
HAL Id: hal-01898220
https://hal.science/hal-01898220

Submitted on 18 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Rigorous System Design Flow for Autonomous Systems
Saddek Bensalem, Marius Bozga, Jacques Combaz, Ahlem Triki

To cite this version:
Saddek Bensalem, Marius Bozga, Jacques Combaz, Ahlem Triki. Rigorous System Design Flow for
Autonomous Systems. Leveraging Applications of Formal Methods, Verification and Validation. Tech-
nologies for Mastering Change - 6th International Symposium, ISoLA 2014, Oct 2014, Corfu, Greece.
�hal-01898220�

https://hal.science/hal-01898220
https://hal.archives-ouvertes.fr

Rigorous System Design Flow
for Autonomous Systems

Saddek Bensalem, Marius Bozga, Jacques Combaz, and Ahlem Triki

Verimag, France
{firstname.lastname}@imag.fr

Abstract. We currently lack rigorous approaches for modeling and im-
plementing complex systems. BIP (Behavior, Interaction, Priority) is a
component-based framework intended to rigorous system design. It re-
lies on single semantic model for system descriptions all along the design
flow. It also includes methods and tools for guaranteeing system correct-
ness to avoid a posteriori verification. Our approach is to check safety
properties (e.g. deadlock freedom) at design time using D-Finder verifi-
cation tool. In addition, source-to-source transformers allow progressive
refinement of the application to generate a correct implementation. Our
framework was successfully applied in various context including robotics
case studies presented here.

1 Introduction

System design is the process leading to a mixed hardware/software system meet-
ing given specifications. It involves the development of application software tak-
ing into account features of an execution platform. The latter is defined by its
architecture involving a set of processors equipped with hardware-dependent
software such as operating systems as well as primitives for coordination of the
computation and interaction with the external environment.

System design radically differs from pure software design in that it must
take into account not only functional but also extra-functional specifications
regarding the use of resources of the execution platform such as time, memory
and energy. Meeting extra-functional specifications is essential for the design of
embedded systems. It requires evaluation of the impact of design choices on the
overall behavior of the system.

We currently lack rigorous techniques for deriving global models of a given
system from models of its software and its execution platform. We call rigorous
a design flow which allows guaranteeing essential system properties. Most of the
existing rigorous design flows privilege a unique programming model together
with an associated compilation chain adapted for a given execution model. For
example, synchronous system design relies on synchronous programming models
and usually targets hardware or sequential implementations on single proces-
sors [1]. Alternatively, real-time programming based on scheduling theory for
periodic tasks, targets dedicated real-time multitasking platforms [2].

We strongly believe that a rigorous design flow should be model-based, that
is, all the system description should be based on a single semantic model, should
be component-based, that is, it provides primitives for building composite com-
ponents as the composition of simpler component, and should rely on tractable
theory for guaranteeing correctness by construction to avoid as much as possible
monolithic a posteriori verification. An instance of rigorous design flow is the
BIP approach presented below.

The BIP Desgin Flow. Behavior—Interaction—Priority (BIP) is a compo-
nent framework intended to rigorous system design. It allows the construction of
composite hierarchically structured components from atomic components char-
acterized by their behavior and their interface. Components are composed by
layered application of interactions and of priorities. Interactions express syn-
chronization constraints between actions of the composed components while pri-
orities are used to filter amongst possible interactions and to steer system evolu-
tion so as to meet performance requirements e.g. to express scheduling policies.
Interactions are described in BIP as the combination of two types of proto-
cols: rendez-vous to express strong symmetric synchronization and broadcast to
express triggered asymmetric synchronization. The combination of interactions
and priorities confers BIP expressiveness not matched by any other existing for-
malism [3]. It defines a clean and abstract concept of architecture separate from
behavior. Architecture in BIP is a first class concept with well-defined semantics
that can be analyzed and transformed. BIP relies on rigorous operational se-
mantics that has been implemented by three Execution Engines for centralized,
distributed and real-time execution. It is used as a unifying semantic model in
a rigorous system design flow. Rigorousness is ensured by two kinds of tools: 1)
D-Finder a verification tool for checking safety properties and deadlock-freedom
in particular; 2) source-to-source transformers that allow progressive refinement
of the application to get a correct implementation.

BIP can be considered as an ADL (Architecture Description Language) or
as a coordination language as it focuses on the organization of computation
between components. As other existing ADL such as ACME [4] and Darwin
[5], BIP uses the concept of connector to express coordination between compo-
nents. Nonetheless, connectors in BIP are stateless. There is a clear distinction
between architecture which involves connectors and priorities and behavior. An-
other significant difference is that BIP is intended to system modeling as it
directly encompasses timing and resource management aspects. It differs from
other system modeling formalisms which either seek generality at the detriment
of rigorousness, such as SySML [6] and AADL [7] or have a limited scope as they
are based on specific models of computation such as Ptolemy [8].

