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An overview on skew constacyclic codes and their subclass of

LCD codes.

Aicha Batoul ∗, Delphine Boucher †and Ranya D.Boulanouar ‡

Abstract

This paper is about a first characterization of LCD skew constacyclic codes and some
constructions of LCD skew cyclic and skew negacyclic codes over Fp2 .

Keywords Skew polynomial rings, skew constacyclic codes, LCD codes, MDS codes

1 Introduction

One of the most active and important research areas in noncommutative algebra is the investigation
of skew polynomial rings. Recently they have been successfully applied in many areas and specially
in coding theory. The principal motivation for studying codes in this setting is that polynomials
in skew polynomials rings exhibit many factorizations and hence there are many more ideals in
a skew polynomial ring than in the commutative case. The research on codes in this setting has
resulted in the discovery of many new codes with better Hamming minimum distances than any
previously linear code with the same parameters. Some of them were given in [3, 4, 5, 6, 7, 8].

On the other hand, constacyclic codes over finite fields is an important class of linear codes
as it includes the well-known family of cyclic codes. They also have many practical applications
as they can be efficiently encoded using simple shift registers. Further, they have a rich algebraic
structure which can be used for efficient error detection and correction.

Linear complementary dual (LCD) codes, were introduced by Massey [17]. They provide an
optimum linear coding solution for the two-user binary adder channel, and in [18] it was shown
that asymptotically good LCD codes exist. Since then, several authors have studied these codes
([9, 12, 14, 15, 23]). But until now just a few works have been done on LCD codes in the
noncommutative case.

This article is organized as follows. In Section 2, some preliminaries are given about skew
constacyclic codes over finite fields and skew polynomial rings. In Section 3, conditions for the
equivalency between skew constacyclic codes, skew cyclic codes and skew negacyclic codes are
provided. We give examples of skew cyclic codes which are not equivalent to any skew negacyclic
codes in the case when the length is even. In Section 4, the notion of LCD skew constacyclic codes
is introduced and we give some characterizations of their skew generator polynomials. Section 5
focuses on the construction and enumeration of LCD skew cyclic and negacyclic codes over Fp2 .
If p is odd, the Euclidean LCD θ-cyclic codes of length 2ps and dimension ps over Fp2 are all
Hermitian LCD codes. All MDS LCD skew codes of length ≤ 16 over Fp2 for p ∈ {3, 5, 7} are
obtained and the results are presented in tables.
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2 Preliminaries

Let q be a prime power, Fq a finite field and θ an automorphism of Fq. We define the skew
polynomial ring R as

R = Fq[x; θ] = {a0 + a1x+ . . .+ an−1x
n−1 | ai ∈ Fq and n ∈ N}

under usual addition of polynomials and where multiplication is defined using the rule ∀a ∈
Fq, x · a = θ(a)x. The ring R is noncommutative unless θ is the identity automorphism on Fq.
According to [20], an element f ∈ R is central if and only if f is in Fθq [xµ] where µ is the order

of the automorphism θ and Fθq is the fixed field of θ. The two-sided ideals of R are generated by

elements having the form (c0 + c1x
µ + . . .+ cnx

nµ)xl, where l is an integer. Central elements of R
are the generators of two-sided ideals in R [6]. The ring R is Euclidean on the right : the division
on the right is defined as follows. Let f and g be in R with f 6= 0. Then there exist unique skew
polynomials q and r such that

g = q · f + r deg(r) < deg(f).

If r = 0 then f is a right divisor of g in R ([20]). There exists greatest common right divisors
(gcrd) and least common left multiples (lclm). The ring R is also Euclidean on the left : there
exist a division on the left, greatest common left divisors (gcld) as well as least common right
multiples (lcrm).

In what follows, we consider a positive integer n and a constant λ in F∗q . We assume that n is
a multiple of the order of θ and λ fixed by θ, which means that xn − λ is central.

According to [[6], [10]], a linear code C of length n over Fq is said to be (θ, λ)-constacyclic
or skew λ-constacyclic if it satisfies

∀c ∈ C, c = (c0, c1, . . . , cn−1) ∈ C ⇒ (λθ(cn−1), θ(c0), . . . , θ(cn−2)) ∈ C.

Any element of the quotient algebra R�〈xn − λ〉 is uniquely represented by a polynomial
β0 + β1x+ . . .+ βn−1x

n−1 of degree less than n, hence is identified with a word (β0, β1, . . . , βn−1)
of length n over Fq.

In this way, any skew λ-constacyclic code C of length n over Fq is identified with exactly one
left ideal of the quotient algebra R�〈xn − λ〉, which is generated by a right divisor g of xn − λ.
In that case, g is called a skew generator polynomial of C and we will denote C =< g >n.

Note that the skew 1-constacyclic codes are skew cyclic codes and the skew -1-constacyclic
codes are skew negacyclic codes.

The Hamming weight wt(y) of an n-tuple y = (yl, y2 . . . yn) ∈ Fnq is the number of nonzero
entries in y, that is, wt(y) =| {i : yi 6= 0} |. The minimum distance of a linear code C is
minc∈C,c 6=0 wt(c).

A Fq-linear transformation T : Fnq → Fnq is a monomial transformation if there exists a permu-
tation σ of {1, 2 . . . n} and nonzero elements α1, α2, . . . , αn of Fnq such that

T (y1, y2, . . . , yn) = (α1yσ(1), α2yσ(2), . . . , αnyσ(n))

for all (y1, y2 . . . yn) ∈ Fnq . Two linear codes C1 and C2 in Fnq are equivalent if there exists
a monomial transformation T : Fnq → Fnq taking C1 to C2 (i.e. there exists a linear Hamming
isometry [16]).

The Euclidean dual of a linear code C of length n over Fq is defined as C⊥ = {x ∈ Fnq | ∀y ∈
C,< x, y >= 0} where for x, y in Fnq , < x, y >:=

∑n
i=1 xiyi is the (Euclidean) scalar product of

x and y. A linear code is called an Eulidean LCD code if C ⊕ C⊥ = Fnq , which is equivalent to

C ∩ C⊥ = {0}.
Assume that q = r2 is an even power of an arbitrary prime and denote for a in Fq, a = ar.

The Hermitian dual of a linear code C of length n over Fq is defined as C⊥H = {x ∈ Fnq | ∀y ∈
C,< x, y >H= 0} where for x, y in Fnq , < x, y >H :=

∑n
i=1 xiyi is the (Hermitian) scalar product

of x and y. The code C is a Hermitian LCD code if C ∩ C⊥H = {0}.
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The skew reciprocal polynomial of g = Σki=0gix
i ∈ R of degree k is g∗ = Σki=0θ

i(gk−i)x
i.

The left monic skew reciprocal polynomial of g is g\ = (1/θk(g0))g∗. If a skew polynomial is equal
to its left monic skew reciprocal polynomial, then it is called self-reciprocal.

Consider λ in (Fθq)∗ and C a skew λ-constacyclic code of length n and skew generator polynomial

g. According to Theorem 1 of [8], the Euclidean dual C⊥ of C is a skew λ−1-constacyclic code
generated by h\ where g · h = h · g = xn− λ. If q = r2, the Hermitian dual C⊥H of C is generated
by h\ where for a(x) =

∑
aix

i ∈ R, a(x) =
∑
aix

i.
The two following lemma will be useful later.

Lemma 1. [5, Lemma 4] Consider h and g in R. Then (h·g)∗ = Θdeg(h)(g∗)·h∗, where t = deg(h)
and Θ : R 7→ R is given by Σki=0aix

i 7→ Σki=0θ(ai)x
i.

Lemma 2 (Theorem 6.3.7 of [10]). Consider C1 and C2 two skew λ-constacyclic code of length n
over Fq with skew generator polynomials g1 and g2, then:

1. C1 ∩ C2 is a skew λ-constacyclic code of length n generated by lclm(g1, g2).

2. C1 + C2 is a skew λ-constacyclic code of length n generated by gcrd(g1, g2).

3 The equivalency between skew λ-constacyclic codes, skew
cyclic codes and skew negacyclic codes

Let q be a prime power, Fq a finite field and θ an automorphism of Fq. Consider λ in F∗q which is
fixed by θ. We assume that n is a multiple of the order of θ. For i in N∗ and α element of Fq the
ith norm is defined as

Ni(α) = αθ(α) · · · θi−1(α).

In this section, we provide conditions on the existence of an isomorphism between skew λ-
constacyclic codes, skew cyclic codes and skew negacyclic codes. We start with the following
useful lemma.

Lemma 3. Consider an element α of F∗q . The application

φα : R −→ R
f(x) 7−→ f(αx)

is a morphism. Furthermore for all i in N, φα(xi) = Ni(α)xi.

Theorem 1. • If F∗q contains an element α where λ = Nn(α−1) then the skew λ-constacyclic
codes of length n over Fq are equivalent to the skew cyclic codes of length n over Fq.

