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We consider the deformation of a thin elastic sheet which is stiff in traction but very soft in
compression, as happens in presence of wrinkling. We use the tension-field material model and
explore numerically the response of a thin sheet containing multiple cracks of different geometries,
when subjected to applied tension. With a single crack, the stress concentrates along a St-Andrew’s
cross-shaped pattern, whose branches extend from the crack tips to the corners of the domain; at a

(small) distance r from the crack tip, the stress displays the usual r

“1/2 stress singularity but with

an unusual and non-universal angular dependence. A strong interaction between multiple cracks is
reported and discussed: in particular, for certain configurations of the cracks, the tensile stiffness of
a cracked sheet can be zero even though the sheet is made up of a single component.

The mechanics of plates, shells, foils or membranes is
a fascinating topic exhibiting a variety of behaviors con-
trolled by geometry rather than by the details of consti-
tutive laws [I]. Thin elastic panels are prone to buckling
under small compressive stress with a critical load go-
ing to zero in the membrane limit, i.e. as the thickness
goes to zero. As a result, wrinkles are often encountered
in membranes: load can be carried along ‘tension rays’
that are parallel to the directions of the wrinkles, while
perpendicular direction remains soft [2]. Wrinkling intro-
duces essential nonlinearity—hence major difficulties—in
the modeling of thin membranes, both at the theoretical
and numerical levels. As early as in 1938, Reissner [3]
first formulated a ‘tension-field theory’ capturing tension
rays in wrinkled regions. This pioneering work initiated
a series of theoretical analyses on load transmission from
rods, cables or point anchor to thin membranes [4H7]. In
its simplest form, the tension field theory combines non-
linear geometry with a linear elastic response; Pipkin [§]
showed that the tension field theory can be equivalently
described by a non-linear constitutive law, derived from
a relaxed strain energy: the constitutive law accounts for
the wrinkles in an effective way, yielding different behav-
iors in traction and in compression. This mathematical
approach was further extended to a 2D sheet embedded
in a 3D space and to finite deformation [9]. The ten-
sion field theory has been successfully used to predict
the distribution of stress and wrinkles in very thin elas-
tic plates [I0, I1], and has served as a starting point to
analyze the wavelength of wrinkles [12]. Here, the me-
chanics of cracks in such a tension-field elastic sheet is
investigated.

Unilateral materials can resist compression but not
tension (e.g. granular media) or tension but not com-
pression (e.g. fibrous materials). Unilaterality is one of
the hallmarks of “non-smooth” mechanics [I3]. It is as-
sociated with unusual properties, such as long-range in-
teractions, which have been shown to be relevant to cell

mechanosensing [I4]. In fact, the cancellation of an elas-
tic stiffness depending on the state of strain breaks even
the elliptic character of the governing equations. One of
the most striking consequences of such a behavior is that
entire regions are identically stress-free. Here, we show
that cracks in a ‘tension-field’ medium display unusual
features, including the presence of a diamond-shaped un-
loaded region surrounding the crack path, the occurrence
of a cross pattern of wrinkles radiating from the crack,
the channeling of stress into tension-rays, and strong in-
teractions between cracks. The unilateral nonlinearity
of the sheet renders the behavior of cracks structural,
i.e. sensitive to the details of the domain geometry and
of the boundary conditions.

We use a Pipkin-type of strain energy [8], which cap-
tures the loss in elastic stiffness in the direction perpen-
dicular to wrinkles. Its derivation starts from the strain
energy of classical linear elastic membranes w;(e1,£2) =
(A + 2u)(e? + €3) + Aerez in terms of the principal
strains ;, corresponding to principal stress values N} =
0wy /0s1 = (A + 2u)(e1 + ves) and NY = Ow;/0zo =
(A + 2u)(e2 + ver), where v = (1 + 2u/\)~t is the 2D
Poisson’s ratio. The relaxed strain energy w(e,ez) is
defined as wj(e1,22) if N} > 0 and N} > 0 (taut case),
as wy(e1, —vey) if €1 > 0 and Ni < 0, as wy(—veq, &9) if
N! < 0 and g5 > 0, (wrinkled cases), and as 0 if e; < 0
and €2 < 0 (slack case).