In previous work, we successfully applied the BIP design flow to the robot
DALA, an autonomous rover for extraterrestria exploration [9–11]. This paper
is based on the extension of BIP to time proposed in [12], which was not consid-
ered by [9–11]. Its contributions1 are: (i) the application of recently developed

1 This work was supported by the European Integrated Project 257414 ASCENS.

verification and validation techniques to autonomous systems case studies, and
(ii) the extension of the method for generation of distributed implementations
proposed in [13] to timed systems. The rest of the paper is organized as follows.
Section 2 provides a formalization of the BIP language and its semantics. Sec-
tion 3 describes the BIP toolchain consisting mainly of: a compiler, including
backends for the generation of both single-threaded and multi-threaded C++
code, as well as message passing based implementations for their deployment
on distributed platforms, and verification and validation tools for checking the
correctness of the system and its performance. Finally, Section 4 demonstrates
our approach by the application of our tools to various robotics case studies.

2 Basic Semantic Model of BIP

Definition 1 (abstract model). An abstract model is a timed automaton
M = (A,Q,X,−→, tpc) such that:

– A is a finite set of actions.
– Q is a finite set of control locations
– X is a finite set of clocks
– −→ is a finite set of labeled transitions. A transition is a tuple (q, a, g, r, q′)

where q, q′ ∈ Q are control locations, a is an action executed by the transition,
g a constraint over X called guard, and r is a subset of clocks that are reset

by the transition. We write q
a,g,r−→ q′ for (q, a, g, r, q′) ∈−→

– tpc is a function associating to each control location q ∈ Q a constraint tpc[q]
over X called time progress condition.

An abstract model describes the platform-independent behavior of the sys-
tem. Timing constraints, that is, guards of transitions and time progress condi-
tions of control locations, are any boolean combination of simple constraints of
the form x ∼ k, where x ∈ X is a clock, k ∈ N is a non-negative integer, and
∼ is a comparison operator: ∼∈ {<,≤,≥, >}. They take into account only user
requirements (e.g. deadlines, periodicity, etc.). The semantics assumes timeless
execution of actions.

Definition 2 (abstract model semantics). An abstract model M =
(A,Q,X,−→) defines a transition system TS. States of TS are pairs (q, v), where
q is a control location of M and v : X→ R+ is a valuation of the clocks X map-
ping each clock x ∈ X to its current value v(x) ∈ R+, where R+ denotes the set
of non-negative reals.

– Actions. We have (q, v)
a−→ (q′, v[r 7→ 0]) if q

a,g,r−→ q′ in M and both g(v)
and tpc[q′](v[r 7→ 0]) are true, where v[r 7→ 0] denotes the valuation of the
clocks such that v[r 7→ 0](x) = 0 if x ∈ r, v[r 7→ 0](x) = v(x) otherwise.

– Time steps. For a waiting time δ ∈ R+, δ > 0, we have (q, v)
δ−→ (q, v + δ)

if the time progress condition tpc[q] allows the system to wait for δ at (q, v),
that is, if for all δ′ ∈ [0, δ], tpc[q](v + δ′) is true.

In an abstract model, clocks are non-negative real variables increasing syn-
chronously. Guards are used to specify for which values of the clocks the actions
may take place, and time progress conditions specify whether the system can wait
at a given state or needs to execute an action to leave this state. Given an abstract
model M = (A,Q,X,−→), an execution sequence of M from an initial state

(q0, v0) is a maximal sequence actions and time-steps (qi, vi)
σi−→ (qi+1, vi+1),

σi ∈ A ∪ R+, i ≥ 0.

Example 1. Consider an abstract model M = (A,Q, {x},−→) with two actions
A = {sync1, p}, two states Q = {q1, q2}, a single clock x, and two transitions
−→= { (q1, sync1, ∅, {x}, q2), (q2, p, [10 ≤ x ≤ 20]d, ∅, q1)} (see Figure 1). It can
be easily shown that the execution sequences of M from the initial state (q2, 0)

that are an infinite repetition of the sequence (q2, 0)
δ1−→ (q2, δ1)

p−→ (q1, δ1)
δ2−→

(q1, δ1 + δ2)
sync1−→ (q2, 0), where 10 ≤ δ1 ≤ 20.

q2q1

{x}sync1

p [10 ≤ x ≤ 20]d

Fig. 1. Example of abstract model

Definition 3 (composition of abstract models). Let Mi = (Ai,Qi,Xi,−→i

, tpci), 1 ≤ i ≤ n, be a set of abstract models. We assume that their sets of
actions and clocks are disjoint, i.e. for all i 6= j we have Ai ∩ Aj = ∅ and
Xi ∩ Xj = ∅. A set of interactions γ is a subset of 2A, where A =