• If F∗q contains an element α where λ = −Nn(α−1) then the skew λ-constacyclic codes of
length n over Fq are equivalent to the skew negacyclic codes of length n over Fq.

Proof. Consider α in F∗q such that λ = Nn(α−1). Define

Φα : R�〈xn − 1〉 −→ R�〈xn − λ〉
f(x) 7−→ f(αx)

Let us prove that the application Φα is an isomorphism who preserves the Hamming weight:

• The application Φα is well-defined: consider f(x) and g(x) in R such that xn − 1 divides
on the right f(x) − g(x). There exists h in R such that f(x) − g(x) = h(x) · (xn − 1). By
Lemma 3,

f(αx)−g(αx) = φα(h(x))·φα(xn−1) = φα(h(x))·(Nn(α)xn−1) = φα(h(x))·Nn(α)·(xn−λ).

Therefore, xn − λ divides on the right f(αx)− g(αx).

In the same way one can prove that the application is injective (and therefore surjective).
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• The application Φα is a morphism: consider f(x) =

n−1∑
i=0

aix
i and g(x) =

n−1∑
i=0

bix
i in R�〈xn−

1〉

f(x) · g(x) =

n−1∑
j=0

 j∑
i=0

aiθ
i(bj−i) +

n−1∑
i=j+1

aiθ
i(bn−i+j)

xj

because xj+n = xj in R�〈xn − 1〉.
As Φα(xj) = Nj(α)xj , one gets

Φα(f(x) · g(x)) =

n−1∑
j=0

 j∑
i=0

aiθ
i(bj−i) +

n−1∑
i=j+1

aiθ
i(bn−i+j)

Nj(α)xj

Furthermore,

Φα(f(x)) · Φα(g(x)) =

n−1∑
j=0

(
j∑
i=0

aiNi(α)θi(bj−iNj−i(α))

)
xj +

n−1∑
j=0

 n−1∑
i=j+1

aiNi(α)θi(bn−i+jNn+j−i(α))

xj+n

As xj+n = xj · (xn − λ) + xjλ = θj(λ)xj in R�〈xn − λ〉,
Φα(f(x)) · Φα(g(x)) =

n−1∑
j=0

 j∑
i=0

aiθ
i(bj−i)Ni(α)θi(Nj−i(α)) +

n−1∑
i=j+1

aiθ
i(bn−i+j)Ni(α)θi(Nn+j−i(α))θj(λ)

xj

FurthermoreNi(α)θi(Nj−i(α)) = Nj(α) andNi(α)θi(Nn+j−i(α))θj(λ) = Nj+n(α)/(θj(Nn(α))) =
Nj(α).

Therefore

Φα(f(x)) ·Φα(g(x)) =

n−1∑
j=0

 j∑
i=0

aiθ
i(bj−i) +

n−1∑
i=j+1

aiθ
i(bn−i+j)

Nj(α)xj = Φα(f(x) ·g(x)).

• Φα preserves the Hamming weight:

Consider c(x) =
∑n−1
i=0 aix

i, then Φα(c(x)) =
∑n−1
i=0 aiNi(α)xi.

∀i ∈ {0, . . . , n−1}, aiNi(α) = 0⇔ ai = 0 (because Fq integral domain), therefore wt(c(x)) =
wt(Φα(c(x))).

Example 1. For F24 = F2(w) where w4 = w+ 1 , θ is the automorphism of F24 given by a 7→ a2
2

and Fθ24 = F4 = {0, 1, w5, w10}.
We have 33 skew cyclic codes of length 4 over F16,we give some of them:

x4 − 1 = (x2 + w13x+ w9)(x2 + w13x+ w6)
= (x+ w12)(x3 + w3x2 + x+ w3)

All of the [4]-th roots of w5 are {w2, w5, w8, w11, w14}.
All of the [4]-th roots of w10 are {w,w4, w7, w10, w13}.
The table 1 below gives examples of skew w5-constacyclic codes of length 4 over F16 who are

equivalent to the skew cyclic code C = 〈x2 + w13x+ w6〉of length 4 over F16 .
The table 2 below gives examples of skew w10-constacyclic codes of length 4 over F16 who are

equivalent to the skew cyclic code C = 〈x3 + w3x2 + x+ w3〉of length 4 over F16 .

In the following, we give a relationship between skew cyclic codes and skew negacyclic codes.
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δ g(x) d
w2 x2 + w6x+ w 3
w5 x2 + w3x+ w 3
w8 x2 + x+ w 3
w11 x2 + w12x+ w 3
w14 x2 + w9x+ w 3

Table 1: Some skew w5-constacyclic codes of length 4 over F16

δ g(x) d
w x3 + w4x2 + w5x+ w9 4
w4 x3 + w7x2 + w5x+ w12 4
w7 x3 + w10x2 + w5x+ 1 4
w10 x3 + w13x2 + w5x+ w3 4
w13 x3 + wx2 + w5x+ w6 4

Table 2: Some skew w10-constacyclic code of length 4 over F16

Corollary 1. If q is odd and n is an odd integer then the skew cyclic codes of length n over Fq
are equivalent to the skew negacyclic codes of length n over Fq.

Proof. Consider α in F∗q such that λ = Nn(α−1) 6= 1. As n is odd, λ = −Nn(−α−1) and we
conclude with Theorem 1.

In the following example, we show that not all a skew cyclic codes of length n over Fq are
equivalent to a skew negacyclic code of length n over Fq, when n is even.

Example 2. Let F9 = F3(w) where w2 = w + 1, θ the Frobenius automorphism. Let the skew
cyclic code C = 〈x3 +x2 +x+1〉 over F9 with parameter [4, 1, 4]. There is no skew negacyclic code
of length 4 equivalent to C (because there is no skew negacyclic code of length 4 with minimum
distance 4).

In the following we give a case where the skew constacyclic codes are equivalent to the skew
cyclic codes using only a relation between the length n, the characteristic of Fq and the cardinality
of Fq. We start with the following useful lemma.

Lemma 4. [2, Lemma 3.1] Let α be a primitive element of Fq and λ = αi for i 6 q − 1. Then
the equation xs = λ has a solution in Fq if and only if (s, q − 1) | i.

In the following, we give a similar result of [2, Theorem 3.4] but in the noncommutative case.

Proposition 1. Assume that θ is the automorphism defined by a 7→ ap
r

and that ([n], q − 1) = 1

where [n] := prn−1
pr−1 . Then all skew λ-constacyclic codes of length n over Fq are equivalent to skew

cyclic codes of length n over Fq.

Proof. Let λ in F∗q fixed by θ then there exist i such that λ = αi. As ([n], q−1) = 1 | i, according to

Lemma 4, there exist δ in F∗q such that λ = δ[n]. Furthermore Nn(δ) = δ[n], therefore by Theorem
1 skew λ-constacyclic codes of length n over Fq are equivalent to skew cyclic codes of length n
over Fq.

When θ is the Frobenius and Fq = Fpn , θ-cyclic codes of length n are equivalent to θ-negacyclic
codes of length n :

Proposition 2. Assume that θ is the automorphism defined by a 7→ ap and that q = pn. Then all
skew negacyclic codes of length n over Fq are equivalent to skew cyclic codes of length n over Fq.
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Proof. According to Theorem 1, it suffices to prove that the equation Nn(α) = −1 has a solution

in F∗q . Consider a a primitive element of Fq, then −1 = a
pn−1

2 , furthermore (p
n−1
p−1 , p

n− 1) = pn−1
p−1

divides pn−1
2 , therefore according to Lemma 4, the equation Nn(α) = α

pn−1
p−1 = −1 has a solution

in F∗q .

The previous isometry of Theorem 1 does not preserve the duality as shown in the following
example.

Example 3. Consider R = F9[x; θ] where θ : u 7→ u3 and a ∈ F9 such that a2 = a + 1. The
application

Φa :

{
R/ < x2 − 1 > → R/ < x2 + 1 >

x 7→ ax

is an isomorphism which preserves the Hamming distance according to Theorem 1 (because −1 =
a4 = N2(a)). However it does not preserve the duality. Namely, consider the skew cyclic code C
generated by g = x + a2. As Φa(g) = ax + a2 = a(x + a), the image D of C by Φa is generated
by x + a. Now we have (x + a2) · (x + a2) = x2 − 1, therefore the dual C⊥ of C is generated
by (x + a2)\ = x + 1/a6 = x + a2 (and C is self-dual). The image of C⊥ by Φa is generated by
x + a. Now, we have (x + a7) · (x + a) = x2 + 1, therefore the dual D⊥ of D is generated by
(x+ a7)\ = x+ a3. We obtain that D⊥ 6= Φa(C⊥) (and D = Φa(C) is not self-dual whereas C is
self-dual).

Lemma 5. If n is odd and h ∈ R with degree k, then φ−1(h∗) = (−1)kφ−1(h)∗.

Proof. Consider h =
∑k
i=0 hiX

i with degree k, then h∗ =
∑k
i=0X

k−i · hi. As φα is a morphism,
one gets

φα(h∗) =

k∑
i=0

Nk−i(α)Xk−i · hi.

