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Local turn-boundedness: a curvature control for a good digitization

This paper focuses on the classical problem of the control of information loss during the digitization step. The properties proposed in the literature rely on smoothness hypotheses that are not verified by the curves including angular points. The notion of turn introduced by Milnor in the article On the Total Curvature of Knots generalizes the notion of integral curvature to continuous curves. Thanks to the turn, we are able to define the locally turn-boundedness. This promising property of curves do not require smoothness hypotheses and shares several properties with the par(r)-regularity, in particular well-composed digitizations. Besides, the locally turn-boundedness enables to constraint spatially the continuous curve in function of its digitization.

Introduction

The loss of information caused by a digitization process is inevitable. Therefore a fundamental point concerns the control of this information loss. Indeed, the border of a compact connected shape S can be arbitrarily far from the digitization of S or can oscillate around this latter border. Therefore, hypotheses on the border of the shape S, which is a Jordan curve noted by C, are needed. One of the most used hypothesis, called par(r)-regularity, has been introduced by Pavlidis in [START_REF] Pavlidis | Algorithms for graphics and image processing[END_REF]. It demands that any point c ∈ C has an interior osculating disk entirely included in the interior of C except for the point c and an exterior osculating disk entirely included in the exterior of C except for the point c. It has been used to prove some preserving topology properties [2, [START_REF] Latecki | Preserving topology by a digitization process[END_REF][START_REF] Pavlidis | Algorithms for graphics and image processing[END_REF] or to control the behavior of the projection from the digitized curve to the continuous curve C [3, 4]. However, the notion can be hard to manipulate in geometry and most of the authors using this notion add the assumption that the curve C is of class C 2 . The par(r)-regularity encompasses two ideas: the border of the shape has a bounded curvature from above and the shape has a positive minimal thickness. In this article, relaxing the assumption of a bounded curvature, we develop a new notion called local turn-boundedness that is defined on continuous curves, including polygons. The local turn-boundedness relies on the notion of turn adapted to regular curves and polygons, firstly introduced by Milnor [START_REF] Milnor | On the total curvature of knots[END_REF] to study the geometry of knots. The main properties and definitions around the notion of turn are recalled in Section 2. The local turn-boundedness involves the Euclidean distance between any two points of a curve and the turn of this curve between these two points. The properties of locally turn-bounded curves are given and illustrated in Section 3.

Turn of a simple curve

The definitions and properties given in this section are detailed in [START_REF] Alexandrov | Properties of gauss digitized shapes and digital surfaces integration[END_REF]. As presented in Proposition 2, the turn extends to continuous curves the notion of integral curvature already defined for regular curves.

Terminology and notations

-Let c ∈ R 2 and r ≥ 0, B(c, r) is the open disk of center c and radius r. -A parametrized curve is a continuous application from an interval [a, b] of R (a < b) to R 2 . It is simple if it is injective on [a, b) and closed if γ(b) = γ(a). A (geometric) curve is the image of a parametrized curve. A Jordan curve is a simple closed curve. -A polygonal line with vertices x 0 , ..., x N is noted [x 0 x 1 ...x N ] (if x N = x 0 ,
the polygonal line is a polygon). -Let N a positive integer and x 0 , x 1 , ..., x N points of R 2 . The polygonal line PL = [x 0 x 1 . . . x N ] can be considered as the image of the parametrized curve pl :

[0, N ] → R 2 such that pl(t) = x t (t -t ) + (1 -t + t )x t +1
where for r ∈ R, r in the integer part of the real r. In other words, for any integer i between 0 and N , if t ∈ [i, i + 1), then pl(t) = (t -i) -The angle between two vectors u and v is noted (u, v) ((u, v) ∈ R/2πZ). The geometric angle between two vectors u and v, noted (u,v), or two directed straight lines oriented by u and v, is the absolute value of the reference angle taken in (-π, π] between the two vectors. Thus, (u,v) ∈ [0, π).

x i + (1 -t + i)x i+1
Definition 1 (Turn).

