) then the skew λ-constacyclic codes of length n over IF q are equivalent to the skew negacyclic codes of length n over IF q .

Proof.

Consider α in IF *

q such that λ = N n (α -1 ). Define

Φ α : R/R(x n -1) -→ R/R(x n -λ) f (x) -→ f (αx)
Let us prove that the application Φ α is an isomorphism which preserves the Hamming weight:

• The application Φ α is well-defined: consider f (x) and g(x) in R such that x n -1 divides on the right f (x) -g(x). There exists

h in R such that f (x) -g(x) = h(x) • (x n -1). By Lemma 3, f (αx) -g(αx) = φ α (h(x)) • φ α (x n -1) = φ α (h(x)) • (N n (α)x n -1) = φ α (h(x)) • N n (α) • (x n -λ).
Therefore, x n -λ divides on the right f (αx) -g(αx).

• In the same way one can prove that the application is injective (and therefore surjective) :consider f (x) = a i x i and g

(x) = b i x i in R/R(x n -1) such that φ α (f (x)) = φ α (g(x)), then a i N i (α) = b i N i (α) therefore f (x) = g(x). • The application Φ α is a morphism: consider f (x) = n-1 i=0 a i x i and g(x) = n-1 i=0 b i x i in R/R(x n -1). One has f (x) • g(x) = n-1 j=0   j i=0 a i θ i (b j-i ) + n-1 i=j+1 a i θ i (b n-i+j )   x j because x j+n = x j in R/R(x n -1). As Φ α (x j ) = N j (α)x j , one gets Φ α (f (x) • g(x)) = n-1 j=0   j i=0 a i θ i (b j-i ) + n-1 i=j+1 a i θ i (b n-i+j )   N j (α)x j .
Furthermore, one has

Φ α (f (x)) • Φ α (g(x)) = n-1 j=0 j i=0 a i N i (α)θ i (b j-i N j-i (α)) x j + n-1 j=0   n-1 i=j+1 a i N i (α)θ i (b n-i+j N n+j-i (α))   x j+n . As x j+n = x j • (x n -λ) + x j λ = θ j (λ)x j in R/R(x n -λ), one gets Φ α (f (x)) • Φ α (g(x)) = n-1 j=0 j i=0 a i θ i (b j-i )N i (α)θ i (N j-i (α))+ n-1 i=j+1 a i θ i (b n-i+j )N i (α)θ i (N n+j-i (α))θ j (λ)   x j . Furthermore N i (α)θ i (N j-i (α)) = N j (α) and N i (α)θ i (N n+j-i (α))θ j (λ) = N j+n (α)/(θ j (N n (α))) = N j (α), therefore Φ α (f (x))•Φ α (g(x)) = n-1 j=0   j i=0 a i θ i (b j-i ) + n-1 i=j+1 a i θ i (b n-i+j )   N j (α)x j = Φ α (f (x)• g(x)). • Φ α preserves the Hamming weight: consider c(x) = n-1 i=0 c i x i ∈ R/R(x n -1), then Φ α (c(x)) = n-1 i=0 c i N i (α)x i , therefore wt(c(x)) = wt(Φ α (c(x))).
To conclude, consider the monomial transformation T : (c 0 , . . . , c n-1 ) → (N 0 (α)c 0 , . . . , N n-1 (α)c n-1 ).

Then for any right divisor g of x n -1, T takes the skew cyclic code C =< g > n to the skew λ-constacyclic code with skew generator polynomial Φ α (g).

Consider α in IF *

q such that λ = -N n (α -1 ). Define

Ψ α : R/R(x n + 1) -→ R/R(x n -λ) f (x) -→ f (αx)
As for the proof of item 1, we prove that Ψ α is a ring isomorphism.

• One has Ψ α (x n + 1) = N n (α)x n + 1 = N n (α)(x n -λ), therefore Ψ α is well defined.

• Ψ α is injective and bijective.

• Consider f (x) = n-1 i=0 a i x i and g(x) = n-1 i=0 b i x i in R/R(x n + 1). One has Ψ α (f (x)) • Ψ α (g(x)) = n-1 j=0   j i=0 a i θ i (b j-i ) - n-1 i=j+1 a i θ i (b n-i+j )   N j (α)x j = Ψ α (f (x) • g(x)).
Example such that N 4 (α -1 ) = λ is {w, w 4 , w 7 , w 10 , w 13 }. The skew polynomial Φ w 13 (g) = x 2 + w 6 x + w generates a skew w 5 -constacyclic code of length 4 over IF 16 equivalent to the skew cyclic code C.

In the following, we give a relationship between skew cyclic codes and skew negacyclic codes.

Corollary 1 If q is odd and n is an odd integer then the skew cyclic codes of length n over IF q are equivalent to the skew negacyclic codes of length n over IF q .

Proof. Consider λ = N n (-1). As n is odd, λ = -1 and we conclude with point 1. of Theorem 1.

In the following example, we show that not all a skew cyclic codes of length n over IF q are equivalent to a skew negacyclic code of length n over IF q , when n is even.

Example 2 Let IF 9 = IF 3 (w) where w 2 = w + 1, θ the Frobenius automorphism. Let the skew cyclic code C = x 3 + x 2 + x + 1 4 over IF 9 with parameter [START_REF] Boucher | Self-dual skew codes and factorization of skew polynomials[END_REF][START_REF] Batoul | Some constacyclic codes over finite chain rings[END_REF][START_REF] Boucher | Self-dual skew codes and factorization of skew polynomials[END_REF]. There is no skew negacyclic code of length 4 equivalent to C (because there is no skew negacyclic code of length 4 with minimum distance 4).

In the following we give a case where the skew constacyclic codes are equivalent to the skew cyclic codes using only a relation between the length n, the characteristic of IF q and the cardinality of IF q . We start with the following useful lemma.

Lemma 4 [1, Lemma 3.1] Let α be a primitive element of IF q and λ = α i for i ≤ q -1.

Then the equation δ s = λ has a solution in IF q if and only if gcd(s, q -1) | i.

In the following, we give a similar result of [1, Theorem 3.4] but in the noncommutative case.

Proposition 1 Assume that θ is the automorphism defined by a → a p r and that gcd([n], q -1) = 1 where [n] := p rn -1 p r -1 . Then for all λ in IF * q , the skew λ-constacyclic codes of length n over IF q are equivalent to skew cyclic codes of length n over IF q .

Proof. Consider λ in IF * q and α a primitive element of IF q . Then there exists an integer i such that λ = α i . As gcd([n], q -1) = 1 | i, according to Lemma 4, there exists δ in IF * q such that λ = δ [n] . Furthermore N n (δ) = δ [n] , therefore by Theorem 1 (with α = 1/δ), skew λ-constacyclic codes of length n over IF q are equivalent to skew cyclic codes of length n over IF q .

When θ is the Frobenius and IF q = IF p n , θ-cyclic codes of length n are equivalent to θ-negacyclic codes of length n : Proposition 2 Assume that θ is the automorphism defined by a → a p and that q = p n . Then all skew negacyclic codes of length n over IF q are equivalent to skew cyclic codes of length n over IF q .