Now the skew reciprocal polynomial of φα(h) =
∑k
i=0 hiNi(α)Xi is equal to φα(h)∗ =

∑k
i=0X

k−i·
(hiNi(α)) =

∑k
i=0 θ

k−i(Ni(α))Xk−i · hi therefore

φα(h)∗ = Nk(α)

k∑
i=0

1/Nk−i(α)Xk−i · hi.

If α = −1, then Nk−i(α)2 = 1, therefore φα(h)∗ = (−1)kφα(h∗).

Proposition 3. If n is odd and C is a skew cyclic code of length n then the dual of the skew
negacyclic code Φ−1(C) is Φ−1(C)⊥ = Φ−1(C⊥)

Proof. As n is odd, Nn(−1) = −1, therefore according to Theorem 1, Φ−1 is well defined and is
an isometry. Consider C a skew cyclic code [n, k] with generator skew polynomial g and consider
h in R such that xn − 1 = g · h = h · g. Then the skew generator polynomial of D = Φ−1(C) is
generated by G = (−1)rΦ−1(g) where r = deg(g) = n− k. Furthermore G ·H = H ·G = xn + 1
where H = (−1)r+1Φ−1(h). The dual D⊥ of D is generated by H∗ and the conclusion follows
from Lemma 5.

In what follows, we will study LCD skew cyclic and skew negacyclic codes. We will mostly
concentrate on the case when the length of the code is even and the automorphism θ has order 2.

4 Skew generator polynomials of LCD skew cyclic and ne-
gacyclic codes

Like previously, we assume that Fq is a finite field, θ is an automorphism of Fq of order µ and n is a
multiple of µ. In the following, we give a necessary and sufficient condition for skew λ-constacyclic
codes to be LCD codes, when λ2 = 1.
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Theorem 2. Consider Fq a finite field, θ an automorphism of Fq of order µ, R = Fq[x; θ], n a
multiple of µ and λ ∈ {−1, 1}. Consider a (θ, λ)-constacyclic code C with length n, skew generator
polynomial g. Consider h such that h · g = g · h = xn − λ.

1. C is an Euclidean LCD code if and only if gcrd(g, h\) = 1.

2. If q is an even power of a prime number, q = r2, C is an Hermitian LCD code if and only
if gcrd(g, h\) = 1.

Proof. As C and C⊥ are two skew λ-constacyclic codes of length n and skew generator poly-
nomials g and h\, according to Lemma 2, the skew polynomial f = lclm(g, h\) is the skew gen-
erator polynomial of the skew constacyclic code C ∩ C⊥. In particular, as g and h\ both di-
vide xn − λ, f divides xn − λ. Assume that C ∩ C⊥ = {0}, then xn − λ divides f , therefore
xn − λ = f . According to [22], deg(gcrd(g, h\)) + deg(lclm(g, h\)) = deg(g) + deg(h\), therefore
deg(gcrd(g, h\)) = deg(g) + deg(h)− deg(f) = 0 and gcrd(g, h\) = 1.

Conversely, if gcrd(g, h\) = 1, then deg(f) = n, therefore, as f divides xn−λ, f = xn−λ, and
C ∩ C⊥ = {0}. The same proof holds for Hermitian LCD codes.

Example 4. Consider F9 = F3(w) where w2 = w + 1 and θ the Frobenius automorphism θ : a 7→
a3. One has :

x4 + 1 = (x2 + w3x+ 1) · (x2 + w7x+ 1).

The skew reciprocal polynomial of x2+w3x+1 is x2+wx+1 and gcrd(x2+w7x+1, x2+wx+1) = 1.
Then by Theorem 2 the skew negacyclic code C = 〈x2 + w7x + 1〉 of length 4 and minimum

distance 3 over F9 is an Euclidean LCD code.

Example 5. For F9 = F3(w) where w2 = w + 1 and θ the Frobenius automorphism θ : a 7→ a3,
one has :

x6 − 1 = (x3 + wx2 + x+ 1) · (x3 + w7x2 + x+ 2).

The skew reciprocal polynomial of x3 + wx2 + x + 1 is x3 + x2 + w3x + 1 and gcrd(x3 + w7x2 +
x+ 2, x3 + x2 + wx+ 1) = 1.

Then by Theorem 2 the skew cyclic code C = 〈x3 + w7x2 + x + 2〉 of length 6 and minimum
distance 4 over F9 is an Hermitian LCD code.

Over a finite field Fq, if a cyclic code C generated by a monic polynomial g is an Euclidean
LCD code then g = g\. Furthermore if q is coprime with n, then g = g\ if and only if C is an
Euclidean LCD code ([17], [19]). This comes from the fact that when q is coprime with n then
xn − 1 = gh = ppcm(g, h) is squarefree therefore, if g = g\, then g and h = h\ are coprime.

The following proposition generalizes this result. We use the notion of similarity (definition 1).

Definition 1 ([22]). Consider a, b in R. a is similar to b if there exists u in R such that
lclm(a, u) = b · u and gcrd(a, u) = 1.

Remark 1. If θ is the identity then a is similar to b if and only if a is equal to b up to a multiple
constant.

Proposition 4. Consider Fq a finite field, θ an automorphism of Fq of order µ, R = Fq[x; θ], n a
multiple of µ and λ ∈ {−1, 1}. Consider a (θ, λ)-constacyclic code C with dimension k, length n,
skew generator polynomial g. Consider G = Θk(g∗ · 1

g0
) = g0 ·Θk(g\ · 1

g0
) where g0 is the constant

coefficient of g and h in R such that g · h = h · g = xn − λ.

1. If C is an Euclidean (resp. Hermitian) LCD code then g is similar to G (resp. Θ(G)).

2. Assume that lclm(g, h) = xn − 1. If g = G (resp. g = Θ(G)) then C is an Euclidean (resp.
Hermitian) LCD code.
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Proof. As h · g = xn − λ, according to Lemma 1, xn − λ = g0 ·Θk(g\ · 1
g0

) · h\ = G · h\. Therefore,

as g and h\ divide on the right xn − λ, lclm(g, h\) divides xn − λ on the right.

1. Assume that gcrd(g, h\) = 1, then deg(lclm(g, h\)) = deg(g) + deg(h\) = n, therefore, one
has lclm(g, h\) = xn − λ = G · h\, and lclm(g, h\) = G · h\ with gcrd(g, h\) = 1. One can
conclude that g is similar to G.

2. Assume that g = G. As xn−λ = g · h = G · h\, one gets h = h\. As lclm(g, h) = xn− 1, one
deduces that gcrd(g, h\) = gcrd(g, h) = 1, therefore C is an Euclidean LCD code.

Example 6. In Example 4, one has g = x2 + w7x + 1 and G = Θ2(1 · g∗ · 11 ) = x2 + w3x + 1,
therefore lclm(g, w2) = G · w2 = w2 · g and g is similar to G.

Example 7. In Example 5, one has g = x3+w7x2+x+2 and G = Θ3(g∗) = x3−x2+w3x−1. As
lclm(g, x2−x+w7) = Θ(G)·(x2−x+w7) = x5+x4+x3+wx2+w5x+w3 and gcrd(g, x2−x+w7) = 1,
g is similar to Θ(G).

If θ is the identity, then G = g0g
\ 1
g0

= g\ and following Remark 1, one gets the already known

result recalled above the proposition : if C is an Euclidean LCD code then g = G = g\. If g and
h are coprime and g = G = g\ then C is an Euclidean LCD code.

If θ is not the identity, as seen in the previous example, Euclidean LCD (θ, λ)-constacyclic
codes do not necessarily satisfy the equality g = G. Furthermore, when lclm(g, h) = xn − 1, g
being similar to G does not imply necessarily the code to be a LCD code :

Example 8. Consider R = F4[x; θ] where F4 = F2(w), g = x2 +w2x+w and h = x2 +w2w+w2.
One has g ·h = h ·g = lclm(g, h) = x4−1 and G = w(x2+x+w2) · 1w = x2+w2x+w2. The θ-cyclic
code of length 4 generated by g is not an Euclidean LCD code because gcrd(g, h\) = g 6= 1, however
g and G are similar because lclm(g, x+w) = x3 +x2 +x+ 1 = G · (x+w) and gcrd(g, x+w) = 1.

We are now going to characterize the skew generators of LCD skew cyclic and negacyclic codes
as least common left multiples of skew polynomials. This will enable to give a construction and
an enumeration of LCD skew cyclic and negacyclic codes over Fp2 (section 5). Let us introduce
a first notation. We recall that the fixed field of θ is Fθq and we denote µ the order of θ. For

F (xµ) ∈ Fθq [xµ] and b in {0, 1}, consider the following set :

L(b)
F (xµ) := {g ∈ R | gmonic, g · h = F (xµ) and gcrd(Θb(h\), g) = 1}.

The following proposition is inspired from Proposition 28 of [5] and Proposition 2 of [3]. It will
enable to construct and enumerate LCD skew cyclic and negacyclic codes over Fp2 .

