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On Kernel Derivative Approximation with Random Fourier Features

Random Fourier features (RFF) represent one of the most popular and wide-spread techniques in machine learning to scale up kernel algorithms. Despite the numerous successful applications of RFFs, unfortunately, quite little is understood theoretically on their optimality and limitations of their performance. Only recently, precise statisticalcomputational trade-offs have been established for RFFs in the approximation of kernel values, kernel ridge regression, kernel PCA and SVM classification. Our goal is to spark the investigation of optimality of RFFbased approximations in tasks involving not only function values but derivatives, which naturally lead to optimization problems with kernel derivatives. Particularly, in this paper, we focus on the approximation quality of RFFs for kernel derivatives and prove that the existing finite-sample guarantees can be improved exponentially in terms of the domain where they hold, using recent tools from unbounded empirical process theory. Our result implies that the same approximation guarantee is attainable for kernel derivatives using RFF as achieved for kernel values.

INTRODUCTION

Kernel techniques [START_REF] Berlinet | Reproducing Kernel Hilbert Spaces in Probability and Statistics[END_REF][START_REF] Steinwart | Support Vector Machines[END_REF][START_REF] Paulsen | An Introduction to the Theory of Reproducing Kernel Hilbert Spaces[END_REF] are among the most influential and widely-applied tools, with significant impact on virtually all areas of machine learning and statis- tics. Their versatility stems from the function class associated to a kernel called reproducing kernel Hilbert space (RKHS) [START_REF] Aronszajn | Theory of reproducing kernels[END_REF] which shows tremendous success in modelling complex relations.

The key property that makes kernel methods computationally feasible and the optimization over RKHS tractable is the representer theorem [START_REF] Kimeldorf | Some results on Tchebycheffian spline functions[END_REF][START_REF] Schölkopf | A generalized representer theorem[END_REF][START_REF] Yu | Characterizing the representer theorem[END_REF]. Particularly, given samples {(x i , y i )} n i=1 ⊂ X×R, consider the regularized empirical risk minimization problem specified by a kernel k : X × X → R, the associated RKHS H k ⊂ R X , a loss function V : R × R → R ≥0 , and a penalty parameter λ > 0:

min f ∈H k J 0 (f ) := 1 n n i=1 V (y i , f (x i )) + λ f 2 H k , (1) 
where H k is the Hilbert space defined by the following two properties:

1. k(•, x) ∈ H k (∀x ∈ X),1 and 2. f (x) = f, k(•, x) H k (∀x ∈ X, ∀f ∈ H k ), which is called the reproducing property.

Examples falling under (1) include e.g., kernel ridge regression with the squared loss or soft-classification with the hinge loss:

V (f (x i ), y i ) = (f (x i ) -y i ) 2 , V (f (x i ), y i ) = max(1 -y i f (x i ), 0).
(1) is an optimization problem over a function class (H k ) which could generally be intractable. Thanks to the specific structure of RKHS, however, the representer theorem enables one to parameterize the optimal solution of (1) by finitely many coefficients:

f (•) = n j=1 c j k(•, x j ), c j ∈ R. (2) 
As a result, (1) becomes a finite-dimensional optimization problem determined by the pairwise similarities of the samples [k(x i , x j )]:

min c∈R n J0 (c) := 1 n n i=1 V   y i , n j=1 c j k(x i , x j )   + λ n i=1 n j=1 c i c j k(x i , x j ), (3) 
where the second term follows from the reproducing property of kernels.

However, in many learning problems such as nonlinear variable selection [START_REF] Rosasco | A regularization approach to nonlinear variable selection[END_REF][START_REF] Rosasco | Nonparametric sparsity and regularization[END_REF], (multi-task) gradient learning [START_REF] Ying | Learning the coordinate gradients[END_REF], semi-supervised or Hermite learning with gradient information [START_REF] Zhou | Derivative reproducing properties for kernel methods in learning theory[END_REF][START_REF] Shi | Hermite learning with gradient data[END_REF], or density estimation with infinite-dimensional exponential families [START_REF] Bharath | Density estimation in infinite dimensional exponential families[END_REF], apparently considering the derivative information

(∂ p f (x i ) := ∂ p 1 +...+p d f (xi) ∂ p 1 x 1 •••∂ p d x d
, X := R d ) other than just the function values (f (x i )) turns out to be beneficial.

In these tasks containing derivatives, (1) is generalized with loss functions

V i : R |Ii|+1 → R ≥0 (i = 1, . . . , n; |I i | denotes the cardinality of I i ) to the form min f ∈H k J(f ) := 1 n n i=1 V i y i , {∂ p f (x i )} p∈Ii + λ f 2 H k . (4) 
The solution of this minimization task -similar to (1)-enjoys a finite-dimensional parameterization [START_REF] Zhou | Derivative reproducing properties for kernel methods in learning theory[END_REF]:

f (•) = n j=1 p∈Ij c j,p ∂ p,0 k(•, x j ), (c j,p ∈ R),
where ∂ p,q k(x, y)

:= ∂ d i=1 (p i +q i ) k(x,y) ∂ p 1 x 1 •••∂ p d x d ∂ q 1 y 1 •••∂ q d y d
. Hence, the optimization in (4) can be reduced to

min c J (c) = = 1 n n i=1 V i   y i , n j=1 p∈Ij c j,p ∂ p,0 k(x i , x j ) p∈Ii   +λ n i=1 p∈Ii n j=1 q∈Ij c i,p c j,q ∂ p,q k(x i , x j ), (5) 
where c = (c i,p ) i∈{1,...,n},p∈Ii ∈ R n i=1 |Ii| , and we used the derivative-reproducing property of kernels

∂ p f (x) = f, ∂ p,0 k(•, x) H k .
Compared to [START_REF] Berlinet | Reproducing Kernel Hilbert Spaces in Probability and Statistics[END_REF] where the kernel values determine the objective, ( 5) is determined by the kernel derivatives ∂ p,q k(x i , x j ).