Proof. Consider a a primitive element of IF q and λ = a

p n -1 2 = -1. As gcd( p n -1 p-1 , p n -1) = p n -1 p-1 divides p n -1 2 , according to Lemma 4, there exists δ in IF * q such that δ p n -1 p-1 = λ. Taking α = 1/δ one gets N n (α) = -1. One concludes thanks to point 1 of Theorem 1.
The previous isometry of Theorem 1 does not preserve the duality as shown in the following example.

Example 3 Consider R = IF 9 [x; θ] where θ : a → a 3 and w ∈ IF 9 such that w 2 = w + 1. The application Φ w : R/R(x 2 -1) → R/R(x 2 + 1) x → wx
is an isomorphism which preserves the Hamming distance according to Theorem 1 (because -1 = w 4 = N 2 (w)). However it does not preserve the duality. Namely, consider the skew cyclic code C of length 2 generated by g = x + w 2 . As Φ w (g) = wx + w 2 = w(x + w), the image D of C by Φ w is generated by x + w. Now we have

(x + w 2 ) • (x + w 2 ) = x 2 -1, therefore the dual C ⊥ of C is generated by (x + w 2 ) = x + 1/w 6 = x + w 2 (and C is self-dual). The image of C ⊥ by Φ w is generated by x + w. Now, we have (x + w 7 ) • (x + w) = x 2 + 1, therefore the dual D ⊥ of D is generated by (x + w 7 ) = x + w 3 . We obtain that D ⊥ = Φ w (C ⊥ ) (and D = Φ w (C) is not self-dual whereas C is self-dual). Lemma 5 Assume that n is odd and consider h in R with degree k, then φ -1 (h * ) = (-1) k φ -1 (h) * . Proof. Consider h = k i=0 h i x i with degree k, then h * = k i=0 x k-i • h i . As φ α is a morphism, one gets φ α (h * ) = k i=0 N k-i (α)x k-i • h i . Now the skew reciprocal polynomial of φ α (h) = k i=0 h i N i (α)x i is equal to φ α (h) * = k i=0 x k-i • (h i N i (α)) = k i=0 θ k-i (N i (α))x k-i • h i therefore φ α (h) * = N k (α) k i=0 1/N k-i (α)x k-i • h i . If α = -1, then N k-i (α) 2 = 1, therefore φ α (h) * = (-1) k φ α (h * ).
Lemma 6 If n is odd and C is a skew cyclic code of length n then the (Euclidean) dual of the skew negacyclic code

Φ -1 (C) is Φ -1 (C) ⊥ = Φ -1 (C ⊥ ).
Proof. As n is odd, N n (-1) = -1, therefore according to Theorem 1, Φ -1 is well defined and is an isometry. Consider C a skew cyclic code [n, k] with monic skew generator polynomial g. Then the monic skew generator polynomial of

D = Φ -1 (C) is G = (-1) r Φ -1 (g) where r = deg(g) = n -k. Furthermore, consider h in R such that Θ n (h) • g = x n -1, then Θ n (H) • G = x n + 1 where H = (-1) r+1 Φ -1 (h).
The dual D ⊥ of D is generated by H * , and the conclusion follows from Lemma 5.

Proposition 3 Let C be an LCD skew cyclic code of odd length over IF q then C is equivalent to an LCD skew negacyclic code.

Proof. According to Theorem 1, the code C is equivalent to the skew negacyclic code

D = Φ -1 (C). Let us prove that D is LCD. Consider c in D ∩ D ⊥ . According to Lemma 6 we have : Φ -1 (C) ∩ Φ -1 (C) ⊥ = Φ -1 (C) ∩ Φ -1 (C ⊥ ). Therefore there exists u in C and v in C ⊥ such that c = Φ -1 (u) = Φ -1 (v). As Φ -1 is a bijection, u = v and as C is LCD, u = v = 0, therefore c = 0.
In what follows, we will study LCD skew cyclic and skew negacyclic codes. We will mostly concentrate on the case when the length of the code is even and the automorphism θ has order 2.

Skew generator polynomials of LCD skew cyclic and negacyclic codes

We assume that IF q is a finite field, θ is an automorphism of IF q of order µ and n is a positive integer. In the following, we give a necessary and sufficient condition for skew λ-constacyclic codes to be LCD codes, when λ 2 = 1.

Theorem 2 Consider IF q a finite field, θ an automorphism of

IF q of order µ, R = IF q [x; θ], n in IN * and λ ∈ {-1, 1}. Consider a (θ, λ)-constacyclic code C with length n, skew generator polynomial g. Consider h in R such that Θ n (h) • g = x n -λ. 1. C is a EuclideanLCD code if and only if gcrd(g, h ) = 1.
2. If q is an even power of a prime number, q = r 2 , C is a Hermitian LCD code if and only if gcrd(g, h ) = 1.

Proof.

As C and C ⊥ are two skew λ-constacyclic codes of length n and skew generator polynomials g and h , according to Lemma 2, the skew polynomial f = lclm(g, h ) is the skew generator polynomial of the skew constacyclic code C ∩ C ⊥ . In particular, as g and h both divide x n -λ on the right, f divides x n -λ on the right. Assume that C ∩ C ⊥ = {0}, then x n -λ divides f on the right, therefore x n -λ = f . According to [START_REF] Ore | Theory of Non-Commutative Polynomials[END_REF], deg(gcrd

(g, h )) + deg(lclm(g, h )) = deg(g) + deg(h ), therefore deg(gcrd(g, h )) = deg(g) + deg(h) -deg(f ) = 0 and gcrd(g, h ) = 1.
Conversely, if gcrd(g, h ) = 1, then deg(f ) = n, therefore, as f divides x n -λ on the right, f = x n -λ, and C ∩ C ⊥ = {0}. The same proof holds for Hermitian LCD codes.

Example 4 Consider IF 9 = IF 3 (w) where w 2 = w + 1 and θ the Frobenius automorphism θ : a → a 3 . One has :

x 4 + 1 = (x 2 + w 3 x + 1) • (x 2 + w 7 x + 1).
The skew reciprocal polynomial of x 2 +w 3 x+1 is x 2 +wx+1 and gcrd(x 2 +w 7 x+1, x 2 +wx+1) = 1. Then by Theorem 2 the skew negacyclic code C = x 2 + w 7 x + 1 4 of length 4 and minimum distance 3 is a EuclideanLCD code over IF 9 .

Example 5 For IF 9 = IF 3 (w) where w 2 = w+1 and θ the Frobenius automorphism θ : a → a 3 , one has :

x 6 -1 = (x 3 + wx 2 + x + 1) • (x 3 + w 7 x 2 + x + 2).
The skew reciprocal polynomial of

x 3 + wx 2 + x + 1 is x 3 + x 2 + w 3 x + 1 and gcrd(x 3 + w 7 x 2 + x + 2, x 3 + x 2 + wx + 1) = 1.
Then by Theorem 2 the skew cyclic code C = x 3 + w 7 x 2 + x + 2 6 of length 6 and minimum distance 4 is a Hermitian LCD code over IF 9 .