-The turn κ(L) of a polygonal line L = [x i ] N i=0 is defined by:

κ(L) := N -1 i=1 (x i-1 x i , x i x i+1 ).
-The turn κ(P ) of a polygon P = [x i ] N i=0 (where x N = x 0 ) is defined by:

κ(P ) := N i=1 (x i-1 x i , x i x i+1 ).
-The turn κ(C) of a simple curve C is the upper bound of the turn of its inscribed polygonal lines -The turn κ(C) of a Jordan curve C is the upper bound of the turn of its inscribed polygons.

It should be noticed that the turn does not depend of the orientation of the curve. Indeed, it is well-known that (u

, v) = (-u, -v) = -(-v, -u). Thus κ [x i ] N i=0 = κ [x i ] 0
i=N . Furthermore, since the turn of a polygon is equal the upper bound of the turn of the polygonal lines inscribed in it (cf Corollary p. 119 [START_REF] Alexandrov | Properties of gauss digitized shapes and digital surfaces integration[END_REF]), the turn of the polygon seen as a closed curve is equal to the turn of the polygon. Hence the notation κ is well defined. In the same way that we estimate the length of a curve, the following proposition make it possible to calculate the turn thanks to multiscale samplings. Given a curve C, we denote by L(C) the length of C.

Proposition 1 (Convergence of the length and turn of a sequence of polygonal lines [START_REF] Alexandrov | Properties of gauss digitized shapes and digital surfaces integration[END_REF], p. 23, 30, 121, 122). Let C be a simple curve and (L m ) m∈N a sequence of polygonal lines inscribed in C and with same endpoints as C. If lim m→+∞ λ m = 0, where λ m is the maximal Euclidean distance between two consecutive vertices of L m , then

lim m→+∞ L(L m ) = L(C) and lim m→+∞ κ(L m ) = κ(C). Moreover, if κ(C) is finite, then L(C) is also finite, that is C is rectifiable. In Prop. 1, if we assume that the sequence (L m ) is increasing (L m is inscribed in L m+1 ), then the sequences (L(L m )) and (κ(L m )) are both increasing ([1, Lemma 5.1.1]).
Proposition 2 (Turn for regular curves [START_REF] Alexandrov | Properties of gauss digitized shapes and digital surfaces integration[END_REF], p. 133). Let γ : [0, ] → R 2 be a parametrization by arc length of a simple curve C. Assume that γ is of class C 2 and denote by k(s) the curvature at the point γ(s). Then,

κ(γ) = 0 k(s)ds.
For regular curves, therefore, the turn corresponds to the integral of the curvature (with respect to an arc-length parametrization).

The following theorem gives a lower bound of the turn for closed curves.

Theorem 1 (Fenchel's Theorem, [START_REF] Alexandrov | Properties of gauss digitized shapes and digital surfaces integration[END_REF] theorem 5.1.5 p.125). For any Jordan curve C, κ(C) ≥ 2π. Moreover κ(C) = 2π if and only if the interior of C is convex.

Proposition 3. Let C be a simple curve from a to b and γ be its parametrization. Let C x2 a and C b x1 be two arcs of C that overlap with a < x 1 < x 2 < b. Then,

κ(C) ≤ κ(C x2 a ) + κ(C b x1 ). Proof. Let (L m ) be a sequence of polygonal lines [l m,i ] Nm i=0 inscribed in C such that l m,0 = a, l m,Nm = b and : l m,i+1 -l m,i 2 ≤ 1 m .
Let m > 2/(x 2 -x 1 ) and denote by l m,i2 the largest l m,i such that l m,i lies in C x2 a and l m,i1 the smallest l m,i that lies in C b x1 . Then,

l m,i1 < l m,i2 .
Therefore, from Definition 1, we derive that

κ([l m ] Nm i=0 ) ≤ κ([l m ] i2 i=0 ) + κ([l m ] Nm i=i1 ).
Then, by Proposition 1,

κ(C) ≤ κ(C x2 a ) + κ(C b x1 ).
Without the hypothesis of an overlapping non reduced to a singleton, Proposition 3 is false in presence of angular points as it is illustrated in Figure 2.

Remark 1. The turn is stable under homothetic maps. Indeed, obviously, the turn is invariant by any conformal map, in particular by the homotheties. 

σ(θ) = inf{ a -b 2 | κ(C b a ) > θ ∧ κ(C a b ) > θ}. ( 1 
)
Let θ ≥ 0, δ ≥ 0. A Jordan curve C is locally turn-bounded with parameters (θ, δ) if δ ≤ σ(θ).
The Figure 3 illustrates the definition of the local turn with different curves.