While kernel techniques are extremely powerful due to their modelling capabilities, this flexibility comes with a price, often they are computationally expensive.

In order to mitigate this computational bottleneck, several approaches have been proposed in the literature such as the Nyström and sub-sampling methods [START_REF] Christopher | Using the Nyström method to speed up kernel machines[END_REF][START_REF] Drineas | On the Nyström method for approximating a Gram matrix for improved kernel-based learning[END_REF][START_REF] Rudi | FALKON: An optimal large scale kernel method[END_REF], sketching [START_REF] Sriperumbudur | Fast randomized kernel ridge regression with statistical guarantees[END_REF][START_REF] Yang | Randomized sketches for kernels: Fast and optimal non-parametric regression[END_REF], or random Fourier features (RFF) [START_REF] Rahimi | Random features for large-scale kernel machines[END_REF][START_REF] Rahimi | Weighted sums of random kitchen sinks: Replacing minimization with randomization in learning[END_REF] and their approximate memory-reduced variants and structured extensions [START_REF] Le | Fastfood -computing Hilbert space expansions in loglinear time[END_REF][START_REF] Dai | Scalable kernel methods via doubly stochastic gradients[END_REF][START_REF] Bojarski | Structured adaptive and random spinners for fast machine learning computations[END_REF].

The focus of the current submission is on RFF, arguably the simplest and most influential approximation scheme among these approaches. 2 The RFF method constructs a random, low-dimensional, explicit Fourier feature map (ϕ) for a continuous, bounded, shift-invariant kernel k : R d × R d → R relying on the Bochner's theorem:

k(x, y) = ϕ(x), ϕ(y) , ϕ : R d → R m .
The advantage of such a feature map becomes apparent after applying the parametrization:

f (x) = w, ϕ(x) , w ∈ R m . (6) 
This parameterization can be considered as an approximate version of the reproducing property 6) allows one to leverage fast solvers for kernel machines in the primal [(1) or [START_REF] Bojarski | Structured adaptive and random spinners for fast machine learning computations[END_REF]]. This idea has been applied in a wide range of areas such as causal discovery [START_REF] Lopez-Paz | Towards a learning theory of cause-effect inference[END_REF], fast functionto-function regression [START_REF] Oliva | Fast function to function regression[END_REF], independence testing [START_REF] Zhang | Large-scale kernel methods for independence testing[END_REF], convolution neural networks [START_REF] Cui | Kernel pooling for convolutional neural networks[END_REF], prediction and filtering in dynamical systems [START_REF] Downey | Predictive state recurrent neural networks[END_REF], or bandit optimization [START_REF] Li | Hyperband: A novel bandit-based approach to hyperparameter optimization[END_REF].

f (x) = f, k(•, x) H k : f ∈ H k is changed to w ∈ R m and k(•, x) ∈ H k to ϕ(x) ∈ R m . (
Despite the tremendous practical success of RFF-s, its theoretical understanding is quite limited, with only a few optimal guarantees [START_REF] Bharath | Optimal rates for random Fourier features[END_REF][START_REF] Rudi | Generalization properties of learning with random features[END_REF][START_REF] Sriperumbudur | Approximate kernel PCA using random features: Computational vs. statistical trade-off[END_REF][START_REF] Li | A unified analysis of random Fourier features[END_REF][START_REF] Ullah | Streaming kernel PCA with Õ( √ n) random features[END_REF][START_REF] Sun | But how does it work in theory? Linear SVM with random features[END_REF].

• Concerning the approximation quality of kernel values, the uniform finite-sample bounds of [START_REF] Rahimi | Random features for large-scale kernel machines[END_REF][START_REF] Dougal | On the error of random Fourier features[END_REF] show that

k -k L ∞ (Sm×Sm) := sup x,y∈Sm k(x, y) -k(x, y) = O p |S m | log m m ,
where

S m ⊂ R d is compact, |S m | is its diameter, m
is the number of RFFs, O p (•) means convergence in probability. [START_REF] Bharath | Optimal rates for random Fourier features[END_REF] recently proved an exponentially tighter finite-sample bound in terms of

|S m | giving k -k L ∞ (Sm×Sm) = O a.s. log |S m | m , (7) 
where O a.s. √ n log n) number of RFFs is sufficient for the optimal statistical performance provided that the spectrum of the covariance operator follows an exponential decay, and presented a streaming algorithm for KPCA relying on the classical Oja's updates, achieving the same statistical performance.

• Results of similar flavour have recently been showed in SVM classification with the 0-1 loss [START_REF] Sun | But how does it work in theory? Linear SVM with random features[END_REF].