We introduce a convenient set of strain invariants,
namely the strain magnitude € > 0 and the strain
anisotropy ¢ (0 < ¢ < =), defined by e, = € cos¢
and €4 = ¢ sin¢, where €, = tre/2 and ¢4 = (tr[(g —

Eml)Q]/2)1/2 are the mean and deviatoric strain. We fo-
cus on materials, such that A = y (i.e., v = 1/3), that are
attainable as the continuum limit of a discrete isotropic
medium with linear elastic central force interactions. The
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FIG. 1. Function f,(¢) showing the dependence of the elastic
energy density on the strain anisotropy ¢, for different values
of the regularizing parameter 7. For mild strain anisotropy
0 < ¢ < tan"'(2) and tensile strains, the membrane is
taut and all curves coincide. For large strain anisotropy,
tan™!(2) < ¢ < 37/4, the membrane is wrinkled: one of
the principal stress is compressive but goes to zero as n — 0.
For small strain anisotropy, 37/4 < ¢ < m, and contrac-
tile strains, both principal stress values are compressive, and
vanish in the limit 7 — 0. Arrows in circular insets denote
the principal stress values; a red cross denote a zero principal
stress, as obtained by relaxation in the limit n — 0.

0 tan™1(2)

relaxed membrane energy density reads

3eos26if 0 < ¢ < tan~!(2)
w(e, @) = 4Xe? x W if tan™1(2) < ¢ < 3¢
0 if 3T < ¢ <.

This w is not strictly convex and we regularize it by
adding a fraction 7 of the non-relaxed energy, wy(e, ¢) =
(1 —=n)w(e, @) +nwi(e, ¢). The regularizing parameter 7
varies in the range 0 < n < 1, with n = 1 corresponding
to a classical linearly elastic (Hookean) medium, and the
limit 7 — 0 to a tension-field material. This regularized
energy can be written as

wale8) = 52 a(9) (1)

where f, is a piecewise C?-smooth function of the strain
anisotropy ¢, which is plotted in Fig.

By differentiating w, with respect to the strain ¢, one
can derive the constitutive law. It is non-linear as soon
as 7 < 1 because of the essentially non-linear dependence
on the strain anisotropy ¢ through the function f,. How-
ever, the elastic energy w, is positively homogeneous of
degree 2 with respect to the strain magnitude ¢, see ,
and as a result the the stress ¢ is positively homogeneous
of degree 1 with respect to €, as in linear elasticity.

In the following, a numerical modeling of such an elas-
tic medium is proposed. The minimization of the in-
tegrated strain energy [ w, dz dy is implemented using
the finite element library 1ibmesh [I5]. The tangent stiff-
ness matrix is obtained from Eq. by automatic dif-
ferentiation [I6]. Prescribed displacements are enforced
by a penalty method. Equilibria are calculated in dif-
ferent geometries and for different values of the stiffness
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FIG. 2. Distribution of the stress intensity ¢ = ||g| in a
square domain of size L comprising a single centered crack
(light brown line) with length ¢ = L/4. The stress distribution
is symmetric and only one half of the square domain is shown:
linearly elastic case (n = 1, left) and tension-field case (n =
1073, right). In the latter case, the principal stress values and
directions are sketched near crack tip differ in the 3 angular
sectors shown as overlays: (a) taut region, (b) wrinkled region,
and (c) slack region. Away from crack tip, the sector (c) gives
rise to a diamond-shaped region enclosing the crack path,
where tlale stress drops to zero (dark purple central region,
n=1077).

parameter 7, 0 < 1 < 1. Special attention is given to the
behavior of the numerical solution in the singular limit
n — 0 where it convergences to a tension-field medium
(this convergence is established numerically in Section 1
of the Supplementary Information).

