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An Overview on Skew Constacyclic Codes and their Subclass

of LCD Codes.

Ranya D.Boulanouar, Aicha Batoul ∗and Delphine Boucher †

Abstract

This text is about the derivation of some necessary and sufficient conditions for the equiv-
alency between skew constacyclic codes, skew cyclic codes and skew negacyclic codes defined
over finite fields. A first characterization of LCD skew constacyclic codes is also given and
some constructions of LCD MDS skew cyclic and skew negacyclic codes are derived over Fp2 .

Keywords Skew polynomial rings, Skew constacyclic codes,Equivalence,LCD codes,MDS codes

1 Introduction

One of the most active and important research areas in noncommutative algebra is the investigation
of skew polynomial rings. Recently they have been successfully applied in many areas and specially
in coding theory. The principal motivation for studying codes in this setting is that polynomials
in skew polynomials rings exhibit many factorizations and hence there are many more ideals in
a skew polynomial ring than in the commutative case. The research on codes in this setting has
resulted in the discovery of many new codes with better Hamming distances than any previously
linear code with the same parameters [3, 4, 5, 6, 7, 8].

On the other hand, constacyclic codes over finite fields is an important class of linear codes
as it includes the well-known family of cyclic codes. They also have many practical applications
as they can be efficiently encoded using simple shift registers. Further, they have a rich algebraic
structure which can be used for efficient error detection and correction. As a consequence, these
codes are preferred in practical applications. One of the contribution of this work is to generalize
the results given in the commutative case by Batoul and al in [2] to the noncommutative case.

Linear code with complementary dual (LCD) codes, were introduced by Massey [13]. They
provide an optimum linear coding solution for the two-user binary adder channel, and in [14] it was
shown that asymptotically good LCD codes exist, since then several authors have studied these
codes. But until now just a few works have been done on LCD codes in the non commutative
case. In our work we give a new definition of θ-reversible codes. One of our results show that
LCD codes are not θ-reversible codes which is true in the commutative case [15].

This article is organized as follows.
In Section 2, some preliminaries are given about skew constacyclic codes over finite fields and

skew polynomial rings. In Section 3, the equivalency between skew constacyclic codes and skew
cyclic codes is studied. In Section 4, conditions for the equivalency between skew constacyclic
codes and skew negacyclic codes are provided. We give examples of skew cyclic codes which are
not equivalent to any skew negacyclic codes in the case when the length is even. In Section 5,
the notion of LCD skew codes is introduced and we give the best Hamming distances of LCD
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θ-negacyclic codes of length ≤ 10 and the best Hamming distances of LCD θ-cyclic codes of length
≤ 14. In Section 6, some constructions of LCD skew cyclic and negacyclic codes are given over
Fp2 . If p 6= 2 the Euclidean LCD θ-cyclic codes of length 2ps and dimension ps over Fp2 are all
Hermitian LCD codes. All MDS LCD skew codes of length ≤ 16 over Fp2 for p ∈ {3, 5, 7} are
obtained and the results are presented in tables.

2 Preliminaries

Let q be a prime power, Fq a finite field and θ an automorphism of Fq. We define the skew
polynomial ring R = Fq[x; θ] as

R = Fq[x; θ] = {a0 + a1x+ . . .+ an−1x
n−1 | ai ∈ Fq and n ∈ N}

under usual addition of polynomials and where multiplication is defined using the rule (axi)(bxj) =
aθi(b)xi+j . The ring R is noncommutative unless θ is the identity automorphism on Fq. According
to [16], an element f(x) ∈ R is central if and only if f(x) = Σni=0aix

im is in Fθq [xm] where m =| 〈θ〉 |
is the order of the automorphism θ and Fθq is the fixed field by θ. The two-sided ideals of R are

generated by elements having the form (c0 + c1x
m + . . .+ cnx

nm)xl, where l is an integer. Central
elements of R are the generators of two-sided ideals in R [6]. Let f(x) and g(x) be in R with
f(x) 6= 0. Then there exist unique skew polynomials q(x) and r(x) such that

g(x) = q(x)f(x) + r(x) deg(r(x)) < deg(f(x)).

If r(x) = 0 then f(x) is a right divisor of g(x) in R, denoted by f(x) |r g(x) [16].
The skew reciprocal polynomial of g(x) = Σki=0gix

i ∈ R of degree k is g∗(x) = Σki=0θ
i(gk−i)x

i.
The left monic skew reciprocal polynomial of g(x) is g](x) = (1/θk(g0))g∗(x). If a skew polyno-
mial is equal to its left monic skew reciprocal polynomial, then it is called self-reciprocal. In what
follows, we consider a positive integer and a constant λ in F∗q . We assume that n is a multiple of
the order of θ and λ fixed by θ.

According to [[6], [9]], A linear code C of length n over Fq is said to be (θ, λ)-constacyclic or
skew λ-constacyclic if it satisfies

∀c ∈ C, c = (c0, c1, . . . , cn−1) ∈ C ⇒ (λθ(cn−1), θ(c0), . . . , θ(cn−2)) ∈ C.

Any element of the quotient algebra R�〈xn − λ〉 is uniquely represented by a polynomial
β0 + β1x+ . . .+ βn−1x

n−1 of degree less than n, hence is identified with a word (β0, β1, . . . , βn−1)
of length n over Fq.

In this way, any skew λ-constacyclic code C of length n over Fq is identified with exactly one
left ideal of the quotient algebra R�〈xn−λ〉, which is generated by a right divisor g(x) of xn−λ.
In that case, g(x) is called a skew generator polynomial of C.

Note that the skew 1-constacyclic codes are skew cyclic codes and the skew -1-constacyclic
codes are skew negacyclic codes.

Lemma 1. [5, Lemma 4] Let h(x) and g(x) be skew polynomials in R. Then the following
assertions hold:

1. (h(x)g(x))∗ = Θt(g∗(x))h∗(x), where t = deg(h(x)) and Θ : R 7→ R given by Σki=0gix
i 7→

Σki=0θ(gi)x
i.

2. (g∗)∗ = Θk(g) where k = deg(g).

The Hamming weight wt(y) of an n-tuple y = (yl, y2 . . . yn) ∈ Fnq is the number of nonzero
entries in y, that is, wt(y) =| {i : yi 6= 0} |.

A Fq-linear transformation T : Fnq → Fnq is a monomial transformation if there exists a permu-
tation σ of {1, 2 . . . n} and nonzero elements α1, α2, . . . , αn of Fnq such that

T (y1, y2, . . . , yn) = (α1yσ(1), α2yσ(2), . . . , αnyσ(n))
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for all (y1, y2 . . . yn) ∈ Fnq .
Two linear codes C1, C2 in Fnq are equivalent if there exists a monomial transformation T :

Fnq → Fnq taking C1 to C2 (i.e. there exists a linear Hamming isometry [12]).

3 The equivalency between skew λ-constacyclic codes and
skew cyclic codes

Let Fq be a finite field where q = pmr and r,m are two positive integers, θ the automorphism of
Fq given by a 7→ ap

r

and λ a unit in Fq which is fixed by θ. We assume that n is a multiple of the

order of θ. For i in N∗, we write [i] =
pri − 1

pr − 1
.

In this section, we provide conditions on the existence of an isomorphism between skew λ-
constacyclic codes and skew cyclic codes. We start with the following useful lemma.

Lemma 2. Consider an element α of F∗q . The application

φ : R −→ R
f(x) 7−→ f(αx)

is a morphism.

Proof.

• The application φ is well-defined.

Consider f(x) = Σri=0aix
i and g(x) = Σmj=0bjx

j in R. If f(x) = g(x) then r = m and ai = bi
for i = 0, . . . , r.

We have that φ(f(x)) = Σri=0aiΠ
i−1
d=0θ

d(α)xi and φ(g(x)) = Σrj=0bjΠ
j−1
d=0θ

d(α)xj then φ(f(x)) =
φ(g(x)).

• The application φ is a ring morphism.

1 By construction, φ(f(x) + g(x)) = φ(f(x)) + φ(g(x))

2 Consider b in Fq, then φ(xib) = φ(θi(b)xi) = θi(b)α[i]xi = (α[i]xi)b = φ(xi)φ(b).

Theorem 1. If F∗q contains an element δ where λ = δ[n] then the skew λ-constacyclic codes of
length n over Fq are equivalent to the skew cyclic codes of length n over Fq.

Proof. Let δ be an element in F∗q such that λ = δ[n] and define

ϕ : R�〈xn − 1〉 −→ R�〈xn − λ〉
f(x) 7−→ f(δ−1x)

Let us prove that the application ϕ is an isomorphism who preserves the Hamming weight:

• The application ϕ is well-defined and is bijective :

f(x) ≡ g(x)(xn − 1)⇔ f(x)− g(x) ≡ 0(xn − 1)

xn − 1 |r f(x)− g(x)⇒ f(x)− g(x) = h(x)(xn − 1)

By Lemma 2,
φ(f(x)− g(x)) = φ(h(x)(xn − 1))

f(δ−1x)− g(δ−1x) = h(δ−1x)((δ−1x)n − 1)
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h(δ−1x)((δ−1x)n − 1) = h(δ−1x)((δ−1)[n]xn − 1)
= h(δ−1x)(δ−1)[n](xn − δ[n])
= h(δ−1x)(δ−1)[n](xn − λ)

f(δ−1x) ≡ g(δ−1x)(xn − λ)

Therefore ϕ(f(x)) = ϕ(g(x)). Conversely, ϕ(f(x)) = ϕ(g(x)) ⇒ f(x) = g(x). Therefore ϕ
is an injective application between two sets with the same cardinality, so it is bijective.

• The application ϕ is a morphism: consider f(x) = a0 + a1x + . . . + aix
i + . . . + an−1x

n−1

and g(x) = b0 + b1x+ . . .+ bix
i + . . .+ bn−1x

n−1 in R�〈xn − 1〉
f(x)g(x) = Σn−1

j=0 (Σji=0aiθ
i(bj−i)+Σn−1

i=j+1aiθ
i(bn−i+j))x

j because xj+n = xj in R�〈xn−1〉.

As ϕ(xj) = (δ−1)[j]xj , one gets

ϕ(f(x)g(x)) = Σn−1
j=0 (Σji=0aiθ

i(bj−i) + Σn−1
i=j+1aiθ

i(bn−i+j))(δ
−1)[j]xj

Furthermore,

ϕ(f(x)) = f(δ−1x) = a0 + a1δ
−1x+ . . .+ ai(δ

−1)[i]xi + . . .+ an−1(δ−1)[n−1]xn−1

ϕ(g(x)) = g(δ−1x) = b0 + b1δ
−1x+ . . .+ bi(δ

−1)[i]xi + . . .+ bn−1(δ−1)[n−1]xn−1

therefore

ϕ(f(x))ϕ(g(x)) = Σn−1
j=0 (Σji=0ai(δ

−1)[i]θi(bj−i(δ
−1)[j−i]))xj+

Σn−1
j=0 (Σn−1

i=j+1ai(δ
−1)[i]θi(bn−i+j(δ

−1)[n−i+j]))xj+n

One can notice that xj+n = xj(xn − λ) + xjλ = xjλ in R�〈xn − λ〉. As λ = (δ)[n] is fixed
by θ, one gets λxj = (δ)[n]xj in R�〈xn − λ〉.
Therefore ϕ(f(x))ϕ(g(x)) = Σn−1

j=0 (Σji=0ai(δ
−1)[i]θi(bj−i(δ

−1)[j−i])+

Σn−1
i=j+1ai(δ

−1)[i]θi(bn−i+j(δ
−1)[n−i+j])δ[n])xj

ϕ(f(x))ϕ(g(x)) =

Σn−1
j=0 (Σji=0aiθ

i(bj−i)(δ
−1)[j] + Σn−1

i=j+1aiθ
i(bn−i+j)(δ

−1)[n+j](δ)[n])xj

As the order of θ divides n, one has : (δ−1)[n+j](δ)[n] = θn((δ−1)[j]) = (δ−1)[j] therefore one
gets that ϕ(f(x))ϕ(g(x)) = ϕ(f(x)g(x)) and ϕ is a morphism.