In contrast to the previous results, the focus of our paper is the investigation of problems involving kernel derivatives [see ( 4) and ( 5)]. The idea applied in practice is to formally differentiate [START_REF] Cui | Kernel pooling for convolutional neural networks[END_REF] giving

∂ p f (x) := ∂ p f (x) = w, ∂ p ϕ(x) , (8) 
which is then used in the primal [( 4)], and optimized for w. From the dual point of view [( 5)], this means that implicitly the kernel derivatives are approximated via RFFs. The problem we raise in this paper is how accurate these kernel derivative approximations are.

Our contribution is to show that the same dependency in terms of m and |S| can be achieved for kernel derivatives as attained for kernel values (see [START_REF] Dai | Scalable kernel methods via doubly stochastic gradients[END_REF]). To the best of our knowledge, the tightest available guarantee on kernel derivatives [START_REF] Bharath | Optimal rates for random Fourier features[END_REF] is

∂ p,q k -∂ p,q k L ∞ (Sm×Sm) = O a.s. |S m | log m m .
In this paper, we prove finite sample bounds on the approximation quality of kernel derivatives, which specif-ically imply that

∂ p,q k -∂ p,q k L ∞ (Sm×Sm) = O a.s. log |S m | m . (9) 
The possibility of such an exponentially improved dependence in terms of |S m | is rather surprising, as in case of kernel derivatives the underlying function classes are no longer uniformly bounded. We circumvent this challenge by applying recent tools from unbounded empirical process theory [START_REF] Van De Geer | The Bernstein-Orlicz norm and deviation inequalities[END_REF].

Our paper is structured as follows. We formulate our problem in Section 2. The main result on the approximation quality of kernel derivatives is presented in Section 3. Proofs are provided in Section 4.

PROBLEM FORMULATION

In this section we formulate our problem after introducing a few notations.

Notations: N := {0, 1, 2, . . .}, N + := N\{0} and R denotes the set of natural numbers, positive integers and real numbers respectively. For n ∈ N, n! denotes its factorial.

Γ(t) = ∞ 0 x t-1 e -x dx is the Gamma function (t > 0); Γ(n + 1) = n! (n ∈ N).
Let n!! denote the double factorial of n ∈ N, that is, the product of all numbers from n to 1 that have the same parity as n; specifically 0!! = 1. If n is a positive odd integer, then

n!! = 2 n+1 π Γ n 2 + 1 . For n ∈ N, c n := cos( πn 2 + •) is the n th derivative of the cos function. For multi-indices p, q ∈ N d , |p| = d j=1 p j , v p = d j=1 v pj j ,

and we use

∂ p h(x) := ∂ |p| h(x) ∂ p 1 x 1 •••∂ p d x d , ∂ p,q g(x, y) := ∂ |p|+|q| g(x,y) ∂ p 1 x 1 •••∂ p d x d ∂ q 1 y 1 •••∂ q d y d to denote partial derivatives. a, b = d i=1 a i b i is the inner product between a ∈ R d and b ∈ R d . a T is the transpose of a ∈ R d , a 2 = a, a is its Eu- clidean norm, [a 1 ; . . . ; a M ] ∈ R M m=1 dm is the concate- nation of vectors a m ∈ R dm . Let S ⊂ R d be a Borel set. M 1 + (S) is the set of Borel probability measures on S. Λ m = ⊗ m i=1 Λ is the m-fold product measure where Λ ∈ M 1 + (S). L r (S) is the Banach space of real- valued, r-power Lebesgue integrable functions on S (1 ≤ r < ∞). Λf = S f (ω)dΛ(ω), where Λ ∈ M 1 + (S) and f ∈ L 1 (S); specifically for the empirical mea- sure, Λ m = 1 m m i=1 δ ωi , Λ m f := 1 m m i=1 f (ω i ) where ω 1:m = (ω i ) m i=1 i.i.d. ∼ Λ and δ ω is the Dirac measure supported on ω ∈ S. S ∆ = {s 1 -s 2 : s 1 , s 2 ∈ S}. For positive sequences (a n ) n∈N , (b n ) n∈N , a n = O(b n ) (resp. a n = o(b n )) means that an bn n∈N is bounded (resp. lim n→∞ an bn = 0). Positive sequences (a n ) n∈N , (b n ) n∈N are said to be asymptotically equivalent, shortly a n ∼ b n , if lim n→∞ an bn = 1. X n = O p (r n ) (resp. O a.s. (r n ))
denotes that Xn rn is bounded in probability (resp. almost surely). The diameter of a compact set A ⊂ R d is defined as |A| := sup x,y∈A xy 2 < ∞. The natural logarithm is denoted by ln.

We continue with the formulation of our task. Let k : R d × R d → R be a continuous, bounded, shiftinvariant kernel. By the Bochner theorem [START_REF] Rudin | Fourier Analysis on Groups[END_REF], it is the Fourier transform of a finite, non-negative Borel measure Λ:

k(x, y) = k(x -y) = R d e √ -1ω T (x-y) dΛ(ω) (a) = R d cos ω T (x -y) dΛ(ω) ( 10 
) (b) = R d cos ω T x cos ω T y + sin ω T x sin ω T y dΛ(ω), = R d φ ω (x), φ ω (y) R 2 dΛ(ω), (11) 
where

φ ω (x) = [cos ω T x ; sin ω T x ]. (a)
follows from the real-valued property of k, and (b) is a consequence of the trigonometric identity cos(α -β) = cos(α) cos(β) + sin(α) sin(β). Without loss of generality, it can be assumed that

Λ ∈ M 1 + R d since k(0) = Λ R d and the normalization k(x,y) k(0) yields k(x, y) k(0) = R d cos ω T (x -y) d Λ(ω) Λ (R d ) =:P(ω), P∈M 1 + (R d )
.