Over a finite field IF q , if a cyclic code C generated by a monic polynomial g is a Eu-clideanLCD code then g = g . Furthermore if q is coprime with n, then g = g if and only if C is a EuclideanLCD code ( [START_REF] Massey | The condition for a cyclic code to have a complementary dual[END_REF], [START_REF] Massey | Reversible codes[END_REF]). This comes from the fact that when q is coprime with

n then x n -1 = gh = lcm(g, h) is squarefree in IF q [x] therefore, if g = g , then g and h = h are coprime in IF q [x].
Over IF q [x; θ] we generalize this result in Proposition 4 by using the notion of similarity :

Definition 1 ([19]) Consider a, b in R. a is similar to b if there exists u in R such that lclm(a, u) = b • u and gcrd(a, u) = 1.
Proposition 4 Consider IF q a finite field, θ an automorphism of

IF q , R = IF q [x; θ], n a positive integer, k ≤ n, λ in {-1, 1}, g a monic right divisor of x n -λ in R with constant coefficient g 0 and degree n -k, G = Θ k-n (g * • 1 g 0 ) and h in R such that Θ n (h) • g = x n -λ.
Consider a (θ, λ)-constacyclic code C with length n and monic skew generator polynomial g.

1.

If C is a Euclidean (resp. a Hermitian) LCD code then g is similar to G (resp. Θ(G)).

Assume that lclm(g

, h) = x n -λ. If g = G (resp. g = Θ(G)) then C is a Euclidean(resp.
a Hermitian) LCD code.

Proof. As Θ n (h) • g = x n -λ, according to Lemma 1, x n -1/λ = -1/λΘ k-n (g * ) • h * , therefore G • h = x n -λ where G = Θ k-n (g * • 1 g 0 ). In particular, f = lclm(g, h ) divides x n -λ on the right. 1. Assume that gcrd(g, h ) = 1, then deg(f ) = deg(g) + deg(h ) = n, therefore, one has f = x n -λ = G • h . As lclm(g, h ) = G • h with gcrd(g, h ) = 1, one can conclude that g is similar to G. 2. Assume that g = G. As x n -λ = g • h = G • h , one gets h = h . As lclm(g, h) = x n -λ, one deduces that gcrd(g, h ) = gcrd(g, h) = 1, therefore C is a EuclideanLCD code. Example 6 In Example 4, one has g = x 2 + w 7 x + 1 and G = Θ 2 (1 • g * • 1 1 ) = x 2 + w 3 x + 1, therefore lclm(g, w 2 ) = G • w 2 = w 2 • g and g is similar to G. Example 7 In Example 5, one has g = x 3 +w 7 x 2 +x+2 and G = Θ 3 (g * ) = x 3 -x 2 +w 3 x-1. As lclm(g, x 2 -x + w 7 ) = Θ(G) • (x 2 -x + w 7 ) = x 5 + x 4 + x 3 + wx 2 + w 5 x + w 3 and gcrd(g, x 2 -x + w 7 ) = 1, g is similar to Θ(G).
We are now going to characterize the skew generators of LCD skew cyclic and negacyclic codes as least common left multiples of skew polynomials when the order of θ divides the length of the codes. This will enable to give a construction and an enumeration of LCD skew cyclic and negacyclic codes of even length over IF p 2 (Section 5). Let us introduce a first notation. We recall that the fixed field of θ is IF θ q and we denote µ the order of θ. For F (x µ ) ∈ IF θ q [x µ ] and b in {0, 1}, consider the following set :

L (b) F (x µ ) := {g ∈ R | g monic, g • h = F (x µ ) and gcrd(Θ b (h ), g) = 1}
. The following proposition is inspired from Proposition 28 of [START_REF] Boucher | Self-dual skew codes and factorization of skew polynomials[END_REF] and Proposition 2 of [START_REF] Boucher | Construction and number of self-dual skew codes over IF p 2[END_REF]. It will enable to construct and enumerate LCD skew cyclic and negacyclic codes over IF p 2 .

Proposition 5 Consider IF q a finite field, θ an automorphism of

IF q of order µ, R = IF q [x; θ]. Consider F (x µ ) = f 1 (x µ ) • • • f r (x µ ) where f 1 (x µ ), . . . , f r (x µ ) are polynomials of IF θ q [
x µ ] such that f i is coprime with f j and f j for all i = j. The application φ :

L (b) f 1 (x µ ) × • • • × L (b) fr(x µ ) → L (b) F (x µ ) (g 1 , . . . , g r ) → lclm(g 1 , . . . , g r ) is bijective.
Proof.

• The application φ is well-defined.

Consider (g 1 , . . . , g r ) in L (b)

f 1 (x µ ) × • • • × L (b)
fr(x µ ) and g = lclm(g 1 , . . . , g r ). Consider

h 1 , . . . , h r in R such that g i • h i = h i • g i = f i (x µ ) and gcrd(g i , Θ b (h i )) = 1. Consider h = lcrm(h 1 , . . . , h r ). Let us prove that g • h = F (x µ ) and that gcrd(g, Θ b (h )) = 1.
First of all, as h 1 , . . . , h r divide respectively f 1 (x µ ), . . . , f r (x µ ), and as f 1 (x µ ), . . . , f r (x µ ) are pairwise coprime central polynomials, the degree of h = lcrm(h 1 , . . . , h r ) is equal to r i=1 deg(h i ). In the same way, the degree of g = lclm(g 1 , . . . , g r ) is equal to

r i=1 deg(g i ).
Furthermore, as

g i • h i = f i (x µ ), the degree of g i • h i is equal to the degree of f i (x µ ) in x, therefore the degree of g • h is equal to the degree of F (x µ ) in x. Consider, for i in {1, . . . , r}, A i in R such that g = A i • g i and B i in R such that h = h i • B i . One gets g • h = A i • g i • h i • B i = A i • f i (x µ ) • B i . As f i (x µ ) is cen- tral, it divides g • h.
The polynomials f i (x µ ) are pairwise coprime in IF θ q [x µ ], therefore their least common right multiple is equal to their product F (x µ ), and

F (x µ ) divides g • h. As deg(g • h) = deg(F (x µ )), one gets g • h = F (x µ
). Now gcrd(g, Θ b (h )) = gcrd(lclm(g 1 , . . . , g r ), lclm(Θ b (h 1 ), . . . , Θ b (h r ))). One can notice that the skew polynomials g i and Θ b (h j ) are right coprime. Namely, if i = j, gcrd(g i , Θ b (h i )) = 1 by hypothesis. If i = j consider a right divisor u of g i and Θ b (h j ), then u divides f i (x µ ) and f j (x µ ), as f i (x µ ) and f j (x µ ) are coprime one gets that u = 1. One deduces that gcrd(g, Θ b (h )) = 1. To conclude, the skew polynomial g belongs to L (b) F (x µ ) therefore φ is well defined.

• The application φ is bijective.