π/4 • a • b σ(θ) θ = π/4 . . . a2 a1 • • • . . . b2 b1 • • • σ(θ) θ = π/3 σ(θ) • a • b θ = π/2
Figure 3: For the chosen value of θ, the corresponding θ-turn-step σ(θ).

On a locally turn-bounded curve with parameters (θ, δ) the smallest turn of the curve C between two points of C a and b such that b -a 2 < δ is less than or equal to θ.

The turn step function θ → σ(θ) is increasing. Indeed, the value of the θ-turn step is an infimum of a set that decreases (for the inclusion order) in function of θ. If the turn of C is finite, it exists a value θ max above which this set is empty and the θ max -turn step is then infinite.

Examples

-The 0-turn step of a Jordan curve is 0.

-The π-turn step of a convex Jordan curve is +∞ (see Theorem 1).

-The θ-turn step of a circle with radius r is 2r sin(θ/2) if θ ≤ π and is infinite for θ > π.

-The θ-turn step of a polygon having vertices with interior angles strictly less than π -θ is zero. Indeed, the turn of an arc joining two points arbitrary close, located before and after such a vertex is greater than θ. -The turn between two points on a polygonal curve is a finite sum of geometric angles, then the turn step function is a step function.

Remark 2. Local turn-boundedness is scale invariant: let C be a locally turnbounded Jordan curve with parameters (θ, δ). Then, the curve k C, k > 0, is locally turn-bounded with parameters (θ, kδ). It is a direct consequence of Remark 1.

The next proposition makes it possible to localize a locally turn-bounded curve from a sufficiently tight sampling. Figure 4 For π/2 < θ < π, in particular for polygons with acute angles, Proposition 5 does not hold (the intersection of the curve with a ball near an acute angle may have two connected components). Nevertheless, a weak version of the proposition could be stated: the intersection of the disk D(a, δ) with the dilation of C by the structuring element B(0, (1/ sin θ -1)δ) is connected. The information on the local turn makes it possible to localize the continuous curve from its digitization as illustrated by Fig. 6.

Proposition 7 (Hausdorff distance between the curve and a pixel).

Assuming an n-regular tiling of the plane with edge length h (n ∈ {3, 4, 6}), let C be a locally turn-bounded Jordan curve with parameters

(θ < 2π/n, δ > h √ n -2).
Let T be a tile crossed by C and a, b be respectively the infimum and the supremum of C ∩ T (C is ordered by some parametrization). Then, the Hausdorff distance between T and one of the segments of C bounded by a and b is less than h(1 -cos(θ))/2 sin(θ).

Proof. Let C 1 , C 2 be the arcs of C bounded by a and b. We assume κ(C 1 ) ≤ κ(C 2 ) (then, κ(C 2 ) ≥ π > θ). As the diameter of T is √ n -2h, by the hypothesis δ ≥ √ n -2h, κ(C 1 ) ≤ θ. If the arc C 1 leaves T , it intersects the border of T on a point c. By the definition of a and b there exists d = c such that d is on the border of T . The point d belongs to the same edge as c. Indeed, if it wasn't the case, there would be a polygonal line included in the border of T containing at least one vertex and separating an arc segment of C 1 from the line segment [c, d]. Then, by Lemma 1, the turn of C 1 would be greater than or equal to 2π/n > θ. Hence, c and d belongs to the same edge. Therefore, by the proposition 4, we derive that C 1 lies in the union of T with the interior of n truncated circles whose Hausdorff distance to T is h(1 -sin θ)/2 cos θ.

The next proposition makes a link between the well-composedness of the digitized object and a local turn-boundedness hypothesis. Let us first define the Gauss digitization and the well-composedness. Let h > 0 be a sampling grid step, the Gauss digitization of a shape K is defined as K ∩ (hZ) 2 . By abuse of language, given a Jordan curve C which is the border of the compact shape K, we define its Gauss digitization -we write Dig h (C)-as the border of the union of the squares p ⊕ [-h/2, h/2] × [-h/2, h/2] where ⊕ denotes the Minkowski sum and p ∈ K ∩ (hZ) 2 . The Gauss digitization of C is well-composed if it is a Jordan curve. Proposition 8. Let C be a locally turn-bounded Jordan curve with parameters (θ ∈ (0, π/2], δ) where δ is less than the diameter of C. Then, the Gauss digitization of C for a grid step h < δ/ √ 2 is almost surely a disjoint union of Jordan curves (the digitization of the shape is well-composed).

