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An overview on skew constacyclic codes and their subclass of

LCD codes.

Ranya D.Boulanouar * Aicha Batoul fand Delphine Boucher *

Abstract

This paper is about a first characterization of LCD skew constacyclic codes and some
constructions of LCD skew cyclic and skew negacyclic codes over IF ..

1 Introduction

One of the most active and important research areas in noncommutative algebra is the inves-
tigation of skew polynomial rings. Recently they have been successfully applied in many areas
and specially in coding theory. The principal motivation for studying codes in this setting is
that polynomials in skew polynomial rings exhibit many factorizations and hence there are
many more ideals in a skew polynomial ring than in the commutative case. The research on
codes in this setting has resulted in the discovery of many new codes with better Hamming
minimum distances than any previously linear code with the same parameters.

On the other hand, constacyclic code over finite fields is an important class of linear
codes as it includes the well-known family of cyclic codes. They also have many practical
applications as they can be efficiently encoded using simple shift registers. Further, they have
a rich algebraic structure which can be used for efficient error detection and correction.

Linear complementary dual (LCD) codes were introduced by Massey [14]. They provide
an optimum linear coding solution for the two-user binary adder channel, and in [I5] it was
shown that asymptotically good LCD codes exist. Since then, several authors have studied
these codes ([7, 10} 11} 12, 21]). But until now just a few works have been done on LCD codes
in the noncommutative case.

This paper is organized as follows. In Section [2| some preliminaries are given about
skew constacyclic codes over finite fields and skew polynomial rings. In Section [3] conditions
for the equivalency between skew constacyclic codes, skew cyclic codes and skew negacyclic
codes are provided (Theorem [1)). In Section [4] the notion of LCD skew constacyclic codes is
introduced and we give some characterizations of their skew generator polynomials (Theorem
and Theorem . Section [5| focuses on the construction (Algorithm [4)) and the enumeration
(Proposition [7)) of LCD skew cyclic and negacyclic codes of even lengths over IF2. If p is
odd, the Euclidean LCD skew cyclic codes of length 2p® and dimension p* over IF > are all

Hermitian LCD codes. Over IF 2, all MDS LCD skew codes of length < min(1 + p?,16) are
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obtained when p € {3,5,7} (Tables[5] [6| and [7) as well as all [2p, p] MDS LCD skew codes for
p € {3,5,7,11} (Table 1).

2 Preliminaries

Let g be a prime power, IF, a finite field and 6 an automorphism of IF,. We define the skew
polynomial ring R as

R=T,[z;0] = {ao+ a1z + ... + ap_12" ' | a; € F, and n € N}
under usual addition of polynomials and where multiplication is defined using the rule
VaeFy,xz-a=6(a)x.

The ring R is noncommutative unless 6 is the identity automorphism on IF,. According to
[17], an element f in R is central if and only if f is in IFg [z#] where p is the order of the
automorphism 6 and ]FZ is the fixed field of . The two-sided ideals of R are generated by
elements having the form (co + ciz* + ... + c,2™)a!, where [ is an integer and ¢; belongs
to IFZ. Central elements of R are the generators of two-sided ideals in R [2]. The ring R is
Euclidean on the right : the division on the right is defined as follows. Let f and g be in R
with f # 0. Then there exist unique skew polynomials ¢ and r such that

g=q-f+rand deg(r) < deg(f).

If » = 0 then f is a right divisor of g in R ([17]). There exist greatest common right divisors
(gerd) and least common left multiples (lclm). The ring R is also Euclidean on the left : there
exist a division on the left, greatest common left divisors (gcld) as well as least common right
multiples (lcrm).

In what follows, we consider a positive integer n and a constant A in ]F;.

According to [2] and [§], a linear code C of length n over I, is said to be (6, \)-
constacyclic or skew A-constacyclic if it satisfies

Vee IFy,c = (co,c15---,¢n-1) € C = (M(cn-1),0(c0),-..,0(cn—2)) € C.

Any element of the left R-module R/R(z™ — \) is uniquely represented by a polynomial
coteix+...+cp_12" ! of degree less than n, hence is identified with a word (cg, ¢y, ..., ch—1)
of length n over IF,.

In this way, any skew A-constacyclic code C of length n over IF, is identified with exactly
one left R-submodule of the left R-module R/R(z™ — \), which is generated by a right divisor
g of ™ — A. In that case, g is called a skew generator polynomial of C' and we will denote
C'=(g)n-

Note that the skew 1-constacyclic codes are skew cyclic codes and the skew (-1)-constacyclic
codes are skew negacyclic codes.

The Hamming weight wt(y) of an n-tuple y = (yi,y2,...,¥») in IFy is the number of
nonzero entries in y, that is, wt(y) =| {i : v; # 0} |. The minimum distance of a linear
code C' is mingec 0 wt(c).

A IFg-linear transformation 7": IFj — IFj is a monomial transformation if there exists
a permutation o of {1,2...,n} and nonzero elements o, g, ..., ay of IF, such that

T(yh Y2, ... ,yn) = (alya(l)v Qa2Ys(2)s - - - >anya(n))
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for all (y1,¥2,...,yn) in IFy. Two linear codes C1 and Cs in IFy are equivalent if there exists
a monomial transformation 7" : IFy — IFy taking C7 to Cy (i.e. there exists a linear Hamming
isometry [13]).

The Euclidean dual of a linear code C of length n over IF, is defined as C*+ = {z € Iy |
Vy € C, < z,y >= 0} where for z,y in Fj, < z,y >:= o, a2y is the (Euclidean) scalar
product of  and y. A linear code is called an Eulidean LCD code if C @ C+ = IFy, which
is equivalent to C' N C+ = {0}.

Assume that ¢ = 72 is an even power of an arbitrary prime and denote for a in F,,a=a"
The Hermitian dual of a linear code C of length n over I, is defined as C+# = {x € Iy |
Vy € C, < x,y >p= 0} where for 2,y in F}, < z,y >p:= > ;" | ;7; is the (Hermitian) scalar
product of x and y. The code C is a Hermitian LCD code if C N C+# = {0}.

The skew reciprocal polynomial of g = Efzogixi € Rofdegree k is g* = Efzoﬁi (gr—q)".
If go does not cancel, the left monic skew reciprocal polynomial of g is g* = (1/6%(go))g*.
If a skew polynomial is equal to its left monic skew reciprocal polynomial, then it is called
self-reciprocal.

Consider C a skew A-constacyclic code of length n and skew generator polynomial g.
According to Theorem 1 and Lemma 2 of [3], the Euclidean dual C+ of C is a skew A7!-
constacyclic code generated by h? where ©"(h) - g = 2™ — X and for a(z) = Y. a;z’ € R,
O(a(x)) := . 0(a;)x'. In particular, when \ is fixed by § and n is a multiple of the order
of 6, then h is fixed by ©" and z™ — A is central, therefore one gets h-g =g -h = 2" — A,
If ¢ = r2, the Hermitian dual C+# of C is generated by hi where for a(z) = 3. a;2' € R,
a(z) = Y a'.

