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Abstract This paper focuses on the classical problem of the control of
information loss during the digitization step. The properties proposed in
the literature rely on smoothness hypotheses that are not verified by the
curves including angular points. The notion of turn introduced by Mil-
nor in the article On the Total Curvature of Knots generalizes the notion
of integral curvature to continuous curves. Thanks to the turn, we are
able to define the locally turn-boundedness. This promising property of
curves do not require smoothness hypotheses and shares several proper-
ties with the par(r)-regularity, in particular well-composed digitizations.
Besides, the locally turn-boundedness enables to constraint spatially the
continuous curve in function of its digitization.

1 Introduction

The loss of information caused by a digitization process is inevitable. Therefore
a fundamental point concerns the control of this information loss. Indeed, the
border of a compact connected shape S can be arbitrarily far from the digi-
tization of S or can oscillate around this latter border. Therefore, hypotheses
on the border of the shape S, which is a Jordan curve noted by C, are needed.
One of the most used hypothesis, called par(r)-regularity, has been introduced
by Pavlidis in [7]. It demands that any point c ∈ C has an interior osculating
disk entirely included in the interior of C except for the point c and an exte-
rior osculating disk entirely included in the exterior of C except for the point
c. It has been used to prove some preserving topology properties [2, 5, 7] or to
control the behavior of the projection from the digitized curve to the continu-
ous curve C [3, 4]. However, the notion can be hard to manipulate in geometry
and most of the authors using this notion add the assumption that the curve C
is of class C2. The par(r)-regularity encompasses two ideas: the border of the
shape has a bounded curvature from above and the shape has a positive minimal
thickness. In this article, relaxing the assumption of a bounded curvature, we
develop a new notion called local turn-boundedness that is defined on continuous
curves, including polygons. The local turn-boundedness relies on the notion of
turn adapted to regular curves and polygons, firstly introduced by Milnor [6] to
study the geometry of knots. The main properties and definitions around the



notion of turn are recalled in Section 2. The local turn-boundedness involves
the Euclidean distance between any two points of a curve and the turn of this
curve between these two points. The properties of locally turn-bounded curves
are given and illustrated in Section 3.

2 Turn of a simple curve

The definitions and properties given in this section are detailed in [1]. As pre-
sented in Proposition 2, the turn extends to continuous curves the notion of
integral curvature already defined for regular curves.

Terminology and notations

– Let c ∈ R2 and r ≥ 0, B(c, r) is the open disk of center c and radius r.
– A parametrized curve is a continuous application from an interval [a, b] of R

(a < b) to R2. It is simple if it is injective on [a, b) and closed if γ(b) = γ(a).
A (geometric) curve is the image of a parametrized curve. A Jordan curve
is a simple closed curve.

– A polygonal line with vertices x0, ..., xN is noted [x0x1...xN ] (if xN = x0,
the polygonal line is a polygon).

– Let N a positive integer and x0, x1, ..., xN points of R2. The polygonal line
PL = [x0x1 . . . xN ] can be considered as the image of the parametrized curve
pl : [0, N ] 7→ R2 such that pl(t) = xbtc(t−btc) + (1− t+ btc)xbtc+1 where for
r ∈ R, brc in the integer part of the real r. In other words, for any integer i
between 0 and N , if t ∈ [i, i+ 1), then pl(t) = (t− i)xi + (1− t+ i)xi+1, and
thus pl([i, i+ 1]) is the segment [xi, xi+1] of R2. A polygonal line is simple if
it is simple for the previous parametrization and thus a simple polygon is a
Jordan curve.

– Given a curve C and two points a, b on C (a 6= b), we write Cba for the arc
ending at a and b if C is not closed and Cba and Cab for the two arcs of C
ending at a and b if C is closed.

– The angle between two vectors u and v is noted (u,v) ((u,v) ∈ R/2πZ). The
geometric angle between two vectors u and v, noted (û,v), or two directed
straight lines oriented by u and v, is the absolute value of the reference angle
taken in (−π, π] between the two vectors. Thus, (û,v) ∈ [0, π).

Definition 1 (Turn).

