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An overview on skew constacyclic codes and their subclass of

LCD codes.

Ranya D.Boulanouar ∗, Aicha Batoul †and Delphine Boucher ‡

Abstract

This paper is about a first characterization of LCD skew constacyclic codes and some
constructions of LCD skew cyclic and skew negacyclic codes over IFp2 .

1 Introduction

One of the most active and important research areas in noncommutative algebra is the inves-
tigation of skew polynomial rings. Recently they have been successfully applied in many areas
and specially in coding theory. The principal motivation for studying codes in this setting is
that polynomials in skew polynomial rings exhibit many factorizations and hence there are
many more ideals in a skew polynomial ring than in the commutative case. The research on
codes in this setting has resulted in the discovery of many new codes with better Hamming
minimum distances than any previously linear code with the same parameters.

On the other hand, constacyclic code over finite fields is an important class of linear
codes as it includes the well-known family of cyclic codes. They also have many practical
applications as they can be efficiently encoded using simple shift registers. Further, they have
a rich algebraic structure which can be used for efficient error detection and correction.

Linear complementary dual (LCD) codes were introduced by Massey [14]. They provide
an optimum linear coding solution for the two-user binary adder channel, and in [15] it was
shown that asymptotically good LCD codes exist. Since then, several authors have studied
these codes ([7, 10, 11, 12, 21]). But until now just a few works have been done on LCD codes
in the noncommutative case.

This paper is organized as follows. In Section 2, some preliminaries are given about
skew constacyclic codes over finite fields and skew polynomial rings. In Section 3, conditions
for the equivalency between skew constacyclic codes, skew cyclic codes and skew negacyclic
codes are provided (Theorem 1). In Section 4, the notion of LCD skew constacyclic codes is
introduced and we give some characterizations of their skew generator polynomials (Theorem
2 and Theorem 3). Section 5 focuses on the construction (Algorithm 4) and the enumeration
(Proposition 7) of LCD skew cyclic and negacyclic codes of even lengths over IFp2 . If p is
odd, the Euclidean LCD skew cyclic codes of length 2ps and dimension ps over IFp2 are all
Hermitian LCD codes. Over IFp2 , all MDS LCD skew codes of length ≤ min(1 + p2, 16) are
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obtained when p ∈ {3, 5, 7} (Tables 5, 6 and 7) as well as all [2p, p] MDS LCD skew codes for
p ∈ {3, 5, 7, 11} (Table 1).

2 Preliminaries

Let q be a prime power, IFq a finite field and θ an automorphism of IFq. We define the skew
polynomial ring R as

R = IFq[x; θ] = {a0 + a1x+ . . .+ an−1x
n−1 | ai ∈ IFq and n ∈ IN}

under usual addition of polynomials and where multiplication is defined using the rule

∀a ∈ IFq, x · a = θ(a)x.

The ring R is noncommutative unless θ is the identity automorphism on IFq. According to
[17], an element f in R is central if and only if f is in IFθq[x

µ] where µ is the order of the

automorphism θ and IFθq is the fixed field of θ. The two-sided ideals of R are generated by

elements having the form (c0 + c1x
µ + . . . + cnx

nµ)xl, where l is an integer and ci belongs
to IFθq. Central elements of R are the generators of two-sided ideals in R [2]. The ring R is
Euclidean on the right : the division on the right is defined as follows. Let f and g be in R
with f 6= 0. Then there exist unique skew polynomials q and r such that

g = q · f + r and deg(r) < deg(f).

If r = 0 then f is a right divisor of g in R ([17]). There exist greatest common right divisors
(gcrd) and least common left multiples (lclm). The ring R is also Euclidean on the left : there
exist a division on the left, greatest common left divisors (gcld) as well as least common right
multiples (lcrm).

In what follows, we consider a positive integer n and a constant λ in IF∗q .
According to [2] and [8], a linear code C of length n over IFq is said to be (θ, λ)-

constacyclic or skew λ-constacyclic if it satisfies

∀c ∈ IFnq , c = (c0, c1, . . . , cn−1) ∈ C ⇒ (λθ(cn−1), θ(c0), . . . , θ(cn−2)) ∈ C.

Any element of the left R-module R/R(xn − λ) is uniquely represented by a polynomial
c0+c1x+ . . .+cn−1x

n−1 of degree less than n, hence is identified with a word (c0, c1, . . . , cn−1)
of length n over IFq.

In this way, any skew λ-constacyclic code C of length n over IFq is identified with exactly
one left R-submodule of the left R-module R/R(xn−λ), which is generated by a right divisor
g of xn−λ. In that case, g is called a skew generator polynomial of C and we will denote
C = 〈g〉n.

Note that the skew 1-constacyclic codes are skew cyclic codes and the skew (-1)-constacyclic
codes are skew negacyclic codes.

The Hamming weight wt(y) of an n-tuple y = (yl, y2, . . . , yn) in IFnq is the number of
nonzero entries in y, that is, wt(y) =| {i : yi 6= 0} |. The minimum distance of a linear
code C is minc∈C,c6=0wt(c).

A IFq-linear transformation T : IFnq → IFnq is a monomial transformation if there exists
a permutation σ of {1, 2 . . . , n} and nonzero elements α1, α2, . . . , αn of IFq such that

T (y1, y2, . . . , yn) = (α1yσ(1), α2yσ(2), . . . , αnyσ(n))
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for all (y1, y2, . . . , yn) in IFnq . Two linear codes C1 and C2 in IFnq are equivalent if there exists
a monomial transformation T : IFnq → IFnq taking C1 to C2 (i.e. there exists a linear Hamming
isometry [13]).

The Euclidean dual of a linear code C of length n over IFq is defined as C⊥ = {x ∈ IFnq |
∀y ∈ C,< x, y >= 0} where for x, y in IFnq , < x, y >:=

∑n
i=1 xiyi is the (Euclidean) scalar

product of x and y. A linear code is called an Eulidean LCD code if C ⊕ C⊥ = IFnq , which

is equivalent to C ∩ C⊥ = {0}.
Assume that q = r2 is an even power of an arbitrary prime and denote for a in IFq, a = ar.

The Hermitian dual of a linear code C of length n over IFq is defined as C⊥H = {x ∈ IFnq |
∀y ∈ C,< x, y >H= 0} where for x, y in IFnq , < x, y >H :=

∑n
i=1 xiyi is the (Hermitian) scalar

product of x and y. The code C is a Hermitian LCD code if C ∩ C⊥H = {0}.
The skew reciprocal polynomial of g = Σk

i=0gix
i ∈ R of degree k is g∗ = Σk

i=0θ
i(gk−i)x

i.
If g0 does not cancel, the left monic skew reciprocal polynomial of g is g\ = (1/θk(g0))g

∗.
If a skew polynomial is equal to its left monic skew reciprocal polynomial, then it is called
self-reciprocal.

Consider C a skew λ-constacyclic code of length n and skew generator polynomial g.
According to Theorem 1 and Lemma 2 of [3], the Euclidean dual C⊥ of C is a skew λ−1-
constacyclic code generated by h\ where Θn(h) · g = xn − λ and for a(x) =

∑
aix

i ∈ R,
Θ(a(x)) :=

∑
θ(ai)x

i. In particular, when λ is fixed by θ and n is a multiple of the order µ
of θ, then h is fixed by Θn and xn − λ is central, therefore one gets h · g = g · h = xn − λ.
If q = r2, the Hermitian dual C⊥H of C is generated by h\ where for a(x) =

∑
aix

i ∈ R,
a(x) :=

∑
aix

i.
The two following lemmas will be useful later.

Lemma 1 [4, Lemma 4] Consider h and g in R. Then (h · g)∗ = Θdeg(h)(g∗) · h∗.

The following Lemma is given in Theorem 6.3.7 of [8] when xn− λ is a central element of
R. We give a new proof and adapt it when xn − λ belongs to R.