Consider g in L (b) F (x µ ) , then g divides F (x µ ) = f 1 (x µ ) • • • f r (x µ
), therefore, as f i and f j are coprime, according to Theorem 4.1 of [START_REF] Giesbrecht | Factoring in skew-polynomial rings over finite fields[END_REF], g = lclm(g 1 , . . . , g r ) where g i = gcrd(f i (x µ ), g) and this lclm-decomposition into skew polynomials dividing f 1 (x µ ), . . . , f r (x µ ) is unique. Furthermore deg(g) = r i=1 deg(g i ) because f i (x µ ) and f j (x µ ) are coprime. Let us prove that g i belongs to L (b)

f i (x µ ) . Consider h in R such that g • h = h • g = F (x µ )
and gcrd(g, Θ b (h )) = 1. As h divides F (x µ ), according to Theorem 4.1 of [START_REF] Giesbrecht | Factoring in skew-polynomial rings over finite fields[END_REF], h = lcrm(h 1 , . . . , h r ) where h i = gcld(f i (x µ ), h). This lcrm-decomposition into skew polynomials dividing f 1 (x µ ), . . . , f r (x µ ) is unique and deg(h

) = r i=1 deg(h i ). Consider, for i in {1, . . . , r}, A i in R such that g = A i •g i and B i in R such that h = h i •B i . As g • h = F (x µ ) and as F (x µ ) is central, the skew polynomial g i • h i divides F (x µ ) on the right. Therefore, g i •h i = lclm(gcrd(g i •h i , f j (x µ )), j = 1, . . . , r) = gcrd(g i •h i , f i (x µ )) divides f i (x µ ). As r i=1 deg(g i •h i ) = deg(g)+deg(h) = deg(F (x µ )) = r i=1 deg(f i (x µ )), one gets g i • h i = f i (x µ ).
Lastly, consider u in R such that u divides on the right g i and Θ b (h i ). As h i divides on the left h, Θ b (h i ) divides on the right Θ b (h ), therefore u divides on the right both g and Θ b (h ), and u = 1.

We now introduce some additional notations that will be useful later :

D F (x µ ) := {f ∈ IF θ q [x µ ] | f monic and divides F (x µ ) in IF θ q [x µ ]} F ir := {f = f (x µ ) ∈ IF θ q [x µ ] | f = f irreducible in IF θ q [x µ ], deg x µ (f ) > 1} F red := {f = f (x µ ) ∈ IF θ q [x µ ] | f = f ir f ir , f ir = f ir irreducible in IF θ q [x µ ]}.
Theorem 3 Consider IF q a finite field with q elements, θ an automorphism over IF q with order µ, R

= IF q [x; θ], λ ∈ {-1, 1}, b ∈ {0, 1}. Consider n a multiple of µ and x n -λ = f 1 (x µ ) p s • • • f r (x µ ) p s where f 1 (x µ ), . . . , f r (x µ ) are distinct polynomials of IF p [x µ ] belonging to {x µ ± 1} ∪ F ir ∪ F red .
Consider a (θ, λ)-constacyclic code C of length n and skew generator polynomial g. C is a Euclidean(resp. a Hermitian) LCD code if and only if

g = i∈I f i (x µ ) p s lclm j∈J (g j )
where x n -λ where b = 0 (resp. b = 1). As

     I, J ⊂ {1, . . . , r} I ∩ J = ∅ ∀j ∈ J, g j ∈ L (b) f j (x µ ) p s \ {1, f j (x µ ) p s }
x n ± 1 is self-reciprocal, one has x n ± 1 = f 1 (x µ ) p s • • • f r (x µ ) p s where f 1 (x µ ), . . . , f r (x µ ) are distinct self-reciprocal polynomials of IF p [x µ ]
which are either irreducible or products of an irreducible polynomial and its reciprocal polynomial. Therefore for i = j, f i is coprime with f j and f j and Proposition 5 can be applied to F (x µ ) = x n ±1. One gets that g = lclm(g 1 , . . . , g r ) where for all i in {1, . . . , r}, g i ∈ L (b) f i (x µ ) p s . Now consider the sets I, J, K ⊂ {1, . . . , r} that form a partition of {1, . . . , r} such that ∀i ∈ I,

g i = f i (x µ ) p s , ∀i ∈ J, g i ∈ L (b) f i (x µ ) p s \ {1, f i (x µ ) p s } and ∀i ∈ K, g i = 1. As f i (x µ
) is central and as the f i are pairwise coprime, one gets that g = i∈I f i (x µ ) p s lclm j∈J (g j ).

Remark 1 The Euclidean LCD skew cyclic (resp. negacyclic) codes of length n over IF q are the skew cyclic (resp. negacyclic) codes C = r i=1 C i where C i is a skew cyclic (resp. negacyclic) code of length n generated by g i ∈ L (0) f i (x µ ) p s . The same remark holds for Hermitian LCD skew cyclic and negacyclic codes where g i ∈ L

(1)

f i (x µ ) p s (instead of g i ∈ L (0) f i (x µ ) p s ).

LCD skew cyclic and negacyclic codes over IF p 2

In [START_REF] Carlet | Euclidean and Hermitian LCD MDS codes[END_REF][START_REF] Güneria | Quasi-cyclic complementary dual codes[END_REF][START_REF] Sharma | Enumeration formulae for self-dual, self-orthogonal and complementary-dual quasi-cyclic codes over finite fields[END_REF], constructions and enumerations of families of LCD codes were provided. In this section, we construct and enumerate LCD skew cyclic and negacyclic codes in the particular case when q = p 2 is the square of a prime number p and θ : a → a p is the Frobenius automorphism over IF q . Therefore the order µ of θ is equal to 2 and the fixed field IF θ q of θ is IF p . We will use the characterization of LCD skew cyclic and negacyclic codes given by Theorem 3 to design an algorithm of construction of these codes (Algorithm 4). In the case when the skew generator polynomials of the codes are not divisible by any central polynomial, a counting formula will be given (Proposition 7).

According to Theorem 3, LCD θ-cyclic and θ-negacyclic codes of even length n over IF p 2 are generated by skew polynomials which are least common left multiples of skew polynomials

g i ∈ L (b) f i (x 2 ) p s where f = f i ∈ D x n ±1 is a divisor of x n ± 1 in IF p [x 2
] satisfying one of the following cases : Lemma 9).

• f (x 2 ) = x 2 -where = ±1 (see Lemma 8); • f (x 2 ) ∈ F ir irreducible in IF p [x 2 ] with degree d > 1 in x 2 (see Lemma 7); • f (x 2 ) ∈ F red is the product of two irreducible distinct polynomials in IF p [x 2 ] (see
The following proposition enables to characterize those skew polynomials over IF p 2 [x; θ] having a unique factorization into the product of monic irreducible skew polynomials. It will be useful later.

Proposition 6 (Proposition 16 of [START_REF] Boucher | Self-dual skew codes and factorization of skew polynomials[END_REF]) Consider p a prime number, θ : a → a p the Frobenius automorphism over

IF q with q = p 2 , R = IF q [x; θ], f ∈ IF p [x 2 ] irreducible in IF p [x 2 ] and h = h m • • • h 1 a
product of irreducible monic skew polynomials dividing f . The following assertions are equivalent :

(i) h has a unique factorization into irreducible monic skew polynomials;

(ii) f does not divide h in R;

(iii) for all i in {1, . . . , m -1}, f = h i+1 • h i . Lemma 7 describes the set L (b)
f (x 2 ) m and its number of elements where f (x 2 ) belongs to F ir . Algorithm 1 enables to construct this set.