⋃n
i=1 Ai, such

that any interaction a ∈ γ contains at most one action of each component Mi,
that is, a = { ai | i ∈ I } where ai ∈ Ai and I ⊆ { 1, 2, . . . , n }. The composition
of the abstract models Mi, 1 ≤ i ≤ n, by using a set of interactions γ, denoted
by γ(M1, . . . ,Mn), is the composite abstract model M = (γ,Q,X,−→γ , tpc) such
that:

– Q = Q1 × Q2 × . . .× Qn
– X =

⋃n
i=1 Xi

– tpc is defined by tpc[q1, . . . , qn] =
∧n
i=1 tpci[qi]

– −→γ is defined by the rules:

a = {ai}i∈I ∈ γ
g =

∧
i∈I

gi r =
⋃
i∈I

ri ∀i ∈ I . qi
ai,gi,ri−→i q′i ∀i 6∈ I . q′i = qi

(q1, . . . , qn)
a,g,r−→γ (q′1, . . . , q

′
n)

A composition M = γ(M1, . . . ,Mn) of abstract models Mi, 1 ≤ i ≤ n ex-
ecutes interactions a = {ai}i∈I ∈ γ which corresponds to synchronizations of
actions ai of models Mi, i ∈ I. An interaction a = {ai}i∈I ∈ γ is enabled from
a state of M if all actions ai are enabled.

In a composite model M = γ(M1, . . . ,Mn), many interactions can be enabled
at the same time introducing a degree of non-determinism in the behavior of

M . In order to restrict non-determinism, we introduce priorities that specify
which interaction should be executed among the enabled ones. A priority on
M = γ (M1, . . . ,Mn) is a relation π ⊆ γ ×Q× γ such that for all q the relation
πq = { (a, a′) | (a, q, a′) ∈ π } is a partial order. We write aπqa

′ for (a, q, a′) ∈ π
to express the fact that a has weaker priority than a′ at state q. That is, if both a
and a′ are enabled at state q, only the action a′ can be executed. Thus, priority
aπqa

′ is applied only when the conjunction of the guards of a and a′ is true.

Let q
a,g,r−→γ q

′ and q
a′,g′,r′−→γ q′′ be transitions of M . Applying priority aπqa

′ boils
down to transforming the guard g of a into the guard gπ = g ∧ ¬g′ and leaving
the guard g′ of a′ unchanged.

Henceforth, we denote by enq(a) the predicate characterizing the valuations
of clocks for which an interaction a is enabled at state q. It is defined by:

enq(a) =

false if @(q, a, g, r, q′) ∈−→γ∨

(q,a,g,r,q′)∈−→γ

g otherwise.

Definition 4 (priority). Given a composite model M = (γ,Q,X,−→γ), the
application of a priority π to M defines a new model πM = (γ,Q,X,−→π) such
that −→π is defined by the rule:

q
a,g,r−→γ q

′ gπ = g ∧ ¬
∨
aπqa′

enq(a
′)

q
a,gπ,r−→ π q

′

Example 2. Consider an abstract model M = πγ(M1,M2,M3) such that:

– abstract models M1, M2, and M3 are provided by Figure 2,
– interactions γ = {a1, a2, a3} are defined by a1 = {sync1, sync2, sync3}, a2 =
{p, q} and a3 = {r, s},

– priority π is such that a2πqa3 for any control location q of M .

From the initial state (q11 , q
1
2 , q

1
3 , 0), it can be easily shown that the execution

sequences of M have the following form: ((q11 , q
1
2 , q

1
3), 0)

a1−→ ((q21 , q
2
2 , q

2
3), 0)

5−→
((q21 , q

2
2 , q

2
3), 5)

a3−→ ((q21 , q
3
2 , q

1
3), 5)

δ2−→ ((q21 , q
3
2 , q

1
3), 5 + δ2)

a2−→ ((q11 , q
1
2 , q

1
3), 5 +

δ2)
a1−→ ((q21 , q

2
2 , q

2
3), 0), where 5 ≤ δ2 ≤ 15. Notice that control location err

cannot be reached in M2 due to the application of priority a2πqa3 for q =
(q21 , q

2
2 , q

2
3).