– The turn κ(L) of a polygonal line L = [xi]
N
i=0 is defined by:

κ(L) :=

N−1∑
i=1

̂(xi−1xi, xixi+1).

– The turn κ(P ) of a polygon P = [xi]
N
i=0 (where xN = x0) is defined by:

κ(P ) :=

N∑
i=1

̂(xi−1xi, xixi+1).



– The turn κ(C) of a simple curve C is the upper bound of the turn of its
inscribed polygonal lines

– The turn κ(C) of a Jordan curve C is the upper bound of the turn of its
inscribed polygons.

It should be noticed that the turn does not depend of the orientation of
the curve. Indeed, it is well-known that (u,v) = (−u,−v) = −(−v,−u). Thus
κ
(
[xi]

N
i=0

)
= κ

(
[xi]

0
i=N

)
.

Furthermore, since the turn of a polygon is equal the upper bound of the
turn of the polygonal lines inscribed in it (cf Corollary p. 119 [1]), the turn of
the polygon seen as a closed curve is equal to the turn of the polygon. Hence
the notation κ is well defined.

Figure 1: The turn of the polygon is the sum of the green angles.

In the same way that we estimate the length of a curve, the following proposi-
tion make it possible to calculate the turn thanks to multiscale samplings. Given
a curve C, we denote by L(C) the length of C.

Proposition 1 (Convergence of the length and turn of a sequence of
polygonal lines [1], p. 23, 30, 121, 122). Let C be a simple curve and
(Lm)m∈N a sequence of polygonal lines inscribed in C and with same endpoints
as C. If limm→+∞ λm = 0, where λm is the maximal Euclidean distance between
two consecutive vertices of Lm, then

lim
m→+∞

L(Lm) = L(C)

and
lim

m→+∞
κ(Lm) = κ(C).

Moreover, if κ(C) is finite, then L(C) is also finite, that is C is rectifiable.

In Prop. 1, if we assume that the sequence (Lm) is increasing (Lm is inscribed in
Lm+1), then the sequences (L(Lm)) and (κ(Lm)) are both increasing ([1, Lemma
5.1.1]).



Proposition 2 (Turn for regular curves [1], p. 133). Let γ : [0, `]→ R2 be
a parametrization by arc length of a simple curve C. Assume that γ is of class
C2 and denote by k(s) the curvature at the point γ(s). Then,

κ(γ) =

∫ `

0

k(s)ds.

For regular curves, therefore, the turn corresponds to the integral of the
curvature (with respect to an arc-length parametrization).

The following theorem gives a lower bound of the turn for closed curves.

Theorem 1 (Fenchel’s Theorem, [1] theorem 5.1.5 p.125). For any Jor-
dan curve C, κ(C) ≥ 2π. Moreover κ(C) = 2π if and only if the interior of C is
convex.

Proposition 3. Let C be a simple curve from a to b and γ be its parametrization.
Let Cx2

a and Cbx1
be two arcs of C that overlap with a < x1 < x2 < b. Then,

κ(C) ≤ κ(Cx2
a ) + κ(Cbx1

).

Proof. Let (Lm) be a sequence of polygonal lines [lm,i]
Nm
i=0 inscribed in C such

that lm,0 = a, lm,Nm
= b and :

‖lm,i+1 − lm,i‖2 ≤
1

m
.

Let m > 2/(x2 − x1) and denote by lm,i2 the largest lm,i such that lm,i lies
in Cx2

a and lm,i1 the smallest lm,i that lies in Cbx1
. Then,

lm,i1 < lm,i2 .

Therefore, from Definition 1, we derive that

κ([lm]Nm
i=0) ≤ κ([lm]i2i=0) + κ([lm]Nm

i=i1
).

Then, by Proposition 1,

κ(C) ≤ κ(Cx2
a ) + κ(Cbx1

).

Without the hypothesis of an overlapping non reduced to a singleton, Propo-
sition 3 is false in presence of angular points as it is illustrated in Figure 2.

Remark 1. The turn is stable under homothetic maps. Indeed, obviously, the
turn is invariant by any conformal map, in particular by the homotheties.
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Figure 2: Counterexample: the turn of the arcs Ca2
a1

and Ca3
a2

are zero but the turn
of the arc Ca3

a1
is nonzero. This is why the arcs are required to be overlapping in

Proposition 3.