Let p, q ∈ N d . By differentiating 3 (11) one gets

∂ p,q k(x, y) = R d ∂ p φ ω (x), ∂ q φ ω (y) R 2 dΛ(ω). (12) 
The resulting expectation can be approximated by the Monte-Carlo technique using ω 1:m = (ω j ) m j=1 i.i.d.

∼ Λ as

∂ p,q k(x, y) = R d ∂ p φ ω (x), ∂ q φ ω (y) R 2 dΛ m (ω) = 1 m m j=1 ∂ p φ ωj (x), ∂ q φ ωj (y) R 2 = ϕ p (x), ϕ q (y) R 2m , (13) 
where Λ m = 1 m m j=1 δ ωj , and

ϕ p (x) = 1 √ m ∂ p φ ωj (x) m j=1 = ∂ p ϕ 0 (x) ∈ R 2m (14) = 1 √ m ω p j c |p| ω T j x ; c 3+|p| ω T j x m j=1 .
3 By the dominated convergence theorem, the differentiation is valid if

R d |ω p+q | dΛ(ω) < ∞.
Specifically, if p = q = 0 then (13) reduces to the celebrated RFF technique [START_REF] Rahimi | Random features for large-scale kernel machines[END_REF]:

k(x, y) = ϕ 0 (x), ϕ 0 (y) R 2m , ϕ 0 (x) = 1 √ m cos ω T j x ; sin ω T j x m j=1 .
Our goal is to prove that similar to p = q = 0 [( 7)], fast approximation of kernel derivatives [( 9)] is attainable. Alternatively, we establish that the derivative (see ϕ p and ( 13)-( 14)) of the RFF feature map (ϕ 0 ) is as efficient for kernel derivative approximation as ϕ 0 for kernel value approximation.

MAIN RESULT

In this section we present our main result on the uniform approximation quality of kernel derivatives using RFFs. Its proof is available in Section 4.

Theorem (Uniform guarantee on kernel derivative approximation). Suppose that k :

R d × R d → R is a continuous, bounded and shift- invariant kernel. For p, q ∈ N d , assume C p,q = R d |ω p+q | 2 ω 2 2
dΛ(ω)/σ p,q < ∞ and for some constant K ≥ 1, the following Bernstein condition holds:

R d |ω p+q | n (σ p,q ) n dΛ(ω) ≤ n! 2 K n-2 , n = 2, 3, . . . , (15) 
where

σ p,q = R d |ω p+q | 2 dΛ(ω). Let L m = √ 6K 2 √ m , C 1 = 14 6 ln(2) + 1, C 2 = 36K[ln(2) + 1] and C 3 = 7 √ 6 1 + √ π ln 3 2 (2) 
. Then for any t > 0 and compact

set S ⊂ R d , Λ m ω 1:m : ∂ p,q k -∂ p,q k L ∞ (S×S) ≥ σ p,q C 3 d ln (16|S|C p,q + 4) √ m + C 1 √ m + C 2 m + + 24 √ 6 √ m √ t + L m t 2 ≤ 2e -t .
Remarks.

• Growth of |S m |: The theorem proves the same dependence on m and |S m | as is known [see [START_REF] Drineas | On the Nyström method for approximating a Gram matrix for improved kernel-based learning[END_REF]] for kernel values (p = q = 0). The result implies that

∂ p,q k -∂ p,q k L ∞ (Sm×Sm) m→∞ ----→ 0 a.s. if |S m | = e o(m) .
• Requirements for p = q = 0: In this case σ 0,0 = 1, 15) holds (K = 1). -The only requirement is the finiteness of C 0,0 = R d ω 2 2 dΛ(ω), which is identical to that imposed in [29, Theorem 1] for kernel values.

- R d |ω 0+0 | n (σ0,0) n dΛ(ω) = 1, thus (
• L ∞ (S × S)-based L r (S × S) guarantee: From the theorem above one can also get (see Section 4) the following L r (S × S) guarantee, where r ∈ [1, ∞).

Under the same conditions and notations as in the theorem, for any t > 0

Λ m ω 1:m : ∂ p,q k -∂ p,q k L r (S×S) ≥ σ p,q π d/2 |S| d 2 d Γ d 2 + 1 2 r C 3 2d ln (16|S|C p,q + 4) √ m + + C 1 √ m + C 2 m + 24 √ 6 √ m √ t + L m t 2 ≤ 2e -t . This shows that ∂ p,q k -∂ p,q k L r (Sm×Sm) = O a.s. m -1 2 |S m | 2d r log |S m | . Consequently, if |S m | → ∞ as m → ∞ then ∂ p,q k is a consistent estimator of ∂ p,q k in L r (S m × S m )-norm provided that m -1 2 |S m | 2d r log |S m | m→∞ ----→ 0.
• Bernstein condition with [p; q] = 0: Next we illustrate how the Bernstein condition in [START_REF] Lopez-Paz | Towards a learning theory of cause-effect inference[END_REF] translates to the efficient estimation of 'not too large'order kernel derivatives in case of the Gaussian kernel. For simplicity let us consider the Gaussian kernel in one dimension (d = 1); in this case Λ = N 0, σ 2 is a normal distribution with mean zero and variance σ 2 . Let r = p + q ∈ N + and denote the l.h.s. of (15) as

A r,n (Λ) = R |ω| rn dΛ(ω) R |ω| 2r dΛ(ω) n .
By the analytical formula for the absolute moments of normal random variables

A r,n (Λ) = σ nr (nr -1)!! 1 if nr is even 2 π if nr is odd [σ 2r (2r -1)!!] n 2 = (nr -1)!! 1 if nr is even 2 π if nr is odd [(2r -1)!!] n 2 . ( 16 
)
Since A r,n (Λ) does not depend on σ, one can assume that σ = R |ω| 2 dΛ(ω) = 1 and Λ = N (0, 1).

