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Abstract

Random Fourier features (RFF) represent one of the most popular and wide-spread techniques in
machine learning to scale up kernel algorithms. Despite the numerous successful applications of RFFs,
unfortunately, quite little is understood theoretically on their optimality and limitations of their perfor-
mance. To the best of our knowledge, the only existing areas where precise statistical-computational
trade-offs have been established are approximation of kernel values, kernel ridge regression, and kernel
principal component analysis. Our goal is to spark the investigation of optimality of RFF-based approx-
imations in tasks involving not only function values but derivatives, which naturally lead to optimization
problems with kernel derivatives. Particularly, in this paper, we focus on the approximation quality of
RFFs for kernel derivatives and prove that the existing finite-sample guarantees can be improved expo-
nentially in terms of the domain where they hold, using recent tools from unbounded empirical process
theory. Our result implies that the same approximation guarantee is achievable for kernel derivatives
using RFF as for kernel values.

1 INTRODUCTION

Kernel techniques [3, 30, 17] are among the most influential and widely-applied tools, with significant impact
on virtually all areas of machine learning and statistics. Their versatility stems from the function class
associated to a kernel called reproducing kernel Hilbert space (RKHS) [2] which shows tremendous success
in modelling complex relations.

The key property that makes kernel methods computationally feasible and the optimization over RKHS
tractable is the representer theorem [11, 25, 39]. Particularly, given samples {(xi, yi)}ni=1 ⊂ X×R, consider
the regularized empirical risk minimization problem specified by a kernel k : X × X → R, the associated
RKHS Hk ⊂ RX, a loss function V : R× R→ R≥0, and a penalty parameter λ > 0:

min
f∈Hk

J0(f) :=
1

n

n∑
i=1

V (yi, f(xi)) + λ ‖f‖2Hk
, (1)

where Hk is the Hilbert space defined by the following two properties:
1. k(·, x) ∈ Hk (∀x ∈ X),1 and

2. f(x) = 〈f, k(·, x)〉Hk
(∀x ∈ X,∀f ∈ Hk), which is called the reproducing property.

1k(·, x) denotes the function y ∈ X 7→ k(y, x) ∈ R while keeping x ∈ X fixed.

1



Examples falling under (1) include e.g., kernel ridge regression with the squared loss or soft-classification
with the hinge loss:

V (f(xi), yi) = (f(xi)− yi)2, V (f(xi), yi) = max(1− yif(xi), 0).

(1) is an optimization problem over a function class (Hk) which could generally be intractable. Thanks
to the specific structure of RKHS, however, the representer theorem enables one to parameterize the optimal
solution of (1) by finitely many coefficients:

f(·) =

n∑
j=1

cjk(·, xj), cj ∈ R. (2)

As a result, (1) becomes a finite-dimensional optimization problem determined by the pairwise similarities
of the samples [k(xi, xj)]:

min
c∈Rn

J̃0(c) :=
1

n

n∑
i=1

V

yi, n∑
j=1

cjk(xi, xj)

+ λ

n∑
i=1

n∑
j=1

cicjk(xi, xj), (3)

where the second term follows from the reproducing property of kernels.
However, in many learning problems such as nonlinear variable selection [20, 21], (multi-task) gradient

learning [38], semi-supervised or Hermite learning with gradient information [41, 26], or density estima-
tion with infinite-dimensional exponential families [28], apparently considering the derivative information

(∂pf(xi) := ∂p1+...+pdf(xi)

∂
p1
x1
···∂pdxd

, X := Rd) other than just the function values (f(xi)) turns out to be beneficial.

In these tasks containing derivatives, (1) is generalized to the form

min
f∈Hk

J(f) :=
1

n

n∑
i=1

V
(
yi, {∂pf(xi)}p∈Ii

)
+ λ ‖f‖2Hk

. (4)

The solution of this minimization task —similar to (1)—enjoys a finite-dimensional parameterization [41]:

f(·) =

n∑
j=1

∑
p∈Ij

cj,p∂
p,0k(·,xj), (cj,p ∈ R),

where ∂p,qk(x,y) := ∂
∑d
i=1(pi+qi)k(x,y)

∂
p1
x1
···∂pdxd∂

q1
y1
···∂qdyd

. Hence, the optimization in (4) can be reduced to

min
c
J̃ (c) =

1

n

n∑
i=1

V

yi,{ n∑
j=1

∑
p∈Ij

cj,p∂
p,0k(xi,xj)

}
p∈Ii

+ λ

n∑
i=1

∑
p∈Ii

n∑
j=1

∑
q∈Ij

ci,pcj,p∂
p,qk(xi,xj), (5)

where c = (ci,p)i∈{1,...,n},p∈Ii ∈ R
∑n
i=1 |Ii|, |Ii| denotes the cardinality of Ii, and we used the derivative-

reproducing property of kernels

∂pf(x) =
〈
f, ∂p,0k(·,x)

〉
Hk

.

Compared to (3) where the kernel values determine the objective, (5) is determined by the kernel derivatives
∂p,qk(xi,xj).