The two following lemmas will be useful later.
Lemma 1 [{, Lemma 4] Consider h and g in R. Then (h - g)* = @™ (g*). p*.

The following Lemma is given in Theorem 6.3.7 of [8] when 2™ — X is a central element of
R. We give a new proof and adapt it when ™ — X\ belongs to R.

Lemma 2 Consider C1 and Ca two skew A-constacyclic codes of length n over I, with skew
generator polynomials g1 and gs.

1. C1NCy is a skew \-constacyclic code of length n generated by lclm(g1, go).

2. C1 + Cy is a skew \-constacyclic code of length n generated by gerd(gi, g2).

Proof. In the left R-module R/R(z™ — \), we identify the image of P in R under the
canonical morphism R — R/R(z" — \) with the remainder in the right division of P by 2™ —\
in R.

1. Consider g = lclm(gy,g92) in R. As g1 and gy divide on the right 2™ — \, g divides
™ — X on the right therefore the skew A-constacyclic code C' of length n generated by g
is well-defined. Let ¢ in R/R(x™ — X). Then ¢ belongs to C; N Cy if and only if g; and
go divide c on the right in R, therefore ¢ belongs to C; N Cy if and only if g divides ¢ on
the right in R and one concludes that C1 N Cy = C.

2. Consider g = gerd(g1,¢92) in R. As g1 and g9 divide on the right 2™ — X, g divides
™ — X on the right, therefore one can consider the skew A-constacyclic code C of length
n generated by g.



As g divides g1 and go on the right, C1 and Cy are subsets of C', therefore C1 4+ Cy C C.

Conversely, consider ¢ in C. As g divides ¢ on the right, it follows by [19, Theorem 4]
that c=a- gy + b go for some a and b in R, therefore ¢ belongs to C7 + Cs.

3 The equivalency between skew A-constacyclic codes, skew
cyclic codes and skew negacyclic codes

Let g be a prime power, Iy a finite field and 6 an automorphism of ;. Consider A in I}
and n in IN*. For 7 in IN* and « element of IF, the it" norm of « is defined as

Ni(a) = 0" a) - 0(a)a.

In this section, we provide conditions on the existence of an isomorphism between skew A-
constacyclic codes, skew cyclic codes and skew negacyclic codes. We start with the following
useful lemma.

Lemma 3 Consider an element o of ]FZ. The application

¢ : R— R
f(x) — flax)

is a morphism. Furthermore for all i in N, ¢q(z') = N;(a)z".

Theorem 1 1. IfIF; contains an element o where A = Np(a™1) then the skew \-constacyclic
codes of length n over IF, are equivalent to the skew cyclic codes of length n over IF,.

2. If & contains an element o where \ = — N, (a™t) then the skew A-constacyclic codes
of length n over Iy are equivalent to the skew negacyclic codes of length n over IF,.

Proof.

1. Consider o in IF} such that A = N, (a™!). Define

o, : R/R(z™—1) — R/R(z™ — \)
f(x) — flax)

Let us prove that the application ¢, is an isomorphism which preserves the Hamming
weight:

e The application ®, is well-defined: consider f(z) and g(z) in R such that 2" — 1
divides on the right f(z) — g(x). There exists h in R such that f(z) — g(z) =
h(z) - (2" —1). By Lemma3] f(az) — g(az) =

ba(h(@)) - ala" — 1) = Ga(h(@)) - (Nu(@)a" — 1) = $a(h(x)) - Nu(a) - (" — A).

Therefore, ™ — A divides on the right f(az) — g(ax).



e In the same way one can prove that the application is injective (and therefore
surjective) :consider f(x) = Y a;z° and g(z) = Y. bz’ in R/R(z™ — 1) such that
Oa(f(x)) = dalg(x)), then a;N;(a) = b;N;(«x) therefore f( ) =g(x).

e The application ®, is a morphism: consider f(x Zazx and g(z Z bzt
in R/R(z" — 1). One has
n—1 n—1 ' .
= Z Z aZHZ ] z Z aiez(bn,iﬂ-) :Ej
1= i=j+1
because x”” =2/ in R/R(x —1).
As @, (27) = Nj(a)z?, one gets
n—1 j n—1
(I)a(f(x> ’ Z Zazez j— z Z aiez(bn—i-"—j) Nj(a)x]'
j=0 \ i=0 i=j+1

Furthermore, one has
J

n—1
Ba(f () - Palg(z)) =D (Z Ni(@)' (bj—iNj- z(a))> o+
j=0

1=0
n—1 n—1 ' ‘
ST S @M@ (s N i) | 277
=0 \i=j+1
As 27T =g - (2™ — \) + 27X\ = 07 (\)a? in R/R(z™ — \), one gets
n—1
o (f(2)) - Paly Z (Z a;i0" (bj—i) Ni(2)0" (Nj—i(a))+
7=0
n_l . . . .
S 0l (i) Ni( )0 (N s(0))09 () | .
i=j+1

Furthermore N;(a)0*(N;j—i(«)) = Nj(a) and Ni(a)0*(Nptj—i(a))07(A) = Njpn () /(07 (Np(a))) =
Nj(o), therefore
n—1 J n—1

01 (bji)+ Y

=0 \i=0 i=j+1

Q
—~~
s
—~~
S
A
Q
—~~
)
—~
8
=
I
[]]
&
<
8
D
=
S
.
+
<
2
—~
L
8
<
|
A
Q
—~
~
—~~
8
~

)

9(x))-
e &, preserves the Hamming weight: consider c(z) = >
then @, (c(x)) = Z?:_()l c;Ni(a)zt, therefore wt(c(x)) = w

To conclude, consider the monomial transformation 7": (co, ..., cn—1) — (No(a)co, ..., Np—1(a)cp—_1).
Then for any right divisor g of 2™ — 1, T takes the skew cyclic code C =< g >, to the
skew A-constacyclic code with skew generator polynomial ®,(g).

. Consider a in IF} such that A = —N,(a™!). Define

U, : R/R(z"+1) — R/R(z™ — \)
f(x) — flax)

As for the proof of item 1, we prove that ¥, is a ring isomorphism.



e One has Uy (z"+1) = Np(a)z" +1 = Ny(a)(x™ — N), therefore ¥, is well defined.

e U, is injective and bijective.
n—1

n—1
e Consider f(z) = Zaixi and g(z) = Zb z'in R/R(z™ +1). One has ¥, (f(x)) -
i=0

n—1 n—1
=> Zal bi—i)— > aiff (bnirj) | Nj(@)a? = Uo(f(x) - g(z)).
7=0 \i=0 i=j+1

Example 1 Consider Fos = Fa(w) where w* = w + 1 , 0 the automorphism of Fas given
by a — a?’. We have 33 skew cyclic codes of length 4 over 6. For example, as z* — 1 =
(22 + wBz + w?) - (22 + wiBx + W), the skew polynomial g = 2% + w3z + w® generates a
skew cyclic code C of length 4 over Fos. Consider X = w®. The set of « in IF5, such that
Ny(a™) = X is {w, w?, w”, w'% w'®}. The skew polynomial ®,,1s(g) = x? +wbz 4w generates
a skew wd-constacyclic code of length 4 over F1g equivalent to the skew cyclic code C.