Lemma 2 Consider C1 and C2 two skew λ-constacyclic codes of length n over IFq with skew
generator polynomials g1 and g2.

1. C1 ∩ C2 is a skew λ-constacyclic code of length n generated by lclm(g1, g2).

2. C1 + C2 is a skew λ-constacyclic code of length n generated by gcrd(g1, g2).

Proof. In the left R-module R/R(xn − λ), we identify the image of P in R under the
canonical morphism R→ R/R(xn−λ) with the remainder in the right division of P by xn−λ
in R.

1. Consider g = lclm(g1, g2) in R. As g1 and g2 divide on the right xn − λ, g divides
xn−λ on the right therefore the skew λ-constacyclic code C of length n generated by g
is well-defined. Let c in R/R(xn − λ). Then c belongs to C1 ∩ C2 if and only if g1 and
g2 divide c on the right in R, therefore c belongs to C1 ∩C2 if and only if g divides c on
the right in R and one concludes that C1 ∩ C2 = C.

2. Consider g = gcrd(g1, g2) in R. As g1 and g2 divide on the right xn − λ, g divides
xn−λ on the right, therefore one can consider the skew λ-constacyclic code C of length
n generated by g.
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As g divides g1 and g2 on the right, C1 and C2 are subsets of C, therefore C1 +C2 ⊂ C.

Conversely, consider c in C. As g divides c on the right, it follows by [19, Theorem 4]
that c = a · g1 + b · g2 for some a and b in R, therefore c belongs to C1 + C2.

3 The equivalency between skew λ-constacyclic codes, skew
cyclic codes and skew negacyclic codes

Let q be a prime power, IFq a finite field and θ an automorphism of IFq. Consider λ in IF∗q
and n in IN∗. For i in IN∗ and α element of IFq, the ith norm of α is defined as

Ni(α) = θi−1(α) · · · θ(α)α.

In this section, we provide conditions on the existence of an isomorphism between skew λ-
constacyclic codes, skew cyclic codes and skew negacyclic codes. We start with the following
useful lemma.

Lemma 3 Consider an element α of IF∗q. The application

φα : R −→ R
f(x) 7−→ f(αx)

is a morphism. Furthermore for all i in IN, φα(xi) = Ni(α)xi.

Theorem 1 1. If IF∗q contains an element α where λ = Nn(α−1) then the skew λ-constacyclic
codes of length n over IFq are equivalent to the skew cyclic codes of length n over IFq.

2. If IF∗q contains an element α where λ = −Nn(α−1) then the skew λ-constacyclic codes
of length n over IFq are equivalent to the skew negacyclic codes of length n over IFq.

Proof.

1. Consider α in IF∗q such that λ = Nn(α−1). Define

Φα : R/R(xn − 1) −→ R/R(xn − λ)
f(x) 7−→ f(αx)

Let us prove that the application Φα is an isomorphism which preserves the Hamming
weight:

• The application Φα is well-defined: consider f(x) and g(x) in R such that xn − 1
divides on the right f(x) − g(x). There exists h in R such that f(x) − g(x) =
h(x) · (xn − 1). By Lemma 3, f(αx)− g(αx) =

φα(h(x)) · φα(xn − 1) = φα(h(x)) · (Nn(α)xn − 1) = φα(h(x)) ·Nn(α) · (xn − λ).

Therefore, xn − λ divides on the right f(αx)− g(αx).
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• In the same way one can prove that the application is injective (and therefore
surjective) :consider f(x) =

∑
aix

i and g(x) =
∑
bix

i in R/R(xn − 1) such that
φα(f(x)) = φα(g(x)), then aiNi(α) = biNi(α) therefore f(x) = g(x).

• The application Φα is a morphism: consider f(x) =

n−1∑
i=0

aix
i and g(x) =

n−1∑
i=0

bix
i

in R/R(xn − 1). One has

f(x) · g(x) =

n−1∑
j=0

 j∑
i=0

aiθ
i(bj−i) +

n−1∑
i=j+1

aiθ
i(bn−i+j)

xj

because xj+n = xj in R/R(xn − 1).

As Φα(xj) = Nj(α)xj , one gets

Φα(f(x) · g(x)) =

n−1∑
j=0

 j∑
i=0

aiθ
i(bj−i) +

n−1∑
i=j+1

aiθ
i(bn−i+j)

Nj(α)xj .

Furthermore, one has

Φα(f(x)) · Φα(g(x)) =
n−1∑
j=0

(
j∑
i=0

aiNi(α)θi(bj−iNj−i(α))

)
xj+

n−1∑
j=0

 n−1∑
i=j+1

aiNi(α)θi(bn−i+jNn+j−i(α))

xj+n.

As xj+n = xj · (xn − λ) + xjλ = θj(λ)xj in R/R(xn − λ), one gets

Φα(f(x)) · Φα(g(x)) =
n−1∑
j=0

(
j∑
i=0

aiθ
i(bj−i)Ni(α)θi(Nj−i(α))+

n−1∑
i=j+1

aiθ
i(bn−i+j)Ni(α)θi(Nn+j−i(α))θj(λ)

xj .

FurthermoreNi(α)θi(Nj−i(α)) = Nj(α) andNi(α)θi(Nn+j−i(α))θj(λ) = Nj+n(α)/(θj(Nn(α))) =
Nj(α), therefore

Φα(f(x))·Φα(g(x)) =

n−1∑
j=0

 j∑
i=0

aiθ
i(bj−i) +

n−1∑
i=j+1

aiθ
i(bn−i+j)

Nj(α)xj = Φα(f(x)·

g(x)).

• Φα preserves the Hamming weight: consider c(x) =
∑n−1

i=0 cix
i ∈ R/R(xn − 1),

then Φα(c(x)) =
∑n−1

i=0 ciNi(α)xi, therefore wt(c(x)) = wt(Φα(c(x))).

To conclude, consider the monomial transformation T : (c0, . . . , cn−1) 7→ (N0(α)c0, . . . , Nn−1(α)cn−1).
Then for any right divisor g of xn − 1, T takes the skew cyclic code C =< g >n to the
skew λ-constacyclic code with skew generator polynomial Φα(g).

2. Consider α in IF∗q such that λ = −Nn(α−1). Define

Ψα : R/R(xn + 1) −→ R/R(xn − λ)
f(x) 7−→ f(αx)

As for the proof of item 1, we prove that Ψα is a ring isomorphism.
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• One has Ψα(xn + 1) = Nn(α)xn + 1 = Nn(α)(xn−λ), therefore Ψα is well defined.

• Ψα is injective and bijective.

• Consider f(x) =
n−1∑
i=0

aix
i and g(x) =

n−1∑
i=0

bix
i in R/R(xn + 1). One has Ψα(f(x)) ·

Ψα(g(x)) =
n−1∑
j=0

 j∑
i=0

aiθ
i(bj−i)−

n−1∑
i=j+1

aiθ
i(bn−i+j)

Nj(α)xj = Ψα(f(x) · g(x)).

Example 1 Consider IF24 = IF2(w) where w4 = w + 1 , θ the automorphism of IF24 given
by a 7→ a2

2
. We have 33 skew cyclic codes of length 4 over IF16. For example, as x4 − 1 =

(x2 + w13x + w9) · (x2 + w13x + w6), the skew polynomial g = x2 + w13x + w6 generates a
skew cyclic code C of length 4 over IF24. Consider λ = w5. The set of α in IF∗24 such that
N4(α

−1) = λ is {w,w4, w7, w10, w13}. The skew polynomial Φw13(g) = x2+w6x+w generates
a skew w5-constacyclic code of length 4 over IF16 equivalent to the skew cyclic code C.

In the following, we give a relationship between skew cyclic codes and skew negacyclic
codes.