3 Locally turn-bounded curves

Definition 2. Let θ ≥ 0. The θ-turn step σ(θ) of a Jordan curve C is the
infimum of the (Euclidean) distances between two points a and b in C such that
the turns of C between a and b are both greater than θ:

σ(θ) = inf{‖a− b‖2 | κ(Cba) > θ ∧ κ(Cab ) > θ}. (1)

Let θ ≥ 0, δ ≥ 0. A Jordan curve C is locally turn-bounded with parameters
(θ, δ) if δ ≤ σ(θ).

The Figure 3 illustrates the definition of the local turn with different curves.
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a1•
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•
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Figure 3: For the chosen value of θ, the corresponding θ-turn-step σ(θ).

On a locally turn-bounded curve with parameters (θ, δ) the smallest turn of
the curve C between two points of C a and b such that ‖b− a‖2 < δ is less than
or equal to θ.



The turn step function θ 7→ σ(θ) is increasing. Indeed, the value of the θ-turn
step is an infimum of a set that decreases (for the inclusion order) in function of
θ. If the turn of C is finite, it exists a value θmax above which this set is empty
and the θmax-turn step is then infinite.

Examples

– The 0-turn step of a Jordan curve is 0.
– The π-turn step of a convex Jordan curve is +∞ (see Theorem 1).
– The θ-turn step of a circle with radius r is 2r sin(θ/2) if θ ≤ π and is infinite

for θ > π.
– The θ-turn step of a polygon having vertices with interior angles strictly less

than π − θ is zero. Indeed, the turn of an arc joining two points arbitrary
close, located before and after such a vertex is greater than θ.

– The turn between two points on a polygonal curve is a finite sum of geometric
angles, then the turn step function is a step function.

Remark 2. Local turn-boundedness is scale invariant: let C be a locally turn-
bounded Jordan curve with parameters (θ, δ). Then, the curve k C, k > 0, is
locally turn-bounded with parameters (θ, kδ). It is a direct consequence of Re-
mark 1.

The next proposition makes it possible to localize a locally turn-bounded
curve from a sufficiently tight sampling. Figure 4 illustrates the proposition.

Proposition 4. Let C be a simple curve locally turn-bounded with parameters
(θ ∈ (0, π), δ). Let a < b be two points on C such that ‖a− b‖2 < δ. Then, one of
the arc of C between a and b is included in the union of the two truncated closed
disks where the line segment [a, b] is seen from an angle greater than or equal to
π − θ.

Proof. Since the Euclidean distance between a and b is less than the θ-turn
step, the turn of one of the arc of C between a and b is less than or equal to
θ. Denote by C0 this arc. Let c be a point on C0. By definition, the turn of the
polygonal line [a, c, b] is less than or equal to the turn of C0 Then the geometric

angle ̂(a− c, b− c) is greater than or equal to π − θ. We conclude the proof by
invoking the inscribed angle theorem.

Locally turn-bounded curves for angles θ ≤ π/2 are locally connected subsets
of the Euclidean plane.

Proposition 5. Let C be a locally turn-bounded Jordan curve with parameters
(θ ∈ (0, π/2], δ) and a ∈ C. Then the intersection of C with the open disk D(a, ε)
is connected whenever ε ≤ δ.

Proof. Let a ∈ C. Let b ∈ C ∩D(a, ε). Then, by the very definition of δ, the turn
of one of the arc of C between a and b is less than or equal to θ. So, from Prop. 4
and for θ ≤ π/2, this arc is included in the disk with diameter [a, b] which is
itself included in D(a, ε). Hence, C ∩D(a, ε) is path-connected.
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Figure 4: Illustration of Prop. 4 for three values of the parameter θ: π/3, π/2,
2π/3. Given two points a, b ∈ C such that ‖a − b‖2 < σ(θ), then one of the arc
of C between a and b belongs to the grey area.

For π/2 < θ < π, in particular for polygons with acute angles, Proposition 5
does not hold (the intersection of the curve with a ball near an acute angle may
have two connected components). Nevertheless, a weak version of the proposition
could be stated: the intersection of the disk D(a, δ) with the dilation of C by the
structuring element B(0, (1/ sin θ − 1)δ) is connected.