In the following, we give a relationship between skew cyclic codes and skew negacyclic
codes.

Corollary 1 If q is odd and n is an odd integer then the skew cyclic codes of length n over
IF, are equivalent to the skew negacyclic codes of length n over IF,.

Proof. Consider A = N,,(—1). As n is odd, A = —1 and we conclude with point 1. of
Theorem [l =

In the following example, we show that not all a skew cyclic codes of length n over IF; are
equivalent to a skew negacyclic code of length n over IFy, when n is even.

Example 2 Let Fg = F3(w) where w?> = w + 1, 6 the Frobenius automorphism. Let the
skew cyclic code C = (z3 4+ 2® + x + 1)4 over Fy with parameter [4,1,4]. There is no skew
negacyclic code of length 4 equivalent to C' (because there is no skew negacyclic code of length
4 with minimum distance 4).

In the following we give a case where the skew constacyclic codes are equivalent to the
skew cyclic codes using only a relation between the length n, the characteristic of I, and the
cardinality of IF,. We start with the following useful lemma.

Lemma 4 [1, Lemma 3.1] Let o be a primitive element of Fyq and A = ol fori < q—1.
Then the equation 6° = X\ has a solution in IF, if and only if ged(s,q — 1) | i.

In the following, we give a similar result of [I, Theorem 3.4] but in the noncommutative
case.

Proposition 1 Assume that 0 is the automorphism defined by a — a”" and that ged([n], q —

1) = 1 where [n] := 1;;;:11. Then for all X in Iy, the skew A-constacyclic codes of length n

over I, are equivalent to skew cyclic codes of length n over IF,.




Proof. Consider A in IF; and « a primitive element of IF,. Then there exists an integer
i such that A = of. As ged([n],q — 1) = 1| 4, according to Lemma |4 there exists § in I}
such that A = /™. Furthermore N, (8) = [, therefore by Theorem (With a=1/9), skew
A-constacyclic codes of length n over I, are equivalent to skew cyclic codes of length n over
F, =

When 6 is the Frobenius and I, = IF,», 0-cyclic codes of length n are equivalent to
f-negacyclic codes of length n :

Proposition 2 Assume that 0 is the automorphism defined by a — aP and that ¢ = p™. Then
all skew negacyclic codes of length n over IF, are equivalent to skew cyclic codes of length n
over IF,.
Proof. Consider a a primitive element of IF, and A = a" 5 = —1. As gcd(’%,pn -1) =
s s n71
’;%11 divides %, according to Lemma , there exists ¢ in IF; such that ¢ o=\ Taking
a =1/§ one gets N, () = —1. One concludes thanks to point 1 of Theorem .

The previous isometry of Theorem [I]does not preserve the duality as shown in the following
example.

Example 3 Consider R = Fy[z; 0] where 0 : a — a® and w € Fg such that w? = w+ 1. The
application
o { R/R(z®>-1) — R/R(z*+1)
v x W

is an isomorphism which preserves the Hamming distance according to Theorem |1| (because
—1 = w* = No(w)). However it does not preserve the duality. Namely, consider the skew
cyclic code C' of length 2 generated by g = x + w?. As ®,(g) = wr + w? = w(x + w), the
image D of C by ®,, is generated by x+w. Now we have (z+w?)-(z+w?) = 22 —1, therefore
the dual C* of C is generated by (x +w?)? = x + 1/w® = 2 + w? (and C is self-dual). The
image of C+ by ®,, is generated by x+w. Now, we have (x+w") - (z+w) = 2%+ 1, therefore
the dual D of D is generated by (x + w”)! = 2 + w?. We obtain that D+ # ®,(Ct) (and
D = ,(C) is not self-dual whereas C' is self-dual).

Lemma 5 Assume that n is odd and consider h in R with degree k, then ¢_1(h*) = (=1)¥¢_1(h)*.

Proof.
Consider h = Zf:o hiz® with degree k, then h* = Zf:o xzF7" . h;. As ¢ is a morphism,
one gets

k
Pa(h”) = ZN/{,i(a)xk_i - hy.
i=0

Now the skew reciprocal polynomial of ¢, (h) = Zf:o hiN;(a)z® is equal to ¢q(h)* =
Efzo 2= (hiNi (o)) = Zf:o 0%~ (N;(a))x*~" - h; therefore

k

$a(h)* = Ni(@) > 1/Ni_i(e)a*" - h.

1=0
If a = —1, then Ny_i(a)? = 1, thercfore ¢a ()" = (~1)¢a(h*). =



Lemma 6 If n is odd and C is a skew cyclic code of length n then the (Euclidean) dual of
the skew negacyclic code ®_1(C) is ®_1(C)*+ = &_1(CL).

Proof. Asn is odd, N,(—1) = —1, therefore according to Theorem [1} ®_; is well defined
and is an isometry. Consider C a skew cyclic code [n, k] with monic skew generator polynomial
g. Then the monic skew generator polynomial of D = ®_;(C) is G = (—1)"®_1(g) where
r = deg(g) = n — k. Furthermore, consider h in R such that ©"(h) - g = 2™ — 1, then
O"(H) -G = z" + 1 where H = (—1)""'®_1(h). The dual D* of D is generated by H*, and
the conclusion follows from Lemmal[5l =

Proposition 3 Let C' be an LCD skew cyclic code of odd length over IF, then C' is equivalent
to an LCD skew negacyclic code.

Proof. According to Theorem [I] the code C is equivalent to the skew negacyclic code
D = ®_1(0). Let us prove that D is LCD. Consider ¢ in DN D+. According to Lemma@we
have : @ 1(C)N®_1(C)+ = &_1(C)NP_1(C*). Therefore there exists u in C and v in C*-
such that ¢ = ®_1(u) = ®_1(v). As ®_; is a bijection, u = v and as C' is LCD, u = v = 0,
therefore ¢ = 0. =

In what follows, we will study LCD skew cyclic and skew negacyclic codes. We will mostly
concentrate on the case when the length of the code is even and the automorphism 6 has order
2.

4 Skew generator polynomials of LCD skew cyclic and nega-
cyclic codes

We assume that IF, is a finite field, § is an automorphism of I, of order ;1 and n is a positive
integer. In the following, we give a necessary and sufficient condition for skew A-constacyclic
codes to be LCD codes, when A2 = 1.

Theorem 2 Consider IF, a finite field, 8 an automorphism of ¥, of order u, R = Fy[x; 0], n
in N* and A € {—1,1}. Consider a (6, \)-constacyclic code C with length n, skew generator
polynomial g. Consider h in R such that ©™(h) - g =™ — \.