Proposition 5. Consider Fq a finite field, θ an automorphism of Fq of order µ, R = Fq[x; θ].
Consider F (xµ) = f1(xµ) · · · fr(xµ) where f1(xµ), . . . , fr(x

µ) are polynomials of Fθq [xµ] such that

fi is coprime with fj and f \j for all i 6= j. The application

φ :

{
L(b)
f1(xµ)

× · · · × L(b)
fr(xµ)

→ L(b)
F (xµ)

(g1, . . . , gr) 7→ lclm(g1, . . . , gr)

is bijective.

Proof. • The application φ is well-defined.

Consider (g1, . . . , gr) in L(b)
f1(xµ)

× · · · ×L(b)
fr(xµ)

and g = lclm(g1, . . . , gr). Consider h1, . . . , hr

such that gi · hi = hi · gi = fi(x
µ) and gcrd(gi,Θ

b(h\i)) = 1. Consider h = lcrm(h1, . . . , hr).
Let us prove that g · h = F (xµ) and that gcrd(g, h\) = 1.
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First of all, as h1, . . . , hr divide respectively f1(xµ), . . . , fr(x
µ), and as f1(xµ), . . . , fr(x

µ)
are pairwise coprime central polynomials, the degree of h = lcrm(h1, . . . , hr) is equal to
r∑
i=1

deg(hi). In the same way, the degree of g = lclm(g1, . . . , gr) is equal to

r∑
i=1

deg(gi).

Furthermore, as gi · hi = fi(x
µ), the degree of gi · hi is equal to the degree of fi(x

µ) in x,
therefore the degree of g · h is equal to the degree of F (xµ) in x.

Consider, for i in {1, . . . , r}, Ai in R such that g = Ai · gi and Bi in R such that h = hi ·Bi.
One gets g · h = Ai · gi · hi · Bi = Ai · fi(xµ) · Bi. As fi(x

µ) is central, it divides g · h. The
polynomials fi(x

µ) are pairwise coprime in Fθq [xµ], therefore their least common right multi-
ple is equal to their product F (xµ), and F (xµ) divides g ·h. As deg(g ·h) = deg(F (xµ)), one

gets g · h = F (xµ). Now gcrd(g,Θb(h\)) = gcrd(lclm(g1, . . . , gr), lclm(Θb(h\1), . . . ,Θb(h\r))).

One can notice that the skew polynomials gi and Θb(h\j) are right coprime. Namely, if i = j,

gcrd(gi,Θ
b(h\i)) = 1 by hypothesis. If i 6= j consider a right divisor u of gi and Θb(h\j), then

u divides fi(x
µ) and f \j (xµ), as fi(x

µ) and f \j (xµ) are coprime one gets that u = 1. One

deduces that gcrd(g,Θb(h\)) = 1. To conclude, the skew polynomial g belongs to L(b)
F (xµ)

therefore φ is well defined.

• The application φ is bijective.

Consider g in L(b)
F (xµ), then g divides F (xµ), therefore, according to Theorem 4.1 of [11],

g = lclm(g1, . . . , gr) where gi = gcrd(fi(x
µ), g) and this lclm-decomposition into skew poly-

nomials dividing f1(xµ), . . . , fr(x
µ) is unique. Furthermore deg(g) =

∑r
i=1 deg(gi) because

fi(x
µ) and fj(x

µ) are coprime. Let us prove that gi belongs to L(b)
fi(xµ)

. Consider h in R such

that g ·h = h ·g = F (xµ) and gcrd(g,Θb(h\)) = 1. As h divides F (xµ), according to Theorem
4.1 of [11], h = lcrm(h1, . . . , hr) where hi = gcld(fi(x

µ), h). This lcrm-decomposition into
skew polynomials dividing f1(xµ), . . . , fr(x

µ) is unique and deg(h) =
∑r
i=1 deg(hi).

Consider, for i in {1, . . . , r}, Ai in R such that g = Ai · gi and Bi in R such that h = hi ·Bi.
As g · h = F (xµ) and as F (xµ) is central, the skew polynomial gi · hi divides F (xµ) on the
right. Therefore, gi ·hi = lclm(gcrd(gi ·hi, fj(xµ)), j = 1, . . . , r) = gcrd(gi ·hi, fi(xµ)) divides
fi(x

µ). As
∑r
i=1 deg(gi · hi) = deg(g) + deg(h) = deg(F (xµ)) =

∑r
i=1 deg(fi(x

µ)), one gets

gi · hi = fi(x
µ). Lastly, consider u in R such that u divides on the right gi and Θb(h\i). As

hi divides on the left h, Θb(h\i) divides on the right Θb(h\), therefore u divides on the right
both g and Θb(h\), and u = 1.

We now introduce some notations that will be useful later :

DF (xµ) := {f ∈ Fθq [xµ] | f monic and dividesF (xµ) inFθq [xµ]}

Fir := {f = f(xµ) ∈ Fθq [xµ] | f = f \ irreducible in Fθq [xµ],degxµ f > 1}

Fred := {f = f(xµ) ∈ Fθq [xµ] | f = firf
\
ir, fir 6= f \ir irreducible in Fθq [xµ]}.

Theorem 3. Consider Fq a finite field with q elements, θ an automorphism over Fq with order µ,
R = Fq[x; θ], λ ∈ {−1, 1}, b ∈ {0, 1}. Consider n a multiple of µ and xn−λ = f1(xµ)p

s · · · fr(xµ)p
s

where f1(xµ), . . . , fr(x
µ) are polynomials of Fp[xµ] belonging to {xµ ± 1} ∪ Fir ∪ Fred. Consider

a (θ, λ)-constacyclic code C of length n and skew generator polynomial g.

1. C is an Euclidean LCD code if and only if g = lclm(g1, . . . , gr) where for all i in {1, . . . , r},
gi ∈ L(0)

fi(xµ)p
s .

2. C is an Hermitian LCD code if and only if g = lclm(g1, . . . , gr) where for all i in {1, . . . , r},
gi ∈ L(1)

fi(xµ)p
s .
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Proof. According to Theorem 2, the Euclidean (resp. Hermitian) LCD θ-cyclic codes of length n

are generated by the elements of the set L(b)
xn−1 where b = 0 (resp. b = 1). The Euclidean (resp.

Hermitian) LCD θ-negacyclic codes of length n are associated to the set L(b)
xn+1 where b = 0 (resp.

b = 1). As xn±1 is self-reciprocal, one has xn±1 = f1(xµ)p
s · · · fr(xµ)p

s

where f1(xµ), . . . , fr(x
µ)

are self-reciprocal polynomials of Fp[xµ] who are either irreducible or products of an irreducible

polynomial and its reciprocal polynomial. Therefore for i 6= j, fi is coprime with fj and f \j and
Theorem 5 can be applied to F (xµ) = xn ± 1.

Remark 2. The Euclidean LCD skew cyclic (resp. negacyclic) codes of length n over Fq are the
skew cyclic (resp. negacyclic) codes C =

⋂r
i=1 Ci where Ci is a skew cyclic (resp. negacyclic) code

generated by gi ∈ L(0)

fi(xµ)p
s and where the polynomial F (xµ) = xn − 1 (resp. xn + 1) factorizes

in Fθq [xµ] as F (xµ) =
∏r
i=1 fi(x

µ)p
s

, fi(x
µ) ∈ Fir

⋃
Fred

⋃
{xµ ± 1}. The same remark holds for

Hermitian LCD skew cyclic and negacyclic codes where gi ∈ L(1)

fi(xµ)p
s instead of gi ∈ L(1)

fi(xµ)p
s .

5 LCD skew cyclic and negacyclic codes over Fp2
In this section, we construct and enumerate LCD skew cyclic and negacyclic codes in the particular
case when q = p2 is the square of a prime number p and θ : a 7→ ap is the Frobenius automorphism
over Fq. Therefore the order µ of θ is equal to 2 and the fixed field Fθq of θ is Fp. We will use
the characterization of LCD skew cyclic and negacyclic given by Theorem 3. This point of view
is useful for the construction and the enumeration of the codes (Propositions 7, 8, 9).

According to Theorem 3, LCD θ-cyclic and θ-negacyclic codes of even length n over Fp2 are
generated by skew polynomials which are least common left multiples of skew polynomials gi ∈
L(b)

fi(x2)ps
where f = fi ∈ Dxn±1 is a divisor of xn±1 in Fp[x2] satisfying one of the following cases

:

• f(x2) = x2 − ε where ε = ±1 (see Lemma 6)

• f(x2) ∈ Fir irreducible in Fp[x2] with degree d > 1 in x2 (see Lemma 6);

• f(x2) ∈ Fred is the product of two irreducible distinct polynomials in Fp[x2] (see Lemma 7).

The following proposition enables to characterize those skew polynomials having a unique
factorization into the product of monic irreducible skew polynomials. It will be useful later.