3 The BIP Toolchain

This section presents the toolchain available with the BIP framework (see Fig-
ure 3). It consists in a rich set of tools for modeling, executing and verifying BIP
models. The frontend of the toolchain is the parser which takes as input textual
representations of BIP models according to the BIP grammar, and builds BIP
models which are implemented using the EMF meta-modeling technology. Such
models are the input for the rest of the tools, which fall into two main categories.

q11 q12 q13

a2πa3

γ = {a1 = {sync1, sync2, sync3}, a2 = {p, q}, a3 = {r, s}}

M3
M1

sync1
{x}

p

[10 ≤ x ≤ 20]d
sync2

err

M2

q32

q

r q22
q

sync3
{y}

s

[y ≥ 5]e

q21 q23

Fig. 2. Example of composition of abstract models with priorities

BIP LanguageBIP

Model Cheking

Statistical

Validation

DFinder

Verification

BIP parser

Code generator

Distributed

Code generator

Centralized

C++ C++ C++

Distributed Platform

C++

Engine

Execution /

Simulation

BIP model
(EMF)

BIP Compiler

Transformation

into Send/Receive

safety
property

property
stochastic

OK / NOT OK

OK / NOT OK

Fig. 3. Overview of the BIP Toolchain

Code generators. The BIP toolchain provides code generators for simulation
and/or execution of models on target platforms. The standard code generator
produces C++ code that relies on an engine for its execution. The centralized
engine directly implements the operational semantics of BIP. It plays the role
of the coordinator in selecting and executing synchronizations between the com-
ponents, taking into account interactions and priorities specified in the input
model. It supports both single-threaded and multi-threaded execution modes.

We have also developed a code generator for distributed platforms. It allows
the transformation of BIP models into a set of standalone programs communicat-
ing through message passing which is implemented using the primitives available
on the target platform. Such transformation has been proven correct, that is, it
preserves the semantics of the input model.

Verification and validation tools. The BIP toolchain is completed by verifica-
tion and validation tools for both checking system correctness and performance
evaluation.

D-Finder is a verification tool targeting safety properties, e.g. deadlock free-
dom or mutual exclusion. The verification method implemented by D-Finder is
based on the computation of invariants used to approximate the set of reach-
able states of the target system, hence the method is sound but not complete: it
may not be able to prove a property even if it is satisfied by the system. Invari-
ants are computed following the architecture of the system, that is, we generate
invariants for components and for interactions. The approach is compositional
and can be applied incrementally, allowing to better scale to large systems than
traditional verification techniques.

In addition to D-Finder, the BIP toolchain includes the statistical model-
checker SMC-BIP for checking stochastic properties expressed as probabilistic
bounded linear temporal logic (PBLTL) formulas. Given a stochastic BIP model,
a PBLTL formula and confidence parameters, SMC-BIP computes execution
sequences until the formula can be proven with the target degree of confidence.
Such a tool is particularly suited for evaluating quantitative properties including
system performance related metrics.

4 Case Studies

In the following, we illustrate the use of our approach and tools through various
robotics case studies. We used D-Finder to formally prove the correctness of a
non trivial protocol between collaborating robots, as shown in Section 4.1. The
statistical model-checker SMC-BIP was used to evaluate the performance and to
fine-tune the strategy for the deployment of a swarm of robots (Section 4.2). In
Section 4.3 we used our C++ code generator for deriving correct by construction
distributed implementations from high-level models.

4.1 Compositional Verification of Safety Properties

We applied the compositional verification techniques for timed systems presented
in [14] to a robotics scenario. It consists of cooperating robots used in a child’s
bedroom for home automation, automatic cleaning, or child assistance in tidying
up. We considered the following types of robots/devices in the room, all capable
of wireless communications.

Cleaning Robot. We assume the presence of an autonomous vacuum cleaner
(e.g. Roomba) that can cooperate with other types of robots.

Toy Case Robot. The toy case robot—called Ranger—is currently developed
in a research project of EPFL [15]. Its goal is to encourage the child to put
away the toys in the case. We also assume that this robot has sensors able
to detect the presence of the child when he is close enough.

Bed and desk chair. They are equipped with sensors allowing to detect when
the child sits on.

Door. The bedroom door is equipped with an electric closing and locking sys-
tem. A safety mechanism stops any closing procedure if the child tries to
enter the bedroom while the door is closing.

Ceiling Camera. A camera located on the ceiling takes pictures at a given pe-
riod P . They can be analyzed to detect whether the child is in the bedroom.
The shape of the child can be tracked in these pictures only if it is not too
close to other shapes (i.e. the toy case, on the bed and the chair).

In this scenario we were interested in a safety property stating that the child
should not be in the bedroom while the cleaning robot is cleaning. To this end,
we designed a protocol in which the cleaning robot (1) checks if child is outside
the bedroom by correlating information from all the other robots / devices, (2)
if so, closes and locks the door to keep the child outside, and (3) cleans the
bedroom. We used formal verification to prove that our protocol satisfies the
safety property.