1. C is a BuclideanLCD code if and only if gerd(g, h?) = 1.

2. If q is an even power of a prime number, q = r2, C is a Hermitian LCD code if and
only if gerd(g, h¥) = 1.

Proof. As C and C* are two skew A-constacyclic codes of length n and skew generator
polynomials g and h?, according to Lemma the skew polynomial f = lclm(g, h?) is the skew
generator polynomial of the skew constacyclic code C' N Ct. In particular, as g and h? both
divide ™ — X on the right, f divides 2 — A on the right. Assume that C' N C+ = {0}, then
2" — X divides f on the right, therefore 2™ — A = f. According to [19], deg(gcrd(g, h?)) +
deg(lclm(g, h%)) = deg(g) + deg(h?), therefore deg(gerd(g, h*)) = deg(g) +deg(h) —deg(f) =0
and gerd(g, hf) = 1.

Conversely, if gerd(g, h?) = 1, then deg(f) = n, therefore, as f divides 2™ — X on the right,
f=2a" -\ and C N C+ = {0}. The same proof holds for Hermitian LCD codes. =

Example 4 Consider Fg = F3(w) where w?

0:a~ a®. One has :

= w + 1 and 0 the Frobenius automorphism



et 1= (22 +wdz+1)- (22 +w'z+1).

The skew reciprocal polynomial of ?4+w3z+1 is 22 +wz+1 and gerd(x?+w’z+1, 22 +wz+1) =
1. Then by Theorem@ the skew negacyclic code C' = (x? +w 'z +1)4 of length 4 and minimum
distance 3 is a FuclideanL CD code over Fy.
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Example 5 ForFg = IF3(w) where w? = w+1 and 6 the Frobenius automorphism 6 : a — a®,

one has :
P —1=@P 4w +x+1) (@3 +wz?+2+2).

The skew reciprocal polynomial of x> +wx? 4+ x +1 is x> + 2> + w3z + 1 and gerd(z3 +w 2% +
r+2, 23 +22 +wr+1) = 1. Then by Theorem | the skew cyclic code C = (x> +w x4+ +2)¢
of length 6 and minimum distance 4 is a Hermitian LCD code over Fy.

Over a finite field IF, if a cyclic code C' generated by a monic polynomial g is a Eu-
clideanL.LCD code then g = ¢°. Furthermore if ¢ is coprime with n, then g = ¢? if and only if
C' is a EuclideanL.CD code ([14], [16]). This comes from the fact that when ¢ is coprime with
n then 2" — 1 = gh = lem(g, h) is squarefree in IFy[x] therefore, if g = g%, then g and h = hf
are coprime in IFg[z].

Over IF[z; ] we generalize this result in Proposition [4] by using the notion of similarity :

Definition 1 ([19]) Consider a,b in R. a is similar to b if there exists u in R such that
lelm(a,u) =b-u and gerd(a,u) = 1.

Proposition 4 Consider I, a finite field, 8 an automorphism of F,, R = Fylz;0], n a
positive integer, k < n, A in {—1,1}, g a monic right divisor of ™ — X in R with constant
coefficient go and degree n — k, G = ©F(g* . g%) and h in R such that ©™(h) - g = z™ — \.
Consider a (6, \)-constacyclic code C with length n and monic skew generator polynomial g.

1. If C is a Euclidean (resp. a Hermitian) LCD code then g is similar to G (resp. ©(Q)).
2. Assume that lclm(g, h) = 2" —X. If g = G (resp. g = O(G) ) then C is a Euclidean(resp.

a Hermitian) LCD code.

Proof. As ©"(h)-g = 2™ — A, according to Lemma |1} 2" — 1/\ = —1/A0%"(g*) - h*,
therefore G - h* = 2™ — X where G = ©*~"(¢* - -). In particular, f = lclm(g, h%) divides
™ — X on the right.

1. Assume that gerd(g, h?) = 1, then deg(f) = deg(g) + deg(h?) = n, therefore, one has
f=a"—X=G-hi Aslclm(g, hf) = G - h? with gerd(g, h¥) = 1, one can conclude that
g is similar to G.

2. Assume that g = G. As 2™ — XA =g-h = G-h!, one gets h = h%. Aslclm(g,h) = 2™ — ),
one deduces that gerd(g, h%) = gerd(g, h) = 1, therefore C is a EuclideanL.CD code.

Example 6 In Example one has g = x> +w 'z +1 and G = ©%(1 - g* - %) =22 +wdz +1,
therefore lclm(g, w?) = G - w? = w? - g and g is similar to G.



Example 7 In Example@ one has g = 3 +w'z? +2+2 and G = 03(g*) = 23 — 22 +wdzr—1.
As lelm(g,2? —x +w’) = O(G) - (22 —z + w") = 2° + 2* + 2% + w2? + Wiz + w? and
gerd(g, 22 — x +w’) =1, g is similar to O(G).

We are now going to characterize the skew generators of LCD skew cyclic and negacyclic
codes as least common left multiples of skew polynomials when the order of 6 divides the
length of the codes. This will enable to give a construction and an enumeration of LCD
skew cyclic and negacyclic codes of even length over IF,> (Section . Let us introduce a

first notation. We recall that the fixed field of 6 is ]Fg and we denote p the order of #. For
F(z*) € ]Fz [z#] and b in {0, 1}, consider the following set :
Egzw) .= {g € R| gmonic, g-h = F(z") and gerd(©°(h%), g) = 1}.

The following proposition is inspired from Proposition 28 of [4] and Proposition 2 of [5].
It will enable to construct and enumerate LCD skew cyclic and negacyclic codes over IF ..

Proposition 5 Consider IFy a finite field, 6 an automorphism of Fq of order 1, R = Fy[x; 0].
Consider F(xz*) = fi(z#)--- fr(z#) where fi(z"),..., fr(x*) are polynomials of ]Fg[:z“] such
that f; is coprime with f; and f]n for all i # j. The application

(b) (b) (b)
6:d Fnn XX Ep@y = Lre
(915---59r) —  lelm(gr, ..., 9r)
is bijective.
Proof.

e The application ¢ is well-defined.

Consider (g1,...,9r) in £§fi)(w) N ﬁ;’i)(w)

hi,...,h, in R such that g; - h; = h; - g; = fi(z*) and gcrd(gi,@b(hf)) = 1. Consider
h =lcrm(hy, ..., h,). Let us prove that g - h = F(z*) and that gerd(g, ©°(hY)) = 1.

First of all, as hy, ..., h, divide respectively fi(z*),..., f-(z#), and as fi(z"),..., fr(az*)
are pairwise coprime central polynomials, the degree of h = lerm(hyq, ..., h,) is equal to

and g = lclm(gy,...,g,). Consider

T T

Z deg(h;). In the same way, the degree of g = lclm(gi,...,g,) is equal to Z deg(g:).
ﬁfrthermore, as gi - hi = fi(z*), the degree of g; - h; is equal to the degree (Z)flfi(:r“) in
x, therefore the degree of g - h is equal to the degree of F(z*) in x.