Corollary 1 If q is odd and n is an odd integer then the skew cyclic codes of length n over
IFq are equivalent to the skew negacyclic codes of length n over IFq.

Proof. Consider λ = Nn(−1). As n is odd, λ = −1 and we conclude with point 1. of
Theorem 1.

In the following example, we show that not all a skew cyclic codes of length n over IFq are
equivalent to a skew negacyclic code of length n over IFq, when n is even.

Example 2 Let IF9 = IF3(w) where w2 = w + 1, θ the Frobenius automorphism. Let the
skew cyclic code C = 〈x3 + x2 + x + 1〉4 over IF9 with parameter [4, 1, 4]. There is no skew
negacyclic code of length 4 equivalent to C (because there is no skew negacyclic code of length
4 with minimum distance 4).

In the following we give a case where the skew constacyclic codes are equivalent to the
skew cyclic codes using only a relation between the length n, the characteristic of IFq and the
cardinality of IFq. We start with the following useful lemma.

Lemma 4 [1, Lemma 3.1] Let α be a primitive element of IFq and λ = αi for i ≤ q − 1.
Then the equation δs = λ has a solution in IFq if and only if gcd(s, q − 1) | i.

In the following, we give a similar result of [1, Theorem 3.4] but in the noncommutative
case.

Proposition 1 Assume that θ is the automorphism defined by a 7→ ap
r

and that gcd([n], q−
1) = 1 where [n] := prn−1

pr−1 . Then for all λ in IF∗q, the skew λ-constacyclic codes of length n
over IFq are equivalent to skew cyclic codes of length n over IFq.
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Proof. Consider λ in IF∗q and α a primitive element of IFq. Then there exists an integer
i such that λ = αi. As gcd([n], q − 1) = 1 | i, according to Lemma 4, there exists δ in IF∗q
such that λ = δ[n]. Furthermore Nn(δ) = δ[n], therefore by Theorem 1 (with α = 1/δ), skew
λ-constacyclic codes of length n over IFq are equivalent to skew cyclic codes of length n over
IFq.

When θ is the Frobenius and IFq = IFpn , θ-cyclic codes of length n are equivalent to
θ-negacyclic codes of length n :

Proposition 2 Assume that θ is the automorphism defined by a 7→ ap and that q = pn. Then
all skew negacyclic codes of length n over IFq are equivalent to skew cyclic codes of length n
over IFq.

Proof. Consider a a primitive element of IFq and λ = a
pn−1

2 = −1. As gcd(p
n−1
p−1 , p

n−1) =

pn−1
p−1 divides pn−1

2 , according to Lemma 4, there exists δ in IF∗q such that δ
pn−1
p−1 = λ. Taking

α = 1/δ one gets Nn(α) = −1. One concludes thanks to point 1 of Theorem 1.

The previous isometry of Theorem 1 does not preserve the duality as shown in the following
example.

Example 3 Consider R = IF9[x; θ] where θ : a 7→ a3 and w ∈ IF9 such that w2 = w+ 1. The
application

Φw :

{
R/R(x2 − 1) → R/R(x2 + 1)

x 7→ wx

is an isomorphism which preserves the Hamming distance according to Theorem 1 (because
−1 = w4 = N2(w)). However it does not preserve the duality. Namely, consider the skew
cyclic code C of length 2 generated by g = x + w2. As Φw(g) = wx + w2 = w(x + w), the
image D of C by Φw is generated by x+w. Now we have (x+w2) ·(x+w2) = x2−1, therefore
the dual C⊥ of C is generated by (x + w2)\ = x + 1/w6 = x + w2 (and C is self-dual). The
image of C⊥ by Φw is generated by x+w. Now, we have (x+w7) · (x+w) = x2 + 1, therefore
the dual D⊥ of D is generated by (x + w7)\ = x + w3. We obtain that D⊥ 6= Φw(C⊥) (and
D = Φw(C) is not self-dual whereas C is self-dual).

Lemma 5 Assume that n is odd and consider h in R with degree k, then φ−1(h
∗) = (−1)kφ−1(h)∗.

Proof.
Consider h =

∑k
i=0 hix

i with degree k, then h∗ =
∑k

i=0 x
k−i · hi. As φα is a morphism,

one gets

φα(h∗) =

k∑
i=0

Nk−i(α)xk−i · hi.

Now the skew reciprocal polynomial of φα(h) =
∑k

i=0 hiNi(α)xi is equal to φα(h)∗ =∑k
i=0 x

k−i · (hiNi(α)) =
∑k

i=0 θ
k−i(Ni(α))xk−i · hi therefore

φα(h)∗ = Nk(α)

k∑
i=0

1/Nk−i(α)xk−i · hi.

If α = −1, then Nk−i(α)2 = 1, therefore φα(h)∗ = (−1)kφα(h∗).
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Lemma 6 If n is odd and C is a skew cyclic code of length n then the (Euclidean) dual of
the skew negacyclic code Φ−1(C) is Φ−1(C)⊥ = Φ−1(C

⊥).

Proof. As n is odd, Nn(−1) = −1, therefore according to Theorem 1, Φ−1 is well defined
and is an isometry. Consider C a skew cyclic code [n, k] with monic skew generator polynomial
g. Then the monic skew generator polynomial of D = Φ−1(C) is G = (−1)rΦ−1(g) where
r = deg(g) = n − k. Furthermore, consider h in R such that Θn(h) · g = xn − 1, then
Θn(H) ·G = xn + 1 where H = (−1)r+1Φ−1(h). The dual D⊥ of D is generated by H∗, and
the conclusion follows from Lemma 5.

Proposition 3 Let C be an LCD skew cyclic code of odd length over IFq then C is equivalent
to an LCD skew negacyclic code.

Proof. According to Theorem 1, the code C is equivalent to the skew negacyclic code
D = Φ−1(C). Let us prove that D is LCD. Consider c in D∩D⊥. According to Lemma 6 we
have : Φ−1(C) ∩ Φ−1(C)⊥ = Φ−1(C) ∩ Φ−1(C

⊥). Therefore there exists u in C and v in C⊥

such that c = Φ−1(u) = Φ−1(v). As Φ−1 is a bijection, u = v and as C is LCD, u = v = 0,
therefore c = 0.

In what follows, we will study LCD skew cyclic and skew negacyclic codes. We will mostly
concentrate on the case when the length of the code is even and the automorphism θ has order
2.

4 Skew generator polynomials of LCD skew cyclic and nega-
cyclic codes

We assume that IFq is a finite field, θ is an automorphism of IFq of order µ and n is a positive
integer. In the following, we give a necessary and sufficient condition for skew λ-constacyclic
codes to be LCD codes, when λ2 = 1.

Theorem 2 Consider IFq a finite field, θ an automorphism of IFq of order µ, R = IFq[x; θ], n
in IN∗ and λ ∈ {−1, 1}. Consider a (θ, λ)-constacyclic code C with length n, skew generator
polynomial g. Consider h in R such that Θn(h) · g = xn − λ.

1. C is a EuclideanLCD code if and only if gcrd(g, h\) = 1.

2. If q is an even power of a prime number, q = r2, C is a Hermitian LCD code if and
only if gcrd(g, h\) = 1.

Proof. As C and C⊥ are two skew λ-constacyclic codes of length n and skew generator
polynomials g and h\, according to Lemma 2, the skew polynomial f = lclm(g, h\) is the skew
generator polynomial of the skew constacyclic code C ∩ C⊥. In particular, as g and h\ both
divide xn − λ on the right, f divides xn − λ on the right. Assume that C ∩ C⊥ = {0}, then
xn − λ divides f on the right, therefore xn − λ = f . According to [19], deg(gcrd(g, h\)) +
deg(lclm(g, h\)) = deg(g)+deg(h\), therefore deg(gcrd(g, h\)) = deg(g)+deg(h)−deg(f) = 0
and gcrd(g, h\) = 1.