The first thing one can observe in this system is that knowledge—e.g. the
presence of the child—is distributed amongst the robots. One major issue for
the cleaning robot is to build a consistent view of the status of the child (inside
or outside) from local knowledge of the robots, and all this in real-time. We
assume continuous sensing of the child for the case, the bed and the chair. On
the other hand, pictures are taken only at specific time instants meaning that
we have to deal with outdated information for the camera. If the child is not on
a picture taken at a given time, then it was either outside, or inside and playing
with the case, or on the bed or the chair. If we want to be sure that the child
was outside the bedroom at the time the picture was taken, we need to know
what was the status of the sensors of the case, the bed and the chair at this
time. For this purpose we associate one timer to each sensor and reset it each
time the child leaves. We also used a freshness parameter F for controlling the

current time

time

camera time frame

continuous sensing time frame

last fresh picture

tt−R t− F

Fig. 4. Freshness parameters F for the camera and R for the other devices.

knowledge of the camera: the child is considered outside by the camera if he was
not in a picture taken at most F time units ago. In a slightly different way, we
used parameter R for the case, the bed and the chair: the child is considered
outside by these devices if he was not detected for at least R time units. Notice
that if R ≥ F we can safely conclude whether the child was outside or inside at
the time the last picture was shot from the camera (see Figure 4). We also use
R for the door, that is, it is considered closed if it was closed for more than R
time units.

g
et
O
n
,c
:=

0
c≥

R
n
o
ch
il
d

g
et
U
p

ch
il
d

n
o
ch
il
d

g
et
U
p

g
et
O
n

ch
il
d

B
ed

c≥
P

tk
P
ic
tI
n

c:
=
0
,i
sC

h
il
d
:=

1

c≤
F

n
o
C
h
il
d

is
C
h
il
d
:=

0

c≤
F

n
o
C
h
il
d
P

is
C
h
il
d
:=

0

c≥
P

tk
P
ic
tO

u
t

c:
=
0
,i
sC

h
il
d
:=

0

a
n
a
ly
ze

c
≥

1

n
o
C
h
il
d

n
o
C
h
il
d
P

tk
P
ic
tI
n

tk
P
ic
tO

u
t

C
a
m
er
a

se
a
t

c:
=
0

to
D
es
k

c:
=
0

c≥
R

re
a
ch
ed

D
es
k

c≥
R

n
o
tS
ea
te
d

g
et
u
p

c:
=
0

c≥
5
0

v
ib
ra
te

c:
=
0

se
a
te
d

c≥
1

le
av
eD

es
k

to
D
es
k

re
a
ch
ed

D
es
k

se
a
t

se
a
te
d

C
h
a
ir

C

c≥
6
0
0

co
ll
a
b
,c
:=

0

c≥
1
2
0

ti
m
eo
u
t,
c:
=
0

st
a
rt
C
le
a
n

c:
=
0

c≥
1
5

st
o
p
C
le
a
n

c:
=
0

co
ll
a
b

st
a
rt
C
le
a
n

st
o
p
C
le
a
n

C
le
a
n
in
g
R
o
b
o
t

IO

c≤
1
0

en
te
r,
c:
=
0

tO
u
t

c>
1
0

ex
it
,c
:=

0

c≥
1
0

se
a
t

c≥
1
0

b
ed

,c
:=

0

c≥
1
0

p
u
t/
tk
O

o
:=

0
,c
:=

0

c≥
1
0

in
R
o
o
m

tO
u
t

tO
u
t

c≥
1
0

in
R
o
o
m
,c
:=

0

o
<
2

tO
u
t

o
≥
2

tI
n

c≥
2

p
u
t/
tk
O

c≥
1
0

in
R
o
o
m
P
,c
:=

0

p
u
t/
tk
O

en
te
r/
ex
it

tI
n

tO
u
t

b
ed

se
a
t

in
R
o
o
m

C
h
il
d

c≥
R

lo
ck

cl
o
se

o
p
en

c≥
3

co
m
p
le
te
,c
:=

0
o
p
en

o
p
en

cl
o
se

c:
=
0

u
n
lo
ck

lo
ck

cl
o
se

u
n
lo
ck

o
p
en

D
o
o
r

c≥
R

u
n
d
er
B
ed

n
o
A
ss
is
t

c≥
6
0

n
av

ig
c:
=
0

c≥
2

sl
ee
p
,c
:=

0

n
o
A
ss
is
t

c≥
3
0

sl
ee
p

c:
=
0

co
ll
a
b

c:
=
0

p
u
t/
tk
O

c:
=
0

u
p
d

p
u
t/
tk
O

c:
=
0
,u
p
d

c≥
6
0

ti
m
eo
u
t

c:
=
0

st
o
p
A
ss
is
t

st
o
p
A
ss
is
t

u
n
d
er
B
ed

co
ll
a
b

p
u
t/
tk
O

T
oy

C
a
se

Fig. 5. BIP model of the cooperating robots example.