Consider, for ¢ in {1,...,7}, 4; in R such that ¢ = A; - g; and B; in R such that
h = hZBZ One getsg-h = Azglthz = Azfl(l‘“)Bz As fz(l‘u) is cen-
tral, it divides g - h. The polynomials f;(x*) are pairwise coprime in ]FZ [z#], therefore
their least common right multiple is equal to their product F(z*), and F(x*) divides
g-h. As deg(g-h) = deg(F(z")), one gets g - h = F(z*). Now gerd(g, ©°(hf)) =
gerd(lelm(gy, . . . ,gr),lclm(é)b(hi), . .,@b(hi))). One can notice that the skew poly-
nomials g; and @b(hg-) are right coprime. Namely, if i = j, gcrd(gi,@b(hg)) =1 by
hypothesis. If ¢ # j consider a right divisor u of g; and @b(hg), then w divides f;(a*)

and f;(x“), as fi(x") and qu(ac“) are coprime one gets that w = 1. One deduces that

10



gerd(g, () = 1. To conclude, the skew polynomial g belongs to Egzxu) therefore ¢
is well defined.

The application ¢ is bijective.

Consider g in Egzw), then g divides F'(z#) = fi(a*) - fr(2"), therefore, as f; and f; are
coprime, according to Theorem 4.1 of [9], g = lclm(g1, . .., g,) where g; = gerd(fi(z#), g)
and this lelm-decomposition into skew polynomials dividing fi(x*), ..., fr(z") is unique.

Furthermore deg(g) = >_._, deg(g;) because f;(z*) and f;(z*) are coprime. Let us
prove that g; belongs to ESS)( ) Consider h in R such that g-h = h-g = F(a#)

xH

and gerd(g, ©%(hf)) = 1. As h divides F(z*), according to Theorem 4.1 of [9], h =
lerm(hy, ..., hy) where h; = geld(f;(z#),h). This lerm-decomposition into skew poly-
nomials dividing fi(z*),..., fr(2*) is unique and deg(h) = >_,_, deg(h;).

Consider, for ¢ in {1,...,r}, 4; in R such that g = A;-g; and B; in R such that h = h;-B;.
As g-h = F(x*) and as F(z") is central, the skew polynomial g; - h; divides F(z") on
the right. Therefore, g;-h; = lclm(gerd(g; - hi, fj(z#)),7 =1,...,r) = gerd(g; - hi, fi(2*))
divides fi(2"). As 3 i deg(gi-hi) = deg(g)+deg(h) = deg(F(a#)) = >=i_; deg(fi(z")),
one gets g; - h; = fi(x*). Lastly, consider u in R such that u divides on the right g;
and ©°(hY). As h; divides on the left h, ©P(h?) divides on the right ©(h?), therefore u
divides on the right both g and ©°(h%), and u = 1.

We now introduce some additional notations that will be useful later :

Dp@ny =1{f € ]Fg[x“] | fmonic and divides F'(z") in]Fz[:r“]}
Fir i ={f = f(a*) € IFg[ac“] | f = fYirreducible in ]FZ[J:“],degzu(f) > 1}

Frea :={f = f(a*) € WO[a"] | f = funfL, fir # f7 irreducible in F9[a#]}.

Theorem 3 Consider I, a finite field with q elements, 6 an automorphism over Iy with
order p, R = Fylz;6], X € {—1,1},b € {0,1}. Consider n a multiple of p and 2™ — X\ =
fr(@)P - (2P where fi(z?), ..., fr(zt) are distinct polynomials of Fplat] belonging to
{zt £ 1} U Fip U Freq. Consider a (0, X)-constacyclic code C' of length n and skew generator
polynomial g. C is a Euclidean(resp. a Hermitian) LCD code if and only if

g =[] fi@*)?" lelmje s (g;)

i€l

where

I,Jc{1,...,r}
InJ=40
VieJ gje ng;)(w)ps \ {1, f;(z*)P°} withb =0 (resp b = 1).

Proof. According to Theorem 2] the Euclidean (resp. Hermitian) LCD (6, A)-constacyclic
b)

codes of length n are generated by the elements of the set Efcn_ \ Where b = 0 (resp. b = 1).
As 2" 41 is self-reciprocal, one has 2" +1 = fi(z#)?" - -« f.(x")P" where fi(z), ..., fr(xz") are

11



distinct self-reciprocal polynomials of IF,[z#] which are either irreducible or products of an
irreducible polynomial and its reciprocal polynomial. Therefore for ¢ # j, f; is coprime with f;
and fjh and Propositioncan be applied to F(z*) = 2 +1. One gets that g = lclm(g1, ..., gr)

where for all i in {1,...,7}, ¢; € E(b)

fiz)p®

Now consider the sets I,J, K C {1,...,r} that form a partition of {1,...,7} such that
Viel g = fi(zM)P Vi€ J,g € E(b \{1 fi(z")P° Y} and Vi € K,g; = 1. As fi(zH) is
central and as the f; are pairwise coprlme, one gets that g = [[,; fi(@*)P" lelmje g (gj)-

Remark 1 The Euclidean LCD skew cyclic (resp. negacyclic) codes of length n over IF,

are the skew cyclic (resp. negacyclic) codes C = (;_; Ci where C; is a skew cyclic (resp.
)
fi(ar)r®

LCD skew cyclic and negacyclic codes where g; € E( ) s (instead of g; € £§”02x“) s ).

negacyclic) code of length n generated by g; € K(O The same remark holds for Hermitian

5 LCD skew cyclic and negacyclic codes over I

In [7, [10L 2], constructions and enumerations of families of LCD codes were provided. In this
section, we construct and enumerate LCD skew cyclic and negacyclic codes in the particular
case when ¢ = p? is the square of a prime number p and 6 : a — aP is the Frobenius
automorphism over IF,. Therefore the order u of 6 is equal to 2 and the fixed field ]Fg of 0
is IF,. We will use the characterization of LCD skew cyclic and negacyclic codes given by
Theorem [3| to design an algorithm of construction of these codes (Algorithm . In the case
when the skew generator polynomials of the codes are not divisible by any central polynomial,
a counting formula will be given (Proposition .

According to Theorem LCD #-cyclic and #-negacyclic codes of even length n over IF )2 are
generated by skew polynomials which are least common left multiples of skew polynomials
gi € ['( )( 2)p*
following cases :

s where f = f; € Dynyq is a divisor of 2" £ 1 in IF)[x 2] satisfying one of the

f(2?) = 2% — € where ¢ = £1 (see Lemma ;
f(z?%) € Fiy irreducible in Fy[2?] with degree d > 1 in 22 (see Lemma [7));

i
I
o f(2%) € Freq is the product of two irreducible distinct polynomials in IF, [2?] (see Lemma

9.

The following proposition enables to characterize those skew polynomials over IF 2 [z; 0]
having a unique factorization into the product of monic irreducible skew polynomials. It will
be useful later.

Proposition 6 (Proposition 16 of [4]) Consider p a prime number, 0 : a — aP the Frobe-
nius automorphism over ¥, with ¢ = p*, R = Fy[z;0], f € Fpla?] irreducible in Fp[x?]
and h = hy, -+~ h1 a product of irreducible monic skew polynomials dividing f. The following
assertions are equivalent :

(i) h has a unique factorization into irreducible monic skew polynomials;

12



(ii) f does not divide h in R;
(iii) for alli in {1,...,m —1}, f # hit1 - h;.