Proposition 6 (Proposition 16 of [5]). Consider p a prime number, θ : a 7→ ap the Frobenius
automorphism over Fq with q = p2, R = Fq[x; θ], f ∈ Fp[x2] irreducible in Fp[x2] and h = hm · · ·h1
a product of irreducible monic polynomials dividing f . The following assertions are equivalent

(i) h has a unique factorization into irreducible monic polynomials;

(ii) f does not divide h in R;

(iii) for all i in {1, . . . ,m− 1}, f 6= hi+1 · hi.

5.1 Length 2ps over Fp2

Lemma 6 describes the set L(b)
f(x2)m where f(x2) ∈ Fir

⋃
{x2 ± 1}. It will be useful to characterize

all nontrivial LCD skew cyclic and negacyclic codes of length 2ps over Fp2 (Proposition 7 and
algorithm 1).
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Lemma 6. Consider p a prime number, θ : a 7→ ap the Frobenius automorphism over Fq with
q = p2, R = Fq[x; θ], f(x2) ∈ Fir

⋃
{x2 ± 1} with degree d in x2, g in R and m ∈ N. The skew

polynomial g belongs to the set L(b)
f(x2)m if, and only if, g = 1 or g = f(x2)m or g has a unique

factorization into the product of m monic irreducible skew polynomials g = gm · · · g1 where
∀i ∈ {1, . . . ,m},deg(gi) = d
gi divides on the right f(x2)
∀i ∈ {1, . . . ,m− 1}, gi+1 · gi 6= f(x2)

g1 6= Θb(h\1) where Θb(h\1) · h1 = f(x2).

(1)

Proof. Consider g in L(b)
f(x2)m \ {f(x2)m, 1}. Consider h in R such that g · h = h · g = f(x2)m.

As f(x2) is central and irreducible in Fp[x2], the skew polynomials g and h are products of
irreducible monic factors dividing f(x2). As deg(g) > 2dm and deg(h) + deg(g) = 2dm, there
exists r ∈ {1, . . . , 2m− 1}, g1, . . . , g2m−r, h1, . . . , hr monic of degree d dividing f(x2) such that

g = g2m−r · · · g1

and
h = h1 · · ·hr.

The skew polynomial Θb(h\1) is an irreducible right factor of Θb(h\) which divides Θb(f \(x2)) =
f(x2) and does not divide g on the right because gcrd(Θb(h\), g) = 1. Therefore f(x2) does not
divide g. Similarly, one gets that f(x2) does not divide Θb(h\) and h. Therefore, according to
Proposition 6, the above factorizations of g and h into the products of monic irreducible factors
are unique and for all i in {1, . . . ,m− 1}, gi+1 · gi 6= f(x2).
As g · h = h · g = f(x2)m one gets that for all i, gi · hi = f(x2), therefore, r = m.

Laslty, as g and Θb(h\) are right coprime, necessarily, g1 6= Θb(h\1).
Conversely, consider g = gm · · · g1 where g1, . . . , gm are monic skew polynomials satisfying (1).

Consider h = h1 · · ·hm with gi · hi = hi · gi = f(x2) then g · h = h · g = f(x2)m. Furthermore
as gi+1 · gi 6= f(x2), according to Proposition 6, the above factorization of g into the product of
monic irreducible factors is unique. Similarly, the factorizations of h and Θb(h\) into the products
of monic irreducible factors are unique.
Consider u a right factor of g and Θb(h\) with degree > 1. Necessarily, u has a unique factorization
into the product of monic skew polynomials. The unique monic linear right factor of u is also
the unique monic right factor of g and Θb(h\), therefore u = g1 = Θb(h\1), which is impossible

according to (1). Therefore gcrd(g,Θb(h\)) = 1 and g belong to L(b)
f(x2)m .

Lemma 6 enables to characterize all nontrivial LCD skew cyclic and negacyclic codes of length
2ps over Fp2 (Proposition 7). Their dimensions are necessarily equal to ps :

Proposition 7. Consider p a prime number, θ : a 7→ ap the Frobenius automorphism over Fq
with q = p2, R = Fq[x; θ], ε ∈ {−1, 1}, s in N, n = 2ps and k ≤ n.

1. There is no non trivial (Euclidean and Hermitian) LCD (θ, ε)-constacyclic codes of length
n = 2ps and dimension k 6= ps.

2. The number of Euclidean LCD (θ, ε)-constacyclic codes of length n = 2ps and dimension
k = ps over Fp2 is {

2k if p = 2
pk−1(p− ε(−1)(p+1)/2) if p 6= 2.

3. The number of Hermitian LCD (θ, ε)-constacyclic codes of length n = 2ps and dimension
k = ps over Fp2 is {

0 if p = 2 or p odd and ε = −1
pk−1(p+ 1) if p odd and ε = 1.
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Proof. • The Euclidean LCD θ-cyclic (resp. θ-negacyclic) codes of length n = 2ps over Fp2
are generated by the monic irreducible skew polynomials belonging to L(0)

(x2−ε)ps where ε = 1

(resp. ε = −1). According to Lemma 6, a monic skew polynomial g belongs to the set

L(0)

(x2−ε)ps if, and only if, g = 1 or g = (x2− ε)ps or g = gps · · · g1 where g1, . . . , gps are monic

skew polynomials satisfying :
deg(gi) = 1
gi divides on the right x2 − ε
gi+1 · gi 6= x2 − ε
g1 6= h\1 where h\1 · h1 = x2 − ε.

Therefore g 6= 1, (x2−ε)ps belongs to the set L(0)

(x2−ε)ps if, and only if, g = (x+αps) · · · (x+α1)

where  αp+1
i = ε
αi+1 6= −ε/αi
ε 6= −θ(α1)/α1.

(2)

Furthermore the above factorization of g is unique, therefore the number of skew polynomials

of degree k = ps in L(0)

(x2−ε)k is pk−1(p− 1) if p odd and ε = (−1)(p+1)/2

pk−1(p+ 1) if p odd and ε 6= (−1)(p+1)/2

2k if p = 2.

• The Hermitian LCD θ-cyclic (resp. θ-negacyclic) codes of length n = 2ps over Fp2 are

generated by the monic skew polynomials belonging to L(1)

(x2−ε)ps where ε = 1 (resp. ε = −1).

According to Lemma 6, a monic skew polynomial g belongs to the set L(1)

(x2−ε)ps if, and only

if, g = 1 or g = (x2 − ε)ps or g = (x+ αps) · · · (x+ α1) where
x+ αi divides on the right x2 − ε
(x+ αi+1) · (x+ αi) 6= x2 − ε
x+ α1 6= Θ(h\1) where Θ(h\1) · h1 = x2 − ε.

If ε = −1 or p = 2, L(1)

(x2−ε)ps = {1, (x2 − ε)ps}. If ε = 1 and p 6= 2, the skew polynomial g 6=
1, (x2− ε)ps belongs to the set L(1)

(x2−ε)ps = L(1)

(x2−1)ps if, and only if, g = (x+αps) · · · (x+α1)

where {
αp+1
i = 1
αi+1 6= −1/αi.

(3)

In this case there are (p+ 1)pk−1 skew polynomials of degree k = ps in L(1)

(x2−ε)k .

Remark 3. Over F4, one can notice that when k = 2s, the number of Euclidean LCD θ-cyclic codes
[2k, k] growths exponentially with k (Point 1. of Proposition 7), while the number of Euclidean
self-dual θ-cyclic codes [2k, k] is constant (Corollary 26 of [5]).

Remark 4. When p is odd, the Euclidean LCD θ-cyclic codes of length 2ps and dimension ps

over Fp2 are all Hermitian LCD codes (because (2) ⇒ (3) when ε = 1). Assume now that p ≡ 1
(mod 4), then there does not exist α in Fp2 such that αp+1 = 1 and α2 = −1, therefore when
ε = 1, (2)⇔ (3) and a [2p, p] θ-cyclic code over Fp2 is an Euclidean LCD code if and only if it is
an Hermitian LCD code.
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From the proof of Proposition 7, one deduces the following algorithm 1 for the construction of
all LCD skew cyclic and negacyclic codes over Fp2 :

Algorithm 1 Non trivial LCD θ-cyclic and -negacyclic codes of length 2ps and dimension ps over
Fp2
Require: : p, prime number, s ∈ N, ε ∈ {−1, 1}, b ∈ {0, 1}
Ensure: : L(b)

(x2−ε)ps : the set of monic skew generators g of (θ, ε)-constacyclic codes [2ps, ps] who

are Euclidean LCD codes if b = 0 and Hermitian LCD codes if b = 1
1: k ← ps

2: E ← ∅
3: if b = 0 then
4: for α1, . . . , αk ∈ Fp2 such that α2

1 6= −1, αp+1
i = ε and αi+1 6= −ε/αi do

5: E ← E ∪ {(x+ αk) · · · (x+ α1)}
6: end for
7: else
8: if p odd and ε = 1 then
9: for α1, . . . , αk ∈ Fp2 such that αp+1

i = 1 and αi+1 6= −1/αi do
10: E ← E ∪ {(x+ αk) · · · (x+ α1)}
11: end for
12: end if
13: end if
14: return E

Example 9. There are 16 = 22
2

nontrivial Euclidean LCD θ-cyclic codes of length 8 over F4 =
F2(w) where θ is the Frobenius automorphism over F4. Their dimensions are all equal to 4.
Consider g = (x + 1) · (x + w2) · (x + w2) · (x + w2) = x4 + wx3 + wx2 + x + 1. As p = 2,
(w2)p+1 = 1p+1 = 1, (w2)2 6= −1, w2 6= 1/w2 and 1 6= 1/w2, according to Proposition 7 and
Algorithm 1, g generates an Euclidean LCD [8, 4]4 θ-cyclic code which is not an Hermitian LCD

code. The systematic generator matrix of C is (I4|P ) where P =


1 1 w w
w2 w 0 w
w2 1 w 1
1 w2 w2 1

. One

checks that 1 6∈ Spec(P ×t P ) therefore according to Proposition 4 of [9] C is an Euclidean LCD
code. Furthermore 1 ∈ Spec(P ×t P ) therefore according to Proposition 6 of [9] C is not an
Hermitian LCD code.