We built a BIP model for verifying the principles of the proposed protocol at
high level (see Figure 5). If the child is not detected by all the devices (w.r.t. F
and R), the cleaning robot starts locking the door since there is a high probability
that the child is not in the bedroom at the current time (we are sure that at
some instant in the last F time units, the child was not in the bedroom). This is
represented by a strong synchronization between ports collab, close and noChild
(the yellow ports of Figure 5). Notice that the behavior for parameters F and R
is ensured by local conditions based on components clocks. Once executed, the
door starts closing, and the case and the chair move towards locations that ease
the cleaning robot to operate. Then the cleaning robot starts cleaning only if the
child is still not detected by the devices and the door is still closed, considering
again parameters F and R. If so, it locks the door and starts cleaning, which is
modelled by a strong synchronization between ports startClean, lock, underBed,
reachedDesk, noChild, noChildP (the green ports of Figure 5). Otherwise, if the
cleaning is not possible for 120 time units, the cleaning robot timeouts and
returns to its initial state. Intuitively this protocol is safe (provided R ≥ F)
since the cleaning starts only if the child was outside when the last picture was
taken and the door was kept closed since this time. Moreover, during cleaning,
the door remains closed by using the locking mechanism.

Using verification technique of [14] we managed to prove formally that the
child is not in the bedroom while the robot is cleaning, provided R ≥ F . More
precisely, if the cleaning robot is in control state C, then the child is in state 0
(these control states are in blue in Figure 5). This property is non trivial as it
strongly depends on the individual behavior of all the devices and in particular
their timings, and it can be tricky to ensure for the system. We did several
attempts before we obtained a correct design. For instance, we started with
discreted and periodic sensing instead of continuous sensing. The flaw in this
design was difficult to detect by simulation as it very rarely led to a violation of
the safety property. Verification tools helped us in finding and fixing the problem.

Notice that the model proposed here is far too abstract to be used directly
for implementing the devices. It uses primitives such as atomic synchronizations
between two or more components (i.e. multi-party interactions) that should be
translated into simpler interactions (e.g. messages passing). To get correct-by-
construction implementations we could transform the proposed BIP model into a
Send/Receive BIP model using techniques developed for generating distributed
implementations from BIP, as presented explained in Section 4.3.

4.2 Quantitative Analysis of a Deployment Scenario

We considered a robotics scenario in which a swarm of marXbots [16] should (1)
be deployed to find 5 victims (which are other marXbots) distributed all over
an arena shown in Figure 6,

and (2) rescue the victims. In this scenario, we assume that the robots can-
not use localization mechanisms (e.g. GPS, SLAM, etc.). Instead, during the
deployment phase some of the robots stop and become landmarks, i.e., they are
used to guide other robots for exploring the arena and rescuing the victims.

Fig. 6. Arena of the scenario.

We used the statistical model-checking
tool SMC-BIP to analyze to the deployment
phase only. We first built a BIP model of a
single marXbot including a faithful implemen-
tation of its sensors. Following the approach
implemented in the simulator ARGoS [17], we
rely on synchronous discrete time execution
with a duration of 10 ms for the time steps.
The model of the swarm represents 1500 lines
of BIP code along with 1200 lines of external
C++ code.

Single robot behavior. We started by experi-
menting with several behavioral strategies for
a single robot: straight walk, random walk, and random walk improved using the
rotating scanner. All includes basic obstacle avoidance so as not to bump into
walls and/or other robots. Figure 7 shows examples of simulations obtained for
the different strategies, where the path followed by the explorer is represented
by the red drawing and the victims are represented by the five small black circles
(three at the top and two at bottom of the arena). Using straight walk minimize
the distance for travelling from one location to another. However, it resulted
in a very poor coverage since the explorer was trapped on the left side of the
arena from which it did not escape even after a long time. Random walk led to
good coverage but longer delays for finding the first three victims than the ones
obtained with straight walk. We improved random walk by using the rotating
scanner which allows the explorer to track long distances obstacles and to follow
corridors and walls, which is clearly visible on simulations (see Figures 7). All
these observations are confirmed by the analysis performed by SMC-BIP with
which we computed the expected time for finding the 1st and the 5th consid-
ering probability 0.85, provided in Figure 8. Parameters α, β and δ in table of
Figure 8 correspond to the target degree of confidence for SMC-BIP. The lower
these parameters are, the lower the probability to obtain an incorrect answer
is. They are formally defined in [18]. Using SMC-BIP we also managed to show
that increasing the number of explorers (we tested for 11, 21, and then 31) tends
to reduce the expected delays for finding victims (see Figure 8).