Lemma |7| describes the set E;b()xg)m and its number of elements where f(22) belongs to
Fir. Algorithm [I] enables to construct this set.

Lemma 7 Consider p a prime number, 0 : a — a the Frobenius automorphism over I,
with ¢ = p?, R = F,[z;0], f(2?) € Fiy with degree d in 2°, g in R and m € N. The skew
polynomial g belongs to the set E;b()xz)m if and only if g =1 or g = f(z?)™ or g has a unique
factorization into the product of m monic irreducible skew polynomials g = g, - - - g1 where

Vie{l,...,m},deg(g;) =d

gi divides f(z?)

Vie{l,...,m—1},git1- 9 # f(z?) W
g1 # O°(h}) where g1 - hy = f(a?).

Furthermore, the number of elements of ﬁ;b():ﬂ)m \ {1, f(z®)™} is (p? — p/?)pdm=1),

Proof. Consider g in E;%Q)m\{f(xz)m, 1}. Consider h in R such that g-h = h-g = f(z?)™.
As f(2?) is central and irreducible in F, [22], the skew polynomials g and h are products of
irreducible monic factors dividing f(z?). As deg(g) < 2dm and deg(h) + deg(g) = 2dm, there
exists rin {1,...,2m—1}, g1,...,92m—_r, P1, ..., hy monic of degree d dividing f(z?) in R such
that ¢ = gom—r---g1 and h = hy---h,. The skew polynomial @b(ha) is an irreducible right
factor of ©(h?) which divides ©°(f1(2?)) = f(x?) and does not divide g on the right because
gerd(©8(hf), g) = 1. Therefore f(22) does not divide g. Similarly, one gets that f(z?) does
not divide ©°(h?) and h. Therefore, according to Proposition @, the above factorizations of g
and h into the products of monic irreducible factors are unique and for all 7 in {1,...,m—1},
giv1 - gi # [(2?).

Asg-h=h-g= f(x®)™ one gets that for all 4, g; - h; = f(x?), therefore, r = m.
Laslty, as g and ©°(h%) are right coprime, necessarily, g; # @b(hnl).

Conversely, consider g = g, - - - g1 Where g1, ..., ¢, are monic skew polynomials satisfying
. Consider h = hy---hy,, with g; - h; = h; - gi = f(2?) then g-h = h-g = f(z®)™.
Furthermore as g; 11 - ¢; # f(2?), according to Proposition @, the above factorization of g
into the product of monic irreducible factors is unique. Similarly, the factorizations of h and
©°(h%) into the products of monic irreducible factors are unique.

Consider u a monic right factor of g and @b(hh) with degree > 1. Necessarily, u has a unique
factorization into the product of monic skew polynomials. The unique monic linear right
factor of u is also the unique monic right factor of g and @°(h?), therefore u = g; = @b(hi),
which is impossible according to . Therefore gerd(g, ©°(h%)) = 1 and ¢ belongs to Egcb()mg)m.

Let us compute the number of elements of E;b()ﬂ)m \ {1, f(2?)™}. We first notice that
g1 # @b(hli) where g1 - hy = f(2?) if and only if g; is a divisor of f(z?) which does not belong
to {@°(u?) | ©%(uf) - u = f(2?)}. According to [I8], the number of monic irreducible right
factors of f(x2) is equal to 1 + p?, where d is the degree of f(z?). According to Lemma 3.4
of [6], the number of irreducible monic right factors u of f(x?) such that ©°(uf) - u = f(z?)
is equal to 1 + p%2. Therefore, the number of monic skew polynomials of degree md in

L3y N L F@)™ s (07 +1) = (14 p72)) (1 4 pt = 1)1 = (p? — pt/2)pdtn-D).
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Algorithm 1 Egcb()ﬁ)m for f(z?) € Fir, b € {0,1} and m € IN*

Require: : p, prime number, m € N*, b € {0,1}, f(2?) € F,[2?] such that f(z?) € F;
Ensure: : E;Z?IQ)W
1. E«+ {1, f(z*>)™}
2: d + deg,2(f(2?))
3: I + {g € R,g monic, g irreducible of degree d dividing f(z?)} (using Algorithm 1 of
Appendix A of [6])
4: for g1,...,9m € I such that g; - g;11 # f(2?) and g1 # @b(ha) where @b(hi) ~hy = f(2?)
do
E—EU{gm g1}
6: end for
7. return F

Lemma |8 describes the set £) and its number of elements. Algorithm [2| enables to

(z2£1)™
construct this set.

Lemma 8 Consider p a prime number, 0 : a — aP the Frobenius automorphism over I, with
q=7p> R=T,x;0], e € {~1,1}, g in R and m € N. The skew polynomial g belongs to the
set EEI;)Q_E

ym if and only if g =1 or g = (2% — €)™ or g has a unique factorization into the
product of m monic linear skew polynomials g = (x + cuy) -+ - (¢ + 1) where

Pt = ¢
Qi1 # —€/ay (2)
e # —0(aq)/on

if b=0 and
osz:l
fo 2 ®)
az—l—l?é 1/0&1

ifb=1,e=1 andp # 2.
Furthermore, the number of elements of [’E?Le)m \ {1, (22 — &)™} is

2m if p=2,b=0;
P p = (1)) if p £ 2,5 =0;
0 if b=1,p=2 orp odd and ¢ = —1;
P tp+1) if b=1,p odd and e = 1.

Proof. Consider g in R. Like in proof of Lemma one gets that g belongs to [’EZ)Q—e)m

if and only if g = 1 or g = (22 — €)™ or ¢ has a unique factorization into the product of m
monic linear skew polynomials g = (z + ayy,) - - - (z + 1) where

x + a; divides 22 — €
(x4 1) (x+ ;) # 2% — €
T+ o # @b(hi) where (z + 1) - hy = 22 — €.

14



Therefore g # 1, (2? — €)™ belongs to the set £ if and only if g has a unique

(-9
factorization in R as g = (z + aup) - - - (x + 1) where
ot =
Qiy1 # —€/a; (4)
€ # -0 (ay)/ay.

If b = 0, the condition (4 is equivalent to o™ = ¢, ait1 # —€/a; and a? # —e. Therefore

%

the number of skew polynomials in E(g)gfe)m \ {1, (2% — €)™} is

p™Yp—1) if poddande=(—1)P+D/2
p"(p+1) if poddande# (—1)PH1/2
gm it p=2.
In the same way, one gets that Egiéie)m ={1,(2#®> — €)™} if p=2or pis odd and € = —1.
If e =1 and p # 2, condition is equivalent to af“ =1 and aj+1 # —1/a;. In this case
there are (p + 1)p™ ! skew polynomials of degree m in ) ym \ {1, (22 — &)™},

(z2—¢

Algorithm 2 EEI;)Qil)m for b € {0,1} and m € IN*

Require: : p, prime number, m € N*, e € {—1,1}, b € {0,1}
Ensure: : ,C(b)z m
(z%—¢)
c B+ {1, (22 — &)™}
if b =0 then
for ay,...,a;, € IF2 such that oz% #* —1,0(?“ =eand ;41 # —€¢/a; do
E—FEU{(z+aom) - (z+oo)}
end for
else
if p odd and € = 1 then
for a1,...,a, € IF)2 such that afﬂ =1and a;y1 # —1/a; do
E—EU{(z+an) - (x+a)}
end for
end if
: end if
: return F

—_ e

Lemma @ describes the set L',Scb()ﬂ)m and its number of elements where f(22) belongs to

Fred- Algorithm [3] enables to construct this set.