While kernel techniques are extremely powerful due to their modelling capabilities, this flexibility comes
with a price, often they are computationally expensive. In order to mitigate this computational bottleneck,
several approaches have been proposed in the literature such as the Nyström and sub-sampling methods
[36, 9, 22], sketching [1, 37], or random Fourier features (RFF) [18, 19] and their approximate memory-
reduced variants and structured extensions [12, 7, 4].
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The focus of the current submission is probably the conceptually simplest and most influential approx-
imation scheme among these approaches, RFF.2 The RFF technique implements a rather elementary yet
powerful approach: it constructs a random, low-dimensional, explicit Fourier feature map (ϕ) for a continu-
ous, bounded, shift-invariant kernel k : Rd × Rd → R relying on the Bochner’s theorem:

k̂(x,y) = 〈ϕ(x), ϕ(y)〉 , ϕ : Rd → Rm.

The advantage of such a feature map becomes apparent after applying the parametrization:

f̂(x) = 〈w, ϕ(x)〉 , w ∈ Rm. (6)

This parameterization can be considered as an approximate version of the reproducing property

f(x) = 〈f, k(·,x)〉Hk
,

f ∈ Hk is changed to w ∈ Rm and k(·,x) ∈ Hk to ϕ(x) ∈ Rm. (6) allows one to leverage fast solvers
for kernel machines in the primal [(1) or (4)]. This idea has been applied in a wide range of areas such as
causal discovery [15], fast function-to-function regression [16], independence testing [40], convolution neural
networks [6], prediction and filtering in dynamical systems [8], or bandit optimization [13].

Despite the tremendous practical success of RFF-s, its theoretical understanding is quite limited, with
only a few optimal guarantees [29, 23, 27, 14, 32].

• Concerning the approximation quality of kernel values, the uniform finite-sample bounds of [18, 31] show
that ∥∥k − k̂∥∥

L∞(S×S)
:= sup

x,y∈S

∣∣k(x,y)− k̂(x,y)
∣∣ = Op

(
|S|
√
m−1 logm

)
,

where S ⊂ Rd is a compact set, |S| is its diameter, m is the number of RFFs, Op(·) means convergence in
probability. [29] recently proved an exponentially tighter finite-sample bound in terms of |S| implying∥∥k − k̂∥∥

L∞(S×S)
= Oa.s.

(√
log |S|/

√
m
)
, (7)

where Oa.s.(·) denotes almost sure convergence. This bound is optimal w.r.t. m and |S|, as it is known
from the characteristic function literature [5].

• In terms of generalization, [19] showed that O(1/
√
n) generalization error can be attained using m = O(n)

RFFs, where n denotes the number of training samples. This bound is somewhat pessimistic, leaving the
usefulness of RFFs open. Recently [23] proved that O (1/

√
n) generalization performance is attainable in

the context of kernel ridge regression, with m = o(n) = O (
√
n log n) RFFs. This result settles RFFs in

the simplest least-squares setting with Tikhonov regularization. Recently, the result has been sharpened
[14] to m = O

(√
n log dλK

)
with no loss in excess risk, where the effective degrees of freedom dλK can often

be significantly smaller than the number of samples.

• [27] has investigated the computational-statistical trade-offs of RFFs in kernel principal component analysis
(KPCA). Their result show that depending on the eigenvalue decay behavior of the covariance operator
associated to the kernel, m = O(n2/3) (polynomial decay) or m = O(

√
n) (exponential decay) RFFs are

sufficient to match the statistical performance of KPCA, where n again denotes the number of samples. [32]
proved a similar result showing that m = O (

√
n log n) number of RFFs is sufficient for optimal statistical

performance provided that the spectrum of the covariance operator follows an exponential decay, and
presented a streaming algorithm for KPCA relying on the classical Oja’s updates, achieving the same
statistical performance.

In contrast to the previous results, the focus of our paper is the investigation of problems involving kernel
derivatives [see (4) and (5)]. The idea applied in practice is to formally differentiate (6) giving

∂̂pf(x) := ∂pf̂(x) = 〈w, ∂pϕ(x)〉 , (8)

2As a recognition of its influence, the work [18] won the 10-year test-of-time award at NIPS-2017.
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which is then used in the primal [(4)], and optimized for w. From the dual point of view [(5)], this means
that implicitly the kernel derivatives are approximated via RFFs. The problem we raise in this paper is how
accurate these kernel derivative approximations are.

Our contribution is to show that the same dependency in terms of m and |S| can be attained for kernel
derivatives as for kernel values depicted in (7). To the best of our knowledge, the tightest available guarantee
on kernel derivatives [29] is ∥∥∂p,qk − ∂̂p,qk∥∥

L∞(S×S)
= Oa.s.

(
|S|
√
m−1 logm

)
.

In this paper, we prove finite sample bounds on the approximation quality of kernel derivatives, which
specifically imply that ∥∥∂p,qk − ∂̂p,qk∥∥

L∞(S×S)
= Oa.s.