• ϕ preserves the Hamming weight:

consider c(x) = a0+. . .+an−1x
n−1, then ϕ(c(x)) = c(δ−1x) = a0+. . .+an−1δ

−1 . . . θn−2(δ−1)xn−1.

The coefficients of ϕ(c(x)) are of the form ai(δ
−1)r and ∀i ∈ {0, . . . , n−1},∀r ∈ N ai(δ

−1)r =
0⇔ ai = 0 (because Fq integral domain), therefore wt(c(x)) = wt(ϕ(c(x))).

Then ϕ is a ring isomorphism and a Hamming isometry. As the skew λ-constacyclic codes and
skew cyclic codes are ideals, the result follows from [12]

Corollary 1. If F∗q contains an element δ where λ = δ[n] then the number of skew λ-constacyclic
codes of given length n is equal to the number of skew cyclic codes of length n.

Example 1. For F24 = F2(w) where w4 = w+ 1 , θ is the automorphism of F24 given by a 7→ a22

and Fθ24 = F4 = {0, 1, w5, w10}.
We have 33 skew cyclic codes of length 4 over F16,we give some of them:

x4 − 1 = (x2 + w13x+ w9)(x2 + w13x+ w6)
= (x+ w12)(x3 + w3x2 + x+ w3)
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δ g(x) d
w2 x2 + w6x+ w 3
w5 x2 + w3x+ w 3
w8 x2 + x+ w 3
w11 x2 + w12x+ w 3
w14 x2 + w9x+ w 3

Table 1: Some skew w5-constacyclic codes of length 4 over F16

δ g(x) d
w x3 + w4x2 + w5x+ w9 4
w4 x3 + w7x2 + w5x+ w12 4
w7 x3 + w10x2 + w5x+ 1 4
w10 x3 + w13x2 + w5x+ w3 4
w13 x3 + wx2 + w5x+ w6 4

Table 2: Some skew w10-constacyclic code of length 4 over F16

All of the [4]-th roots of w5 are {w2, w5, w8, w11, w14}.
All of the [4]-th roots of w10 are {w,w4, w7, w10, w13}.
The table 1 below gives examples of skew w5-constacyclic codes of length 4 over F16 who are

equivalent to the skew cyclic code C = 〈x2 + w13x+ w6〉of length 4 over F16 .
The table 2 below gives examples of skew w10-constacyclic codes of length 4 over F16 who are

equivalent to the skew cyclic code C = 〈x3 + w3x2 + x+ w3〉of length 4 over F16 .

In the following, using the ring isomorphism ϕ in Theorem 1, we give a factorization of the
polynomial xn − λ in R.

Corollary 2. If F∗q contains an element δ where λ = δ[n], and xn − 1 =
∏k
i=1 fi(x) where the

fi(x) 1 ≤ i ≤ k are monic irreducible in R, then xn − λ = λ
∏k
i=1 fi(δ

−1x) is a factorization of
xn − λ into irreducible factors in R.

Proof.

xn − 1 =

k∏
i=1

fi(x)

φ(xn − 1) = φ(

k∏
i=1

fi(x)) =

k∏
i=1

φ(fi(x))

(because φ is a morphism)

λ−1(xn − λ) =

k∏
i=1

(fi(δ
−1x))

xn − λ = λ

k∏
i=1

fi(δ
−1x).

Furthermore, as φ is a morphism, the irreducibility of fi(x) implies the irreducibility of
fi(δ

−1x).

Example 2. Consider F72 = F7(w) where w2 − w + 3 = 0 and θ the automorphism of F49 given
by a 7→ a7 with fixed field Fθ49 = F7. All of the [8]-th roots of w16 = 2 are
{w2, w5, 3, w11, w17, w14, w20, w26, w29, 4, w35, w38, w41, w44, w23, w47}.
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x8 − 1 = (x4 + w2x2 + w36)(x4 + w26x2 + w36) .

Then by Theorem 1 the skew cyclic code C = 〈x4 + w26x2 + w36〉 over F49 with parameter
[8, 4, 3] is equivalent to the skew w16-constacyclic code of length 8 over F49 with skew generator
polynomial g(x) = w−16((wx)4 + w26(wx)2 + w36) = x4 + w18x2 + w20.

Example 3. For F16 = F2(w) where w4 = w+ 1 , θ is the automorphism of F16 given by a 7→ a4

and Fθ16 = F4 = {0, 1, w5, w10}.
A factorization of the skew polynomial x8−1 as a product of monic irreducible skew polynomials

is:

x8 − 1 = (x+ 1)(x+ 1)(x+ w9)(x+ w6)(x+ w3)(x+ w12)(x+ w3)(x+ w12)

As w5 is a [8]-th root of w13, by Corollary 2, a factorization of the skew polynomial x8 − w5

as a product of irreducible skew polynomials is:

x8−w5 = w5(w2x+1)(w2x+1)(w2x+w9)(w2x+w6)(w2x+w3)(w2x+w12)(w2x+w3)(w2x+w12)
.

In the following we give a case where the skew constacyclic codes are equivalent to the skew
cyclic codes using only a relation between the length n, the characteristic of Fq and the cardinality
of Fq. We start with the following useful lemma.

Lemma 3. [2, Lemma 3.1] Let α be a primitive element of Fq and λ = αi for i 6 q − 1. Then
the equation xs = λ has a solution in Fq if and only if (s, q − 1) | i.

In the following, we give a similar result of [2, Theorem 3.4] but in the noncommutative case.

Theorem 2. Assume that ([n], q − 1) = 1. Then all skew λ-constacyclic codes of length n over
Fq are equivalent to skew cyclic codes of length n over Fq.

Proof. Let λ be a unit which is fixed by θ then there exist i such that λ = αi. As ([n], q−1) = 1 | i,
according to Lemma 3, there exist δ such that λ = δ[n]. By Theorem 1 skew λ-constacyclic codes
of length n over Fq are equivalent to skew cyclic codes of length n over Fq.

In the following, we provide conditions on the existence of an isomorphism between skew
λ-constacyclic codes and skew cyclic codes of length βps, where β an odd integer.

Theorem 3. Let β be an odd integer, for λ such that there exists an element δ ∈ F∗pr where δβ = λ
and s ≡ 0 (mod r) then skew ±λ-constacyclic codes of length βps over Fq are equivalent to skew
cyclic codes of length βps over Fq.

Proof. Let λ be a unit which is fixed by θ and such that there exists δ ∈ F∗pr and λ = δβ = (δp
s

)β ,

so λ = δβp
s

= δ[βps] (because δ ∈ F∗pr ) then by Theorem 1 skew λ-constacyclic codes of length
βps over Fq are equivalent to skew cyclic codes of length βps over Fq.
Since βps is odd, we obtain −λ = (−δ)βps = (−δ)[βps] (because δ ∈ F∗pr and θ(−δ) = −δ) then
by Theorem 1 skew −λ-constacyclic codes of length βps over Fq are equivalent to skew cyclic codes
of length βps over Fq.

Remark 1. When β is odd we have (−1)β = −1, and we have −1 ∈ F∗pr . Then from Theorem 3
the skew negacyclic codes of length βps over Fq are equivalent to the skew cyclic codes of length
βps over Fq .

Theorem 3 yields the following corollary.

Corollary 3. Let β be an odd integer and s ≡ 0 (mod r). If (β, pr − 1) = 1 then all skew
λ-constacyclic codes of length βps over Fq are equivalent to skew cyclic codes of length βps over
Fq.
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Remark 2. As a special case of Corollary 3 when β = 1 we obtain that all skew λ-constacyclic
codes of length ps over Fq are equivalent to skew cyclic codes of length ps over Fq.

Proposition 1. [3] Consider p a prime number, θ : a 7→ ap the Frobenius automorphism over Fp2
and α in Fp2 . Then there are p + 1 skew cyclic codes of length 2 over Fp2 ; their skew generator
skew polynomials are the skew polynomials x+ α where αp+1 = 1.

Proposition 1 yields the following corollary.

Corollary 4. If F∗q contains an element δ where λ = δp+1 and λ in Fp, then by Corollary 1, we
have p + 1 λ-constacyclic codes of length 2 over Fp2 ; their skew generator polynomials are the
skew polynomials ϕ(x+ α) where αp+1 = 1.

Example 4. Consider F32 = F3(w) with w2 − w − 1 = 0 and θ : a 7→ a3. The skew polynomial
x+ w2 ∈ F32 [x, θ] generates a θ-cyclic code C of length 3 (because (w2)3+1 = w8 = 1).

We have 2 = w4 then x2 + 1 = 2(w7x+ w2)(w7x+ w2). The skew negacyclic code of length 2
over F9 generated by ϕ(x+ w2) = w7x+ w2 is equivalent to a skew cyclic code C.

4 The equivalency between skew λ-constacyclic codes and
skew negacyclic codes

In this section, we provide conditions on the existence of an isomorphism between skew λ-
constacyclic codes and skew negacyclic codes. Like in previous section we assume that Fq is
a finite field, θ is an automorphism of Fq and n is a multiple of the order of θ and an odd intger.

Theorem 4. If F∗q contains an element δ where λ = δ[n] then skew λ-constacyclic codes of length
n over Fq are equivalent to skew negacyclic codes of length n over Fq.

Proof. Let δ an element in F∗q sush that λ = δ[n] and define

ψ : R�〈xn + 1〉 −→ R�〈xn − λ〉
f(x) 7−→ f(−δ−1x)

as for the proof of Theorem 1, we prove that ψ is a ring isomorphism and a Hamming isometry.
As the skew λ-constacyclic codes and skew negacyclic codes are ideals, the result follows from [12].

Corollary 5. If F∗q contains an element δ where λ = δ[n] then the number of skew λ-constacyclic
codes of length n over Fq is equal to the number of skew negacyclic codes of length n over Fq.

Example 5. For F53 = F5(w) where w3 + 3w + 3 = 0 , θ is the automorphism of F53 given by
a 7→ a5 and Fθ53 = F5.

x3 + 1 = (x+ w52)(x2 + w122x+ w72).

The table 3 below gives examples of skew 2-constacyclic code of length 3 over F53 who are
equivalent to skew negacyclic code C = 〈x2 + w122x+ w72〉of length 3 over F53 .

In the following, we give a relationship between skew cyclic codes and skew negacyclic codes.

Corollary 6. the skew cyclic codes of length n over Fq are equivalent to the skew negacyclic codes
of length n over Fq.

In the following example, we show that not all a skew cyclic codes of length n over Fq are
equivalent to a skew negacyclic code of length n over Fq, when n is even.