Lemma 9 Consider p a prime number, 0 : a — aP the Frobenius automorphism over IF,
with ¢ = p?, R = Fy[z;0], f(2?) = fir(:vQ)finT,(xQ) in Freq with degree d = 26 in x%. The
monic skew polynomial g belongs to the set Ey)()xQ)m if and only if g = 1 or g = f(x®)™ or
g = lclm(gy, g2) where g1 = gim -~ 1,1 and g2 = gom - - - 92,1 have unique factorizations into
the products of m monic irreducible skew polynomials satisfying :
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deg(gi;) =0

g1 divides fir(2%) and gs,; divides % (22)

915 911 # (@) and goj - go o1 # [ (2?)
g11 # @b(hgg)a hai-g21 = fiur(xZ)'

Furthermore, the number of elements of E;b()xg)m \ {1, f(z®)™} is (1 + p¥/?)pm=1)d/2,

Proof. Consider g in E;b()ﬁ)m \ {1, fir(xQ)mffT(mQ)m} and h in R such that g-h=h-g =
fir(xQ)mffT(xQ)m with gerd(g, ©°(h%)) = 1. As g divides fir(x2)mfiuT(x2)m and f;-(2?)™ and
ffr(:z:2)m are coprime in IF,[z?], according to Theorem 4.1 of [9], ¢ = lclm(gi,g2) where
g1 = gerd(fir(22)™, g) and g9 = gcrd(ffr(x2)m,g). Similarly, h = lerm(hq, he), where hy =
geld(fir(22), h) and ho —gcld(f ( 2),h).

As g h=hog= fulz)"fi(?)"™, one has g1 by = fu(z®)™ and g - hy = f5(a7)™
therefore g; and h; (resp. g2 and hy) are products of irreducible skew polynomials dividing
fir(a?) (xesp. f5,(a)).

If f;r(22) divides g1, then, as @b(hg) divides fi, (%)™, g1 and @b(hg) have a common right
divisor (dividing fi,(x?)), therefore g and ©°(h?) also have a common nontrivial right divisor,
which is impossible as g and ©°(hf) are right coprime. Therefore f;,(z%) does not divide g;.
In the same way, f;-(22) does not divide h1, ffr (22) does not divide go and hsa, therefore using
Proposition [6] one gets that :

91 =9g1,m---9g11 and go = go - - g2,1 With deg(g; ;) = 6
hi="hy1---himand hg = ho1---ham

915 911 % fir(2?) and g ;- go 1 # f.(2?)

g1 - hii = fir(z?) and go; - ho; = fihr($2)

Furthermore the above factorizations of g1, g2 are unique (according to Proposition @
As g and ©°(h?) are right coprime, g; and @b(hh) are right coprime, therefore g1 1 # © (hg 1)-

Conversely, assume that g = lclm(g1, g2) where g1 = gim - 91,1, 92 = G2.m - G2.1 and
is satisfied. Consider h;; such that g1 ;- h1; = fir(z?) and 92 - hoi = fihr(:cQ). Consider
hl = h171 hl Jms hg hg 1 h27m and h = lcrm(hl, hg). Then g-h = h-g = fir($2)mfihr(l‘2)m
and g and Gb(hu) are right coprime.

Let us compute the number of elements of E( ym \{1, f(z*)™}. The elements of E m\
{1, f(z>)™} are the skew polynomials ¢ in bljectlon with the couples (g1, g2) satlsfylng
There are 1 + p® possibilities for g1,1 and p? possibilities for each g1, with j = 2,...,m,
therefore (1 + p®)p®(m—1 possibilities for g;. For each j in {1,...,m} there are p° possibilities
for go j, therefore, one gets p®™ possibilities for go.

From Theorem [3| Algorithms and [3] one deduces Algorithm [ for the construction of
LCD 6-cyclic and f-negacyclic codes of length n and dimension k over IF2.

Lastly we give an enumeration formulae (Proposition for LCD skew cyclic and negacyclic
codes of even length n = 2k and of dimension k whose generator polynomials are not divisible
by any central polynomial.
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Algorithm 3 £

Ecb()xzw for f(z%) € Freq, b€ {0,1} and m € IN*

Require: : p, prime number, m € N, b € {0,1}, f(2?) € F,[z?] such that f(z?) =

fir($2)fiur(m2) € ‘7:7”€d

Ensure: : ,C;b()x?)m

—
—= o

E « {1, f(z*)™}
d < degmz (f(‘rZ))
I + {g € R, g monic, g irreducible of degree d dividing f;(x?)}
I + {g € R, g monic, g irreducible of degree d dividing fiur(xQ)}
for g21,...,92.m € I> such that go; - g2.i41 # fz-hT(a:2) do
ha,1 < quotient of the division of fihT(a:2) by g2.1
for g11,...,91.,m € I1 such that g1 ; - 1441 # fir(2?) and g1 # Gb(hgvl) do
E — EU{lclm(gim---91,1,92m - 92,1)}
end for
end for

: return F

Algorithm 4 LCD 6-cyclic and f-negacyclic codes of length n and dimension k over I

Require: : p, prime number, k¥ < n € N with n = 2p°t, p Jt, b € {0,1}, A € {—1,1},

0:ar aP € Aut(IF,2)

Ensure: : monic skew generators g of (6, A)-constacyclic codes of length n and dimension &

over IF)2 which are Euclidean LCD codes if b = 0 and Hermitian LCD codes if b = 1.

. E+0

!\?

10:
11:
12:

Compute f1(2?), fa(z?),..., fr(z?) such that 2" — X = f1(z?)P" - - f,(2})P" € F,[2?] where
seNN, fi(a?),..., fr(2?) € {22 £ 1} U Fir U Frea
fori=1,...,r do
d;  dega(f;(%))
Compute E;lz)(ﬂ)ps with Algorithms and
end for
for I,J C{l,...,r} with INJ =0and k=p*(2t =2 ,c;di — > ;c;d;) do

for (9));es € Mjes £ oy \ {1 £3(@*)7"} do

E «— EU{[Iie; fi(=*)?" lclmjcs(g;)}
end for
end for
return F
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Proposition 7 Consider a prime number p, 0 : a — aP the Frobenius automorphism over
F o, A€ {—1,1} and n = 2k = 2p°t where s is an integer and t is an integer not divisible by

p.