Lemma 7 Consider p a prime number, θ : a → a p the Frobenius automorphism over

IF q with q = p 2 , R = IF q [x; θ], f (x 2 ) ∈ F ir with degree d in x 2 , g in R and m ∈ IN. The skew polynomial g belongs to the set L (b) f (x 2 ) m if and only if g = 1 or g = f (x 2 ) m or g has a unique factorization into the product of m monic irreducible skew polynomials g = g m • • • g 1 where        ∀i ∈ {1, . . . , m}, deg(g i ) = d g i divides f (x 2 ) ∀i ∈ {1, . . . , m -1}, g i+1 • g i = f (x 2 ) g 1 = Θ b (h 1 ) where g 1 • h 1 = f (x 2 ). (1)
Furthermore, the number of elements of

L (b) f (x 2 ) m \ {1, f (x 2 ) m } is (p d -p d/2 )p d(m-1) . Proof. Consider g in L (b) f (x 2 ) m \{f (x 2 ) m , 1}. Consider h in R such that g•h = h•g = f (x 2 ) m . As f (x 2 ) is central and irreducible in IF p [x 2
], the skew polynomials g and h are products of irreducible monic factors dividing f (x 2 ). As deg(g) < 2dm and deg(h) + deg(g) = 2dm, there exists r in {1, . . . , 2m-1}, g 1 , . . . , g 2m-r , h 1 , . . . , h r monic of degree

d dividing f (x 2 ) in R such that g = g 2m-r • • • g 1 and h = h 1 • • • h r . The skew polynomial Θ b (h 1 ) is an irreducible right factor of Θ b (h ) which divides Θ b (f (x 2 )) = f (x 2
) and does not divide g on the right because gcrd(Θ b (h ), g) = 1. Therefore f (x 2 ) does not divide g. Similarly, one gets that f (x 2 ) does not divide Θ b (h ) and h. Therefore, according to Proposition 6, the above factorizations of g and h into the products of monic irreducible factors are unique and for all i in {1, . . . , m -1},

g i+1 • g i = f (x 2 ). As g • h = h • g = f (x 2 ) m one gets that for all i, g i • h i = f (x 2 ), therefore, r = m.
Laslty, as g and Θ b (h ) are right coprime, necessarily, g 1 = Θ b (h 1 ).

Conversely, consider g = g m • • • g 1 where g 1 , . . . , g m are monic skew polynomials satisfying [START_REF] Batoul | Some constacyclic codes over finite chain rings[END_REF].

Consider h = h 1 • • • h m with g i • h i = h i • g i = f (x 2 ) then g • h = h • g = f (x 2 ) m . Furthermore as g i+1 • g i = f (x 2
), according to Proposition 6, the above factorization of g into the product of monic irreducible factors is unique. Similarly, the factorizations of h and Θ b (h ) into the products of monic irreducible factors are unique. Consider u a monic right factor of g and Θ b (h ) with degree > 1. Necessarily, u has a unique factorization into the product of monic skew polynomials. The unique monic linear right factor of u is also the unique monic right factor of g and Θ b (h ), therefore u = g 1 = Θ b (h 1 ), which is impossible according to [START_REF] Batoul | Some constacyclic codes over finite chain rings[END_REF]. Therefore gcrd(g, Θ b (h )) = 1 and g belongs to

L (b) f (x 2 ) m . Let us compute the number of elements of L (b) f (x 2 ) m \ {1, f (x 2 ) m }. We first notice that g 1 = Θ b (h 1 ) where g 1 • h 1 = f (x 2 ) if and only if g 1 is a divisor of f (x 2 ) which does not belong to {Θ b (u ) | Θ b (u ) • u = f (x 2 )}.
According to [START_REF] Odoni | On additive polynomials over a finite field[END_REF], the number of monic irreducible right factors of f (x 2 ) is equal to 1 + p d , where d is the degree of f (x 2 ). According to Lemma 3.4 of [START_REF] Boucher | A First Step Towards the Skew Duadic Codes[END_REF], the number of irreducible monic right factors

u of f (x 2 ) such that Θ b (u ) • u = f (x 2 ) is equal to 1 + p d/2
. Therefore, the number of monic skew polynomials of degree md in

L (b) f (x 2 ) m \ {1, f (x 2 ) m } is ((p d + 1) -(1 + p d/2 ))(1 + p d -1) m-1 = (p d -p d/2 )p d(m-1) . Algorithm 1 L (b) f (x 2 ) m for f (x 2 ) ∈ F ir , b ∈ {0, 1} and m ∈ IN * Require: : p, prime number, m ∈ IN * , b ∈ {0, 1}, f (x 2 ) ∈ IF p [x 2 ] such that f (x 2 ) ∈ F ir Ensure: : L (b) f (x 2 ) m 1: E ← {1, f (x 2 ) m } 2: d ← deg x 2 (f (x 2 )) 3: I ← {g ∈ R, g monic, g irreducible of degree d dividing f (x 2 )} (using Algorithm 1 of Appendix A of [6]) 4: for g 1 , . . . , g m ∈ I such that g i • g i+1 = f (x 2 ) and g 1 = Θ b (h 1 ) where Θ b (h 1 ) • h 1 = f (x 2 ) do 5: E ← E ∪ {g m • • • g 1 } 6: end for 7: return E Lemma 8 describes the set L (b) (x 2 ±1
) m and its number of elements. Algorithm 2 enables to construct this set.

Lemma 8 Consider p a prime number, θ : a → a p the Frobenius automorphism over

IF q with q = p 2 , R = IF q [x; θ], ∈ {-1, 1}, g in R and m ∈ IN. The skew polynomial g belongs to the set L (b) (x 2 -) m if and only if g = 1 or g = (x 2 -) m or g has a unique factorization into the product of m monic linear skew polynomials g = (x + α m ) • • • (x + α 1 ) where    α p+1 i = α i+1 = -/α i = -θ(α 1 )/α 1 (2) if b = 0 and α p+1 i = 1 α i+1 = -1/α i (3) if b = 1, = 1 and p = 2.
Furthermore, the number of elements of

L (b) (x 2 -) m \ {1, (x 2 -) m } is        2 m if p = 2, b = 0; p m-1 (p -(-1) (p+1)/2 ) if p = 2, b = 0; 0 if b = 1, p = 2 or p odd and = -1; p m-1 (p + 1) if b = 1, p odd and = 1.
Proof. Consider g in R. Like in proof of Lemma 7, one gets that g belongs to

L (b) (x 2 -) m
if and only if g = 1 or g = (x 2 -) m or g has a unique factorization into the product of m monic linear skew polynomials g

= (x + α m ) • • • (x + α 1 )
where

   x + α i divides x 2 - (x + α i+1 ) • (x + α i ) = x 2 - x + α 1 = Θ b (h 1 ) where (x + α 1 ) • h 1 = x 2 -. Therefore g = 1, (x 2 -) m belongs to the set L (b) (x 2 -) m if and only if g has a unique factorization in R as g = (x + α m ) • • • (x + α 1 ) where    α p+1 i = α i+1 = -/α i = -θ b+1 (α 1 )/α 1 . (4) If b = 0, the condition (4) is equivalent to α p+1 i = , α i+1 = -/α i and α 2 1 = -. Therefore the number of skew polynomials in L (0) (x 2 -) m \ {1, (x 2 -) m } is    p m-1 (p -1) if p odd and = (-1) (p+1)/2 p m-1 (p + 1) if p odd and = (-1) (p+1)/2 2 m if p = 2.
In the same way, one gets that L

(x 2 -) m = {1, (x 2 -) m } if p = 2 (1) 
or p is odd and = -1. If = 1 and p = 2, condition ( 4) is equivalent to α p+1 i = 1 and α i+1 = -1/α i . In this case there are (p + 1)p m-1 skew polynomials of degree m in L