Example 10. Consider F9 = F3(w) where w2 = w+1. There are 18 = 32×(3−(−1)2) nontrivial
Euclidean LCD θ-cyclic codes and 36 = 32 × (3 + 1) nontrivial Hermitian LCD θ-cyclic codes of
length 6 over F9. Their dimensions are equal to 3.

• Consider g = (x+w2)·(x+w6)·(x+1) = x3+w5x2+w5x+1 and h = (x+2)·(x+w6)·(x+w2).
Then g·h = h·g = x6−1, h\ = (x+w6)·(x+w2)·(x+2) and Θ(h\) = (x+w2)·(x+w6)·(x+2).
These factorizations of g, h and Θ(h\) into the products of monic linear skew polynomials
are unique. As x+ 2 6= x+ 1, h\ is right coprime with g and Θ(h\) is also rigth coprime to
g. Therefore g generates a θ-cyclic code of length 6 which is both an Euclidean LCD code
and a Hermitian LCD code.

• Consider g = (x − 1)2 · (x − w6) and h = (x − w6) · (x + 1)2. Then g · h = h · g = x6 − 1.
Consider the θ-cyclic code C of length 6 and dimension 3 generated by g. This code is MDS.
Furthermore h\ = g, therefore C is not an Euclidean LCD code and Θ(h\) = (x−1)2 ·(x−a2)
is right coprime with g, therefore C is a MDS Hermitian LCD code.

Example 11. Consider F9 = F3(w) where w2 = w+ 1. There are 36 = 32× (3− (−1)) nontrivial
Euclidean LCD θ-negacyclic codes of length 6 over F9. Their dimensions are equal to 3. Consider
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p nbr of Euclidean LCD skew cyc. nbr of Hermitian LCD skew cyc.
[2p, p]p2 [2p, p, p+ 1]p2 [2p, p]p2 [2p, p, p+ 1]p2

3 18 16 36 32
5 3750 2412 3750 2412
7 705984 39564 941192 52752
11 259374246010 ≥ 1 311249095212 ≥ 1

Table 3: Number of Euclidean and Hermitian LCD [2p, p]p2 and [2p, p]p2 MDS skew-cyclic codes
for p = 3, 5, 7, 11

g = (x+w5) · (x+w7) · (x+w3) = x3 + x2 +wx+w7 and h = (x+w5) · (x+w) · (x+w3). Then
g · h = h · g = x6 + 1, h\ = (x+w3) · (x+w) · (x+w) and Θ(h\) = (x+w2) · (x+w3) · (x+w3).
These factorizations of g, h and Θ(h\) into the products of monic linear skew polynomials are
unique. As x+w3 6= x+w, h\ is right coprime with g. Therefore g generates a θ-negacyclic code
of length 6 which is an Euclidean LCD code. However g and Θ(h\) are not right coprime because
x+ w3 divides both g and Θ(h\) and the code is not an Hermitian LCD code.

Example 12. Consider F25 = F5(w) where w2 = w− 2. The skew polynomials g = (x+ 1)3 · (x+
w) · (x + 1) = x5 + w16x4 + w5x3 + 2x2 + wx + w4 and h = (x − 1) · (x + w8) · (x − 1)3 satisfy
g · h = h · g = x10 − 1. Furthermore h\ = (x + w4) · (x + w20) · (x + w4) · (x + w16) · (x − 1),
Θ(h\) = (x+ w20) · (x+ w4) · (x+ w20) · (x+ w8) · (x− 1). The factorizations of g, h and Θ(h\)
into the products of monic linear skew polynomials are unique. As x − 1 6= x + 1, h\ and Θ(h\)
are right coprime with g. Therefore g generates a θ-cyclic code [10, 5] which is an Euclidean LCD
code and an Hermitian LCD code. Furthermore, this is an MDS code.

The following table 3 sums up the number of [2p, p]p2 LCD θ-cyclic codes and the number of
[2p, p]p2 MDS LCD θ-cyclic codes for p ∈ {3, 5, 7, 11} .

5.2 Any length over Fp2
The aim of this section is to give a complete description of Euclidean and Hermitian LCD skew
cyclic and skew negacyclic codes over Fp2 (Proposition 8 and algorithm 3). In the case when
the skew generator polynomials are not divisible by any central polynomial a complete counting
formula is given (Proposition 9). Some examples and tables are given to illustrate the obtained
results. Some MDS LCD codes are obtained over F9, F25 and F49.

In order to consider LCD skew cyclic and negacyclic codes of any even length over Fp2 , we

will characterize L(b)
f(x2)m for f(x2) ∈ Fred (Lemma 7 below). We deduce from Lemma 6 and 7 an

algorithm for the construction of L(b)
f(x2)m for f(x2) ∈ Firr ∪ Fred (algorithm 2).

Lemma 7. Consider p a prime number, θ : a 7→ ap the Frobenius automorphism over Fq with

q = p2, R = Fq[x; θ], f(x2) = fir(x
2)f \ir(x

2) in Fred with degree d = 2δ in x2. The monic skew

polynomial g ∈ R belongs to the set L(b)
f(x2)m if, and only if, g = 1 or g = f(x2)m or g = lclm(g1, g2)

where g1 = g1,m · · · g1,1 and g2 = g2,m · · · g2,1 have unique factorizations into the products of m
monic irreducible skew polynomials satisfying :

deg(gi,j) = δ
g1,j divides fir(x

2)

g2,j divides f \ir(x
2)

g1,j · g1,j−1 6= fir(x
2)

g2,j · g2,j−1 6= f \ir(x
2)

g1,1 6= Θb(h\2,1), h2,1 · g2,1 = f \ir(x
2)

(4)
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Proof. Consider g in L(b)
f(x2)m \ {1, fir(x

2)mf \ir(x
2)m} and h in R such that g · h = h · g =

fir(x
2)mf \ir(x

2)m and gcrd(g,Θb(h\)) = 1. As g divides fir(x
2)mf \ir(x

2)m, according to Theorem

4.1 of [11], g = lclm(g1, g2) where g1 = gcrd(fir(x
2)m, g) and g2 = gcrd(f \ir(x

2)m, g). Similarly,

h = lcrm(h1, h2), where h1 = gcld(fir(x
2), h) and h2 = gcld(f \ir(x

2), h).

As g ·h = h ·g = fir(x
2)mf \ir(x

2)m, one has g1 ·h1 = fir(x
2)m and g2 ·h2 = f \ir(x

2)m, therefore
g1 and h1 (resp. g2 and h2) are products of irreducible skew polynomials dividing fir(x

2) (resp.

f \ir(x
2)).

If fir(x
2) divides g1, then, as Θb(h\2) divides fir(x

2)m, g1 and Θb(h\2) have a common right
divisor (dividing fir(x

2)), therefore g and Θb(h\) also have a common nontrivial right divisor,
which is impossible as g and Θb(h\) are right coprime. Therefore fir(x

2) does not divide g1.

In the same way, fir(x
2) does not divide h1, f \ir(x

2) does not divide g2 and h2, therefore using
Proposition 6, one gets that the factorizations of g1, g2, h1 and h2 into the products of monic
irreducible skew polynomials are unique and

g1 = g1,m · · · g1,1
g2 = g2,m · · · g2,1
h1 = h1,1 · · ·h1,m
h2 = h2,1 · · ·h2,m
deg(gi,j) = δ
g1,j · g1,j−1 6= fir(x

2)

g2,j · g2,j−1 6= f \ir(x
2)

g1,i · h1,i = f(x2)
g2,i · h2,i = f \(x2)

As g and Θb(h\) are right coprime, g1 and Θb(h\2) are right coprime, therefore g1,1 6= Θb(h\2,1).
Conversely, assume that g = lclm(g1, g2) where g1 = g1,m · · · g1,1, g2 = g2,m · · · g2,1 and (4)

is satisfied. Consider hi,j such that g1,i · h1,i = fir(x
2) and g2,i · h2,i = f \ir(x

2). Consider h1 =

h1,1 · · ·h1,m, h2 = h2,1 · · ·h2,m and h = lcrm(h1, h2). Then g · h = h · g = fir(x
2)mf \ir(x

2)m and g
and Θb(h\) are right coprime.