Example 6. Let F9 = F3(w) where w2 = w + 1, θ the Frobenius automorphism. Let the skew
cyclic code C = 〈x3 +x2 +x+1〉 over F9 with parameter [4, 1, 4]. There is no skew negacyclic code
of length 4 equivalent to C (because there is no skew negacyclic code of length 4 with minimum
distance 4).
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δ g(x) d
w x2 + w65x+ w78 3
w5 x2 + w85x+ w102 3
w17 x2 + w21x+ w50 3
w29 x2 + w81x+ w122 3
w37 x2 + w121x+ w46 3
w41 x2 + w17x+ w70 3
w53 x2 + w77x+ w18 3
w57 x2 + w97x+ w42 3
w61 x2 + w117x+ w66 3
w89 x2 + w9x+ w110 3
w97 x2 + w49x+ w34 3
w109 x2 + w109x+ w106 3
w113 x2 + w5x+ w6 3
w121 x2 + w45x+ w54 3

Table 3: Some skew 2-constacyclic codes of length 3 over F53

Corollary 7. the number of skew cyclic codes of length n over Fq is equal to the number of skew
negacyclic codes of length n over Fq.

Example 7. Using the same automorphism from Example 5 one gets:

x3 + 1 = (x+ w12)(x2 + w114x+ w112).

Then by Theorem 4

x3 − 1 = −(−x− w12)(x2 − w114x+ w112).

By Corollary 6 C = 〈x2−w114x+w112〉 is the skew cyclic code of length 3 over F53 equivalent
to the skew negacyclic code 〈x2 + w114x+ w112〉 of length 3 over F53 .

In the following, using the ring isomorphism ψ in Theorem 4, we give a factorization of the
polynomial xn − λ in R.

Corollary 8. If F∗q contains an element δ where λ = δ[n], and xn + 1 =
∏k
i=1 fi(x) where

fi(x) 1 ≤ i ≤ k are monic irreducible in R, then xn − λ = −λ
∏k
i=1 fi(−δ−1x) is a factorization

of xn − λ into irreducible factors in R.

Proof.

xn + 1 =

k∏
i=1

fi(x)

ψ(xn + 1) = ψ(

k∏
i=1

fi(x)) =

k∏
i=1

ψ(fi(x))

(because ψ is a morphism)

(−1)nλ−1xn + 1 = −λ−1(xn − λ) =

k∏
i=1

(fi(−δ−1x))

xn − λ = −λ
k∏
i=1

fi(−δ−1x).
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Theorem 5. If ([n], q−1) = 1 Then all skew λ-constacyclic codes of length n over Fq are equivalent
to skew negacyclic codes of length n over Fq.

Example 8. Consider F53 = F5(w) where w3 + 3w + 3 = 0 , θ is the automorphism of F53 given
by a 7→ a5 and Fθ53 = F5.

Here is a factorization of the skew polynomial x9 + 1 as a product of monic irreducible skew
polynomials:

x9 + 1 = (x2 +w121x+w12)(x2 +w65x+w96)(x2 +w91x+w16)(x+w64)(x+w12)(x+w48).
As w123 is a [9]-th root of w31, by Corollary 8 a factorization of the skew polynomial x9 −w31

as a product of irreducible skew polynomials is:

x9 − w31 = −w31(((−wx)2 + w121(−wx) + w12)((−wx)2 + w65(−wx) + w96)((−wx)2 +
w91(−wx) + w16)((−wx) + w64)((−wx) + w12)((−wx) + w48))

5 LCD skew cyclic and negacyclic codes

Like previously, in this section, we assume that Fq is a finite field, θ is an automorphism of Fq and
n is a multiple of the order of θ.

The (Euclidean) dual of a linear code C of length n over Fq is defined as C⊥ = {x ∈ Fn |
∀y ∈ C,< x, y >= 0} where for x, y in Fnq , < x, y >:=

∑n
i=1 xiyi is the (Euclidean) scalar product

of x and y. A linear code is called an Eulidean LCD code (linear code with complementary
dual) if C ⊕ C⊥ = Fnq , which is equivalent to C ∩ C⊥ = {0}.

Assume that q = r2 is an even power of an arbitrary prime and denote for a in Fq, a = ar.
The (Hermitian) dual of a linear code C of length n over Fq is defined as C⊥H = {x ∈ Fn | ∀y ∈
C,< x, y >H= 0} where for x, y in Fnq , < x, y >H :=

∑n
i=1 xiyi is the (Hermitian) scalar product

of x and y. The code C is Hermitian LCD if C ∩ C⊥H = {0}.

5.1 Skew generator polynomials of LCD skew cyclic and negacyclic
codes

The Greatest Common Right Divisor (GCRD) d(x) of f(x) and g(x) is a right divisor of f(x) and
g(x) , and if e(x) is another right divisor of f(x) and g(x) then d(x) = k(x)e(x) for some skew
polynomial k(x).

The Greatest Common Left Divisor (GCLD) of f(x) and g(x) is a monic skew polynomial
defined in a similar way.

The Least Common Left Multiple (LCLM) m(x) of f(x) and g(x) is the unique monic skew
polynomial in R such that if there exists h(x) ∈ R such that f(x) |r h(x) and g(x) |r h(x) then
h(x) = k(x)m(x) for some skew polynomial k(x) and f(x) is a right divisor of m(x), g(x) is a
right divisor of m(x).

The Least Common Right Multiple (LCRM) of f(x) and g(x) is a monic skew polynomial
defined in a similar way.

In the non-commutative ring R/(xn − λ) we identify the image of P ∈ R under the canonical
morphism φ : R 7−→ R/(xn − λ) with the remainder of P by the right division with xn − λ in R.

Before we prove our main results in this section, we recall some results.

Lemma 4. Let Ci,1 ≤ i ≤ 2 be a skew λ-constacyclic code of length n over Fq with skew generator
polynomial gi(x), then:

1. C1 ∩ C2 is a skew λ-constacyclic code of length n generated by lclm(g1(x), g2(x)).

2. C1 + C2 is a skew λ-constacyclic code of length n generated by gcrd(g1(x), g2(x)).

Proof.
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1. Let c = (c0, c1, . . . , cn−1) ∈ C1 ∩ C2 =⇒ c ∈ C1 and c ∈ C2

(λθ(cn−1), θ(c0), . . . , θ(cn−2)) ∈ C1 and (λθ(cn−1), θ(c0), . . . , θ(cn−2)) ∈ C2 ( because
C1 and C2 skew constacyclic codes).

Then (λθ(cn−1), θ(c0), . . . , θ(cn−2)) ∈ C1 ∩ C2

C1 ∩ C2 is generated by φ(lclm(g1(x), g2(x))) :

we have g1(x) |r m(x) = lclm(g1(x), g2(x)) and g2(x) |r m(x) = lclm(g1(x), g2(x)) =⇒
φ(m(x)) ∈ 〈g1(x)〉l and φ(m(x)) ∈ 〈g2(x)〉l Then 〈φ(m(x))〉 ⊆ C1 ∩ C2.
conversely,
Let φ(f(x)) ∈ C1 ∩ C2 use Right Division Algorithm

f(x) = q(x)m(x) + r(x) deg(r(x)) < deg(m(x)).

since φ(f(x)) ∈ C1 ∩ C2 and m(x) = lclm(g1(x), g2(x)), we have g1(x); g2(x) divides (on
the right) both f(x) and m(x) then g1(x), g2(x) divides r(x) = f(x)− q(x)m(x).
Since m(x) is the Least Common Left Multiple of g1(x) and g2(x) we must have r(x) = 0.

f(x) = q(x)m(x)⇒ φ(f(x)) = φ(q(x))φ(m(x))⇒ C1 ∩ C2 ⊆ 〈φ(m(x))〉

2. Let c = a+ b = (a0 + b0, a1 + b1, . . . , an−1 + bn−1) ∈ C1 + C2

(λθ(an−1), θ(a0), . . . , θ(an−2)) ∈ C1 and (λθ(bn−1), θ(b0), . . . , θ(bn−2)) ∈ C2 ( because
C1 and C2 skew constacyclic codes).

(λθ(an−1) + λθ(bn−1), θ(a0) + θ(b0), . . . , θ(an−2) + θ(bn−2)) ∈ C1 + C2 Then (λθ(an−1 +
bn−1), θ(a0 + b0), . . . , θ(an−2 + bn−2)) ∈ C1 + C2

Let g(x) = gcrd(g1(x), g2(x)). It follows by [1, Theorem 7] that

g(x) = a(x)g1(x) + b(x)g2(x) for some a(x) and b(x) in Fq[x; θ].

⇒ φ(g(x)) = φ(a(x))g1(x) + φ(b(x))g2(x) for some a(x) and b(x) in Fq[x; θ].

So φ(g(x)) ∈ C1 + C2. Since C1 + C2 is left ideal, 〈φ(g(x))〉 ⊆ C1 + C2.

conversely, g(x) |r g1(x), which shows that C1 ⊆ 〈φ(g(x))〉 similarly C2 ⊆ 〈φ(g(x))〉 implying
C1 + C2 = 〈φ(g(x))〉.

After we have proof the Lemma 4, we found it in [9], as a Theorem [Theorem 6.3.7]. We
consider that our proof is different and it is more clair and simple as the one given in [9] because
we have just using the Right Division Algorithm.

Example 9. For F4 = F2(w) where w2 = w+ 1 and θ the Frobenius automorphism θ : a 7→ a2 we
have :

x8 + 1 = (x3 + wx2 + x+ w)(x5 + w2x4 + x+ w2)
= (x3 + wx2 + w2)(x5 + w2x4 + x3 + +x2 + w)

Let C1 be the skew cyclic code of length 8 and minimum distance 4 over F4 with skew generator
polynomial g1(x) = x5 +w2x4 +x+w2 and let C2 be the skew cyclic code of length 8 and distance
5 over F4 with skew generator polynomial g2(x) = x5 + w2x4 + x3 + x2 + w. Then by lemma 4 :

C1 + C2 = 〈gcrd(g1(x), g2(x))〉 = 〈x3 + x2 + x+ 1〉 with parameter [8, 5, 2].
C1 ∩C2 = 〈lclm(g1(x), g2(x))〉 = 〈x7 + x6 + x5 + x4 + x3 + x2 + x+ 1〉 with parameter [8, 1, 8].
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Consider λ in (Fθq)∗ and C a skew λ-constacyclic code of length n and skew generator polynomial

g. According to Theorem 1 of [8], the Euclidean dual C⊥ of C is a skew λ−1-constacyclic code
generated by h\ where gh = hg = xn−λ. In order to consider C∩C⊥, we will assume that λ2 = 1.
Similarly, if q = r2, the Hermitian dual C⊥H of C is generated by h\.

In the following, we give a necessary and sufficient condition for a skew λ-constacyclic code to
be a LCD code when λ2 = 1.

Theorem 6. Assume that λ2 = 1. Consider a skew λ-constacyclic code C with skew generator
polynomial g and length n. Consider h such that hg = gh = xn − λ.

1. C is an Euclidean LCD if and only if gcrd(g, h\) = 1.

2. If q is an even power of a prime number, q = r2, C is an Hermitian LCD code if and only
if gcrd(g, h\) = 1.

Proof.
By Lemma 4 the skew polynomial m(x) = lclm(g(x), h∗(x)) is skew generator polynomial of

the skew constacyclic code C ∩ C⊥.
C ∩ C⊥ = {0} ⇐⇒ m(x) = xn − λ
⇐⇒ deg(gcrd(g(x), h∗(x))) = 0 (because by [18] we have deg(gcrd(g(x), h∗(x)))+deg(lclm(g(x), h∗(x))) =

deg(g(x)) + deg(h∗(x)) and we have deg(g(x)) = n− k, deg(h∗(x)) = k)
⇐⇒ gcrd(g(x), h∗(x)) = 1
The same proof holds for Hermitian LCD codes.

Example 10. Consider F9 = F3(w) where w2 = w + 1 and θ the Frobenius automorphism
θ : a 7→ a3. One has :

x4 + 1 = (x2 + w3x+ 1)(x2 + w7x+ 1).