• b θ = π 3 , σ > h e = h( √ 3/6) e a b h • • θ = π 3 , σ > √ 2h e = h( √ 3/6) e • a • b θ = π 4 , σ > 2h e = h( √ 2 - 
Proof. The proof is made by contradiction. So, let a be a double point on Dig h (C) traveled counterclockwise. Since the interior points of (hZ) 2 are on the left of the discrete curve, there is only one configuration modulo rotations and symmetries depicted in Fig 7 . Furthermore, we can assume almost surely C ∩ (hZ) 2 = ∅. Indeed, the set of translations for which a given point x ∈ (hZ) 2 lies on the translation of C is {x -p | p ∈ C}. In other words, it is a translation of -C (in the translation parameter space). Then, since C is rectifiable, this set is onedimensional. Therefore, the set S of translations for which there exists a point of (hZ) 2 on the translation of C is a countable union of one-dimensional sets. Thus, the Lebesgue measure of S is zero.

With the notation of the figure, we claim that on each edge of the square We began the proof of Prop.8 without any restriction on the localization of the curve (omitting "almost surely"). But there are many special cases to consider and it can not be given as part of a short article.

T = [I 1 , E 1 , I 2 , E 2 , I 1 ]

Conclusion

In this article, the notion of local turn, adapted to both regular curves and polygons having large enough interior angles, has been developed to have control on the curve without smoothness assumption. Indeed, it makes it possible to bound the domain where an arc of such a curve is lying, to guarantee (almost surely) the well-composedness of its Gauss digitization and to bound the Hausdorff distance between one pixel and an arc crossing it. The local turn needs to be related to others notions used in discrete geometry for similar purposes. To this end, we will prove in an upcoming article that a par(r)-regular curve of class C 1 is locally turn-bounded with parameters (θ, 2r sin(θ/2)) where θ is any angle in [0, π). Besides, we expect that these results will make it possible to correctly associate the vertices of a Gauss digitization to points on the continuous curve without smoothness assumption.

  , and thus pl([i, i + 1]) is the segment [x i , x i+1 ] of R 2 . A polygonal line is simple if it is simple for the previous parametrization and thus a simple polygon is a Jordan curve. -Given a curve C and two points a, b on C (a = b), we write C b a for the arc ending at a and b if C is not closed and C b a and C a b for the two arcs of C ending at a and b if C is closed.
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 1 Figure 1: The turn of the polygon is the sum of the green angles.

Figure 2 :

 2 Figure 2: Counterexample: the turn of the arcs C a2 a1 and C a3 a2 are zero but the turn of the arc C a3a1 is nonzero. This is why the arcs are required to be overlapping in Proposition 3.

Figure 4 :

 4 Figure 4: Illustration of Prop. 4 for three values of the parameter θ: π/3, π/2, 2π/3. Given two points a, b ∈ C such that a -b 2 < σ(θ), then one of the arc of C between a and b belongs to the grey area.
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 6715 Figure 5: Thick, blue: the curve C and the line segment [a, b]. Black: the polygonal line P = [ap 1 p 2 b]. Black, dashed: the projection of p 1 and p 2 on C yields the points q 1 and q 2 . Red: the polygonal line Q = [aq 1 q 2 b].

1 )/ 2 eFigure 6 :

 126 Figure 6: Gray: a tilel T with edge length h. Blue, thick: a locally turn-bounded curve arc passing through T . Red: the union of n circle arcs from which the edges of T are viewed from an angle 2π -θ. The Hausdorff distance between the circle arcs and the pixel T is e.

Figure 7 :

 7 Figure 7: Blue: the curve C. Red: the line segments [a 0 a], [aa 1 ], [a 2 a], [aa 3 ] are edges of Dig h (C). Black: the points E 1 , E 2 , I 1 , I 2 are in (hZ) 2 , E 1 , E 2 are exterior to C while I 1 , I 2 are interior to C.