Conversely, if gcrd(g, h\) = 1, then deg(f) = n, therefore, as f divides xn−λ on the right,
f = xn − λ, and C ∩ C⊥ = {0}. The same proof holds for Hermitian LCD codes.

Example 4 Consider IF9 = IF3(w) where w2 = w + 1 and θ the Frobenius automorphism
θ : a 7→ a3. One has :
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x4 + 1 = (x2 + w3x+ 1) · (x2 + w7x+ 1).

The skew reciprocal polynomial of x2+w3x+1 is x2+wx+1 and gcrd(x2+w7x+1, x2+wx+1) =
1. Then by Theorem 2 the skew negacyclic code C = 〈x2+w7x+1〉4 of length 4 and minimum
distance 3 is a EuclideanLCD code over IF9.

Example 5 For IF9 = IF3(w) where w2 = w+1 and θ the Frobenius automorphism θ : a 7→ a3,
one has :

x6 − 1 = (x3 + wx2 + x+ 1) · (x3 + w7x2 + x+ 2).

The skew reciprocal polynomial of x3 +wx2 +x+ 1 is x3 +x2 +w3x+ 1 and gcrd(x3 +w7x2 +
x+2, x3+x2+wx+1) = 1. Then by Theorem 2 the skew cyclic code C = 〈x3+w7x2+x+2〉6
of length 6 and minimum distance 4 is a Hermitian LCD code over IF9.

Over a finite field IFq, if a cyclic code C generated by a monic polynomial g is a Eu-
clideanLCD code then g = g\. Furthermore if q is coprime with n, then g = g\ if and only if
C is a EuclideanLCD code ([14], [16]). This comes from the fact that when q is coprime with
n then xn − 1 = gh = lcm(g, h) is squarefree in IFq[x] therefore, if g = g\, then g and h = h\

are coprime in IFq[x].
Over IFq[x; θ] we generalize this result in Proposition 4 by using the notion of similarity :

Definition 1 ([19]) Consider a, b in R. a is similar to b if there exists u in R such that
lclm(a, u) = b · u and gcrd(a, u) = 1.

Proposition 4 Consider IFq a finite field, θ an automorphism of IFq, R = IFq[x; θ], n a
positive integer, k ≤ n, λ in {−1, 1}, g a monic right divisor of xn − λ in R with constant
coefficient g0 and degree n− k, G = Θk−n(g∗ · 1

g0
) and h in R such that Θn(h) · g = xn − λ.

Consider a (θ, λ)-constacyclic code C with length n and monic skew generator polynomial g.

1. If C is a Euclidean (resp. a Hermitian) LCD code then g is similar to G (resp. Θ(G)).

2. Assume that lclm(g, h) = xn−λ. If g = G (resp. g = Θ(G)) then C is a Euclidean(resp.
a Hermitian) LCD code.

Proof. As Θn(h) · g = xn − λ, according to Lemma 1, xn − 1/λ = −1/λΘk−n(g∗) · h∗,
therefore G · h\ = xn − λ where G = Θk−n(g∗ · 1

g0
). In particular, f = lclm(g, h\) divides

xn − λ on the right.

1. Assume that gcrd(g, h\) = 1, then deg(f) = deg(g) + deg(h\) = n, therefore, one has
f = xn− λ = G · h\. As lclm(g, h\) = G · h\ with gcrd(g, h\) = 1, one can conclude that
g is similar to G.

2. Assume that g = G. As xn−λ = g ·h = G ·h\, one gets h = h\. As lclm(g, h) = xn−λ,
one deduces that gcrd(g, h\) = gcrd(g, h) = 1, therefore C is a EuclideanLCD code.

Example 6 In Example 4, one has g = x2 +w7x+ 1 and G = Θ2(1 · g∗ · 11) = x2 +w3x+ 1,
therefore lclm(g, w2) = G · w2 = w2 · g and g is similar to G.
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Example 7 In Example 5, one has g = x3+w7x2+x+2 and G = Θ3(g∗) = x3−x2+w3x−1.
As lclm(g, x2 − x + w7) = Θ(G) · (x2 − x + w7) = x5 + x4 + x3 + wx2 + w5x + w3 and
gcrd(g, x2 − x+ w7) = 1, g is similar to Θ(G).

We are now going to characterize the skew generators of LCD skew cyclic and negacyclic
codes as least common left multiples of skew polynomials when the order of θ divides the
length of the codes. This will enable to give a construction and an enumeration of LCD
skew cyclic and negacyclic codes of even length over IFp2 (Section 5). Let us introduce a

first notation. We recall that the fixed field of θ is IFθq and we denote µ the order of θ. For

F (xµ) ∈ IFθq[x
µ] and b in {0, 1}, consider the following set :

L(b)F (xµ) := {g ∈ R | gmonic, g · h = F (xµ) and gcrd(Θb(h\), g) = 1}.

The following proposition is inspired from Proposition 28 of [4] and Proposition 2 of [5].
It will enable to construct and enumerate LCD skew cyclic and negacyclic codes over IFp2 .

Proposition 5 Consider IFq a finite field, θ an automorphism of IFq of order µ, R = IFq[x; θ].
Consider F (xµ) = f1(x

µ) · · · fr(xµ) where f1(x
µ), . . . , fr(x

µ) are polynomials of IFθq[x
µ] such

that fi is coprime with fj and f \j for all i 6= j. The application

φ :

{
L(b)f1(xµ) × · · · × L

(b)
fr(xµ)

→ L(b)F (xµ)

(g1, . . . , gr) 7→ lclm(g1, . . . , gr)

is bijective.

Proof.

• The application φ is well-defined.

Consider (g1, . . . , gr) in L(b)f1(xµ) × · · · × L
(b)
fr(xµ)

and g = lclm(g1, . . . , gr). Consider

h1, . . . , hr in R such that gi · hi = hi · gi = fi(x
µ) and gcrd(gi,Θ

b(h\i)) = 1. Consider
h = lcrm(h1, . . . , hr). Let us prove that g · h = F (xµ) and that gcrd(g,Θb(h\)) = 1.

First of all, as h1, . . . , hr divide respectively f1(x
µ), . . . , fr(x

µ), and as f1(x
µ), . . . , fr(x

µ)
are pairwise coprime central polynomials, the degree of h = lcrm(h1, . . . , hr) is equal to
r∑
i=1

deg(hi). In the same way, the degree of g = lclm(g1, . . . , gr) is equal to

r∑
i=1

deg(gi).

Furthermore, as gi · hi = fi(x
µ), the degree of gi · hi is equal to the degree of fi(x

µ) in
x, therefore the degree of g · h is equal to the degree of F (xµ) in x.

Consider, for i in {1, . . . , r}, Ai in R such that g = Ai · gi and Bi in R such that
h = hi · Bi. One gets g · h = Ai · gi · hi · Bi = Ai · fi(xµ) · Bi. As fi(x

µ) is cen-
tral, it divides g · h. The polynomials fi(x

µ) are pairwise coprime in IFθq[x
µ], therefore

their least common right multiple is equal to their product F (xµ), and F (xµ) divides
g · h. As deg(g · h) = deg(F (xµ)), one gets g · h = F (xµ). Now gcrd(g,Θb(h\)) =

gcrd(lclm(g1, . . . , gr), lclm(Θb(h\1), . . . ,Θ
b(h\r))). One can notice that the skew poly-

nomials gi and Θb(h\j) are right coprime. Namely, if i = j, gcrd(gi,Θ
b(h\i)) = 1 by

hypothesis. If i 6= j consider a right divisor u of gi and Θb(h\j), then u divides fi(x
µ)

and f \j (x
µ), as fi(x

µ) and f \j (x
µ) are coprime one gets that u = 1. One deduces that
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gcrd(g,Θb(h\)) = 1. To conclude, the skew polynomial g belongs to L(b)F (xµ) therefore φ
is well defined.