The skew reciprocal polynomial of x2+w3x+1 is x2+wx+1 and gcrd(x2+w7x+1, x2+wx+1) = 1.
Then by Theorem 6 the skew negacyclic code C = 〈x2 + w7x + 1〉 of length 4 and distance 3

over F9 is an Euclidean LCD code.

Example 11. For F9 = F3(w) where w2 = w + 1 and θ the Frobenius automorphism θ : a 7→ a3,
one has :

x6 − 1 = (x3 + wx2 + x+ 1)(x3 + w7x2 + x+ 2).

The skew reciprocal polynomial of x3 + wx2 + x + 1 is x3 + x2 + w3x + 1 and gcrd(x3 + w7x2 +
x+ 2, x3 + x2 + wx+ 1) = 1.

Then by Theorem 6 the skew cyclic code C = 〈x3 + w7x2 + x + 2〉 of length 6 and distance 4
over F9 is Hermitian LCD code.

5.2 LCD and θ-reversible skew constacyclic codes

Over a finite field Fq, there is a strong link between LCD cyclic codes and reversible codes ( [13],
[15]).

Definition 1. Let Fq be the finite field where q is a prime power. A code C is called reversible if
(c0, c1, . . . , cn−1) ∈ C implies that (cn−1, cn−2, . . . , c0) ∈ C.

The cyclic code generated by the monic polynomial g is reversible if and only if g(x) is self-
reciprocal (i.e g(x) = g](x)) [15, Theorem 1]. Furthermore, if q is coprime with n, a cyclic code
of length n is LCD if and only if C is reversible [13]. The example below shows that it is not
necessarily the case for skew cyclic codes when θ is not the identity.
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Example 12. Let F9 = F3(w) where w2 = w+1, θ the Frobenius automorphism and R = F9[x; θ].
We have :

x2 − 1 = (x+ w2)(x+ w2)

The skew polynomial g = x+ w2 is such that g(x) = g](x). The greatest common right divisor of
g(x) and h∗(x) is x + w2 (i.e gcrd(g(x), h∗(x)) 6= 1) therefore, by Theorem 6 C is not an LCD
code.

Definition 2. Let Fq be the finite field where q is a prime power and θ be an automorphism of
Fq, C be a code of length n over Fq.

1. The code C is called a θ-reversible code if

∀c ∈ C c = (c0, c1, . . . , cn−1) ∈ C =⇒
(
cn−1, θ(cn−2), . . . , θn−1(c0)

)
∈ C

2. If q is an even power of a prime number, q = p2, C is a conjugate-skew reversible code if

∀c ∈ C c = (c0, c1, . . . , cn−1) ∈ C =⇒
(
cn−1, θ(cn−2), . . . , θn−1(c0)

)
∈ C

, where for a in Fq notice that a = ap

We can notice that if C is θ-reversible(resp. conjugate-skew reversible), then g = g\(resp.

g = g\). The converse is true when g is a proper central divisor of xn − λ. In this case the skew
constacyclic code is in fact a cyclic code.

Theorem 7. Let g(x) be a proper central divisor of xn−λ. Then a skew constacyclic code C is a
θ-reversible code (resp. conjugate-skew reversible code) if and only if g(x) is self-reciprocal (resp.

g = g\).

Proof. If g(x) is self-reciprocal then g(x) = g](x).
Let c(x) = c0 + c1x+ . . .+ cn−1x

n−1 ∈ C = 〈g(x)〉.. Consider f(x) such that c(x) = f(x)g(x).
As g(x) is central, c(x) = g(x)f(x), therefore

c∗(x) = (g(x)f(x))∗ = Θn−k(f∗(x))g∗(x)
= Θn−k(f∗(x))θn−k(g0)((1/θn−k(g0))g∗(x))
= Θn−k(f∗(x))θn−k(g0)g](x)
= Θn−k(f∗(x))θn−k(g0)g(x)

Then c∗(x) ∈ C which means that
(
cn−1, θ(cn−2), . . . , θn−1(c0)

)
∈ C.

Conversely if,
g(x) ∈ C =⇒ (g0, g1, . . . , gr, 0, . . . , 0) ∈ C

=⇒ (0, . . . , 0, θn−r−1(gr), . . . , θ
n−1(g0)) ∈ C

=⇒ (λθn(gr), . . . , λθ
r+1+n−1(g0), 0, . . . , 0) ∈ C

(because C is a skew λ-constacyclic code)
=⇒ (gr, . . . , θ

r(g0), 0, . . . , 0) ∈ C
(because C is linear and the order of θ divides n)

we have that g(x) ∈ C =⇒ g∗(x) ∈ C =⇒ g(x) |r g∗(x)
so g(x) = g](x)
The same proof holds for conjugate-skew reversible code.

Example 13. For F9 = F3(w) where w2 = w + 1 and θ the Frobenius automorphism θ : a 7→ a3.
In F9[x; θ] the polynomial x6−1 has two θ-reversible codes generated by a proper central : g1(x) =
x2 + 2 and g2(x) = x4 + x2 + 1.

Example 14. Let F9 = F3(w) where w2 = w + 1, θ the Frobenius automorphism.

x4 − 1 = (x3 + w7x2 + 2x+ w3)(x+ w)

The skew polynomial g = x+w generates a skew cyclic code C of length 4. The greatest common
right divisor of g(x) and h∗(x) is 1 therefore by Theorem 6 C is LCD. We have (1, w6, w6, 0) in
C but (0, w6, w6, 1) is not in C then C is not a reversible code. Furthermore We have (0, 0, 2, w3)
in C but (w3, 2, 0, 0) is not in C therefore C is not θ-reversible either.
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In the following, we give a necessary and sufficient condition for a skew λ-constacyclic code gen-
erated by a skew polynomial g(x) (not necessarily central) to be a LCD code under some assump-
tions (Theorem 8 and Corollary 9). We make some link with θ-reversible codes and conjugate-skew
reversible codes. Before we prove our main results in this section, we define the following set: let
f, g in R such that gcrd(f(x), g(x)) = 1 ,

A(f,g) :=
{

(a(x), b(x)) ∈ R2 | a(x)f(x) + b(x)g(x) = 1 and b(x)g(x) = g(x)b(x)
}
.

Lemma 5. Let Fq be the finite field where q is a prime power and θ be an automorphism of Fq,
if there are two polynomials a(x) and b(x) in R such that

a(x)f(x) + b(x)g(x) = 1,

then the greatest common right divisor (gcrd) of f(x) and g(x) is equal to 1 (gcrd(f(x), g(x)) = 1).

Proof. Assume that h(x) is right divisor of f(x) and g(x) then there exists two skew polynomials
t(x) and m(x) such that f(x) = t(x)h(x),g(x) = m(x)h(x)

a(x)t(x)h(x) + b(x)m(x)h(x) = ((a(x)t(x) + b(x)m(x))h(x) = 1

h(x) is right divisor of ((a(x)t(x) + b(x)m(x))h(x) then h(x) |r 1.

In the following, we give properties of skew polynomial ring.

Theorem 8. Consider g, h in R and λ ∈ {−1, 1} such that xn − λ = gh = hg with deg(h) = k.

1. Assume that A(g,Θb(h∗)) is nonempty. Then g = Θk+b(g\) for all b in {0, 1}.

2. If the greatest common right divisor of h(x) and g(x) is equal to 1, g0 in Fθq and g = Θk+b(g\)

then gcrd(g(x),Θb(h\(x)))) = 1 for all b in {0, 1}.

3. If the greatest common left divisor of g and h is equal to 1 and if g = Θb(g\), then
gcrd(g(x),Θb(h\(x))) = 1 for all b in {0, 1}.

Proof. By Lemma 1 we have (xn − λ)∗ = (hg)∗ = Θk(g∗)h∗

⇐⇒ xn − λ = −λΘk(g∗)h∗ = hg
(because λ2 = 1).

1. Consider a(x), b(x) in R such that a(x)g(x) + b(x)Θb(h∗(x)) = 1 and b(x)Θb(h∗(x)) =
Θb(h∗(x))b(x).

a(x)g(x) + b(x)Θb(h∗(x)) = 1

⇐⇒ Θk+b(g∗)a(x)g(x) + Θk+b(g∗)b(x)Θb(h∗(x)) = Θk+b(g∗)

⇐⇒ Θk+b(g∗)a(x)g(x) + Θk+b(g∗)Θb(h∗(x))b(x) = Θk+b(g∗)

⇐⇒ Θk+b(g∗)a(x)g(x) + Θb(Θk(g∗)h∗(x))b(x) = Θk+b(g∗)

⇐⇒ Θk+b(g∗)a(x)g(x)− λΘb(−λΘk(g∗)h∗(x))b(x) = Θk+b(g∗)

⇐⇒ Θk+b(g∗)a(x)g(x)− λb(x)(xn − λ) = Θk+b(g∗)

Then g |r Θk+b(g∗)⇒ Θk+b(g∗) = αg ⇒ α = θk+b(θn−k(g0))⇒ α = θb(g0), therefore

g = Θb(g−1
0 Θk(g∗)) = Θb(g−1

0 Θk(Θn−k(g0)g\)) = Θk+b(g\).

2. We have
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−λΘk(g∗)h∗ = hg ⇐⇒ −λΘk(g∗)h∗ − hg = 0
⇐⇒ −λΘk(g∗)h∗ − gh = 0
(because xn − λ ∈ Z(R))
⇐⇒ −λΘk+b(g∗)Θb(h∗)− gh = 0
⇐⇒ −λΘk+b(g∗)Θb(h∗)−Θb(g−1

0 Θk(g∗))h = 0
⇐⇒ Θk+b(g∗)(Θb(h∗) + λg−1

0 h) = 0
(because g0 ∈ Fθq)

h = −λg0Θb(h∗)

gcrd(h, g) = 1⇐⇒ gcrd(−λg0Θb(h∗), g) = 1⇐⇒ gcrd(Θb(h∗), g) = 1

3. Assume that the greatest common left divisor of g and h is equal to 1 and consider a right
divisor u of degree d of Θb(g\) and Θb(h\). Then u divides on the right both Θb(g∗) and
Θb(h∗). Consider G such that Θb(g∗) = G · u, and denote r = deg(g), then Θr+e(g) =
Θb((Θb(g∗))∗) = Θr−d+b(u∗) · Θb(G∗) where e = 0 if b = 0 and e = 2 if b = 1, therefore
Θ−d−b(u∗) divides g on the left. Similarly, Θ−d−b(u∗) divides Θb(h) on the left, therefore
u is a constant and the greatest common right divisor of Θb(g\) and Θb(h\) is equal to 1.
Lastly, if g = Θb(g\), then gcrd(g,Θb(h\)) = 1.

In the following, using the Theorem 8 we give a necessary and sufficient condition for a skew
constacyclic code to be an Euclidean LCD code and Hermitian LCD code.

Corollary 9. Consider C a skew λ-constacyclic code with skew generator g and length n.

1. If A(g,Θb(h∗)) is nonempty and if C is an Euclidean LCD skew constacyclic code or C is an

Hermitian LCD skew constacyclic code then g = Θk+b(g\) for all b in {0, 1}.

2. If the greatest common right divisor of h(x) and g(x) is equal to 1, g0 in Fθq and g(x) =

Θk+b(g\(x)) then C is an Euclidean LCD skew constacyclic code when b = 0 and C is an
Hermitian LCD skew constacyclic code when b = 1.

3. If the greatest common left divisor of h(x) and g(x) is equal to 1 and g = Θb(g\) then C
is an Euclidean LCD skew constacyclic code when b = 0 and C is an Hermitian LCD skew
constacyclic code when b = 1.