Exploiting the analytical expression obtained for A r,n (Λ) one can show (Section 4) that for r = 1: (15) holds with K = 1 since A 1,n (Λ) ≤ n! 2 . r = 2: K = 2 is a suitable choice in [START_REF] Lopez-Paz | Towards a learning theory of cause-effect inference[END_REF].

r = 3 and r = 4: Asymptotic argument shows that (15) can not hold. It is an interesting open question whether one can relax (15) while maintaining similar rates, and what are the trade-offs.

• Higher-order derivatives: In the Gaussian example we saw that (15) holds for r ≤ 2, but it is not satisfied for r > 2. For kernels with spectral densities proportional to e -ω 2 ( ∈ N + ; the = 1 choice reduces to the Gaussian kernel), it turns out that ( 15) is fulfilled with r ≤ 2 -order derivatives; for completeness the proof is available in Section A (supplement). In other words, kernels with faster decaying spectral densities can guarantee the efficient RFF-based estimation of kernel derivatives, without deterioration in the |S| and m-dependence.

• Difficulty: The fundamental difficulty one has to tackle to arrive at the stated theorem is as follows.

By differentiating (10) one gets

∂ p,q k(x, y)= R d ω p (-ω) q c |p+q| ω T (x -y) dΛ(ω).
By defining

g z (ω) = ω p (-ω) q c |p+q| ω T z , (17) 
the error we would like to control can be rewritten as the supremum of the empirical process sup

x,y∈S

∂ p,q k(x, y) -∂ p,q k(x, y) = sup z∈S∆ |(Λ -Λ m )g z |,
where G := {g z : z ∈ S ∆ }. For p = q = 0 (i.e., the classical RFF-based kernel approximation)

g z (ω) = cos ω T z (z ∈ S ∆ )
which is a uniformly bounded family of functions:

sup z∈S∆ g z L ∞ (R d ) ≤ 1.
This uniform boundedness is the classical assumption of empirical process theory, which was exploited by [START_REF] Bharath | Optimal rates for random Fourier features[END_REF] to get the optimal rates. For p, q ∈ N d \{0}, however, the functions g z are unbounded and so G is no longer uniformly bounded in L ∞ R d . Therefore, one has to control unbounded empirical processes for which only few tools are available.

The key idea of our paper is to apply a recent technique which bounds the supremum as a weighted sum of bracketing entropies of G at multiple scales. By estimating these bracketing entropies and optimizing the scale the result will follow. This is what we detail in the next section.

We provide the proofs of the results (main theorem and its consequence, remark on the Bernstein condition for Gaussian kernel) presented in Section 3. We start by introducing a few additional notations specific to this section.

Notations:

The volume of A ⊆ R d is defined as vol(A) = A 1 dx. γ(a, b) = b 0 e -t t a-1 dt is the incomplete Gamma function (a > 0, b ≥ 0) that satisfies γ(a + 1, b) = aγ(a, b) -b a e -b and γ 1 2 , b = √ πerf √ b , where erf(b) = 2 √ π b 0 e -t 2
dt is the error function (b ≥ 0). Let (F, ρ) be a metric space. The r-covering number of F is defined as the size of the smallest r-net, i.e., N (r,

F, ρ) = inf ≥ 1 : ∃ (f j ) j=1 s.t. F ⊆ ∪ j=1 B ρ (f j , r)
, where B ρ (s, r) = {f ∈ F : ρ(f, s) ≤ r} is the closed ball with center s ∈ F and radius r. For a set of realvalued functions F and r > 0, the cardinality of the minimal r-bracketing of F is defined as

N [ ] (r, F, ρ) = inf{n ≥ 1 : ∃ {(f j,L , f j,U )} n j=1 , f j,L , f j,U ∈ F (∀j) such that ρ (f j L , f j,U ) ≤ r and ∀f ∈ F ∃j f j,L ≤ f ≤ f j,U }.
The proof of the main theorem is structured as follows.

1. First, we rescale and reformulate the approximation error as the suprema of unbounded empirical processes, for which bounds in terms of bracketing entropies at multiple scales can be obtained. 2. Then, we bound the bracketing entropies via Lipschitz continuity. 3. Finally, the scale is optimized.