Cooperation between robots. We completed the model by including landmarks
behavior and corresponding communications. If a robot become too far away
from other landmarks, or if it finds a victim, it stops to establish a new landmark.
The goal of these landmarks during the deployment phase is to avoid exploring
areas that have been already explored. Landmarking alone reduced drastically
the performances, as shown by Figure 8. This can be explained by the fact that
landmarking reduces the moving range of the explorers and decreases the number
of active robots, sometimes to the point where all robots were stopped (i.e. were

(a) straight (b) random (c) random + scanner

Fig. 7. Simulation of a single robot and various moving strategies.

strategy: straight random random + scanner landmark comm.

number of explorers: 1 1 1 11 21 31 31 31

1st victim (α=β=δ=0.05) 343 2996 892 211 188 152 ? 375

5th victim (α=β=δ=0.01) timeout 41250 11562 1171 820 742 timeout 1797

Fig. 8. Delays in seconds for finding victims with probability P=0.85.

(a) landmark (b) landmark+comm.

Fig. 9. Simulation of landmarking strategies for 31 explorers.

landmarks) whereas victims remained to be found. An example of such situation
can be observed in Figure 9(a).

The goal of landmarking is mainly to reduce the time to accomplish the sec-
ond phase of the scenario. To this purpose, landmarks must communicate with
active robots to route them for achieving their goal (exploring, rescuing, etc.).
We included basic communication capabilities in the model allowing landmarks
to route back robots if there is no need for exploration in their given direction
(e.g. presence of a dead end). These communications were implemented by simple
binary connectors between the robots. Adding communications allowed accept-
able performances for finding all the five victims, while establishing landmarks
required by the second phase of the scenario. Simulation traces clearly show the
switchbacks performed by the robots when meeting landmarks from which no
further exploration is needed (see Figure 9(b)).

SMC-BIP allowed us to fine-tune the behavior of the marXbot to optimize the
deployment phase of the scenario. Such fine-tuning is also possible with standard
simulation techniques (e.g. with ARGoS), but statistical model-checking permits
us to have reliable information about the performances of the swarm, guaranteed
by explicit degrees of confidence and based on exploration of possible behaviors.
For example, it required sometimes more than 20000 simulations for SMC-BIP
to conclude on a single delay value. The BIP model we developed can also be
a basis for computing stochastic abstractions and/or for applying verification
techniques and tools.

4.3 Collaborating Robots

Our third case study is a robotic application that consists of a set of communi-
cating robots that collaborate to perform a given task. The scenario is described
as following: initially, the robots, with blue color, are dispatched in an arena
with different positions. They start by exploring the arena in order to find each
others. When 3 robots become sufficiently close, they group themselves to form
a ”V” form and change their color to red. Then, they go towards an object (e.g
a ball) which is positioned at the center of the arena, and push it. Finally, the
other robots go towards the border of the arena when they ”see” the red robots.
We assume that the robots are equipped by proximity sensors to detect obstacles
(arena’s walls and the ball), a camera to detect the robot’s colors and a led to
change the color.

Our case study is composed of 6 instances of robot. Figure 10 shows the BIP
model of a single robot. We used timing constraints and time progress conditions
to express timeout when the grouping action cannot be performed within a given
amount of time.

The grouping of robots is modeled by a connector that synchronizes
group transitions of any 3 robots. The connector enables the interac-
tion between the robots only if they are sufficiently close to each oth-
ers. As shown in Figure 11 the connector is guarded by a guard on
robot’s positions that determines if the robots are close to each others.

searching[obs]

avoid_obs

[blue−robot]

go_to_border

[red−robot]stop

[x==D]

timeout

group

[x<D]

push_ball
push_ball

group

x ≤ D
{x}

Fig. 10. Model of a single robot.

group_robots

Robot1 Robot2

group(pos2)group(pos1) group(pos3)

Robot3

[|pos1 − pos2| ≤ α ∧ |pos2 − pos3| ≤ α]

Fig. 11. Synchronization of robots
for achieving their grouping.

Fig. 12. Experimental re-
sults for 6 robots.

The challenging issue in this application is to come
up with distributed implementation that correcly
achieves the expected synchronization of three robots.
Following [13], instead of writing directly the dis-
tributed implementation, we used BIP connectors to
express the grouping of three robots on high-level
models, and were able to generate all the communica-
tions needed for its realization at runtime.

In order to make simulations as realistic as possi-
ble, we also modeled robot’s behavior, such as robot’s
movement, sensor’s reading and camera image pro-
cessing. Figure 12 presents the simulation results for
6 robots, where the red circles represent the final po-
sitions of the robots and the black one represents the ball. It shows that the
robots effectively managed to group themselves and push the ball.