4. If the greatest common left divisor of h(x) and g(x) is equal to 1 and C is a θ-reversible code
(resp.conjugate-skew reversible code) then C is an Euclidean LCD skew constacyclic code
(resp. C is an Hermitian LCD skew constacyclic code ).

Remark 3. Suppose gcrd(g(x),Θb(h∗))) = 1, there are polynomials (a(x), b(x)) ∈ A(g,Θb(h∗)), as
a special case of Corollary 9 when |〈θ〉| | k we obtain C is an Euclidean LCD skew constacyclic
code or C is an Hermitian LCD skew constacyclic code then g = Θb(g\).

In the following, we give necessary and sufficient condition for existence LCD skew cyclic code
and LCD skew negacyclic code when n an odd integer, The following proposition is inspired from
Theorem 4 and Corollary 6.

Proposition 2. Let Fq be a finite field where q is a prime power and θ be an automorphism over
Fq of order m,n an odd integer then there exist LCD skew cyclic code if and only if there exist
LCD skew negacyclic code.

Proof. g(x) is a generated polynomial of the LCD skew negacyclic code C then

xn + 1 = h(x)g(x)
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by Theorem 4 we have

ψ(xn + 1) = ψ(h(x))ψ(g(x))⇒ xn − 1 = −ψ(h(x))ψ(g(x))

because we have n odd and λ = 1 = 1[n] in this case we have δ = 1
ψ(g(x)) is a generated polynomial of the LCD skew cyclic code.
C is LCD skew negacyclic code therefore gcrd(g, h∗) = 1 Furthermore, g(x) coprime with h∗(x)

Then by [1, Theorem 7] there are polynomials polynomials a(x), and b(x) such that

a(x)g(x) + b(x)h∗(x) = 1

by Theorem 4 we have

ψ(a(x))ψ(g(x)) + ψ(b(x))ψ(h∗(x)) = 1

Then
(ψ(g(x)), ψ(h(x))∗) = 1.

Note that

j =

{
1 if k odd

0 otherwise

where k = deg(h(x)).
ψ(h∗(x) = (−1)jψ(h(x))∗ because

ψ(h∗(x)) =
∑k
i=0(−1)i(δ−1)[i]θi(hk−i)x

i;

ψ(h(x))∗ = (δ−1)[k]
∑k
i=0(−1)i+j(δ)[i]θi(hk−i)x

i

and we have δ = 1.
Similarly, if there exist LCD skew cyclic code Then there exist LCD skew negacyclic code.

Remark 4. from Proposition 2 if there exist LCD skew negacyclic code Then there exist LCD
skew cyclic code and by Theorem 4 these last two are equivalent.

In table 4, one lists the best Hamming distances of LCD θ-negacyclic codes with length 6 10.
For each n, we give a skew generator polynomial g we list parameters of LCD θ-negacyclic codes
over F9 = F3(w) where w2 = w + 1, θ the Frobenius automorphism.

In table 5, one lists the best Hamming distances of LCD θ-cyclic codes with length 6 14. For
each n, we give a skew generator polynomial g(x) we list parameters of LCD θ-cyclic codes over
F4 = F2(w) = where w2 = w + 1, θ the Frobenius automorphism.

The values dopt correspond to the best distances for linear codes from [11], the distances does
not attaining the optimal value for linear codes are lines on them.

We focus now on Euclidean and Hermitian LCD θ-cyclic and θ-negacyclic codes.

6 LCD skew cyclic and negacyclic codes over Fp2

In this section, we describe LCD skew cyclic and negacyclic codes in the particular case when
q = p2 is the square of a prime number p and θ : a 7→ ap is the Frobenius automorphism over Fq.
We first give a characterization of LCD skew cyclic and negacyclic codes using a lclm factorization
of their skew generator polynomials (Theorem 9). This point of view is useful for the construction
and the enumeration of the codes (Propositions 5, 6, 7).

Like previously, we assume that the order of θ divides n, therefore n is even. Euclidean LCD
skew cyclic and negacyclic codes of length n = 2k are generated by monic skew polynomials g
satisfying :

g · h = h · g = x2k ± 1 and gcrd(g, h\) = 1 (1)
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[n, k, d] dopt g(x)
[2, 1, 2] 2 x+ w3

[2, 1, 2] 2 x+ w7

[4, 2, 3] 3 x2 + w2x+ 2
[4, 2, 3] 3 x2 + w5x+ 1
[6, 3, 4] 4 x3 + x2 + wx+ w7

[6, 3, 4] 4 x3 + w3x2 + w7x+ w7

[8, 4, 5] 5 x4 + x3 + wx2 + w5x+ w2

[8, 4, 5] 5 x4 + wx3 + x2 + w3x+ 1
[8, 4, 5] 5 x4 + wx3 + w5x2 + w2x+ w2

[10, 9, 2] 2 x+ w
[10, 8, 2] 3 x2 + 1
[10, 6, 4] 5 x4 + x2 + w6x+ w6

[10, 6, 4] 4 x4 + x3 + w6x+ 2
[10, 5, 6] 6 x5 + x4 + w3x3 + w6x2 + wx+ w5

[10, 5, 6] 6 x5 + x4 + wx3 + w2x2 + w3x+ w7

[10, 4, 6] 7 x6 + w6x5 + x4 + w5x3 + 2x2 + x+ 2
[10, 4, 6] 7 x6 + w7x5 + w6x4 + w6x3 + w6x2 + wx+ 1
[10, 2, 5] 9 x8 + 2x6 + x4 + 2x2 + 1
[10, 1, 10] 10 x9 + wx8 + 2x7 + w5x6 + x5 + wx4 + 2x3 + w5x2 + x+ w

Table 4: Skew generator polynomials of Euclidean LCD skew-negacyclic codes over F9 of lengths
6 10

while Hermitian LCD skew cyclic and negacyclic codes are characterized by :

g · h = h · g = x2k ± 1 and gcrd(g,Θ(h\)) = 1 (2)

where Θ :
∑
aix

i 7→
∑
θ(ai)x

i.
Let us introduce a first notation. For F (x2) ∈ Fp[x2] and b in {0, 1}, consider the following

set :

L(b)
F (x2) := {g ∈ R | gmonic, g · h = F (x2) and gcrd(Θb(h\), g) = 1}.

The following proposition is inspired from Proposition 28 of [5] and Proposition 2 of [3]. It will
enable to construct LCD skew cyclic and negacyclic codes over Fp2 .

Proposition 3. Consider Fq a finite field with q = p2 elements where p is a prime number,
θ : a 7→ ap the Frobenius automorphism over Fp2 , R = Fq[x; θ]. Consider F (x2) = f1(x2) · · · fr(x2)

where f1(x2), . . . , fr(x
2) are polynomials of Fp[x2] such that fi is coprime with fj and f \j for all

i 6= j. The application

φ :

{
L(b)
f1(x2) × · · · × L

(b)
fr(x2) → L(b)

F (x2)

(g1, . . . , gr) 7→ lclm(g1, . . . , gr)

is bijective.

Proof. • The application φ is well-defined.

Consider (g1, . . . , gr) in L(b)
f1(x2) × · · · × L

(b)
fr(x2) and g = lclm(g1, . . . , gr). Consider h1, . . . , hr

such that gihi = higi = fi(x
2) and gcrd(gi,Θ

b(h\i)) = 1. Consider h = lcrm(h1, . . . , hr)

First of all, as h1, . . . , hr divide respectively f1(x2), . . . , fr(x
2), and as f1(x2), . . . , fr(x

2) are
pairwise coprime central polynomials, the degree of lcrm(h1, . . . , hr) is equal to

∑r
i=1 deg(hi).
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In the same way, the degree of lclm(g1, . . . , gr) is equal to
∑r
i=1 deg(gi). Furthermore, as

gi · hi = fi(x
2), the degree of gihi is equal to the degree of fi(x

2) in x, therefore the degree
of gh is equal to the degree of F (x2) in x.

Consider, for i in {1, . . . , r}, Ai in R such that g = Ai · gi and Bi in R such that h = hi ·Bi.
One gets g · h = Ai · gi · hi · Bi = Ai · fi(x2) · Bi. As fi(x

2) is central, it divides g · h.
The polynomials fi(x

2) are pairwise coprime in Fp[x2], therefore their least common right
multiple is equal to their product F (x2), and F (x2) divides g · h. Considerations on the
degrees of the involved polynomials imply the equality g ·h = F (x2). Now gcrd(g,Θb(h\)) =

gcrd(lclm(g1, . . . , gr), lclm(Θb(h\1), . . . ,Θb(h\r)). One can note that the skew polynomials gi
and Θb(h\j) are right coprime if i = j ( gcrd(gi,Θ

b(h\i)) = 1). If i 6= j consider a right divisor

u of gi and Θb(h\j), then u divides fi(x
2) and f \j (x2), as fi(x

2) and f \j (x2) are coprime one

gets that u = 1. One deduces that gcrd(g,Θb(h\)) = 1.

The skew polynomial g belongs to L(b)
F (x2) therefore φ is well defined.

• The application φ is bijective.

Consider g in L(b)
F (x2), then g divides F (x2), therefore, according to Theorem 4.1 of [10],

g = lclm(g1, . . . , gr) where gi = gcrd(fi(x
2), g) and this lclm-decomposition into skew poly-

nomials dividing f1(x2), . . . , fr(x
2) is unique. Furthermore deg(g) =

∑r
i=1 deg(gi) bevause

fi(x
2) and fj(x

2) are coprime. Let us prove that gi belongs to L(b)
fi(x2). Consider h in R such

that gh = hg = F (x2) and gcrd(g,Θb(h\)) = 1. As h divides F (x2), according to Theorem
4.1 of [10], h = lcrm(h1, . . . , hr) where hi = gcld(fi(x

2), h). This lcrm-decomposition into
skew polynomials dividing f1(x2), . . . , fr(x

2) is unique and deg(h) =
∑r
i=1 deg(hi).

Consider, for i in {1, . . . , r}, Ai in R such that g = Ai ·gi and Bi in R such that h = hi ·Bi. As
g ·h = F (x2) and as F (x2) is central, the skew polynomial gi ·hi divides F (x2) on the right.
Therefore, gi · hi = lclm(gcrd(gi · hi, fj(x2)), j = 1, . . . , r) = gcrd(gi · hi, fi(x2)). Therefore
gi·hi divides fi(x

2). As
∑r
i=1 deg(gihi) = deg(g)+deg(h) = deg(F (x2)) =

∑r
i=1 deg(fi(x

2)),
one gets gi · hi = fi(x

2). Lastly, consider u in R such that u divides on the right gi and

Θb(h\i). As hi divides on the left h, Θb(h\i) divides on the right Θb(h\), therefore u divides
on the right both g and Θb(h\), and u = 1.

We know introduce some notations that will be useful later :

DF (x2) := {f ∈ Fp[x2] | f monic and dividesF (x2) inFp[x2]}

Fir := {f = f(x2) ∈ Fp[x2] | f = f \ irreducible in Fp[x2],degx2 f > 1}

Fred := {f = f(x2) ∈ Fp[x2] | f = firf
\
ir, fir 6= f \ir irreducible in Fp[x2]}.

Theorem 9. Consider Fq a finite field with q = p2 elements where p is a prime number, θ :
a 7→ ap the Frobenius automorphism over Fp2 , R = Fq[x; θ], λ ∈ {−1, 1}, b ∈ {0, 1}. Consider
xn − λ = f1(x2)p

s · · · fr(x2)p
s

where f1(x2), . . . , fr(x
2) are polynomials of Fp[x2] belonging to

{x2 ± 1} ∪ Fir ∪ Fred. Consider a (θ, λ)-constacyclic code C of length n and skew generator
polynomial g.