P25

1. The number of Euclidean LCD (0, \)-constacyclic codes of length 2k and dimension k
with skew generator polynomial not divisible by any central polynomial is

Ny x H (p — pY2)pdr =D H (1+ p¥/2)p2*=Dd/2

fe}—irrTDzn—)\ fe‘Fredez”—A
d=deg(f) d=deg(f)
22° if p=2

where N1 = (pp DH2(p? 1) if k is even and p is odd
PP p — (=1)@D/2) if ks odd and p is odd

1 if k is even and p is odd

and N-1 = { PP p— (=)@ D/2) ifk is odd and p is odd.

2. The number of Hermitian LCD (0, \)-constacyclic codes of length 2k and dimension k
with skew generator polynomial not divisible by any central polynomial is

Mox I e =" I (1 pPptr e

fefirmpmn—/\ fe‘Fredemn—A
d=deg(f) d=deg(f)
0 if p=2
where N1 =< 0 if k is even and p is odd

p”" " Hp+1) ifk is odd and p is odd

1 if k is even and p is odd
0 if k is odd and p is odd.

Proof. Consider the factorization of 2™ — XA = fi(2?)P" - f(2%)P" where fi(2?),...,
fr(2?) are distinct polynomials of FFp[z?] belonging to {z? + 1} U F;r U Freq. According
to Theorem (3| the Euclidean (resp. Hermitian) LCD (6, \)-constacyclic codes of length 2k
and dimension k with skew generator polynomial not divisible by any central polynomial are
generated by the monic skew polynomials g = lclm;cs(g;) where J is a subset of {1,...,7}

and Vj € J,g; € E s \ {1, f;(@?)P"} with b =0 (resp. b = 1). Furthermore the dimension
of the codes are equal to k=p*>c;deg, [i(x 2?). As k =p° > -y dege fi(x x?), J must be

equal to {1,...,7} and g = lclmj<i<,(g;) where g; belongs to E(b 2o \ {1, fi(z?)P"}. The
number of such skew polynomials g is Ny x M) where

M= TT #£0. \{LFa)

fe{z?£1}
fE/Dznfk

and N_1 = {

and

b s
My= I #L5 0\ 1L FEH )
fE-FirU-Fred
fEDyn _y
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p | nbr of Euclidean LCD skew cyc. | nbr of Hermitian LCD skew cyc.
2p, Pl 2p,p,p + 1,2 2p, Pl 2p,p,p + 1,2

3 18 16 36 32

5 3750 2412 3750 2412

7 705984 39564 941192 52752

11 | 259374246010 >1 311249095212 >1

Table 1: Number of Euclidean and Hermitian LCD [2p,p|,> and [2p,p],2 MDS skew-cyclic
codes for p = 3,5,7,11

For € =41, 22 —€ € Dyn_, if and only if € = X therefore using the enumeration formulae

for [, 2o \ {1, (2% — €)'} given by Lemma one deduces the value of N,.
Enumerat1on formulae for #E; (22)p° \ {1, f(2?)P"} given by Lemma (when f(z?) € Fir)

and Lemma |§] when f(2?) € F,cq) enable to obtain M. =

Remark 2 From Proposition[7, one gets that over IFy, when k = 2%, the number of Euclidean
LCD 6-cyclic codes [2k, k] is 2F and growths exponentially with k. On the other hand, the
number of Euclidean self-dual 0-cyclic codes [2k, k| is constant (Corollary 26 of [4]).

Remark 3 Over IF2, according to Theorem 5.5 of [20], there are only 2 LCD cyclic codes
of length 2" if p = 2, while there are 22" LCD skew cyclic codes of length 2". If p is an odd
prime number, there are 4 LCD cyclic codes of length 2p" while there are pP —*(p—(—1)®+1)/2)
LCD skew cyclic codes with length 2p".

To finish we give below an example and some tables of results. All the computations were
made with the computer algebra system MAGMA.

Example 8 There are 16 = 22" nontrivial Buclidean LCD 0-cyclic codes of length 8 over
Fy = Fo(w) where 6 is the Frobenius automorphism over 4. Their dimensions are all equal
to 4. Consider g = (x + 1) - (z + w?) - (z + w?) - (x + w?) = 2* + wa® + waz? + v+ 1. As
p =2, (WPt =171 =1, (w?)? # —1, w? # 1/w? and 1 # 1/w?, therefore according to
Algorithm@ g generates a FuclideanLCD [8,4]4 6-cyclic code which is not a Hermitian LCD
1 1 w w
2
code. The systematic generator matriz of C is (I4|P) where P = ZQ 7’{) 2} 11]
1 w? w? 1
checks that 1 € Spec(P x! P) therefore according to Proposition 4 of [7] C is a EuclideanLCD
code. Furthermore 1 € Spec(P xt P) therefore according to Proposition 6 of [7], C is not a
Hermitian LCD code.

. One

The following Table (1| sums up the number of [2p, p|,2 LCD 6-cyclic codes and the number
of [2p,pl,2 MDS LCD 6-cyclic codes for p € {3,5,7,11} . One can notice that there exists
MDS LCD 6-cyclic codes of length 2p over IF 2, while according to Corollary 4.2 of [20], there
are no MDS LCD repeated-root cyclic codes over I, of length 2p.

Table [2 Table [3] and Table [] illustrate Proposition [7] over Iy and Fg. Best minimum
distances and numbers of LCD [2k, k] skew cyclic and negacyclic codes over Fy and IFg
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Euclidean LCD skew cyc. Euclidean LCD skew cyc.

length | best dist | nbr || length | best dist nbr
2 2% 2 26 9 8 064
4 3* 4 28 11* 18 432
6 4* 4 30 12% 13 056
8 4% 16 32 10 65 536
10 5* 24 34 11* 115 200
12 5 32 36 11 114 688
14 6* 144 38 12* 523 264
16 6 256 40 12% 786 432
18 7 224 42 12 1 198 080
20 8% 768 44 13 4 063 232
22 8% 1984 46 14%* 8 392 704
24 9* 2 048 48 14%* 8 388 608

Table 2: Best minimum distances and numbers of Euclidean LCD [2k, k] skew cyclic codes of
length < 48 over IF4 with skew generator polynomial not divisible by a central polynomial

are given in the case when the skew generator polynomials are not divisible by any central
polynomial. The index * means that the minimum distance is the best known minimum
distance of codes with these parameters.

Table [5| sums up the dimensions of MDS LCD skew codes of given length < 10 over IFy.
Tables [6] and [7] sum up the dimensions of MDS LCD skew codes of length < 18 over Fo5 and
of length < 16 over IFyg.

6 Conclusion

In this text, we gave some conditions on the equivalence of skew constacyclic codes and a
first study of skew LCD codes was proposed. LCD skew cyclic and negacyclic codes were
constructed and enumerated over IF,2. Some computations were made and MDS LCD codes
were constructed. It could be interesting to see if there exist [2p,p],2 MDS LCD codes for
p odd prime greater than 11 and to find a necessary and sufficient condition on p for the
existence of [2p, pl,2 MDS LCD skew codes.
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