• The application φ is bijective.

Consider g in L(b)F (xµ), then g divides F (xµ) = f1(x
µ) · · · fr(xµ), therefore, as fi and fj are

coprime, according to Theorem 4.1 of [9], g = lclm(g1, . . . , gr) where gi = gcrd(fi(x
µ), g)

and this lclm-decomposition into skew polynomials dividing f1(x
µ), . . . , fr(x

µ) is unique.
Furthermore deg(g) =

∑r
i=1 deg(gi) because fi(x

µ) and fj(x
µ) are coprime. Let us

prove that gi belongs to L(b)fi(xµ). Consider h in R such that g · h = h · g = F (xµ)

and gcrd(g,Θb(h\)) = 1. As h divides F (xµ), according to Theorem 4.1 of [9], h =
lcrm(h1, . . . , hr) where hi = gcld(fi(x

µ), h). This lcrm-decomposition into skew poly-
nomials dividing f1(x

µ), . . . , fr(x
µ) is unique and deg(h) =

∑r
i=1 deg(hi).

Consider, for i in {1, . . . , r}, Ai in R such that g = Ai·gi and Bi in R such that h = hi·Bi.
As g · h = F (xµ) and as F (xµ) is central, the skew polynomial gi · hi divides F (xµ) on
the right. Therefore, gi ·hi = lclm(gcrd(gi ·hi, fj(xµ)), j = 1, . . . , r) = gcrd(gi ·hi, fi(xµ))
divides fi(x

µ). As
∑r

i=1 deg(gi·hi) = deg(g)+deg(h) = deg(F (xµ)) =
∑r

i=1 deg(fi(x
µ)),

one gets gi · hi = fi(x
µ). Lastly, consider u in R such that u divides on the right gi

and Θb(h\i). As hi divides on the left h, Θb(h\i) divides on the right Θb(h\), therefore u
divides on the right both g and Θb(h\), and u = 1.

We now introduce some additional notations that will be useful later :

DF (xµ) := {f ∈ IFθq[x
µ] | f monic and dividesF (xµ) in IFθq[x

µ]}

Fir := {f = f(xµ) ∈ IFθq[x
µ] | f = f \ irreducible in IFθq[x

µ],degxµ(f) > 1}

Fred := {f = f(xµ) ∈ IFθq[x
µ] | f = firf

\
ir, fir 6= f \ir irreducible in IFθq[x

µ]}.

Theorem 3 Consider IFq a finite field with q elements, θ an automorphism over IFq with
order µ, R = IFq[x; θ], λ ∈ {−1, 1}, b ∈ {0, 1}. Consider n a multiple of µ and xn − λ =
f1(x

µ)p
s · · · fr(xµ)p

s
where f1(x

µ), . . . , fr(x
µ) are distinct polynomials of IFp[x

µ] belonging to
{xµ ± 1} ∪ Fir ∪ Fred. Consider a (θ, λ)-constacyclic code C of length n and skew generator
polynomial g. C is a Euclidean(resp. a Hermitian) LCD code if and only if

g =
∏
i∈I

fi(x
µ)p

s
lclmj∈J(gj)

where 
I, J ⊂ {1, . . . , r}
I ∩ J = ∅
∀j ∈ J, gj ∈ L(b)fj(xµ)ps \ {1, fj(x

µ)p
s} with b = 0 (resp b = 1).

Proof. According to Theorem 2, the Euclidean (resp. Hermitian) LCD (θ, λ)-constacyclic

codes of length n are generated by the elements of the set L(b)xn−λ where b = 0 (resp. b = 1).

As xn±1 is self-reciprocal, one has xn±1 = f1(x
µ)p

s · · · fr(xµ)p
s

where f1(x
µ), . . . , fr(x

µ) are
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distinct self-reciprocal polynomials of IFp[x
µ] which are either irreducible or products of an

irreducible polynomial and its reciprocal polynomial. Therefore for i 6= j, fi is coprime with fj
and f \j and Proposition 5 can be applied to F (xµ) = xn±1. One gets that g = lclm(g1, . . . , gr)

where for all i in {1, . . . , r}, gi ∈ L(b)fi(xµ)ps .
Now consider the sets I, J,K ⊂ {1, . . . , r} that form a partition of {1, . . . , r} such that

∀i ∈ I, gi = fi(x
µ)p

s
,∀i ∈ J, gi ∈ L(b)fi(xµ)ps \ {1, fi(x

µ)p
s} and ∀i ∈ K, gi = 1. As fi(x

µ) is

central and as the fi are pairwise coprime, one gets that g =
∏
i∈I fi(x

µ)p
s

lclmj∈J(gj).

Remark 1 The Euclidean LCD skew cyclic (resp. negacyclic) codes of length n over IFq
are the skew cyclic (resp. negacyclic) codes C =

⋂r
i=1Ci where Ci is a skew cyclic (resp.

negacyclic) code of length n generated by gi ∈ L(0)fi(xµ)ps . The same remark holds for Hermitian

LCD skew cyclic and negacyclic codes where gi ∈ L(1)fi(xµ)ps (instead of gi ∈ L(0)fi(xµ)ps ).

5 LCD skew cyclic and negacyclic codes over IFp2

In [7, 10, 21], constructions and enumerations of families of LCD codes were provided. In this
section, we construct and enumerate LCD skew cyclic and negacyclic codes in the particular
case when q = p2 is the square of a prime number p and θ : a 7→ ap is the Frobenius
automorphism over IFq. Therefore the order µ of θ is equal to 2 and the fixed field IFθq of θ
is IFp. We will use the characterization of LCD skew cyclic and negacyclic codes given by
Theorem 3 to design an algorithm of construction of these codes (Algorithm 4). In the case
when the skew generator polynomials of the codes are not divisible by any central polynomial,
a counting formula will be given (Proposition 7).

According to Theorem 3, LCD θ-cyclic and θ-negacyclic codes of even length n over IFp2 are
generated by skew polynomials which are least common left multiples of skew polynomials

gi ∈ L(b)fi(x2)ps where f = fi ∈ Dxn±1 is a divisor of xn ± 1 in IFp[x
2] satisfying one of the

following cases :

• f(x2) = x2 − ε where ε = ±1 (see Lemma 8);

• f(x2) ∈ Fir irreducible in IFp[x
2] with degree d > 1 in x2 (see Lemma 7);

• f(x2) ∈ Fred is the product of two irreducible distinct polynomials in IFp[x
2] (see Lemma

9).

The following proposition enables to characterize those skew polynomials over IFp2 [x; θ]
having a unique factorization into the product of monic irreducible skew polynomials. It will
be useful later.

Proposition 6 (Proposition 16 of [4]) Consider p a prime number, θ : a 7→ ap the Frobe-
nius automorphism over IFq with q = p2, R = IFq[x; θ], f ∈ IFp[x

2] irreducible in IFp[x
2]

and h = hm · · ·h1 a product of irreducible monic skew polynomials dividing f . The following
assertions are equivalent :

(i) h has a unique factorization into irreducible monic skew polynomials;
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(ii) f does not divide h in R;

(iii) for all i in {1, . . . ,m− 1}, f 6= hi+1 · hi.

Lemma 7 describes the set L(b)
f(x2)m

and its number of elements where f(x2) belongs to

Fir. Algorithm 1 enables to construct this set.

Lemma 7 Consider p a prime number, θ : a 7→ ap the Frobenius automorphism over IFq
with q = p2, R = IFq[x; θ], f(x2) ∈ Fir with degree d in x2, g in R and m ∈ IN. The skew

polynomial g belongs to the set L(b)
f(x2)m

if and only if g = 1 or g = f(x2)m or g has a unique

factorization into the product of m monic irreducible skew polynomials g = gm · · · g1 where
∀i ∈ {1, . . . ,m}, deg(gi) = d
gi divides f(x2)
∀i ∈ {1, . . . ,m− 1}, gi+1 · gi 6= f(x2)

g1 6= Θb(h\1) where g1 · h1 = f(x2).

