Identification of individual cells from z-stacks of bright-field microscopy images - Archive ouverte HAL
Article Dans Une Revue Scientific Reports Année : 2018

Identification of individual cells from z-stacks of bright-field microscopy images

Résumé

Obtaining single cell data from time-lapse microscopy images is critical for quantitative biology, but bottlenecks in cell identification and segmentation must be overcome. We propose a novel, versatile method that uses machine learning classifiers to identify cell morphologies from z-stack bright-field microscopy images. We show that axial information is enough to successfully classify the pixels of an image, without the need to consider in focus morphological features. This fast, robust method can be used to identify different cell morphologies, including the features of E. coli, S. cerevisiae and epithelial cells, even in mixed cultures. Our method demonstrates the potential of acquiring and processing Z-stacks for single-layer, single-cell imaging and segmentation.
Fichier principal
Vignette du fichier
s41598-018-29647-5(1).pdf (2.13 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01898065 , version 1 (17-10-2018)

Licence

Identifiants

Citer

Jean-Baptiste Lugagne, Srajan Jain, Pierre Ivanovitch, Zacchary Ben Meriem, Clément Vulin, et al.. Identification of individual cells from z-stacks of bright-field microscopy images. Scientific Reports, 2018, 8 (1), pp.11455. ⟨10.1038/s41598-018-29647-5⟩. ⟨hal-01898065⟩
386 Consultations
88 Téléchargements

Altmetric

Partager

More