The case of a square domain of size L comprising a pre-
existing centered crack of size £ < L, see Fig. |2| is first
investigated. Prescribed displacements v = (0,d) and
u = (0,—0) are imposed at the top and bottom bound-
aries, respectively; the lateral boundaries are traction-
free. Because of the symmetry, the crack is loaded in
pure mode I. Comparison of the stress distribution in
the linearly elastic case (n = 1, left) and close to the
tension-field limit (n = 1073, right) reveals a distinctive
feature in the limit » — 0: a diamond-like region sur-
rounding the crack tip appears when n — 0, where the
membrane is slack (dark central diamond).

As there is no microscopic lengthscale in the problem,
the stress must have a power-law singular behavior as a
function of the distance r to the crack tip, for any value
of n. The numerical analysis of the stress singularity in
Fig. confirms this, and shows furthermore that the
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FIG. 3. Analysis of stress singularity near the tips of an inte-
rior crack with length ¢ = L/4. (a) Dependence of mean stress
om = tro/2 on the distance to crack tip r ahead of crack in
the centered case (d = 0), for different values of the parame-
ter n: the power-law singularity o ~ r~%/2 is recovered for all
values of n but the stress intensity factor depends (mildly) on
1. (b) Dependence of the stress intensity o on the polar vari-
able 6 along two small circles with radius £/40 centered on the
tips t and t’ of an off-center crack (d = ¢/2), with = 1073,
The direction ahead of either crack tip corresponds to 8 = 0.
Even though both crack tips are loaded in pure mode I, the
two plots of the stress are non-proportional; this illustrates
the non-universality of the angular dependence of the stress
near crack tips in mode I when 7 < 1. The thick red arrows
correspond to the slack region surrounding the crack, labelled

‘¢’ in Fig.

scaling law o ~ r~1/2 from linear elasticity (n = 1) re-
mains applicable to any value of 1. Indeed, the path in-
dependence of the J-integral [I7] holds for for non-linear
elasticity problems such as this one, and implies a strain
energy concentration as w ~ 1/r; in Eq. , Wy ~ €2 and
50 € ~ o ~ r~ /2 for any value of . On the other hand,
the angular dependence of the near-tip stress is not uni-
versal (and cannot be predicted by the linear membrane
theory), as shown in Fig. . In particular, the slack re-
gion ¢ adjacent to the crack tip in Fig. [2b, corresponding
to the plateau o = 0 in Fig. [Bp, has a different angular
span in two crack tips from the same sample (¢ # t').
The interaction between cracks is now analyzed in the
geometry shown in Fig. [dh; it comprises two cracks of
equal length extending to the lateral boundaries. A uni-
form vertical displacement ¢ is again applied on the top
and bottom boundaries. The equilibrium is solved nu-
merically and the traction force Fr is calculated. The
equivalent stiffness Frr/§ is then plotted as a function of
the regularizing parameter 7. The log-log plot in Fig. [k
shows two radically different behaviors in the tension-
field limit n — 0, depending on the length of the cracks.
For cracks shorter than a critical length, ¢ < £, tension-
rays connect the top and bottom boundaries (where the
loading is applied) while avoiding the crack lips and the
associated stress-free condition, see Fig. dp: as a result,
the equivalent stiffness converges to a non-zero value for
n — 0, see Fig. . For cracks slightly longer than the
critical length, £ > /., the behavior is markedly different:
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FIG. 4. Equivalent stiffness of samples comprising multiple
cracks. (a,a’): geometry with 2 and 4 cracks having variable
length. (b,b’): stress map for crack shorter than the critical
length, £ < £, and ¢ < £., showing that the applied traction
is mediated by tension-rays extending from the upper to the
lower boundary in the tension-field limit, here with n = 0.01.
(¢c,¢’): equivalent stiffness Frr/d as a function of crack length
¢, where Fr is the applied traction force and ¢ the imposed
displacement: the stiffness is zero in the tension-field limit
1n — 0 if the cracks are longer than a critical length set purely
by geometry. Inset: convex hulls of simple components of the
stress-free boundaries, where the membrane becomes slack in
the limit.