(1)

Furthermore, the number of elements of L(b)
f(x2)m

\ {1, f(x2)m} is (pd − pd/2)pd(m−1).

Proof. Consider g in L(b)
f(x2)m

\{f(x2)m, 1}. Consider h inR such that g·h = h·g = f(x2)m.

As f(x2) is central and irreducible in IFp[x
2], the skew polynomials g and h are products of

irreducible monic factors dividing f(x2). As deg(g) < 2dm and deg(h) + deg(g) = 2dm, there
exists r in {1, . . . , 2m−1}, g1, . . . , g2m−r, h1, . . . , hr monic of degree d dividing f(x2) in R such

that g = g2m−r · · · g1 and h = h1 · · ·hr. The skew polynomial Θb(h\1) is an irreducible right
factor of Θb(h\) which divides Θb(f \(x2)) = f(x2) and does not divide g on the right because
gcrd(Θb(h\), g) = 1. Therefore f(x2) does not divide g. Similarly, one gets that f(x2) does
not divide Θb(h\) and h. Therefore, according to Proposition 6, the above factorizations of g
and h into the products of monic irreducible factors are unique and for all i in {1, . . . ,m−1},
gi+1 · gi 6= f(x2).
As g · h = h · g = f(x2)m one gets that for all i, gi · hi = f(x2), therefore, r = m.

Laslty, as g and Θb(h\) are right coprime, necessarily, g1 6= Θb(h\1).
Conversely, consider g = gm · · · g1 where g1, . . . , gm are monic skew polynomials satisfying

(1). Consider h = h1 · · ·hm with gi · hi = hi · gi = f(x2) then g · h = h · g = f(x2)m.
Furthermore as gi+1 · gi 6= f(x2), according to Proposition 6, the above factorization of g
into the product of monic irreducible factors is unique. Similarly, the factorizations of h and
Θb(h\) into the products of monic irreducible factors are unique.
Consider u a monic right factor of g and Θb(h\) with degree > 1. Necessarily, u has a unique
factorization into the product of monic skew polynomials. The unique monic linear right
factor of u is also the unique monic right factor of g and Θb(h\), therefore u = g1 = Θb(h\1),

which is impossible according to (1). Therefore gcrd(g,Θb(h\)) = 1 and g belongs to L(b)
f(x2)m

.

Let us compute the number of elements of L(b)
f(x2)m

\ {1, f(x2)m}. We first notice that

g1 6= Θb(h\1) where g1 ·h1 = f(x2) if and only if g1 is a divisor of f(x2) which does not belong
to {Θb(u\) | Θb(u\) · u = f(x2)}. According to [18], the number of monic irreducible right
factors of f(x2) is equal to 1 + pd, where d is the degree of f(x2). According to Lemma 3.4
of [6], the number of irreducible monic right factors u of f(x2) such that Θb(u\) · u = f(x2)
is equal to 1 + pd/2. Therefore, the number of monic skew polynomials of degree md in

L(b)
f(x2)m

\ {1, f(x2)m} is ((pd + 1)− (1 + pd/2))(1 + pd − 1)m−1 = (pd − pd/2)pd(m−1).
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Algorithm 1 L(b)
f(x2)m

for f(x2) ∈ Fir, b ∈ {0, 1} and m ∈ IN∗

Require: : p, prime number, m ∈ IN∗, b ∈ {0, 1}, f(x2) ∈ IFp[x
2] such that f(x2) ∈ Fir

Ensure: : L(b)
f(x2)m

1: E ← {1, f(x2)m}
2: d← degx2(f(x2))
3: I ← {g ∈ R, g monic, g irreducible of degree d dividing f(x2)} (using Algorithm 1 of

Appendix A of [6])

4: for g1, . . . , gm ∈ I such that gi · gi+1 6= f(x2) and g1 6= Θb(h\1) where Θb(h\1) · h1 = f(x2)
do

5: E ← E ∪ {gm · · · g1}
6: end for
7: return E

Lemma 8 describes the set L(b)
(x2±1)m and its number of elements. Algorithm 2 enables to

construct this set.

Lemma 8 Consider p a prime number, θ : a 7→ ap the Frobenius automorphism over IFq with
q = p2, R = IFq[x; θ], ε ∈ {−1, 1}, g in R and m ∈ IN. The skew polynomial g belongs to the

set L(b)
(x2−ε)m if and only if g = 1 or g = (x2 − ε)m or g has a unique factorization into the

product of m monic linear skew polynomials g = (x+ αm) · · · (x+ α1) where αp+1
i = ε
αi+1 6= −ε/αi
ε 6= −θ(α1)/α1

(2)

if b = 0 and {
αp+1
i = 1
αi+1 6= −1/αi

(3)

if b = 1, ε = 1 and p 6= 2.

Furthermore, the number of elements of L(b)
(x2−ε)m \ {1, (x

2 − ε)m} is
2m if p = 2, b = 0;

pm−1(p− ε(−1)(p+1)/2) if p 6= 2, b = 0;
0 if b = 1, p = 2 or p odd and ε = −1;

pm−1(p+ 1) if b = 1, p odd and ε = 1.

Proof. Consider g in R. Like in proof of Lemma 7, one gets that g belongs to L(b)
(x2−ε)m

if and only if g = 1 or g = (x2 − ε)m or g has a unique factorization into the product of m
monic linear skew polynomials g = (x+ αm) · · · (x+ α1) where

x+ αi divides x2 − ε
(x+ αi+1) · (x+ αi) 6= x2 − ε
x+ α1 6= Θb(h\1) where (x+ α1) · h1 = x2 − ε.
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Therefore g 6= 1, (x2 − ε)m belongs to the set L(b)
(x2−ε)m if and only if g has a unique

factorization in R as g = (x+ αm) · · · (x+ α1) where αp+1
i = ε
αi+1 6= −ε/αi
ε 6= −θb+1(α1)/α1.

(4)

If b = 0, the condition (4) is equivalent to αp+1
i = ε, αi+1 6= −ε/αi and α2

1 6= −ε. Therefore

the number of skew polynomials in L(0)
(x2−ε)m \ {1, (x

2 − ε)m} is
pm−1(p− 1) if p odd and ε = (−1)(p+1)/2

pm−1(p+ 1) if p odd and ε 6= (−1)(p+1)/2

2m if p = 2.

In the same way, one gets that L(1)
(x2−ε)m = {1, (x2 − ε)m} if p = 2 or p is odd and ε = −1.

If ε = 1 and p 6= 2, condition (4) is equivalent to αp+1
i = 1 and αi+1 6= −1/αi. In this case

there are (p+ 1)pm−1 skew polynomials of degree m in L(1)
(x2−ε)m \ {1, (x

2 − ε)m}.

Algorithm 2 L(b)
(x2±1)m for b ∈ {0, 1} and m ∈ IN∗

Require: : p, prime number, m ∈ IN∗, ε ∈ {−1, 1}, b ∈ {0, 1}
Ensure: : L(b)

(x2−ε)m

1: E ← {1, (x2 − ε)m}
2: if b = 0 then
3: for α1, . . . , αm ∈ IFp2 such that α2

1 6= −1, αp+1
i = ε and αi+1 6= −ε/αi do

4: E ← E ∪ {(x+ αm) · · · (x+ α1)}
5: end for
6: else
7: if p odd and ε = 1 then
8: for α1, . . . , αm ∈ IFp2 such that αp+1

i = 1 and αi+1 6= −1/αi do
9: E ← E ∪ {(x+ αm) · · · (x+ α1)}

10: end for
11: end if
12: end if
13: return E

Lemma 9 describes the set L(b)
f(x2)m

and its number of elements where f(x2) belongs to

Fred. Algorithm 3 enables to construct this set.