1. C is an Euclidean LCD code if and only if g = lclm(g1, . . . , gr) where for all i in {1, . . . , r},
gi ∈ L(0)

fi(x2).

2. C is an Hermitian LCD code if and only if g = lclm(g1, . . . , gr) where for all i in {1, . . . , r},
gi ∈ L(1)

fi(x2).
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Proof. According to Theorem 6, the Euclidean (resp. Hermitian) LCD θ-cyclic codes of length

2k are generated by the elements of the set L(b)

x2k−1
where b = 0 (resp. b = 1). The Euclidean

(resp. Hermitian) LCD θ-negacyclic codes of length 2k are associated to the set L(b)

x2k+1
where

b = 0 (resp. b = 1). As x2k ± 1 is self-reciprocal, one has x2k ± 1 = f1(x2)p
s · · · fr(x2)p

s

where
f1(x2), . . . , fr(x

2) are self-reciprocal polynomials of Fp[x2] who are either irreducible or products
of an irreducible polynomial and its reciprocal polynomial. Therefore for i 6= j, fi is coprime with
fj and f \j and Theorem 3 can be applied to F (x2) = x2k ± 1.

Remark 5. {1, F (x2)} ⊂ L(b)
F (x2). That means that the trivial codes {0} and Fnq are Hermitian

and Euclidean LCD θ-cyclic and θ-negacyclic codes.

Remark 6. The Euclidean LCD skew cyclic (resp. negacyclic) codes of length n over Fp2 are
the skew cyclic (resp. negacyclic) codes C =

⋂r
i=1 Ci where Ci is a skew cyclic (resp. negacyclic)

code generated by gi ∈ L(0)(fi(x
2)p

s

) and where the polynomial F (x2) = xn − 1 (resp. xn + 1)
factorizes in F[x2] as F (x2) =

∏r
i=1 fi(x

2)p
s

, fi(x
2) ∈ Fir

⋃
Fred

⋃
{x2 ± 1}. The same remark

holds for Hermitian LCD skew cyclic and negacyclic codes where gi ∈ L(0)(fi(x
2)p

s

) is replaced
with gi ∈ L(1)(fi(x

2)p
s

).

Therefore, LCD θ-cyclic and θ-negacyclic codes of length 2k over Fp2 are generated by skew

polynomials which are least common left multiples of skew polynomials gi ∈ L(b)

fi(x2)ps
where f = fi

satisfies one of the following cases :

• f(x2) = x2 − ε where ε = ±1 (see Lemma 6)

• f(x2) ∈ Fir irreducible in Fp[x2] with degree d > 1 in x2 (Lemma 6);

• f(x2) ∈ Fred is the product of two irreducible distinct polynomials in Fp[x2] (Lemma 7).

The following proposition enables to characterize those skew polynomials having a unique
factorization into the product of monic irreducible skew polynomials. It will be useful later.

Proposition 4 (Proposition 16 of [5]). Consider R = Fq[x; θ] with q = p2 and θ : a 7→ ap of order
two, f ∈ Fp[x2] irreducible in Fp[x2] and h = h1 · · ·hm a product of irreducible monic polynomials
dividing f . The following assertions are equivalent

(i) h has a unique factorization into irreducible monic polynomials;

(ii) f does not divide h in R;

(iii) for all i in {1, . . . ,m− 1}, f 6= hi+1hi.

6.1 Length 2ps over Fp2

Lemma 6 describes the set L(b)
f(x2)m where f(x2) ∈ Fir

⋃
{x2 ± 1}. It will be useful to characterize

all nontrivial LCD skew cyclic and negacyclic codes of length 2ps over Fp2 (Proposition 5).

Lemma 6. Consider m ∈ N, f(x2) ∈ Fir
⋃
{x2 ± 1} with degree d in x2 and g in R. The skew

polynomial g belongs to the set L(b)
f(x2)m if, and only if, g = 1 or g = f(x2)m or g has a unique

factorization into the product of m monic skew polynomials g = gm · · · g1 where
∀i ∈ {1, . . . ,m},deg(gi) = d
gi divides on the right f(x2)
∀i ∈ {1, . . . ,m− 1}, gi+1gi 6= f(x2)

g1 6= Θb(h\1) where Θb(h\1)h1 = f(x2).

(3)
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Proof. Consider g in L(b)
f(x2)m \ {f(x2)m, 1}. Consider h in R such that gh = hg = f(x2)m.

As f(x2) is central and irreducible in Fp[x2], the skew polynomials g and h are products of
irreducible monic factors dividing f(x2). As the degree of g belongs to {1, . . . , 2m − 1}, there
exists r ∈ {1, . . . , 2m− 1}, g1, . . . , g2m−r, h1, . . . , hr monic of degree d dividing f(x2) such that

g = g2m−r · · · g1

and
h = h1 · · ·hr.

The skew polynomial Θb(h\1) is an irreducible right factor of Θb(h\) which divides Θb(f \(x2)) =
f(x2) and does not divide g on the right because gcrd(Θb(h\), g) = 1. Therefore f(x2) does not
divide g. Similarly, one gets that f(x2) does not divide Θb(h\) and h. Therefore, according to
Proposition 4, the above factorizations of g and h into the products of monic irreducible factors
are unique and for all i in {1, . . . ,m− 1}, gi+1gi 6= f(x2).
As gh = hg = f(x2)m one gets that for all i, gihi = f(x2), therefore, r = m.

Laslty, as g and Θb(h\) are right coprime, necessarily, g1 6= Θb(h\1).
Conversely, consider g = gm · · · g1 where g1, . . . , gm are monic skew polynomials satisfying (3).

Consider h = h1 · · ·hm with gihi = higi = f(x2) then gh = hg = f(x2)m. Furthermore as
gi+1gi 6= f(x2), according to Proposition 4, the above factorization of g into the product of monic
irreducible factors is unique. Similarly, the factorizations of h and Θb(h\) into the products of
monic irreducible factors are unique.
Consider u a right factor of g and Θb(h\) with degree > 1. Necessarily, u has a unique factorization
into the product of monic skew polynomials. The unique monic linear right factor of u is also
the unique monic right factor of g and Θb(h\), therefore u = g1 = Θb(h\1), which is impossible

according to (3). Therefore gcrd(g,Θb(h\)) = 1 and g belong to L(b)
f(x2)m .

Lemma 6 enables to characterize all nontrivial LCD skew cyclic and negacyclic codes of length
2ps over Fp2 . Their dimensions are necessarily equal to ps :

Proposition 5. Consider θ : a 7→ ap the Frobenius automorphism over Fp2 and s in N. There is
no (Euclidean and Hermitian) LCD skew (θ-cyclic and θ-negacyclic) codes of length n = 2ps and
dimension k if k 6∈ {0, ps, 2ps}.

1. The number of Euclidean LCD θ-cyclic of length n = 2ps and dimension k = ps over Fp2 is{
2k if p = 2

pk−1(p− (−1)(p+1)/2) if p 6= 2.

2. The number of Hermitian LCD θ-cyclic of length n = 2ps and dimension k = ps over Fp2 is{
0 if p = 2

pk−1(p+ 1) if p 6= 2.

3. For p odd prime, the number of Euclidean LCD θ-negacyclic of length n = 2ps and dimension
k = ps over Fp2 is pk−1(p− (−1)(p−1)/2).

4. For p odd prime, there is no Hermitian LCD θ-negacyclic of length n = 2ps and dimension
k = ps over Fp2 .

Proof. • The Euclidean LCD θ-cyclic (resp. θ-negacyclic) codes of length n = 2ps over Fp2 are

generated by the monic skew polynomials belonging to L(0)

(x2−ε)ps where ε = 1 (resp. ε = −1).

According to Lemma 6, a monic skew polynomial g belongs to the set L(0)

(x2−ε)ps if, and only

if, g = 1 or g = (x2 − ε)ps or g = gps · · · g1 where g1, . . . , gps are monic skew polynomials
satisfying :
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
deg(gi) = 1
gi divides on the right x2 − ε
gi+1gi 6= x2 − ε
g1 6= h\1 where h\1 · h1 = x2 − ε.

Therefore g 6= 1, (x2−ε)ps belongs to the set L(0)

(x2−ε)ps if, and only if, g = (x+αps) · · · (x+α1)

where  αp+1
i = ε
αi+1 6= −ε/αi
ε 6= −θ(α1)/α1.

(4)

Furthermore the above factorization of g is unique, therefore the number of skew polynomials

of degree k = ps in L(0)

(x2−ε)k is pk−1(p− 1) if p odd and ε = (−1)(p+1)/2

pk−1(p+ 1) if p odd and ε 6= (−1)(p+1)/2

2k if p = 2.

• The Hermitian LCD θ-cyclic (resp. θ-negacyclic) codes of length n = 2ps over Fp2 are

generated by the monic skew polynomials belonging to L(1)

(x2−ε)ps where ε = 1 (resp. ε = −1).

According to Lemma 6, a monic skew polynomial g belongs to the set L(1)

(x2−ε)ps if, and only

if, g = 1 or g = (x2 − ε)ps or g = (x+ αps) · · · (x+ α1) where
x+ αi divides on the right x2 − ε
(x+ αi+1)(x+ αi) 6= x2 − ε
x+ α1 6= Θb(h\1) where Θb(h\1) · h1 = x2 − ε.

If ε = −1 or p = 2, L(1)

(x2−ε)ps = {1, (x2 − ε)ps}. If ε = 1 and p 6= 2, the skew polynomial g 6=
1, (x2− ε)ps belongs to the set L(1)

(x2−ε)ps = L(1)

(x2−1)ps
if, and only if, g = (x+αps) · · · (x+α1)

where {
αp+1
i = 1
αi+1 6= −1/αi.

(5)

In this case there are (p+ 1)pk−1 skew polynomials of degree k = ps in L(1)

(x2−ε)k .

Remark 7. Over F4, one can notice that when k = 2s, the number of Euclidean LCD θ-cyclic
codes [2k, k] growths exponentially with k (Proposition 5, 1. above), while the number of Euclidean
self-dual θ-cyclic codes [2k, k] is constant (Corollary 26 of [5]).

Remark 8. As (4)⇒ (5), if p 6= 2, the Euclidean LCD θ-cyclic codes of length 2ps and dimension
ps over Fp2 are all Hermitian LCD.

Example 15. There are 16 = 222

nontrivial Euclidean LCD θ-cyclic codes of length 8 over
F4 = F2(w)where θ is the Frobenius automorphism . Their dimensions are all equal to 4. Consider
g = (x+1)(x+w2)(x+w2)(x+w2) = x4 +wx3 +wx2 +x+1 and h = (x+w)(x+w)(x+w)(x+1).
Then g·h = h·g = x8−1, h\ = (x+1)(x+w2)(x+1)(x+w) and Θ(h\) = (x+1)(x+w)(x+1)(x+w2).
These factorizations of g, h and Θ(h\) into the products of monic linear skew polynomials are
unique. As x + w2 6= x + w, h\ is right coprime with g, therefore g generates an Euclidean LCD
θ-cyclic code. However, as x+w2 divides on the right both Θ(h\) and g, this code is not Hermitian
LCD.
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Example 16. Consider F9 = F3(w) where w2 = w+1. There are 18 = 32×(3−(−1)2) nontrivial
Euclidean LCD θ-cyclic codes and 36 = 32 × (3 + 1) nontrivial Hermitian LCD θ-cyclic codes of
length 6 over F9. Their dimensions are equal to 3.