Step 1. It follows from (17) that,

g z := g z L 2 (R d ,Λ) = Λg 2 z ≤ R d |ω p+q | 2 dΛ(ω) =:σp,q . Define f z (ω) := gz(ω) σp,q so that f z ≤ 1 ∀z ∈ S ∆ ⇒ sup f ∈F f ≤ 1, (18) 
where F := {f z : z ∈ S ∆ }. The target quantity can be rewritten in supremum of empirical process form as sup

x,y∈S

∂ p,q k(x, y) -∂ p,q k(x, y) = sup z∈S∆ |Λg z -Λ m g z | = σ p,q sup f ∈F |(Λ -Λ m )f | =: σ p,q Λ -Λ m F .
By the Bernstein condition [( 15)] the following uniform bound holds:

sup fz:z∈S∆ Λ|f z | n ≤ R d |ω p+q | n (σ p,q ) n dΛ(ω) ≤ n! 2 K n-2 (n = 2, 3, . . .). (19) 
The uniform L 2 (Λ) boundedness of F [( 18)] with its Bernstein property [( 19)] imply by [START_REF] Van De Geer | The Bernstein-Orlicz norm and deviation inequalities[END_REF]Theorem 8] that for all t > 0 and for all scale S ∈ N

Λ m ω 1:m : sup f ∈F √ m(Λ -Λ m )f ≥ min S E S (20) 
+ 36K √ m + 24 √ 6 √ t + L m t 2 ≤ 2e -t ,
where

E S := 2 -S √ m + 14 S s=0 2 -s 6H s + 36KH 0 √ m , L m := √ 6K 2 √ m
, H s := ln(N s + 1),

N s := N [ ] (2 -s , F, • ), H 0 = ln(N 0 + 1),
and N 0 is the cardinality of the minimal generalized bracketing set of F.

Formally, N 0 = N 0 (K) := inf{n ≥ 1 : ∃f j,L , f j,U ∈ F (j = 1, . . . , n), Λ |f j,L -f j,U | n ≤ n! 2 (2K) n-2
(n = 2, 3, . . .), and for ∀f ∈ F, ∃j ∈ {1, . . . , n} such that f j,L ≤ f ≤ f j,U }.

Step 2. We continue the proof by bounding the entropies H 0 and H s (s ≥ 1) in [START_REF] Rosasco | A regularization approach to nonlinear variable selection[END_REF]. Using [START_REF] Lopez-Paz | Towards a learning theory of cause-effect inference[END_REF] for the envelope function

F := sup f ∈F |f |, we get Λ (F n ) = Λ sup f ∈F |f | n = Λ sup f ∈F |f | n ≤ R d |ω p+q | n (σ p,q ) n dΛ(ω) ≤ n! 2 K n-2 , n = 2, 3, . . .
Hence F also satisfies the weaker Bernstein condition: Next we bound H s (s ≥ 1). The F function class is Lipschitz continuous in the parameters (f z1 , f z2 ∈ F):

Λ (F n ) ≤ n! 2 (2K) n-2 (n =
|f z1 (ω) -f z2 (ω)| = ω p (-ω) q c |p+q| ω T z 1 -ω p (-ω) q c |p+q| ω T z 2 σ p,q = |ω p+q | c |p+q| ω T z 1 -c |p+q| ω T z 2 σ p,q (a) ≤ |ω p+q | σ p,q ω T (z 1 -z 2 ) (b) ≤ |ω p+q | σ p,q ω 2 =:G(ω) z 1 -z 2 2 ,
where we used the Lipschitz property of u → c |p+q| (u) (with Lipschitz constant 1) in (a) and the Cauchy-Bunyakovskii-Schwarz inequality in (b). Thus, by [START_REF] Van Der | Weak Convergence and Empirical Processes[END_REF]Theorem 2.7.11,page 164] for any δ > 0,

N [ ] (δ, F, • ) ≤ N δ 2 G , S ∆ , • 2 , (21) 
where

G = R d G 2 (ω)dΛ(ω) = R d |ω p+q | 2 σ 2 p,q ω 2 2 dΛ(ω) =: C p,q .
From Lemma 2.5 in [START_REF] Van De Geer | Empirical Processes in M-Estimation[END_REF] it follows that

N (r, M, • 2 ) ≤ 2|M | r + 1 d , ∀r > 0 for any compact M ⊂ R d . Choosing M = S ∆ , δ = 2 -s
and noting that |S ∆ | ≤ 2|S|, one can bound the l.h.s. in [START_REF] Rosasco | Nonparametric sparsity and regularization[END_REF] as

N s = N [ ] 2 -s , F, • ≤ N 1 2 s+1 C p,q , S ∆ , • 2 ≤ 2 s+3 |S|C p,q + 1 ≤2 s K|S| d ,
where K|S| = 8|S|C p,q + 1. Thus for any s ≥ 1,

H s = ln(N s + 1) ≤ d ln 2 s K|S| + 1 ≤2 s ( K|S| +1) ≤ d s ln(2) + ln K|S| + 1 ≤ s d ln(2) + ln K|S| + 1 d ln(2 K|S| +2)=:K |S| .
Hence,

E S ≤ 14 S s=1 2 -s 6sK |S| 14 √ 6K |S| S s=1 2 -s √ s +2 -S √ m + 14 6 ln(2) + 36K ln(2) √ m . ( 22 
)
Step 3. By [START_REF] Rudi | FALKON: An optimal large scale kernel method[END_REF], to control E S as a function of the scale S, we study the behaviour of h(t) = 2 -t √ t. It is easy to verify that h is monotonically decreasing on 1 2 ln(2) , ∞ as its derivative

h (t) = 1 2 t -1 2 2 t - √ t2 t ln(2) 2 2t
≤ 0 on 

+ S s=2 h(s) ≤ s s-1 h(x)dx ≤ 1 2 + S 1 h(x)dx = 1 2 + 1 ln 3 2 (2) 
S ln( 2)

ln(2)
e -t √ tdt

≤ 1 2 + 1 ln 3 2 (2) 
S ln( 2)