Lemma 9 Consider p a prime number, θ : a 7→ ap the Frobenius automorphism over IFq
with q = p2, R = IFq[x; θ], f(x2) = fir(x

2)f \ir(x
2) in Fred with degree d = 2δ in x2. The

monic skew polynomial g belongs to the set L(b)
f(x2)m

if and only if g = 1 or g = f(x2)m or

g = lclm(g1, g2) where g1 = g1,m · · · g1,1 and g2 = g2,m · · · g2,1 have unique factorizations into
the products of m monic irreducible skew polynomials satisfying :
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deg(gi,j) = δ

g1,j divides fir(x
2) and g2,j divides f \ir(x

2)

g1,j · g1,j−1 6= fir(x
2) and g2,j · g2,j−1 6= f \ir(x

2)

g1,1 6= Θb(h\2,1), h2,1 · g2,1 = f \ir(x
2).

(5)

Furthermore, the number of elements of L(b)
f(x2)m

\ {1, f(x2)m} is (1 + pd/2)p(2m−1)d/2.

Proof. Consider g in L(b)
f(x2)m

\ {1, fir(x2)mf \ir(x2)m} and h in R such that g · h = h · g =

fir(x
2)mf \ir(x

2)m with gcrd(g,Θb(h\)) = 1. As g divides fir(x
2)mf \ir(x

2)m and fir(x
2)m and

f \ir(x
2)m are coprime in IFp[x

2], according to Theorem 4.1 of [9], g = lclm(g1, g2) where

g1 = gcrd(fir(x
2)m, g) and g2 = gcrd(f \ir(x

2)m, g). Similarly, h = lcrm(h1, h2), where h1 =

gcld(fir(x
2), h) and h2 = gcld(f \ir(x

2), h).

As g · h = h · g = fir(x
2)mf \ir(x

2)m, one has g1 · h1 = fir(x
2)m and g2 · h2 = f \ir(x

2)m,
therefore g1 and h1 (resp. g2 and h2) are products of irreducible skew polynomials dividing

fir(x
2) (resp. f \ir(x

2)).

If fir(x
2) divides g1, then, as Θb(h\2) divides fir(x

2)m, g1 and Θb(h\2) have a common right
divisor (dividing fir(x

2)), therefore g and Θb(h\) also have a common nontrivial right divisor,
which is impossible as g and Θb(h\) are right coprime. Therefore fir(x

2) does not divide g1.

In the same way, fir(x
2) does not divide h1, f

\
ir(x

2) does not divide g2 and h2, therefore using
Proposition 6, one gets that :

g1 = g1,m · · · g1,1 and g2 = g2,m · · · g2,1 with deg(gi,j) = δ
h1 = h1,1 · · ·h1,m and h2 = h2,1 · · ·h2,m
g1,j · g1,j−1 6= fir(x

2) and g2,j · g2,j−1 6= f \ir(x
2)

g1,i · h1,i = fir(x
2) and g2,i · h2,i = f \ir(x

2)

Furthermore the above factorizations of g1, g2 are unique (according to Proposition 6).

As g and Θb(h\) are right coprime, g1 and Θb(h\2) are right coprime, therefore g1,1 6= Θb(h\2,1).
Conversely, assume that g = lclm(g1, g2) where g1 = g1,m · · · g1,1, g2 = g2,m · · · g2,1 and

(5) is satisfied. Consider hi,j such that g1,i · h1,i = fir(x
2) and g2,i · h2,i = f \ir(x

2). Consider

h1 = h1,1 · · ·h1,m, h2 = h2,1 · · ·h2,m and h = lcrm(h1, h2). Then g·h = h·g = fir(x
2)mf \ir(x

2)m

and g and Θb(h\) are right coprime.

Let us compute the number of elements of L(b)
f(x2)m

\{1, f(x2)m}. The elements of L(b)
f(x2)m

\
{1, f(x2)m} are the skew polynomials g in bijection with the couples (g1, g2) satisfying (5).
There are 1 + pδ possibilities for g1,1 and pδ possibilities for each g1,j , with j = 2, . . . ,m,
therefore (1+pδ)pδ(m−1) possibilities for g1. For each j in {1, . . . ,m} there are pδ possibilities
for g2,j , therefore, one gets pδm possibilities for g2.

From Theorem 3, Algorithms 1, 2 and 3, one deduces Algorithm 4 for the construction of
LCD θ-cyclic and θ-negacyclic codes of length n and dimension k over IFp2 .

Lastly we give an enumeration formulae (Proposition 7) for LCD skew cyclic and negacyclic
codes of even length n = 2k and of dimension k whose generator polynomials are not divisible
by any central polynomial.
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Algorithm 3 L(b)
f(x2)m

for f(x2) ∈ Fred, b ∈ {0, 1} and m ∈ IN∗

Require: : p, prime number, m ∈ IN, b ∈ {0, 1}, f(x2) ∈ IFp[x
2] such that f(x2) =

fir(x
2)f \ir(x

2) ∈ Fred
Ensure: : L(b)

f(x2)m

1: E ← {1, f(x2)m}
2: d← degx2(f(x2))
3: I1 ← {g ∈ R, g monic, g irreducible of degree d dividing fir(x

2)}
4: I2 ← {g ∈ R, g monic, g irreducible of degree d dividing f \ir(x

2)}
5: for g2,1, . . . , g2,m ∈ I2 such that g2,i · g2,i+1 6= f \ir(x

2) do

6: h2,1 ← quotient of the division of f \ir(x
2) by g2,1

7: for g1,1, . . . , g1,m ∈ I1 such that g1,i · g1,i+1 6= fir(x
2) and g1,1 6= Θb(h\2,1) do

8: E ← E ∪ {lclm(g1,m · · · g1,1, g2,m · · · g2,1)}
9: end for

10: end for
11: return E

Algorithm 4 LCD θ-cyclic and θ-negacyclic codes of length n and dimension k over IFp2

Require: : p, prime number, k ≤ n ∈ IN with n = 2pst, p 6 |t, b ∈ {0, 1}, λ ∈ {−1, 1},
θ : a 7→ ap ∈ Aut(IFp2)

Ensure: : monic skew generators g of (θ, λ)-constacyclic codes of length n and dimension k
over IFp2 which are Euclidean LCD codes if b = 0 and Hermitian LCD codes if b = 1.

1: E ← ∅
2: Compute f1(x

2), f2(x
2), . . . , fr(x

2) such that xn−λ = f1(x
2)p

s · · · fr(x2)p
s ∈ IFp[x

2] where
s ∈ IN, f1(x

2), . . . , fr(x
2) ∈ {x2 ± 1} ∪ Fir ∪ Fred

3: for i = 1, . . . , r do
4: di ← degx2(fi(x

2))

5: Compute L(b)
fi(x2)p

s with Algorithms 1, 2 and 3

6: end for
7: for I, J ⊂ {1, . . . , r} with I ∩ J = ∅ and k = ps(2t− 2

∑
i∈I di −

∑
j∈J dj) do

8: for (gj)j∈J ∈
∏
j∈J L

(b)

fj(x2)p
s \ {1, fj(x2)p

s} do

9: E ← E ∪ {
∏
i∈I fi(x

2)p
s

lclmj∈J(gj)}
10: end for
11: end for
12: return E
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Proposition 7 Consider a prime number p, θ : a 7→ ap the Frobenius automorphism over
IFp2, λ ∈ {−1, 1} and n = 2k = 2pst where s is an integer and t is an integer not divisible by
p.