From Lemma 6 and Lemma 7, one deduces the following algorithm 2 for the construction of

L(b)
f(x2)m where m ∈ N and f(x2) ∈ Fir

⋃
Fred.

Theorem 3, Lemma 6 and Lemma 7 enable to characterize the skew generators of LCD θ-cyclic
and θ-negacyclic codes over Fp2 as follows :

Proposition 8. Consider Fq a finite field with q = p2 elements where p is a prime number,
θ : a 7→ ap the Frobenius automorphism over Fp2 , R = Fq[x; θ], λ ∈ {−1, 1}, b ∈ {0, 1}, k ∈ N and
n = 2pst an even integer with t not divisible by p. Consider xn − λ = f1(x2)p

s · · · fr(x2)p
s

where
f1(x2), . . . , fr(x

2) are polynomials of Fp[x2] belonging to {x2 ± 1} ∪Fir ∪Fred. Consider a (θ, λ)-
constacyclic code C of length n and with skew generator g. C is an Euclidean (resp Hermitian)
LCD code of length n and dimension k if and only if

g =
∏
i∈I

fi(x
2)p

s

lclmj∈J(gj)

where 
I, J ⊂ {1, . . . , r}
I ∩ J = ∅
∀j ∈ J, gj ∈ L(b)

fj(x2)ps
\ {1, fj(x2)p

s} with b = 0 (resp b = 1)

ps(2
∑
i∈I di +

∑
j∈J dj) = n− k.

In this case, C is the intersection of the skew constacyclic codes of length n generated by
∏
i∈I fi(x

2)p
s

and gj where j ∈ J .
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Algorithm 2 L(b)
f(x2)m for f(x2) ∈ Fir ∪ Fred, b ∈ {0, 1} and m ∈ N∗

Require: : p, prime number, m ∈ N, b ∈ {0, 1}, f(x2) ∈ Fp[x2] such that f(x2) ∈ Fir or

f(x2) = fir(x
2)f \ir(x

2) ∈ Fred
Ensure: : L(b)

f(x2)m

1: if f(x2) ∈ Fir then
2: E ← {1, f(x2)m}
3: d← degx2(f(x2))
4: I ← {g ∈ R, g monic, g irreducible of degree d dividing f(x2)} (using Algorithm 1 of Ap-

pendix A of [7])

5: for g1, . . . , gm ∈ I such that gi · gi+1 6= f(x2) and g1 6= Θb(h\1) where Θb(h\1) · h1 = f(x2)
do

6: E ← E ∪ {gm · · · g1}
7: end for
8: else
9: I1 ← {g ∈ R, g monic, g irreducible of degree d dividing fir(x

2)}
10: I2 ← {g ∈ R, g monic, g irreducible of degree d dividing f \ir(x

2)}
11: for g2,1, . . . , g2,m ∈ I2 such that g2,i · g2,i+1 6= f \ir(x

2) do

12: h2,1 ← quotient of the division of f \ir(x
2) by g2,1

13: for g1,1, . . . , g1,m ∈ I1 such that g1,i · g1,i+1 6= fir(x
2) and g1,1 6= Θb(h\2,1) do

14: E ← E ∪ {lclm(g1,m · · · g1,1, g2,m · · · g2,1)}
15: end for
16: end for
17: end if
18: return E

Proof. Proposition 5, Lemma 6 and Lemma 7.

Remark 5. In Proposition 8, if J is empty then g is central; if I is empty then g is not divisible
by any central polynomial. If J = {1, . . . , r} (and I = ∅), then g is not divisible by any central
polynomial and deg(g) =

∑r
i=1 deg(gi) = k.

From Proposition 8, one deduces the Algorithm 3 for the construction of LCD θ-cyclic and
θ-negacyclic codes of length n and dimension k over Fp2 .

The following proposition characterizes LCD skew cyclic and negacyclic codes of even length
n = 2k and of dimension k whose generator polynomials are not divisible by any central polynomial
(J = {1, . . . , r} and I = ∅ in Proposition 8).

Proposition 9. Consider a prime number p, θ : a 7→ ap the Frobenius automorphism over Fp2 ,
λ ∈ {−1, 1} and n = 2k = 2pst where s is an integer and t is an integer not divisible by p.

1. The number of Euclidean LCD (θ, λ)-constacyclic codes of length 2k and dimension k with
skew generator polynomial not divisible by any central polynomial is

Nλ ×
∏

f∈Fir∩Dxn−λ
d=deg(f)

(pd − pd/2)pd(p
s−1) ×

∏
f∈Fred∩Dxn−λ

d=deg(f)

(1 + pd/2)p(2p
s−1)d/2

where N1 =


22
s

if p=2
(pp

s−1)2(p2 − 1) if k is even and p is odd
pp
s−1(p− (−1)(p+1)/2) if k is odd and p is odd

and N−1 =

{
1 if k is even and p is odd

pp
s−1(p− (−1)(p−1)/2) if k is odd and p is odd
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Algorithm 3 LCD θ-cyclic and θ-negacyclic codes of length n and dimension k over Fp2
Require: : p, prime number, k ≤ n ∈ N with n even, b ∈ {0, 1}, ε ∈ {−1, 1}, θ : a 7→ ap ∈

Aut(Fp2)
Ensure: : monic skew generators g of (θ, ε)-constacyclic codes of length n and dimension k over

Fp2 who are Euclidean LCD codes if b = 0 and Hermitian LCD codes if b = 1.
1: E ← ∅
2: Compute f1(x2), f2(x2), . . . , fr(x

2) such that xn − λ = f1(x2)p
s · · · fr(x2)p

s ∈ Fp[x2] where
s ∈ N,f1(x2), . . . , fr(x

2) ∈ {x2 ± 1} ∪ Fir ∪ Fred
3: for i = 1, . . . , r do
4: di ← degx2(fi(x

2))

5: Compute L(b)

fi(x2)ps
with Algorithms 1 and 2

6: end for
7: for I, J ⊂ {1, . . . , r} with I ∩ J = ∅ and n− k = ps × (2

∑
i∈I di +

∑
j∈J dj) do

8: for (gj)j∈J ∈
∏
j∈J L

(b)

fj(x2)ps
\ {1, fj(x2)p

s} do

9: E ← E ∪ {
∏
i∈I fi(x

2)p
s

lclmj∈J(gj)}
10: end for
11: end for
12: return E

2. The number of Hermitian LCD (θ, λ)-constacyclic codes of length 2k and dimension k with
skew generator polynomial not divisible by any central polynomial is

Nλ ×
∏

f∈Fir∩Dxn−λ
d=deg(f)

(pd − pd/2)pd(p
s−1) ×

∏
f∈Fred∩Dxn−λ

d=deg(f)

(1 + pd/2)p(2p
s−1)d/2

where N1 =


0 if p=2
0 if k is even and p is odd
pp
s−1(p+ 1) if k is odd and p is odd

and N−1 =

{
1 if k is even and p is odd
0 if k is odd and p is odd.

Proof. If f(x2) ∈ Fp[x2] is irreducible in Fp[x2] with degree d, according to [21], the number of
monic irreducible right factors of f(x2) is equal to 1 + pd, and according to Lemma 3.4 of [7], the

number of irreducible monic right factors h1 of f(x2) such that Θb(h\1) · h1 = f(x2) is equal to
1 + pd/2. Therefore according to Lemma 6, if f(x2) belongs to Fir, the number of monic skew

polynomials of degree md in L(b)
f(x2)m is ((pd+1)− (1+pd/2))(1+pd−1)m−1 = (pd−pd/2)pd(m−1).

If f(x2) belongs to Fred, L(b)
f(x2)m \{1, f(x2)m} has (1+pd/2)p(2m−1)d/2 elements where δ = d/2

and d is the degree of f(x2) in x2. Namely, according to Lemma 7, the elements of L(b)
f(x2)m \

{1, f(x2)m} are the skew polynomials g in bijection with the couples (g1, g2) satisfying (4). There
are 1 + pδ possibilities for g1,1 and pδ possibilities for each g1,j , with j = 2, . . . ,m, therefore
(1 + pδ)pδ(m−1) possibilities for g1. For each j in {1, . . . ,m} there are pδ possibilities for g2,j ,
therefore, one gets pδm possibilities for g2.

Lastly the value of N is deduced from the cardinalities of L(b)

(x2±1)ps (Proposition 7).

We give below some detailed examples over F4, F25 and F49 who illustrate Proposition 9 and
Algorithm 3.