0 e -t √ tdt = 1 2 + 1 ln 3 2 (2) √ π 2 erf( S ln(2)) -2 -S S ln(2) .
Plugging this estimate in [START_REF] Rudi | FALKON: An optimal large scale kernel method[END_REF] results in

E S ≤ √ m 2 S + 14 6 ln(2) + 36K ln(2) √ m + 14 6K |S| × × 1 2 + 1 ln 3 2 (2) 
√ π 2 erf S ln(2) - S ln(2) 2 S ≤ √ m 2 S + 14 √ 6 K |S| × 1 2 + 1 ln 3 2 (2) 
√ π 2 + C 1 + C 2 √ m ≤ √ m 2 S + 14 √ 6 d ln (16|S|C p,q + 4)× × 1 2 + 1 ln 3 2 (2) 
√ π 2 + C 1 + C 2 √ m =: ( * ),
where we used the fact that erf(b) ≤ 1 for any b ≥ 0, 2 -S √ S ≥ 0, C 1 = 14 6 ln(2), C 2 = 36K ln(2) and

K |S| = d ln 2 K|S| + 2 = d ln (16|S|C p,q + 4). Let us choose the scale S such that 2 -S √ m ≤ 1, i.e. ln(m) 2 ln(2) ≤ S.
In this case, by defining

C 3 = 7 √ 6 1 + √ π ln 3 2 (2) 
, we have

( * ) = 1 + C 3 d ln (16|S|C p,q + 4) + C 1 + C 2 √ m .
Combining this result with [START_REF] Rosasco | A regularization approach to nonlinear variable selection[END_REF], we obtain

Λ m ω 1:m : Λ -Λ m F ≥ C 3 d ln (16|S|C p,q + 4) √ m + C 1 + 1 √ m + C 2 + 36K m + 24 √ 6 √ m √ t + L m t 2 ≤ 2e -t .
By redefining C 1 and C 2 as C 1 = 14 6 ln(2) + 1, C 2 = 36K[ln(2) + 1] and taking into account the σ p,q normalization, the claimed result follows.

The proof of the consequence is as follows. Let r ∈ [1, ∞) be fixed. Then

∂ p,q k -∂ p,q k L r (S×S) = = S S ∂ p,q k(x, y) -∂ p,q k(x, y) r dxdy 1 r ≤ S S ∂ p,q k -∂ p,q k r L ∞ (S×S) dxdy 1 r = ∂ p,q k -∂ p,q k r L ∞ (S×S) vol 2 (S) 1 r = ∂ p,q k -∂ p,q k L ∞ (S×S) vol 2 r (S).
Using the fact (which follows from [10, Corollary 2.55])

that vol(S)

≤ π d/2 |S| d 2 d Γ( d 2 +1
) , we obtain

∂ p,q k -∂ p,q k L r (S×S) ≤ ≤ ∂ p,q k -∂ p,q k L ∞ (S×S) π d/2 |S| d 2 d Γ d 2 + 1 2 r
.

Hence the main theorem implies the claimed L r (S × S) bound.

The result on the Bernstein condition for the Gaussian kernel can be obtained as follows. Recall that the goal is to check (15) and we apply the expression for A r,n (Λ) given in [START_REF] Oliva | Fast function to function regression[END_REF].

• For r = 1:

A 1,n (Λ) = R |ω| n dΛ(ω) = (n -1)!! 1 if n is even 2 π if n is odd ≤ (n -1)!! ≤ (n -1)! ≤ n! 2 ,
where the last inequality is equivalent to 2 ≤ n. Hence, ( 15) is satisfied with K = 1. • For r = 2: In this case nr is even and

A 2,n (Λ) = (2n-1)!! 3 n 2 
by [START_REF] Oliva | Fast function to function regression[END_REF]. For [START_REF] Lopez-Paz | Towards a learning theory of cause-effect inference[END_REF], it is enough (K n-2 ≤ K n ) that for some K ≥ 1 and for n = 2, 3, . . .

A 2,n (Λ) ≤ n! 2 K n ⇔ (2n -1)!! 2 n √ π Γ(n+ 1 2 ) ≤ n! Γ(n+1) 1 2 √ 3K n (a) ⇐ 2 n √ π ≤ 1 2 √ 3K n ⇔ 2 √ π ≤ √ 3K 2 n . (23) 
In (a) we used that Γ n + 1 2 ≤ Γ(n + 1) for n ≥ 2. ( 23) holds e.g. with K = 2 since 1 < 2 √ π < √ 3.

• For r = 3: Let us restrict n to even numbers (n = 2 , ∈ N + ) in [START_REF] Lopez-Paz | Towards a learning theory of cause-effect inference[END_REF]. By [START_REF] Oliva | Fast function to function regression[END_REF], A 3,n (Λ) = (3n-1)!!

(5!!) Since ln(l.h.s.) is asymptotically larger than ln(r.h.s.), [START_REF] Lopez-Paz | Towards a learning theory of cause-effect inference[END_REF] can not hold. • For r = 4: nr is even, A 4,n (Λ) = (4n-1)!! 2n -3 2

2.