Proposition 6. A locally turn-bounded curve with parameters (θ ∈ (0, π/2], δ)
has a finite turn and is thus rectifiable.

Proof. Let C be a locally turn-bounded curve with parameters (θ, δ). The open
balls B(a, δ/2), a ∈ C, cover the compact set C. Then, there exists a finite subset
of C, {a0, . . . , am} such that

⋃m
i=0B(ai, δ/2) covers C. By Proposition 5, for each

i, C ∩B(ai, δ/2) is an arc of C.
Since the balls are open and thus overlaps, by Proposition 3 κ(C) ≤

∑m
i=0 κ(C∩

B(ai, δ/2)). Besides, by hypothesis, κ(C ∩ B(a, δ/2) ≤ θ. Therefore, κ(C) ≤
(m+ 1)θ.

The next technical lemma is used in the proofs of Proposition 8 and Propo-
sition 7.

Lemma 1. Let C be a curve with endpoints a, b such that the line segment [a, b]
does not intersect the curve C. Let P be a polygonal line from a to b lying in the
interior of the Jordan curve C ∪ [a, b] and such that P ∪ [a, b] is convex. Then
κ(C) ≥ κ(P ).

Proof. Let c be any point in (a, b) and Q = [aq1 . . . qmb] the polygonal line
obtained by projecting P = [ap1 . . . pmb] on C from c (see Fig. 5). Then, κ(C) ≥
κ(Q) by definition of κ(C). Besides, κ(Q ∪ [b, a]) ≥ κ(P ∪ [b, a]), for P ∪ [b, a] is
convex, and κ([qmbaq1]) ≤ κ([pmbap1]) by construction of Q. Since κ(Q∪[b, a]) =
κ(Q) + κ([qmbaq1]) and κ(P ∪ [b, a]) = κ(P ) + κ([pmbap1]), the result holds.
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Figure 5: Thick, blue: the curve C and the line segment [a, b]. Black: the polyg-
onal line P = [ap1p2b]. Black, dashed: the projection of p1 and p2 on C yields
the points q1 and q2. Red: the polygonal line Q = [aq1q2b].

The information on the local turn makes it possible to localize the continuous
curve from its digitization as illustrated by Fig. 6.

Proposition 7 (Hausdorff distance between the curve and a pixel).
Assuming an n-regular tiling of the plane with edge length h (n ∈ {3, 4, 6}),
let C be a locally turn-bounded Jordan curve with parameters (θ < 2π/n, δ >
h
√
n− 2). Let T be a tile crossed by C and a, b be respectively the infimum

and the supremum of C ∩ T (C is ordered by some parametrization). Then, the
Hausdorff distance between T and one of the segments of C bounded by a and b
is less than h(1− cos(θ))/2 sin(θ).

Proof. Let C1, C2 be the arcs of C bounded by a and b. We assume κ(C1) ≤ κ(C2)
(then, κ(C2) ≥ π > θ). As the diameter of T is

√
n− 2h, by the hypothesis

δ ≥
√
n− 2h, κ(C1) ≤ θ. If the arc C1 leaves T , it intersects the border of T on

a point c. By the definition of a and b there exists d 6= c such that d is on the
border of T . The point d belongs to the same edge as c. Indeed, if it wasn’t the
case, there would be a polygonal line included in the border of T containing at
least one vertex and separating an arc segment of C1 from the line segment [c, d].
Then, by Lemma 1, the turn of C1 would be greater than or equal to 2π/n > θ.
Hence, c and d belongs to the same edge. Therefore, by the proposition 4, we
derive that C1 lies in the union of T with the interior of n truncated circles whose
Hausdorff distance to T is h(1− sin θ)/2 cos θ.