Example 13. One has x6 + 1 = (x2 + 1)(x4 + x2 + 1) in F2[x2]. For θ : a 7→ a2, the Euclidean
LCD θ-cyclic codes of length 6 over F4 = F2(w) are generated by the monic skew polynomials
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Dimension Number Best minimum distance A skew generator polynomial
10 4 2 g1 = (x+ 1) · (x+ w2)
8 9 3 g2 = (x2 + ax+ 1) · (x2 + w2x+ 1)
6 32 5 lclm(g1, g2)
4 9 6 (x4 + 1) · g2
2 4 9 (x8 + x4 + 1) · g1

Table 4: Euclidean LCD skew-cyclic codes over F4 of length 12 and dimension 6 12

g = lclm(g1, g2) where g1 ∈ L(0)
x2+1 = {x + w, x + w2, 1, x2 + 1} and g2 ∈ L(0)

x4+x2+1 = {x2 + wx +

1, x2 + w2x+ 1, 1, x4 + x2 + 1}. There are four [6, 3]4 Euclidean LCD θ-cyclic codes.
These codes are also Hermitian self-dual. Namely x + w = Θ(x + w2) = Θ((x + w2)\) and

Θ((x+w2)\) · (x+w2) = x2 +1. Furthermore, x2 +wx+1 = Θ(x2 +w2x+1) = Θ((x2 +wx+1)\)
and Θ((x2 + wx + 1)\) · (x2 + wx + 1) = x4 + x2 + 1 therefore the above skew polynomials g all
satisfy g = Θ(h\) where Θ(h\) · h = x6 − 1.

Example 14. There are 32 Euclidean LCD θ-cyclic codes of length 12 and dimension 6 over
F4 where θ : a 7→ a2. They are generated by the skew polynomials g = lclm(g1, g2) where g1 ∈
{(x+ 1) · (x+w), (x+w) · (x+w), (x+ 1) · (x+w2), (x+w2) · (x+w2)} and g2 ∈ {(x2 +w) · (x2 +
wx+1), (x2 +w2) · (x2 +wx+1), (x2 +x+1) · (x2 +wx+1), (x2 +w2x+1) · (x2 +wx+1), (x2 +w) ·
(x2 +w2x+1), (x2 +w2) ·(x2 +w2x+1), (x2 +x+1) ·(x2 +w2x+1), (x2 +wx+1) ·(x2 +w2x+1)}.

Table 4 below sums up the repartition of all the Euclidean LCD θ-cyclic codes of length 12 over
F4 and gives one example for each dimension.

Example 15. As x14+1 = (x2+1)(x6+x4+1)(x6+x2+1) over F2[x2], there are 2×(1+23)×23 =
144 Euclidean LCD θ-cyclic codes of length 14 and dimension 7 over F4 where θ : a 7→ a2. For
example, consider g0 = x+ w, g1 = x3 + x2 + w2x+ 1 and g2 = x3 + w2x2 + x+ w. g1 is a right
divisor of x6 +x2 + 1 and g2 is a right divisor of x6 +x4 + 1. Furthermore h2 = x3 +wx2 +x+w2

is such that g2 ·h2 = x6+x4+1 and h\2 = x3+w2x2+wx+w2 6= g1 therefore g = lclm(g0, g1, g2) =
1 +w2x+wx2 +w2x4 +w2x5 +wx6 + x7 generates an Euclidean LCD θ-cyclic code of length 14
over F4. The minimum distance of the code is equal to 6.

Example 16. Consider θ the Frobenius automorphism over F25 = F5(w) where w2 + 4w+ 2 = 0.
The skew polynomial g = x7 + 4x6 + w4x5 + w7x4 + w7x3 + w16x2 + w8x + w20 generates a
MDS [14, 7, 8]25 θ-cyclic code over F25 which a LCD code for the Euclidean scalar product and
for the Hermitian scalar product. The skew polynomial g is obtained as g = lclm(g1, g2) where

g1 = x+w16 belongs to L(0)
x2−1∩L

(1)
x2−1 and g2 = x6 +w11x5 + 2x4 +w3x3 + 2x2 +w11x+ 1 belongs

to L(0)
x12+x10+x8+x6+x4+x2+1 ∩ L

(1)
x12+x10+x8+x6+x4+x2+1.

Example 17. Consider θ the Frobenius automorphism over F49 = F7(w) where w2 + 6w+ 3 = 0.
The skew polynomial g = x8 + 6x7 + w7x6 + w28x5 + w11x4 + w47x3 + w10x2 + w30x + w12

generates a MDS [16, 8, 9]49 θ-negacyclic code over F49 which is both an Euclidean LCD code
and a Hermitian LCD code. The skew polynomial g is obtained as g = lclm(g1, g2) where g1 =

x4+w39x3+w3x2+w33x+1 belongs to L(0)
x8+4x4+1∩L

(1)
x8+4x4+1 and g2 = x4+5x3+w30x2+w35x+w6

belongs to L(0)
x8+3x4+1 ∩ L

(1)
x8+3x4+1.

Lastly, Table 5 and Table 6 illustrate Proposition 9 over F4 and F9. Best minimum distances
and numbers of LCD [2k, k] skew cyclic and negacyclic codes over F4 and F9 are given in the
case when the skew generator polynomials are not divisible by any central polynomial. The index
∗ means that the minimum distance is the best known minimum distance of codes with these
parameters.

Tables 7 sums up the dimensions of MDS LCD skew codes of given length ≤ 10 over F9. Tables
8 and 9 sum up the dimensions of MDS LCD skew codes of length ≤ 18 over F25 and of length
≤ 16 over F49.
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Euclidean LCD skew cyc. Euclidean LCD skew cyc.
length best dist nbr length best dist nbr

2 2* 2 26 9 8 064
4 3* 4 28 11* 18 432
6 4* 4 30 12* 13 056
8 4* 16 32 10 65 536
10 5* 24 34 11* 115 200
12 5 32 36 11 114 688
14 6* 144 38 12* 523 264
16 6 256 40 12* 786 432
18 7 224 42 12 1 198 080
20 8* 768 44 13 4 063 232
22 8* 1 984 46 14* 8 392 704
24 9* 2 048 48 14* 8 388 608

Table 5: Best minimum distances and numbers of Euclidean LCD [2k, k] skew cyclic codes of
length ≤ 48 over F4 with skew generator polynomial not divisible by a central polynomial

Euclidean LCD Hermitian LCD
skew cyc skew negacyc skew cyc skew negacyc

length best dist nbr best dist nbr best dist nbr best dist nbr
2 2* 2 2* 4 2* 4 0 0
4 3* 32 3* 6 0 0 3* 6
6 4* 18 4* 36 4* 361 0 0
8 5* 192 5* 90 0 0 5* 90
10 6* 144 6* 288 6* 288 0 0
12 6* 5 408 6* 486 0 0 6* 486
14 7* 1 404 7* 2 808 7* 2 808 0 0
16 7 17 280 8* 6 642 0 0 8* 6 642
18 9* 13 122 9* 26 244 9* 26 244 0 0
20 9 165 888 9 39 852 0 0 10* 39 852
22 9* 118 584 9* 237 168 9* 237 168 0 0
24 10* 2 628 288 10* 590 490 0 0 10* 590 490

Table 6: Best minimum distances and numbers of LCD [2k, k] skew codes of length ≤ 24 over F9
with skew generator polynomial not divisible by a central polynomial

MDS Euclidean LCD MDS Hermitian LCD
length skew cyc skew nega skew cyc skew nega

4 2 2 no 2
6 3 3 3 no
8 3,4,5 4 3,5 4
10 5 5 5 no

Table 7: Dimensions of MDS LCD skew codes over F9 with length n ≤ 10 and dimension 1 < k <
n− 1
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MDS Euclidean LCD MDS Hermitian LCD
length skew cyc skew nega skew cyc skew nega

4 2 2 no 2
6 2,3,4 2,3,4 2,3,4 2,4
8 3,4,5 4 3,5 4
10 5 5 5 no
12 3,5,6,7,9 6 3,5,7,9 6
14 7 7 7 no
16 7,8,9 no 7,9 no
18 9 9 9 no

Table 8: Dimensions of MDS LCD skew codes over F25 with length n ≤ 18 and dimension
1 < k < n− 1

MDS Euclidean LCD MDS Hermitian LCD
length skew cyc skew nega skew cyc skew nega

4 2 2 no 2
6 2,3,4 2,3,4 2,3,4 2,4
8 3,4,5 2,4,6 3,5 2,4,6
10 4,5,6 4,5,6 4,5,6 4,6
12 3,5,6,7,9 6 3,5,7,9 6
14 7 7 7 no
16 3,5,7,8,9,11,13 8 3,5,7,9,11,13 8

Table 9: Dimensions of MDS LCD skew codes over F49 with length n ≤ 16 and dimension
1 < k < n− 1
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6 Conclusion

In this text, skew LCD codes are studied. LCD skew cyclic and negacyclic codes are constructed
and enumerated over Fp2 . Some computations are made and MDS LCD codes are constructed. It
could be interesting to see if there exists [2p, p]p2 MDS LCD codes for p odd prime greater than
11.
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