(x 2 -) m \ {1, (x 2 -) m }. Algorithm 2 L (b) (x 2 ±1) m for b ∈ {0, 1} and m ∈ IN * Require: : p, prime number, m ∈ IN * , ∈ {-1, 1}, b ∈ {0, 1} Ensure: : L (b) (x 2 -) m 1: E ← {1, (x 2 -) m } 2: if b = 0 then 3: for α 1 , . . . , α m ∈ IF p 2 such that α 2 1 = -1, α p+1 i = and α i+1 = -/α i do 4: E ← E ∪ {(x + α m ) • • • (x + α 1 )} 5: (1) 
end for 6: else 7:

if p odd and = 1 then

8: for α 1 , . . . , α m ∈ IF p 2 such that α p+1 i = 1 and α i+1 = -1/α i do 9: E ← E ∪ {(x + α m ) • • • (x + α 1 )} 10:
end for 11:

end if 12: end if 13: return E Lemma 9 describes the set L (b)
f (x 2 ) m and its number of elements where f (x 2 ) belongs to F red . Algorithm 3 enables to construct this set.

Lemma 9 Consider p a prime number, θ : a → a p the Frobenius automorphism over

IF q with q = p 2 , R = IF q [x; θ], f (x 2 ) = f ir (x 2 )f ir (x 2 ) in F red with degree d = 2δ in x 2 . The monic skew polynomial g belongs to the set L (b) f (x 2 ) m if and only if g = 1 or g = f (x 2 ) m or g = lclm(g 1 , g 2 ) where g 1 = g 1,m • • • g 1,1 and g 2 = g 2,m • • • g 2,1
have unique factorizations into the products of m monic irreducible skew polynomials satisfying :

         deg(g i,j ) = δ g 1,j divides f ir (x 2 ) and g 2,j divides f ir (x 2 ) g 1,j • g 1,j-1 = f ir (x 2 ) and g 2,j • g 2,j-1 = f ir (x 2 ) g 1,1 = Θ b (h 2,1 ), h 2,1 • g 2,1 = f ir (x 2 ). (5)
Furthermore, the number of elements of

L (b) f (x 2 ) m \ {1, f (x 2 ) m } is (1 + p d/2 )p (2m-1)d/2 . Proof. Consider g in L (b) f (x 2 ) m \ {1, f ir (x 2 ) m f ir (x 2 ) m } and h in R such that g • h = h • g = f ir (x 2 ) m f ir (x 2 ) m with gcrd(g, Θ b (h )) = 1. As g divides f ir (x 2 ) m f ir (x 2
) m and f ir (x 2 ) m and f ir (x 2 ) m are coprime in IF p [x 2 ], according to Theorem 4.1 of [START_REF] Giesbrecht | Factoring in skew-polynomial rings over finite fields[END_REF], g = lclm(g 1 , g 2 ) where g 1 = gcrd(f ir (x 2 ) m , g) and g 2 = gcrd(f ir (x 2 ) m , g). Similarly, h = lcrm(h 1 , h 2 ), where h 1 = gcld(f ir (x 2 ), h) and h 2 = gcld(f ir (x 2 ), h).

As g

• h = h • g = f ir (x 2 ) m f ir (x 2 ) m , one has g 1 • h 1 = f ir (x 2 ) m and g 2 • h 2 = f ir (x 2
) m , therefore g 1 and h 1 (resp. g 2 and h 2 ) are products of irreducible skew polynomials dividing f ir (x 2 ) (resp. f ir (x 2 )).

If f ir (x 2 ) divides g 1 , then, as Θ b (h 2 ) divides f ir (x 2 ) m , g 1 and Θ b (h 2 ) have a common right divisor (dividing f ir (x 2 )), therefore g and Θ b (h ) also have a common nontrivial right divisor, which is impossible as g and Θ b (h ) are right coprime. Therefore f ir (x 2 ) does not divide g 1 . In the same way, f ir (x 2 ) does not divide h 1 , f ir (x 2 ) does not divide g 2 and h 2 , therefore using Proposition 6, one gets that :

       g 1 = g 1,m • • • g 1,1 and g 2 = g 2,m • • • g 2,1 with deg(g i,j ) = δ h 1 = h 1,1 • • • h 1,m and h 2 = h 2,1 • • • h 2,m g 1,j • g 1,j-1 = f ir (x 2 ) and g 2,j • g 2,j-1 = f ir (x 2 ) g 1,i • h 1,i = f ir (x 2 ) and g 2,i • h 2,i = f ir (x 2 )
Furthermore the above factorizations of g 1 , g 2 are unique (according to Proposition 6). As g and Θ b (h ) are right coprime, g 1 and Θ b (h 2 ) are right coprime, therefore g 1,1 = Θ b (h 2,1 ).

Conversely, assume that g = lclm(g 1 , g 2 ) where 

g 1 = g 1,m • • • g 1,1 , g 2 = g 2,m • • • g 2,1 and (5) is satisfied. Consider h i,j such that g 1,i • h 1,i = f ir (x 2 ) and g 2,i • h 2,i = f ir (x 2 ). Consider h 1 = h 1,1 • • • h 1,m , h 2 = h 2,1 • • • h 2,m and h = lcrm(h 1 , h 2 ). Then g•h = h•g = f ir (x 2 ) m f ir (x 2
f (x 2 ) m \{1, f (x 2 ) m }. The elements of L (b) f (x 2 ) m \ {1, f (x 2 ) m }
are the skew polynomials g in bijection with the couples (g 1 , g 2 ) satisfying [START_REF] Boucher | Construction and number of self-dual skew codes over IF p 2[END_REF]. There are 1 + p δ possibilities for g 1,1 and p δ possibilities for each g 1,j , with j = 2, . . . , m, therefore (1 + p δ )p δ(m-1) possibilities for g 1 . For each j in {1, . . . , m} there are p δ possibilities for g 2,j , therefore, one gets p δm possibilities for g 2 .

From Theorem 3, Algorithms 1, 2 and 3, one deduces Algorithm 4 for the construction of LCD θ-cyclic and θ-negacyclic codes of length n and dimension k over IF p 2 .

Lastly we give an enumeration formulae (Proposition 7) for LCD skew cyclic and negacyclic codes of even length n = 2k and of dimension k whose generator polynomials are not divisible by any central polynomial.