• • • n + 3 2

n-1.

≥(n-1) n-1 × × Γ n + 3 2 ≤ n! Γ(n+1) K n-2 K -1 K n-1
.

Since Γ n + 3 2 > Γ(n + 1) for all n ∈ N + and f (n) = n n grows faster than g(n) = K n for any fixed K, [START_REF] Lopez-Paz | Towards a learning theory of cause-effect inference[END_REF] can not be satisfied for all n ≥ 2. on the positive real line at z min ≈ 1.46163, it is strictly monotonically decreasing on (0, z min ) and strictly monotonically increasing on (z min , ∞). 
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2 , 3 ,

 23 . . .). Consequently, one can choose N 0 = 1 [35, remark after Definition 8], and H 0 = ln(N 0 + 1) = ln(2).

2 K 2 - 2 , 2 as

 2222 ∀ ∈ N + should also hold. By the Stirling's formula u! → ∞. Taking ln(•) yields ln(l.h.s.) = ln 8 15 + ln 2π(3 -1)+ (3 -1) [ln(3 -1) -1] + ln 1/ √ π ∼ (3 -1) ln(3 -1), ln(r.h.s.) = ln 2π(2 ) -ln(2) + 2 [ln(2 ) -1]∼ 2 ln(2 ).

[

  By using the Γ(z + 1) = zΓ(z) recursion, we obtain

The latter implies Γ(z 1 ) 26 )Let us choose z 1 = rn+1 2 + r 2 and z 2 = rn+1 2 + 2 2z 1 .-n = 2 ,

 12622212 ≤ Γ(z 2 ) for z min ≤ z 1 ≤ z 2 . (. z 1 ≤ z 2 since r ≤ 2 . With this choice (26) guarantees (a) with D r,n = 1 if If n s := 2 z min -2 ≤ n, then (d) holds. This means that (a) holds with D r,n = 1 if n s ≤ n. For the remaining n = 2, . . . , n s -1 values, (a) is fulfilled with equality using D r,n := (b): We applied the Γ(z + 1) = zΓ(z) property. -(c): It follows from r ≤ 2 . To sum up, we got that B r,n ≤ D r,n √ c r (n + 1), with D r,n = . . . , n s -1 .

  (•) denotes almost sure convergence. This bound is optimal w.r.t. m and |S m |, as it is known from the characteristic function literature[START_REF] Csörgö | On how long interval is the empirical characteristic function uniformly consistent[END_REF].

	• In terms of generalization, [19] showed that O(1/ √ n) generalization error can be attained using
	m = m n = O(n) RFFs, where n denotes the num-
	ber of training samples. This bound is somewhat
	pessimistic, leaving the usefulness of RFFs open. Recently [23] proved that O (1/ √ n) generalization
	performance is attainable in the context of kernel ridge regression, with m n = o(n) = O ( √ n log n)
	RFFs. This result settles RFFs in the least-squares
	setting with Tikhonov regularization.
	• [27] has investigated the computational-statistical
	trade-offs of RFFs in kernel principal component
	analysis (KPCA). Their result shows that depending
	on the eigenvalue decay behavior of the covariance
	operator associated to the kernel, m n = O(n 2/3 ) (polynomial decay) or m n = O ( √ n) (exponential
	decay) RFFs are sufficient to match the statistical
	performance of KPCA, where n denotes the number
	of samples. [33] proved a similar result showing that
	m n = O (

  +1 ≤ s, specifically for all 2 ≤ s since 1 2 ln(2) < 1. Hence, applying change of variables (2 -x = e -t , i.e.

		1 2 ln(2) , ∞ . Using this monotonicity, one gets
	h(s) ≤	s s-1 h(x)dx for any s such that 1 2 ln(2) ≤ s-1 ⇔
	1		
	2 ln(2) x = t ln(2) ) we arrive at
	S	2 -s √	s = h(1)
	s=1			1
				2

k(•, x) denotes the function y ∈ X → k(y, x) ∈ R while keeping x ∈ X fixed.

As a recognition of its influence, the work[START_REF] Rahimi | Random features for large-scale kernel machines[END_REF] won the 10-year test-of-time award at NIPS-2017.
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Supplement

In Section A we prove our remark on the validity of the Bernstein condition for higher-order derivatives in the case of kernels with faster spectral decay. The result extends the example of Gaussian kernels detailed in the main part of the paper.

A BERNSTEIN CONDITION FOR HIGHER-ORDER DERIVATIVES

We prove that in the case of kernels with spectral density decaying as f Λ (ω) ∝ e -ω 2 ( ∈ N + ), the Bernstein condition (15) holds for r ≤ 2 -order derivatives. This example extends the case of Gaussian kernels where = 1 and r ≤ 2. Let ∈ N + and the spectral measure associated with kernel k be absolutely continuous w.r.t. the Lebesgue measure with density

for some c > 0. f Λ is positive and we determine c as:

where we used y = ω 2 , ω = y 

Consequently, one obtains

by using ( 24) with b = 1, a = r+1 2 and the value of c :

Next we assume that r ≤ 2 is fixed and apply induction to prove [START_REF] Lopez-Paz | Towards a learning theory of cause-effect inference[END_REF].

• For n = 2, by definition A r,2 = 1 (∀r ∈ N + ).

• The induction argument is as follows. By the inductive assumption it is sufficient to show the existence of K r ≥ 1 such that