• Consider g = (x+a2)(x+a6)(x+ 1) = x3 +a5x2 +a5x+ 1 and h = (x+ 2)(x+w6)(x+w2).
Then g ·h = h ·g = x6−1, h\ = (x+w6)(x+w2)(x+2) and Θ(h\) = (x+w2)(x+w6)(x+2).
These factorizations of g, h and Θ(h\) into the products of monic linear skew polynomials
are unique. As x + 2 6= x + 1, h\ is right coprime with g and Θ(h\) is also rigth coprime
to g. Therefore g generates a θ-cyclic code of length 6 which is both Euclidean LCD and
Hermitian LCD.

• Consider g = (x − 1)2(x − w6) and h = (x − w6)(x + 1)2. Then g · h = h · g = x6 − 1.
Consider the θ-cyclic code C of length 6 and dimension 3 generated by g. This code is MDS.
Furthermore h\ = g, therefore C is not Euclidean LCD and Θ(h\) = (x−1)2(x−a2) is right
coprime with g, therefore C is a MDS Hermitian LCD code.

Example 17. Consider F9 = F3(w) where w2 = w+ 1. There are 36 = 32× (3− (−1)) nontrivial
Euclidean LCD θ-negacyclic codes of length 6 over F9. Their dimensions are equal to 3. Consider
g = (x + w5)(x + w7)(x + w3) = x3 + x2 + wx + w7 and h = (x + w5)(x + w)(x + w3). Then
g · h = h · g = x6 + 1, h\ = (x+w3)(x+w)(x+w) and Θ(h\) = (x+w2)(x+w3)(x+w3). These
factorizations of g, h and Θ(h\) into the products of monic linear skew polynomials are unique.
As x+w3 6= x+w, h\ is right coprime with g. Therefore g generates a θ-negacyclic code of length
6 which is Euclidean LCD. However g and Θ(h\) are not right coprime because x+w3 divides both
g and Θ(h\) and the code is not Hermitian LCD.

Example 18. Consider F25 = F5(w) where w2 = w − 2. The skew polynomials g = (x +
1)3(x + w)(x + 1) = x5 + w16x4 + w5x3 + 2x2 + wx + w4 and h = (x − 1)(x + w8)(x − 1)3

satisfy g · h = h · g = x10 − 1. Furthermore h\ = (x + w4)(x + w20)(x + w4)(x + w16)(x − 1),
Θ(h\) = (x + w20)(x + w4)(x + w20)(x + w8)(x − 1). The factorizations of g, h and Θ(h\) into
the products of monic linear skew polynomials are unique. As x − 1 6= x + 1, h\ and Θ(h\) are
right coprime with g. Therefore g generates a θ-cyclic code [10, 5] which is Euclidean LCD and
Hermitian LCD. Furthermore, this is an MDS code.

6.2 Any length over Fp2
In order to consider LCD skew cyclic and negacyclic codes of any even length over Fp2 , we will

characterize L(b)
f(x2)m for f(x2) ∈ Fred (Lemma 7 below) and then use Theorem 9 and Lemma 6 to

conclude (Proposition 6).

Lemma 7. Consider f(x2) = fir(x
2)f \ir(x

2) in Fred with degree d = 2δ in x2. The monic skew

polynomial g ∈ R belongs to the set L(b)
f(x2)m if, and only if, g = 1 or g = f(x2)m or g = lclm(g1, g2)

where g1 = g1,m · · · g1,1 and g2 = g2,m · · · g2,1 have unique factorizations into the products of m
monic skew polynomials satisfying :

deg(gi,j) = δ
g1,j divides fir(x

2)

g2,j divides f \ir(x
2)

g1,jg1,j−1 6= fir(x
2)

g2,jg2,j−1 6= f \ir(x
2)

g1,1 6= Θb(h\2,1), h2,1g2,1 = f \ir(x
2)

(6)

Proof. Consider g in L(b)
f(x2)m\{1, fir(x

2)mf \ir(x
2)m} and h inR such that gh = hg = fir(x

2)mf \ir(x
2)m

and gcrd(g,Θb(h\)) = 1. As g divides fir(x
2)mf \ir(x

2)m, according to Theorem 4.1 of [10], g =

lclm(g1, g2) where g1 = gcrd(fir(x
2)m, g) and g2 = gcrd(f \ir(x

2)m, g). Similarly, h = lcrm(h1, h2),

where h1 = gcld(fir(x
2), h) and h2 = gcld(f \ir(x

2), h).
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As gh = hg = fir(x
2)mf \ir(x

2)m, one has g1h1 = fir(x
2)m and g2h2 = f \ir(x

2)m, therefore
g1 and h1 (resp. g2 and h2) are products of irreducible skew polynomials dividing fir(x

2) (resp.

f \ir(x
2)).

If fir(x
2) divides g1, then, as Θb(h\2) divides fir(x

2)m, g1 and Θb(h\2)) have a common right
divisor (dividing fir(x

2)), therefore g and Θb(h\) also have a common nontrivial right divisor,
which is impossible as g and Θb(h\) are right coprime. Therefore fir(x

2) does not divide g1.

In the same way, fir(x
2) does not divide h1, f \ir(x

2) does not divide g2 and h2, therefore using
Proposition 4, one gets that the factorizations of g1, g2, h1 and h2 into the products of monic
irreducible skew polynomials are unique and

g1 = g1,m · · · g1,1

g2 = g2,m · · · g2,1

h1 = h1,1 · · ·h1,m

h2 = h2,1 · · ·h2,m

deg(gi,j) = δ
g1,jg1,j−1 6= fir(x

2)

g2,jg2,j−1 6= f \ir(x
2)

g1,ih1,i = f(x2)
g2,ih2,i = f \(x2)

As g and Θb(h\) are right coprime, g1 and Θb(h\2) are right coprime, therefore g1,1 6= Θb(h\2,1).
Conversely, assume that g = lclm(g1, g2) where

g1 = g1,m · · · g1,1

g2 = g2,m · · · g2,1

deg(gi,j) = δ
g1,j divides fir(x

2)

g2,j divides f \ir(x
2)

g1,jg1,j−1 6= fir(x
2)

g2,jg2,j−1 6= f \ir(x
2)

g1,1 6= Θb(h\2,1), h2,1g2,1 = f \ir(x
2)

Consider hi,j such that g1,ih1,i = fir(x
2) and g2,ih2,i = f \ir(x

2). Consider h1 = h1,1 · · ·h1,m,

h2 = h2,1 · · ·h2,m and h = lcrm(h1, h2). Then gh = hg = fir(x
2)mf \ir(x

2)m and g and Θb(h\) are
right coprime.

Theorem 9, Lemma 6 and Lemma 7 enable to characterize the skew generators of LCD θ-cyclic
and θ-negacyclic codes over Fp2 as follows :

Proposition 6. Consider Fq a finite field with q = p2 elements where p is a prime number,
θ : a 7→ ap the Frobenius automorphism over Fp2 , R = Fq[x; θ], λ ∈ {−1, 1}, b ∈ {0, 1}. Consider
xn − λ = f1(x2)p

s · · · fr(x2)p
s

where f1(x2), . . . , fr(x
2) are polynomials of Fp[x2] belonging to

{x2± 1} ∪Fir ∪Fred. Consider a (θ, λ)-constacyclic code C of skew generator g dividing x2k − λ.
C is Euclidean (resp Hermitian) LCD if and only if

g =
∏
i∈I

fi(x
2)p

s

lclmj∈J(gj)

where 
I, J ⊂ {1, . . . , r}
I ∩ J = ∅
∀j ∈ J, gj ∈ L(b)

fj(x2)ps
\ {1, fj(x2)p

s} with b = 0 (resp b = 1).
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Proof. Proposition 3, Lemma 6 and Lemma 7.

Remark 9. In Proposition 6, if J is empty then g is central; if I is empty then g is not divisible
by any central polynomial. If J = {1, . . . , r} (and I = ∅), then g is not divisible by any central
polynomial and deg(g) =

∑r
i=1 deg(gi) = k.

The following proposition characterizes LCD skew cyclic and negacyclic codes of even length
n = 2k and of dimension k whose generator polynomials are not divisible by any central polynomial
(J = {1, . . . , r} and I = ∅ in Proposition 6).

Proposition 7. 1. The number of Euclidean LCD θ-cyclic codes of length 2k and dimension
k whose skew generator polynomial is not divisible by any central polynomial is

N ×
∏

f∈Fir∩Dxn−1

d=deg(f)

(pd − pd/2)pd(ps−1) ×
∏

f∈Fred∩Dxn−1

d=deg(f)

(1 + pd/2)p(2ps−1)d/2

where N =


22s

if p=2
(pp

s−1)2(p2 − 1) if k is even and p is odd
pp

s−1(p− (−1)(p+1)/2) if k is odd and p is odd

2. The number of Hermitian LCD θ-cyclic codes of length 2k and dimension k whose skew
generator polynomial is not divisible by any central polynomial is

N ×
∏

f∈Fir∩Dxn−1

d=deg(f)

(pd − pd/2)pd(ps−1) ×
∏

f∈Fred∩Dxn−1

d=deg(f)

(1 + pd/2)p(2ps−1)d/2

where N =


0 if p=2
0 if k is even and p is odd
pp

s−1(p+ 1) if k is odd and p is odd

3. The number of Euclidean LCD θ-negacyclic codes of length 2k and dimension k whose skew
generator polynomial is not divisible by any central polynomial is

N ×
∏

f∈Fir∩Dxn+1

d=deg(f)

(pd − pd/2)pd(ps−1) ×
∏

f∈Fred∩Dxn+1

d=deg(f)

(1 + pd/2)p(2ps−1)d/2

where N =

{
1 if k is even

pp
s−1(p− (−1)(p−1)/2) if k is odd

4. The number of Hermitian LCD θ-negacyclic codes of length 2k and dimension k whose skew
generator polynomial is not divisible by any central polynomial is

N ×
∏

f∈Fir∩Dxn+1

d=deg(f)

(pd − pd/2)pd(ps−1) ×
∏

f∈Fred∩Dxn+1

d=deg(f)

(1 + pd/2)p(2ps−1)d/2

where N =

{
1 if k is even
0 if k is odd.

Proof. If f(x2) ∈ Fp[x2] is irreducible in Fp[x2] with degree d, according to [17], the number of
monic irreducible right factors of f(x2) is equal to 1 + pd, and according to Lemma 3.4 of [7],

the number of irreducible monic right factors h1 of f(x2) such that Θb(h\1)h1 6= f(x2) is equal to
1 + pd/2. Therefore according to Lemma 6, if f(x2) belongs to Fir, the number of monic skew

polynomials of degree md in L(b)
f(x2)m is ((pd+1)− (1+pd/2))(1+pd−1)m−1 = (pd−pd/2)pd(m−1).
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If f(x2) belongs to Fred, L(b)
f(x2)m \ {1, f(x2)m} has (1 + pd/2)p(2m−1)d/2 elements. Namely,

according to Lemma 7, the elements of L(b)
f(x2)m \ {1, f(x2)m} are the skew polynomials g in

bijection with the couples (g1, g2) satisfying (6). There are 1 + pδ possibilities for g1,1 and pδ

possibilities for each g1,j , with j = 2, . . . ,m, therefore (1+pδ)pδ(m−1) possibilities for g1. For each
j in {1, . . . ,m} there are pδ possibilities for g2,j , therefore, one gets pδm possibilities for g2.

Lastly the value of N is deduced from the cardinalities of L(b)

(x2±1)ps
(Proposition 5).

We give below some examples over F4, F25 and F49.