1. The number of Euclidean LCD (θ, λ)-constacyclic codes of length 2k and dimension k
with skew generator polynomial not divisible by any central polynomial is

Nλ ×
∏

f∈Fir∩Dxn−λ
d=deg(f)

(pd − pd/2)pd(ps−1) ×
∏

f∈Fred∩Dxn−λ
d=deg(f)

(1 + pd/2)p(2p
s−1)d/2

where N1 =


22
s

if p=2
(pp

s−1)2(p2 − 1) if k is even and p is odd

pp
s−1(p− (−1)(p+1)/2) if k is odd and p is odd

and N−1 =

{
1 if k is even and p is odd

pp
s−1(p− (−1)(p−1)/2) if k is odd and p is odd.

2. The number of Hermitian LCD (θ, λ)-constacyclic codes of length 2k and dimension k
with skew generator polynomial not divisible by any central polynomial is

Nλ ×
∏

f∈Fir∩Dxn−λ
d=deg(f)

(pd − pd/2)pd(ps−1) ×
∏

f∈Fred∩Dxn−λ
d=deg(f)

(1 + pd/2)p(2p
s−1)d/2

where N1 =


0 if p=2
0 if k is even and p is odd
pp
s−1(p+ 1) if k is odd and p is odd

and N−1 =

{
1 if k is even and p is odd
0 if k is odd and p is odd.

Proof. Consider the factorization of xn − λ = f1(x
2)p

s · · · fr(x2)p
s

where f1(x
2), . . . ,

fr(x
2) are distinct polynomials of IFp[x

2] belonging to {x2 ± 1} ∪ Fir ∪ Fred. According
to Theorem 3, the Euclidean (resp. Hermitian) LCD (θ, λ)-constacyclic codes of length 2k
and dimension k with skew generator polynomial not divisible by any central polynomial are
generated by the monic skew polynomials g = lclmj∈J(gj) where J is a subset of {1, . . . , r}
and ∀j ∈ J, gj ∈ L(b)fj(x2)ps \ {1, fj(x

2)p
s} with b = 0 (resp. b = 1). Furthermore the dimension

of the codes are equal to k = ps
∑

j∈J degx2 fj(x
2). As k = ps

∑r
j=1 degx2 fj(x

2), J must be

equal to {1, . . . , r} and g = lclm1≤i≤r(gi) where gi belongs to L(b)
fi(x2)p

s \ {1, fi(x2)p
s}. The

number of such skew polynomials g is Nλ ×Mλ where

Nλ =
∏

f∈{x2±1}
f∈Dxn−λ

#L(b)
f(x2)ps

\ {1, f(x2)p
s}

and
Mλ =

∏
f∈Fir∪Fred
f∈Dxn−λ

#L(b)
f(x2)ps

\ {1, f(x2)p
s}.
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p nbr of Euclidean LCD skew cyc. nbr of Hermitian LCD skew cyc.
[2p, p]p2 [2p, p, p+ 1]p2 [2p, p]p2 [2p, p, p+ 1]p2

3 18 16 36 32

5 3750 2412 3750 2412

7 705984 39564 941192 52752

11 259374246010 ≥ 1 311249095212 ≥ 1

Table 1: Number of Euclidean and Hermitian LCD [2p, p]p2 and [2p, p]p2 MDS skew-cyclic
codes for p = 3, 5, 7, 11

For ε = ±1, x2− ε ∈ Dxn−λ if and only if εk = λ therefore using the enumeration formulae

for L(b)
(x2−ε)ps \ {1, (x

2 − ε)ps} given by Lemma 8, one deduces the value of Nλ.

Enumeration formulae for #L(b)
f(x2)ps

\ {1, f(x2)p
s} given by Lemma 7 (when f(x2) ∈ Fir)

and Lemma 9 (when f(x2) ∈ Fred) enable to obtain Mλ.

Remark 2 From Proposition 7, one gets that over IF4, when k = 2s, the number of Euclidean
LCD θ-cyclic codes [2k, k] is 2k and growths exponentially with k. On the other hand, the
number of Euclidean self-dual θ-cyclic codes [2k, k] is constant (Corollary 26 of [4]).

Remark 3 Over IFp2, according to Theorem 5.5 of [20], there are only 2 LCD cyclic codes

of length 2r if p = 2, while there are 22
r−1

LCD skew cyclic codes of length 2r. If p is an odd
prime number, there are 4 LCD cyclic codes of length 2pr while there are pp

r−1(p−(−1)(p+1)/2)
LCD skew cyclic codes with length 2pr.

To finish we give below an example and some tables of results. All the computations were
made with the computer algebra system MAGMA.

Example 8 There are 16 = 22
2

nontrivial Euclidean LCD θ-cyclic codes of length 8 over
IF4 = IF2(w) where θ is the Frobenius automorphism over IF4. Their dimensions are all equal
to 4. Consider g = (x + 1) · (x + w2) · (x + w2) · (x + w2) = x4 + wx3 + wx2 + x + 1. As
p = 2, (w2)p+1 = 1p+1 = 1, (w2)2 6= −1, w2 6= 1/w2 and 1 6= 1/w2, therefore according to
Algorithm 2, g generates a EuclideanLCD [8, 4]4 θ-cyclic code which is not a Hermitian LCD

code. The systematic generator matrix of C is (I4|P ) where P =


1 1 w w
w2 w 0 w
w2 1 w 1
1 w2 w2 1

. One

checks that 1 6∈ Spec(P ×tP ) therefore according to Proposition 4 of [7] C is a EuclideanLCD
code. Furthermore 1 ∈ Spec(P ×t P ) therefore according to Proposition 6 of [7], C is not a
Hermitian LCD code.

The following Table 1 sums up the number of [2p, p]p2 LCD θ-cyclic codes and the number
of [2p, p]p2 MDS LCD θ-cyclic codes for p ∈ {3, 5, 7, 11} . One can notice that there exists
MDS LCD θ-cyclic codes of length 2p over IFp2 , while according to Corollary 4.2 of [20], there
are no MDS LCD repeated-root cyclic codes over IFp2 of length 2p.

Table 2, Table 3 and Table 4 illustrate Proposition 7 over IF4 and IF9. Best minimum
distances and numbers of LCD [2k, k] skew cyclic and negacyclic codes over IF4 and IF9
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Euclidean LCD skew cyc. Euclidean LCD skew cyc.

length best dist nbr length best dist nbr

2 2* 2 26 9 8 064

4 3* 4 28 11* 18 432

6 4* 4 30 12* 13 056

8 4* 16 32 10 65 536

10 5* 24 34 11* 115 200

12 5 32 36 11 114 688

14 6* 144 38 12* 523 264

16 6 256 40 12* 786 432

18 7 224 42 12 1 198 080

20 8* 768 44 13 4 063 232

22 8* 1 984 46 14* 8 392 704

24 9* 2 048 48 14* 8 388 608

Table 2: Best minimum distances and numbers of Euclidean LCD [2k, k] skew cyclic codes of
length ≤ 48 over IF4 with skew generator polynomial not divisible by a central polynomial

are given in the case when the skew generator polynomials are not divisible by any central
polynomial. The index ∗ means that the minimum distance is the best known minimum
distance of codes with these parameters.

Table 5 sums up the dimensions of MDS LCD skew codes of given length ≤ 10 over IF9.
Tables 6 and 7 sum up the dimensions of MDS LCD skew codes of length ≤ 18 over IF25 and
of length ≤ 16 over IF49.

6 Conclusion

In this text, we gave some conditions on the equivalence of skew constacyclic codes and a
first study of skew LCD codes was proposed. LCD skew cyclic and negacyclic codes were
constructed and enumerated over IFp2 . Some computations were made and MDS LCD codes
were constructed. It could be interesting to see if there exist [2p, p]p2 MDS LCD codes for
p odd prime greater than 11 and to find a necessary and sufficient condition on p for the
existence of [2p, p]p2 MDS LCD skew codes.
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