the equivalent stiffness drops to zero in the tension-field
limit n — 0, see Fig. [d: the crack sheet as a whole is
no longer capable of sustaining traction. This sudden
change in the response reveals a strong interaction be-
tween the cracks. The simulation shows that the ultimate
tension-rays, for £ = {., is the diagonal of the square do-
main (dashes in Fig. ): consistently, the critical crack
length /. is set by the purely geometric condition that
the cracks make incipient contact with the diagonal.

The geometry comprising four cracks shown in Fig. [dp’
shows both similarities and some subtle differences. For
shorter cracks, ¢ < ., tension-rays connect the four cor-
ners (see Fig. ’) and the equivalent stiffness remains
finite in the tension-field limit  — 0. For longer cracks,
¢ <, it drops to zero. The critical length ¢/, however,
does not correspond to the condition that the cracks meet
with the diagonal of the domain. In fact, the ultimate
tension-rays do not take place along the diagonal; in-
stead, they form a network having five branches with a
two-legs/body/two-arms topology. The critical length ¢/,
is set by the geometrical condition that such a network
can be traced out in the domain without crossing the
cracks.

The topology of the ultimate crack tension-ray graph
— and, hence, the critical crack length — can be pre-



dicted by a simple unifying geometrical rule. For the
sample to be able to sustain a load in the tension-field
limit, it must be possible to draw a path joining the
top and bottom parts of the boundary (where a load
is applied to enforce the prescribed displacement) with-
out crossing any crack path nor entering in any of the
convex hulls of the simply-connected components of the
stress-free boundaries. Such convex hulls are shown in
light red in the insets of Fig. [dk,c’; by adapting an ar-
gument for traction-loose (dry masonry) materials, one
can indeed show that these convex hulls are free of stress
in the tension-field limit [I8]. In the 2-cracks geometry
in Fig. [dh, the two convex hulls start to overlap at £,
and the ultimate stress channel passes in the narrow gap
between them (which happens to lie on the diagonal). In
the 4-cracks geometry in Fig. [dh’, the two convex hulls
make incipient contact with the interior cracks at ., and
the five-branch topology of the tension-ray graph passes
in the narrow gap between them as well, see insets in
Fig. dp,c’. In earlier work on oscillatory cracks in torn
membranes, convex hulls have been shown to play a fun-
damental role as well [19].

In the spirit of the early work of Pipkin [8], we have de-
scribed the wrinkling of a membrane comprising cracks,
when subjected to a macroscopic tensile-type of loading.
To do so, we have used an effective non-linear constitutive
law deriving from a relaxed strain energy. The stress con-
centration at crack tips has been first investigated. The
usual power-law singularity predicted by the linear elastic
fracture mechanics has been recovered, but the angular
stress distribution, say, near a crack tip loaded in mode I,
is no longer universal (by contrast with that of the clas-
sical linear fracture mechanics which, in pure mode I, is
universal up to a stress intensity factor K). The uni-
versality is broken by the fact that the macroscopic load-
ing and boundary conditions can affect the small-scale
features of the solution through long-range interactions.
Such interactions were also revealed by the analysis of a
rectangular domain comprising several cracks: the global
stiffness drops to zero as soon as networks of tension-rays
avoiding cracks cease to exist, and this happens well be-
fore the sheet is fully cracked. A simple geometrical crite-
rion for the vanishing of the stiffness has been proposed,
depending on the layout and lengths of the cracks. All
these results have been confirmed using a finite-element
implementation of the relaxed strain energy. Overall, this
emphasizes the fundamental role played by geometry in
unilateral media.
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