Example 19. One has x6 + 1 = (x2 + 1)(x4 + x2 + 1) in F2[x2]. For θ : a 7→ a2, the Euclidean
LCD θ-cyclic codes of length 6 over F4 = F2(w) are generated by the monic skew polynomials

g = lclm(g1, g2) where g1 ∈ L(0)
x2+1 = {x + w, x + w2, 1, x2 + 1} and g2 ∈ L(0)

x4+x2+1 = {x2 + wx +

1, x2 +w2x+ 1, 1, x4 + x2 + 1}. There are four [6, 3]4 Euclidean LCD θ-cyclic codes. These codes
are also Hermitian self-dual.

Namely x+w = Θ(x+w2) = Θ((x+w2)\) and Θ((x+w2)\)(x+w2) = x2 + 1 x2 +wx+ 1 =
Θ(x2 +w2x+ 1) = Θ((x2 +wx+ 1)\) and Θ((x2 +wx+ 1)\)(x2 +wx+ 1) = x4 + x2 + 1 therefore
the above skew polynomials g all satisfy g = Θ(h\) where Θ(h\)h = x6 − 1.

Example 20. There are 32 Euclidean LCD θ-cyclic codes of length 12 and dimension 6 over
F4 where θ : a 7→ a2. They are generated by the skew polynomials g = lclm(g1, g2) where g1 ∈
{(x+ 1)(x+w), (x+w)(x+w), (x+ 1)(x+w2), (x+w2)(x+w2)} and g2 ∈ {(x2 +w)(x2 +wx+
1), (x2 +w2)(x2 +wx+ 1), (x2 + x+ 1)(x2 +wx+ 1), (x2 +w2x+ 1)(x2 +wx+ 1), (x2 +w)(x2 +
w2x+ 1), (x2 + w2)(x2 + w2x+ 1), (x2 + x+ 1)(x2 + w2x+ 1), (x2 + wx+ 1)(x2 + w2x+ 1)}.

Table 6 sums up the repartition of all the Euclidean LCD θ-cyclic codes of length 12 over F4

and gives one example for each dimension.

Example 21. As x14+1 = (x2+1)(x6+x4+1)(x6+x2+1) over F2[x2], there are 2×(1+23)×23 =
144 Euclidean LCD θ-cyclic codes of length 14 and dimension 7 over F4 where θ : a 7→ a2. For
example, consider g0 = x+ w, g1 = x3 + x2 + w2x+ 1 and g2 = x3 + w2x2 + x+ w. g1 is a right
divisor of x6 +x2 + 1 and g2 is a right divisor of x6 +x4 + 1. Furthermore h2 = x3 +wx2 +x+w2

is such that g2h2 = x6 +x4 +1 and h\2 = x3 +w2x2 +wx+w2 6= g1 therefore g = lclm(g0, g1, g2) =
1 +w2x+wx2 +w2x4 +w2x5 +wx6 + x7 generates an Euclidean LCD θ-cyclic code of length 14
over F4. The minimal distance of the code is equal to 6.

Example 22. Consider θ the Frobenius automorphism over F25 = F5(w) where w2 + 4w+ 2 = 0.
The skew polynomial g = x7 + 4x6 +w4x5 +w7x4 +w7x3 +w16x2 +w8x+w20 generates a MDS
[14, 7, 8]25 θ-cyclic code over F25 which is both Euclidean LCD and Hermitian LCD. The skew poly-

nomial g is obtained as g = lclm(g1, g2) where g1 = x+w16 belongs to L(0)
x2−1∩L

(1)
x2−1 and g2 = x6 +

w11x5 +2x4 +w3x3 +2x2 +w11x+1 belongs to L(0)
x12+x10+x8+x6+x4+x2+1∩L

(1)
x12+x10+x8+x6+x4+x2+1.

Example 23. Consider θ the Frobenius automorphism over F49 = F7(w) where w2 + 6w+ 3 = 0.
The skew polynomial g = x8+6x7+w7x6+w28x5+w11x4+w47x3+w10x2+w30x+w12 generates a
MDS [16, 8, 9]49 θ-negacyclic code over F49 which is both Euclidean LCD and Hermitian LCD. The
skew polynomial g is obtained as g = lclm(g1, g2) where g1 = x4 +w39x3 +w3x2 +w33x+1 belongs

to L(0)
x8+4x4+1∩L

(1)
x8+4x4+1 and g2 = x4 +5x3 +w30x2 +w35x+w6 belongs to L(0)

x8+3x4+1∩L
(1)
x8+3x4+1.

Lastly, tables 7 sums up the dimensions of MDS LCD skew codes of given length ≤ 20 over
F9. Tables 8 and 9 sum up the dimensions of MDS LCD skew codes of length ≤ 18 over F25 and
of length ≤ 16 over F49.

7 Conclusion

In this text, the notions of skew constacyclic codes, skew cyclic codes, skew negacyclic codes and
skew LCD codes are studied. Equivalency between some of these classes are derived under some
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conditions. Lastly LCD skew cyclic and negacyclic codes are constructed and enumerated over
Fp2 .
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[n, k, d] dopt g(x)
[2, 1, 2] 2 x+ w
[2, 1, 2] 2 x+ w2

[4, 2, 3] 3 x2 + x+ w
[4, 2, 3] 3 x2 + w2x+ w2

[6, 5, 2] 2 x+ w2

[6, 5, 2] 2 x+ w
[6, 4, 2] 2 x2 + wx+ 1
[6, 4, 2] 2 x2 + w2x+ 1
[6, 3, 4] 4 x3 + wx2 + w2x+ 1
[6, 3, 4] 4 x3 + w2x2 + wx+ 1
[6, 2, 4] 4 x4 + wx3 + wx+ 1
[6, 2, 4] 4 x4 + w2x3 + w2x+ 1
[6, 1, 6] 6 x5 + w2x4 + x3 + w2x2 + x+ w2

[8, 4, 4] 4 x4 + x3 + w2x2 + w2x+ 1
[8, 4, 4] 4 x4 + wx3 + wx2 + x+ 1
[8, 4, 4] 4 x4 + wx3 + w2x2 + w2

[8, 4, 4] 4 x4 + w2x3 + w2x2 + w2

[10, 9, 2] 2 x+ w2

[10, 8, 2] 2 x2 + 1
[10, 6, 4] 4 x4 + w2x3 + x+ 1
[10, 6, 4] 4 x4 + wx3 + wx+ w
[10, 5, 5] 5 x5 + x4 + wx3 + wx2 + w
[10, 5, 5] 5 x5 + x3 + w2x2 + w2x+ 1
[10, 4, 6] 6 x6 + x5 + x4 + wx2 + x+ w
[10, 4, 6] 6 x6 + x5 + x4 + w2x2 + x+ w2

[10, 2, 5] 8 x8 + x6 + x4 + x2 + 1
[10, 1, 10] 10 x9 + wx8 + x7 + wx6 + x5 + wx4 + x3 + wx2 + x+ w
[10, 1, 10] 10 x9 + w2 ∗ x8 + x7 + w2x6 + x5 + w2x4 + x3 + w2x2 + x+ w2

[12, 10, 2] 2 x2 + wx+ w
[12, 8, 3] 4 x4 + w2x3 + w2x2 + x+ w
[12, 8, 3] 4 x4 + w2x3 + w2x2 + w2x+ 1
[12, 6, 5] 6 x6 + w2x5 + wx4 + wx3 + x2 + wx+ w2

[12, 6, 5] 6 x6 + w2x5 + wx4 + w2x3 + w2x2 + x+ w
[12, 4, 6] 7 x8 + w2x7 + wx6 + wx5 + wx4 + w2x3 + wx2 + wx+ w2

[12, 4, 6] 7 x8 + x7 + w2x6 + x5 + x3 + w2x2 + x+ 1
[12, 2, 9] 9 x10 + x9 + w2x8 + x6 + x5 + w2x4 + x2 + x+ w2

[12, 2, 9] 9 x10 + w2x9 + w2x8 + x6 + w2x5 + w2x4 + x2 + w2x+ w2

[14, 13, 2] 2 x+ w
[14, 12, 2] 2 x2 + 1
[14, 8, 5] 5 x6 + w2x5 + x4 + wx3 + w2x2 + w2x+ w2

[14, 8, 5] 5 x6 + wx5 + x4 + w2x3 + wx2 + wx+ w
[14, 7, 6] 6 x7 + w2x6 + w2x5 + w2x4 + wx3 + wx2 + w2x+ w2

[14, 7, 6] 6 x7 + wx6 + w2x5 + w2x4 + wx2 + w2x+ 1
[14, 6, 7] 7 x8 + w2x7 + x6 + w2x5 + w2x4 + w2x3 + w2x+ w2

[14, 6, 7] 7 x8 + wx7 + x6 + wx5 + w2x4 + wx3 + wx+ w2

[14, 2, 7] 11 x12 + x10 + x8 + x6 + x4 + x2 + 1
[14, 1, 14] 14 x13 + w2x12 + x11 + w2x10 + x9 + w2x8 + x7 + w2x6 + x5 + w2x4 + x3 + w2x2 + x+ w2

[14, 1, 14] 14 x13 + wx12 + x11 + wx10 + x9 + wx8 + x7 + wx6 + x5 + wx4 + x3 + wx2 + x+ w

Table 5: Skew generator polynomials of Euclidean LCD skew-cyclic codes over F4 of lengths 6 14
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Dimension Number Best distance A skew generator polynomial
10 4 2 g1 = (x+ 1)(x+ w2)
8 9 3 g2 = (x2 + ax+ 1)(x2 + w2x+ 1)
6 32 5 lclm(g1, g2)
4 9 6 (x4 + 1)g2

2 4 9 (x8 + x4 + 1)g1

Table 6: Euclidean LCD skew-cyclic codes over F4 of length 12 and dimension 6 12

length Euclidean LCD Hermitian LCD
skew cyc skew nega skew cyc skew nega

2 1 1 1 no
4 1,2,3 2 1,3 2
6 3 3 3 no
8 1,3,4,5,7 4 1,3,5,7 4
10 1,5,9 1,5,9 1,5,9 no
12 no no no no
14 1,13 1, 13 1, 13 no
16 1, 15 no 1,15 no
18 no no no no
20 1,19 no 1,19 no

Table 7: Dimensions of non trivial MDS LCD skew codes over F9 with length ≤ 20

length Euclidean LCD Hermitian LCD
skew cyc skew nega skew cyc skew nega

2 1 1 1 no
4 1,2,3 2 1,3 2
6 1,2,3,4,5 1,2,3,4,5 1,2,3,4,5 2,4
8 1,3,4,5,7 4 1,3,5,7 4
10 5 5 5 no
12 1,3,5,6,7,9,11 6 1,3,5,7,9,11 6
14 1,7,13 1, 7,13 1, 7,13 no
16 1, 7,8,9,15 no 1,7,9,15 no
18 1,9,17 1,9,17 1,9,17 no

Table 8: Dimensions of non trivial MDS LCD skew codes over F25 with length ≤ 18

length Euclidean LCD Hermitian LCD
skew cyc skew nega skew cyc skew nega

2 1 1 1 no
4 1,2,3 2 1,3 2
6 1,2,3,4,5 1,2,3,4,5 1,2,3,4,5 2,4
8 1,3,4,5,7 2,4,6 1,3,5,7 2,4,6
10 1,4,5,6,9 1,4,5,6,9 1,4,5,6,9 4,6
12 1,3,5,6,7,9,11 6 1,3,5,7,9,11 6
14 7 7 7 no
16 1,3,5,7,8,9,11,13,15 8 1,3,5,7,9,11,13,15 8

Table 9: Dimensions of non tirivial MDS LCD skew codes over F49 with length ≤ 16
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