5 Conclusion

We have presented a rigorous system design flow for timed systems. It is based
on the BIP language in which the notion of behavior—expressed a set of
components—is clearly separated from the notion of architecture—expressed by
interactions and priorities. Correct implementations are obtained by (i) checking
the design on abstract models using verification tool D-Finder, and (ii) refin-
ing such models using proven correct source-to-source transformers. In addition,
system performances can also be evaluated at design time using statistical model-
checker SMC-BIP. In this paper, we showed how this framework was successfully
applied to robotics case studies.

As future work, we plan to improve our method for the generation of dis-
tributed implementations by considering non perfectly synchronized clocks and
disconnected communication networks.

References

1. Halbwachs, N.: Synchronous Programming of Reactive Systems. Kluwer Academic
Publishers (1993)

2. Burns, A., Welling, A.: Real-Time Systems and Programming Languages. Addison-
Wesley (2001) 3rd edition.

3. Bliudze, S., Sifakis, J.: A Notion of Glue Expressiveness for Component-Based
Systems. In: CONCUR’08. Volume 5201 of LNCS., Springer (2008) 508–522

4. Garlan, D., Monroe, R., Wile, D.: ACME : An architecture descrip-
tion interchange language. In: CASCON’97. (1997) 169–183 see also
http://www.cs.cmu.edu/ acme/.

5. Magee, J., Kramer, J.: Dynamic structure in software architectures. In: SIG-
SOFT’96. (1996) 3–14

6. OMG: OMG Systems Modeling Language SysML (OMG SysML). Object Man-
agement Group (2008)

7. Feiler, P.H., Lewis, B., Vestal, S.: The SAE Architecture Analysis and Design Lan-
guage (AADL) Standard: A basis for model-based architecture-driven embedded
systems engineering. In: RTAS Workshop on Model-driven Embedded Systems.
(2003) 1–10 see also http://www.sae.org.

8. Eker, J., Janneck, J.W., Lee, E.A., Liu, J., Liu, X., Ludvig, J., Neuendorffer, S.,
Sachs, S., Xiong, Y.: Taming heterogeneity: The Ptolemy approach. Proceedings
of the IEEE 91(1) (2003) 127–144

9. Basu, A., Gallien, M., Lesire, C., Nguyen, T.H., Bensalem, S., Ingrand, F., Sifakis,
J.: Incremental Component-Based Construction and Verification of a Robotic Sys-
tem. In: ECAI’08. Volume 178 of FAIA., IOS Press (2008) 631–635

10. Basu, A., Bensalem, S., Bozga, M., Combaz, J., Jaber, M., Nguyen, T.H., Sifakis,
J.: Rigorous component-based system design using the bip framework. IEEE
Software 28(3) (2011) 41–48

11. Bensalem, S., de Silva, L., Griesmayer, A., Ingrand, F., Legay, A., Yan, R.: A
formal approach for incremental construction with an application to autonomous
robotic systems. In Apel, S., Jackson, E.K., eds.: Software Composition. Volume
6708 of Lecture Notes in Computer Science., Springer (2011) 116–132

12. Abdellatif, T., Combaz, J., Sifakis, J.: Model-based implementation of real-time
applications. In Carloni, L.P., Tripakis, S., eds.: EMSOFT, ACM (2010) 229–238

13. Bonakdarpour, B., Bozga, M., Jaber, M., Quilbeuf, J., Sifakis, J.: From high-level
component-based models to distributed implementations. In: EMSOFT. (2010)

14. Astefanoaei, L., Rayana, S.B., Bensalem, S., Bozga, M., Combaz, J.: Compositional
invariant generation for timed systems. In: TACAS. (2014) to appear.

15. : Intelligent robots for improving the quality of life. http://www.nccr-robotics.
ch

16. Bonani, M., Longchamp, V., Magnenat, S., Rtornaz, P., Burnier, D., Roulet, G.,
Vaussard, F., Bleuler, H., Mondada, F.: The MarXbot, a Miniature Mobile Robot
Opening new Perspectives for the Collective-robotic Research. In: International
Conference on Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ. IEEE
International Conference on Intelligent Robots and Systems, IEEE Press (2010)
4187–4193

17. Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A., Brambilla, M., Math-
ews, N., Ferrante, E., Caro, G.D., Ducatelle, F., Birattari, M., Gambardella, L.M.,
Dorigo, M.: Argos: a modular, parallel, multi-engine simulator for multi-robot
systems. Swarm Intelligence 6(4) (2012) 271–295

18. Bensalem, S., Bozga, M., Delahaye, B., Jégourel, C., Legay, A., Nouri, A.: Statis-
tical model checking qos properties of systems with sbip. In Margaria, T., Steffen,
B., eds.: ISoLA (1). Volume 7609 of Lecture Notes in Computer Science., Springer
(2012) 327–341