Algorithm 3 L (b) f (x 2 ) m for f (x 2 ) ∈ F red , b ∈ {0, 1} and m ∈ IN * Require: : p, prime number, m ∈ IN, b ∈ {0, 1}, f (x 2 ) ∈ IF p [x 2 ] such that f (x 2 ) = f ir (x 2 )f ir (x 2 ) ∈ F red Ensure: : L (b) f (x 2 ) m 1: E ← {1, f (x 2 ) m } 2: d ← deg x 2 (f (x 2 )) 3: I 1 ← {g ∈ R, g monic, g irreducible of degree d dividing f ir (x 2 )} 4: I 2 ← {g ∈ R, g monic, g irreducible of degree d dividing f ir (x 2 )} 5: for g 2,1 , . . . , g 2,m ∈ I 2 such that g 2,i • g 2,i+1 = f ir (x 2 ) do 6:
h 2,1 ← quotient of the division of f ir (x 2 ) by g 2,1

7: 

for g 1,1 , . . . , g 1,m ∈ I 1 such that g 1,i • g 1,i+1 = f ir (x 2 ) and g 1,1 = Θ b (h 2,1 ) do 8: E ← E ∪ {lclm(g 1,m • • • g 1,1 , g 2,m • • • g 2,1 )} 9:
= 1. 1: E ← ∅ 2: Compute f 1 (x 2 ), f 2 (x 2 ), . . . , f r (x 2 ) such that x n -λ = f 1 (x 2 ) p s • • • f r (x 2 ) p s ∈ IF p [x 2 ] where s ∈ IN, f 1 (x 2 ), . . . , f r (x 2 ) ∈ {x 2 ± 1} ∪ F ir ∪ F red 3: for i = 1, . . . , r do 4: d i ← deg x 2 (f i (x 2 )) 5:
Compute L (b) f i (x 2 ) p s with Algorithms 1, 2 and 3 6: end for 7: for I, J ⊂ {1, . . . , r} with I ∩ J = ∅ and k

= p s (2t -2 i∈I d i -j∈J d j ) do 8: for (g j ) j∈J ∈ j∈J L (b) f j (x 2 ) p s \ {1, f j (x 2 ) p s } do 9: E ← E ∪ { i∈I f i (x 2 ) p s lclm j∈J (g j )} 10:
end for 11: end for 12: return E Proposition 7 Consider a prime number p, θ : a → a p the Frobenius automorphism over IF p 2 , λ ∈ {-1, 1} and n = 2k = 2p s t where s is an integer and t is an integer not divisible by p.

1. The number of Euclidean LCD (θ, λ)-constacyclic codes of length 2k and dimension k with skew generator polynomial not divisible by any central polynomial is

N λ × f ∈F ir ∩D x n -λ d=deg(f ) (p d -p d/2 )p d(p s -1) × f ∈F red ∩D x n -λ d=deg(f ) (1 + p d/2 )p (2p s -1)d/2
where

N 1 =    2 2 s if p=2 (p p s -1 ) 2 (p 2 -1)
if k is even and p is odd

p p s -1 (p -(-1) (p+1)/2 ) if k is odd and p is odd and N -1 = 1 if k is even and p is odd p p s -1 (p -(-1) (p-1)/2 ) if k is odd and p is odd.
2. The number of Hermitian LCD (θ, λ)-constacyclic codes of length 2k and dimension k with skew generator polynomial not divisible by any central polynomial is

N λ × f ∈F ir ∩D x n -λ d=deg(f ) (p d -p d/2 )p d(p s -1) × f ∈F red ∩D x n -λ d=deg(f ) (1 + p d/2 )p (2p s -1)d/2
where

N 1 =    0 if p=2 0
if k is even and p is odd p p s -1 (p + 1) if k is odd and p is odd and N -1 = 1 if k is even and p is odd 0 if k is odd and p is odd.

Proof. Consider the factorization of

x n -λ = f 1 (x 2 ) p s • • • f r (x 2 ) p s where f 1 (x 2 ), . . . , f r (x 2 ) are distinct polynomials of IF p [x 2 ] belonging to {x 2 ± 1} ∪ F ir ∪ F red .
According to Theorem 3, the Euclidean (resp. Hermitian) LCD (θ, λ)-constacyclic codes of length 2k and dimension k with skew generator polynomial not divisible by any central polynomial are generated by the monic skew polynomials g = lclm j∈J (g j ) where J is a subset of {1, . . . , r} and ∀j ∈ J, g j ∈ L (b)

f j (x 2 ) p s \ {1, f j (x 2 ) p s } with b = 0 (resp. b = 1)
. Furthermore the dimension of the codes are equal to k = p s j∈J deg x 2 f j (x 2 ). As k = p s r j=1 deg x 2 f j (x 2 ), J must be equal to {1, . . . , r} and g = lclm 1≤i≤r (g i ) where g i belongs to L (b) f (x 2 ) p s \ {1, f (x 2 ) p s } given by Lemma 7 (when f (x 2 ) ∈ F ir ) and Lemma 9 (when f (x 2 ) ∈ F red ) enable to obtain M λ .

f i (x 2 ) p s \ {1, f i (x 2 ) p s }. The number of such skew polynomials g is N λ × M λ where N λ = f ∈{x 2 ±1} f ∈D x n -λ #L (b) f (x 2 ) p s \ {1, f (x 2 ) p s } and M λ = f ∈F ir ∪F red f ∈D x n -λ #L (b) f (x 2 ) p s \ {1, f (x 2 ) p s }.
Remark 2 From Proposition 7, one gets that over IF 4 , when k = 2 s , the number of Euclidean LCD θ-cyclic codes [2k, k] is 2 k and growths exponentially with k. On the other hand, the number of Euclidean self-dual θ-cyclic codes [2k, k] is constant (Corollary 26 of [START_REF] Boucher | Self-dual skew codes and factorization of skew polynomials[END_REF]).

Remark 3 Over IF p 2 , according to Theorem 5.5 of [START_REF] Pang | On LCD repeated-root cyclic codes over finite fields[END_REF], there are only 2 LCD cyclic codes of length 2 r if p = 2, while there are 2 2 r-1 LCD skew cyclic codes of length 2 r . If p is an odd prime number, there are 4 LCD cyclic codes of length 2p r while there are p p r -1 (p-(-1) (p+1)/2 ) LCD skew cyclic codes with length 2p r .

To finish we give below an example and some tables of results. All the computations were made with the computer algebra system MAGMA. 

= (x + 1) • (x + w 2 ) • (x + w 2 ) • (x + w 2 ) = x 4 + wx 3 + wx 2 + x + 1. As p = 2, (w 2 ) p+1 = 1 p+1 = 1, (w 2 ) 2 = -1, w 2 =
1/w 2 and 1 = 1/w 2 , therefore according to Algorithm 2, g generates a EuclideanLCD [START_REF] Fogarty | On Skew-Constacyclic Codes[END_REF][START_REF] Boucher | Self-dual skew codes and factorization of skew polynomials[END_REF] checks that 1 ∈ Spec(P × t P ) therefore according to Proposition 4 of [START_REF] Carlet | Euclidean and Hermitian LCD MDS codes[END_REF] C is a EuclideanLCD code. Furthermore 1 ∈ Spec(P × t P ) therefore according to Proposition 6 of [START_REF] Carlet | Euclidean and Hermitian LCD MDS codes[END_REF], C is not a Hermitian LCD code. 