The next proposition makes a link between the well-composedness of the
digitized object and a local turn-boundedness hypothesis. Let us first define the
Gauss digitization and the well-composedness. Let h > 0 be a sampling grid
step, the Gauss digitization of a shape K is defined as K ∩ (hZ)2. By abuse of
language, given a Jordan curve C which is the border of the compact shape K,
we define its Gauss digitization —we write Digh(C)— as the border of the union
of the squares p⊕ [−h/2, h/2]× [−h/2, h/2] where ⊕ denotes the Minkowski sum
and p ∈ K ∩ (hZ)2. The Gauss digitization of C is well-composed if it is a Jordan
curve.
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Figure 6: Gray: a tilel T with edge length h. Blue, thick: a locally turn-bounded
curve arc passing through T . Red: the union of n circle arcs from which the
edges of T are viewed from an angle 2π− θ. The Hausdorff distance between the
circle arcs and the pixel T is e.

Proposition 8. Let C be a locally turn-bounded Jordan curve with parameters
(θ ∈ (0, π/2], δ) where δ is less than the diameter of C. Then, the Gauss digiti-
zation of C for a grid step h < δ/

√
2 is almost surely a disjoint union of Jordan

curves (the digitization of the shape is well-composed).

Proof. The proof is made by contradiction. So, let a be a double point on Digh(C)
traveled counterclockwise. Since the interior points of (hZ)2 are on the left of the
discrete curve, there is only one configuration modulo rotations and symmetries
depicted in Fig 7. Furthermore, we can assume almost surely C ∩ (hZ)2 = ∅.
Indeed, the set of translations for which a given point x ∈ (hZ)2 lies on the
translation of C is {x − p | p ∈ C}. In other words, it is a translation of −C
(in the translation parameter space). Then, since C is rectifiable, this set is one-
dimensional. Therefore, the set S of translations for which there exists a point
of (hZ)2 on the translation of C is a countable union of one-dimensional sets.
Thus, the Lebesgue measure of S is zero.

With the notation of the figure, we claim that on each edge of the square
T = [I1, E1, I2, E2, I1] lies a point of the curve C. Indeed, each edge links an
interior point and an exterior point. Furthermore, thanks to the assumptions
that C ∩ (hZ)2 = ∅, these four points actually lie on the open edges of T . Let b, d
be respectively the infimum and the supremum of C ∩ T and [cc0c1c2c3d] be the
inscribed polygon formed by these six points (C is ordered by some parametriza-
tion). We denote by Cdb the oriented arc of C from b to d. On the one hand, the
arc Cdb contains the four points c0, c1, c2 and c3. Thus, whatever the geometric
configuration ([c0c1c2c3] simple or not), the turn of Cdb is greater than π/2. Nev-
ertheless, since δ > h

√
2, the points b, c0, c1, c2, c3, d are included in the ball
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Figure 7: Blue: the curve C. Red: the line segments [a0a], [aa1], [a2a], [aa3] are
edges of Digh(C). Black: the points E1, E2, I1, I2 are in (hZ)2, E1, E2 are exterior
to C while I1, I2 are interior to C.

B(a, δ). Thus, from Prop. 5, the arc Cdb is included in the ball B(a, δ). On the
other hand, since κ(Cd

b ) ≥ π/2 and δ > h
√

2, the turn of C \Cdb is less than θ and
a fortiori less than π/2. Then, from Prop. 4, C \ Cdb is included in the disk with
diameter [b, d] which is itself included in the disk B(a, δ). Thereby, the whole
curve C is included in B(a, δ) which contradicts the assumption on its diameter.

We began the proof of Prop.8 without any restriction on the localization
of the curve (omitting ”almost surely”). But there are many special cases to
consider and it can not be given as part of a short article.

4 Conclusion

In this article, the notion of local turn, adapted to both regular curves and poly-
gons having large enough interior angles, has been developed to have control
on the curve without smoothness assumption. Indeed, it makes it possible to
bound the domain where an arc of such a curve is lying, to guarantee (almost
surely) the well-composedness of its Gauss digitization and to bound the Haus-
dorff distance between one pixel and an arc crossing it. The local turn needs to
be related to others notions used in discrete geometry for similar purposes. To
this end, we will prove in an upcoming article that a par(r)-regular curve of class
C1 is locally turn-bounded with parameters (θ, 2r sin(θ/2)) where θ is any angle
in [0, π). Besides, we expect that these results will make it possible to correctly
associate the vertices of a Gauss digitization to points on the continuous curve
without smoothness assumption.
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