The following

Conclusion

In this text, we gave some conditions on the equivalence of skew constacyclic codes and a first study of skew LCD codes was proposed. LCD skew cyclic and negacyclic codes were constructed and enumerated over IF p 2 . Some computations were made and MDS LCD codes were constructed. 

  with b = 0 (resp b = 1). Proof. According to Theorem 2, the Euclidean (resp. Hermitian) LCD (θ, λ)-constacyclic codes of length n are generated by the elements of the set L (b)

  ) m and g and Θ b (h ) are right coprime. Let us compute the number of elements of L (b)

end for 10 :

 10 end for 11: return E Algorithm 4 LCD θ-cyclic and θ-negacyclic codes of length n and dimension k over IF p 2 Require: : p, prime number, k ≤ n ∈ IN with n = 2p s t, p |t, b ∈ {0, 1}, λ ∈ {-1, 1}, θ : a → a p ∈ Aut(IF p 2 ) Ensure: : monic skew generators g of (θ, λ)-constacyclic codes of length n and dimension k over IF p 2 which are Euclidean LCD codes if b = 0 and Hermitian LCD codes if b

Example 8

 8 There are 16 = 2 2 2 nontrivial Euclidean LCD θ-cyclic codes of length 8 over IF 4 = IF 2 (w) where θ is the Frobenius automorphism over IF 4 . Their dimensions are all equal to 4. Consider g

  4 θ-cyclic code which is not a Hermitian LCD code. The systematic generator matrix of C is (I 4 |P ) where P =

  1 Consider IF 2 4 = IF 2 (w) where w 4 = w + 1 , θ the automorphism of IF 2 4given by a → a 2 2 . We have 33 skew cyclic codes of length 4 over IF 16 . For example, as x 4 -1 = (x 2 + w 13 x + w 9 ) • (x 2 + w 13 x + w 6 ), the skew polynomial g = x 2 + w 13 x + w 6 generates a skew cyclic code C of length 4 over IF 2 4 . Consider λ = w 5 . The set of α in IF * 2 4

Table 1 :

 1 Number of Euclidean and Hermitian LCD [2p, p] p 2 and [2p, p] p 2 MDS skew-cyclic codes for p = 3, 5, 7, 11For = ±1, x 2 -∈ D x n -λ if and only if k = λ therefore using the enumeration formulae for L -) p s \ {1, (x 2 -) p s } given by Lemma 8, one deduces the value of N λ .Enumeration formulae for #L

	p nbr of Euclidean LCD skew cyc. nbr of Hermitian LCD skew cyc.
		[2p, p] p 2	[2p, p, p + 1] p 2	[2p, p] p 2	[2p, p, p + 1] p 2
	3	18	16	36	32
	5	3750	2412	3750	2412
	7	705984	39564	941192	52752
	11 259374246010	≥ 1	311249095212	≥ 1
	(b)				
	(x 2 (b)		

Table 2 ,

 2 Table 1 sums up the number of [2p, p] p 2 LCD θ-cyclic codes and the number of [2p, p] p 2 MDS LCD θ-cyclic codes for p ∈ {3, 5, 7, 11} . One can notice that there exists MDS LCD θ-cyclic codes of length 2p over IF p 2 , while according to Corollary 4.2 of [20], there are no MDS LCD repeated-root cyclic codes over IF p 2 of length 2p. Table 3 and Table 4 illustrate Proposition 7 over IF 4 and IF 9 . Best minimum distances and numbers of LCD [2k, k] skew cyclic and negacyclic codes over IF 4 and IF 9Euclidean LCD skew cyc.

				Euclidean LCD skew cyc.
	length best dist	nbr	length best dist	nbr
	2	2*	2	26	9	8 064
	4	3*	4	28	11*	18 432
	6	4*	4	30	12*	13 056
	8	4*	16	32	10	65 536
	10	5*	24	34	11*	115 200
	12	5	32	36	11	114 688
	14	6*	144	38	12*	523 264
	16	6	256	40	12*	786 432
	18	7	224	42	12	1 198 080
	20	8*	768	44	13	4 063 232
	22	8*	1 984	46	14*	8 392 704
	24	9*	2 048	48	14*	8 388 608

Table 2 :

 2 Best minimum distances and numbers of Euclidean LCD [2k, k] skew cyclic codes of length ≤ 48 over IF 4 with skew generator polynomial not divisible by a central polynomial are given in the case when the skew generator polynomials are not divisible by any central polynomial. The index * means that the minimum distance is the best known minimum distance of codes with these parameters.Table5sums up the dimensions of MDS LCD skew codes of given length ≤ 10 over IF 9 . Tables6 and 7sum up the dimensions of MDS LCD skew codes of length ≤ 18 over IF 25 and of length ≤ 16 over IF 49 .

Table 3 :

 3 It could be interesting to see if there exist [2p, p] p 2 MDS LCD codes for p odd prime greater than 11 and to find a necessary and sufficient condition on p for the existence of [2p, p] p 2 MDS LCD skew codes. Best minimum distances and numbers of LCD [2k, k] skew codes of length ≤ 24 over IF 9 with skew generator polynomial not divisible by a central polynomial

			Euclidean LCD	
		skew cyc	skew negacyc
	length best dist	nbr	best dist	nbr
	2	2*	2	2*	4
	4	3*	32	3*	6
	6	4*	18	4*	36
	8	5*	192	5*	90
	10	6*	144	6*	288
	12	6*	5 408	6*	486
	14	7*	1 404	7*	2 808
	16	7	17 280	8*	6 642
	18	9*	13 122	9*	26 244
	20	9	165 888	9	39 852
	22	9*	118 584	9*	237 168
	24	10*	2 628 288	10*	590 490
			Hermitian LCD	
		skew cyc	skew negacyc
	length best dist	nbr	best dist	nbr
	2	2*	4	0	0
	4	0	0	3*	6
	6	4*	361	0	0
	8	0	0	5*	90
	10	6*	288	0	0
	12	0	0	6*	486
	14	7*	2 808	0	0
	16	0	0	8*	6 642
	18	9*	26 244	0	0
	20	0	0	10*	39 852
	22	9*	237 168	0	0
	24	0	0	10*	590 490

Table 4 :

 4 Best minimum distances and numbers of LCD [2k, k] skew codes of length ≤ 24 over IF 9 with skew generator polynomial not divisible by a central polynomial

		MDS Euclidean LCD MDS Hermitian LCD
	length skew cyc skew nega skew cyc skew nega
	4	2	2	no	2
	6	3	3	3	no
	8	3,4,5	4	3,5	4
	10	5	5	5	no

Table 5 :

 5 Dimensions of MDS LCD skew codes over IF 9 with length n ≤ 10 and dimension 1 < k < n -1

		MDS Euclidean LCD MDS Hermitian LCD
	length skew cyc skew nega skew cyc skew nega
	4	2	2	no	2
	6	2,3,4	2,3,4	2,3,4	2,4
	8	3,4,5	4	3,5	4
	10	5	5	5	no
	12	3,5,6,7,9	6	3,5,7,9	6
	14	7	7	7	no
	16	7,8,9	no	7,9	no
	18	9	9	9	no

Table 6 :

 6 Dimensions of MDS LCD skew codes over IF 25 with length n ≤ 18 and dimension 1 < k < n -1

		MDS Euclidean LCD	MDS Hermitian LCD
	length	skew cyc	skew nega	skew cyc	skew nega
	4	2	2	no	2
	6	2,3,4	2,3,4	2,3,4	2,4
	8	3,4,5	2,4,6	3,5	2,4,6
	10	4,5,6	4,5,6	4,5,6	4,6
	12	3,5,6,7,9	6	3,5,7,9	6
	14	7	7	7	no
	16	3,5,7,8,9,11,13	8	3,5,7,9,11,13	8

Table 7 :

 7 Dimensions of MDS LCD skew codes over IF 49 with length n ≤ 16 and dimension 1 < k < n -1
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