(√
log |S|/

√
m
)
. (9)

The possibility of such an exponentially improved dependence in terms of |S| is rather surprising, as in case
of kernel derivatives the underlying function classes are no longer uniformly bounded. We circumvent this
challenge by applying recent tools from unbounded empirical process theory.

Our paper is structured as follows. We formulate our problem in Section 2. The main result on the
approximation quality of kernel derivatives is presented in Section 3. Proofs are provided in Section 4.

2 PROBLEM FORMULATION

In this section we formulate our problem after introducing a few notations.
Notations: N := {0, 1, 2, . . .}, N+ := N\{0} and R denotes the set of natural numbers, positive integers

and real numbers respectively. For n ∈ N, n! denotes its factorial. Γ(t) =
∫∞

0
xt−1e−x dx is the Gamma

function (t > 0); Γ(n+ 1) = n! (n ∈ N). Let n!! denote the double factorial of n ∈ N, that is, the product of
all numbers from n to 1 that have the same parity as n; specifically 0!! = 1. If n is a positive odd integer, then

n!! =
√

2n+1

π Γ
(
n
2 + 1

)
. For a ∈ N, ca := cos(πa2 +·) is the ath derivative of the cos function. For multi-indices

p,q ∈ Nd |p| =
∑d
j=1 pj , vp =

∏d
j=1 v

pj
j , and we use ∂ph(x) := ∂|p|h(x)

∂
p1
x1
···∂pdxd

, ∂p,qg(x,y) := ∂|p|+|q|g(x,y)

∂
p1
x1
···∂pdxd∂

q1
y1
···∂qdyd

to

denote partial derivatives. 〈a,b〉 =
∑d
i=1 aibi is the inner product between a ∈ Rd and b ∈ Rd. aT is the

transpose of a ∈ Rd, ‖a‖2 =
√
〈a,a〉 is its Euclidean norm, [a1; . . . ; aM ] ∈ R

∑M
m=1 dm is the concatenation

of the am ∈ Rdm vectors. Let S ⊂ Rd be a Borel set. M1
+ (S) is the set of Borel probability measures on

S. Λm = ⊗mi=1Λ is the m-fold product measure where Λ ∈ M1
+ (S). Lr(S) is the Banach space of real-

valued, r-power Lebesgue integrable functions on S (1 ≤ r < ∞). Λf =
∫
S
f(ω)dΛ(ω), where Λ ∈ M1

+ (S)

and f ∈ L1 (S); specifically for the empirical measure, Λm = 1
m

∑m
i=1 δωi , Λmf := 1

m

∑m
i=1 f(ωi) where

ω1:m = (ωi)
m
i=1

i.i.d.∼ Λ and δω is the Dirac measure supported on ω ∈ S. S∆ = {s1 − s2 : s1, s2 ∈ S}.
For positive sequences (an)n∈N, (bn)n∈N, an = O(bn) (resp. an = o(bn)) means that

(
an
bn

)
n∈N

is bounded

(resp. limn→∞
an
bn

= 0). Positive sequences (an)n∈N, (bn)n∈N are said to be asymptotically equivalent, shortly

an ∼ bn, if limn→∞
an
bn

= 1. Xn = Op(rn) (resp. Oa.s.(rn)) denotes that Xn
rn

is bounded in probability (resp.

almost surely). The diameter of a compact set A ⊂ Rd is defined as |A| := supx,y∈A ‖x− y‖2 < ∞. The
natural logarithm is denoted by ln.

We continue with the formulation of our task. Let k : Rd × Rd → R be a continuous, bounded, shift-
invariant kernel. By the Bochner theorem [24], it is the Fourier transform of a finite, non-negative Borel
measure Λ:

k(x,y) = k̃(x− y) =

∫
Rd
e
√
−1ωT (x−y)dΛ(ω)

(a)
=

∫
Rd

cos
(
ωT (x− y)

)
dΛ(ω) (10)

(b)
=

∫
Rd

[
cos
(
ωTx

)
cos
(
ωTy

)
+ sin

(
ωTx

)
sin
(
ωTy

)]
dΛ(ω) =

∫
Rd
〈φω(x), φω(y)〉R2 dΛ(ω), (11)
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where

φω(x) = [cos
(
ωTx

)
; sin

(
ωTx

)
].

(a) follows from the real-valued property of k, and (b) is a consequence of the trigonometric identity cos(α−
β) = cos(α) cos(β) + sin(α) sin(β). Without loss of generality, it can be assumed that Λ ∈ M1

+

(
Rd
)

since

k̃(0) = Λ
(
Rd
)

and the normalization k(x,y)

k̃(0)
yields

k(x,y)

k̃(0)
=

∫
Rd

cos
(
ωT (x− y)

)
d

Λ(ω)

Λ (Rd)︸ ︷︷ ︸
=:P(ω)∈M1

+(Rd)

.

Let p,q ∈ Nd. By differentiating3 (11) one gets

∂p,qk(x,y) =

∫
Rd
〈∂pφω(x), ∂qφω(y)〉R2 dΛ(ω). (12)

The resulting expectation can be approximated by the Monte-Carlo technique using ω1:m = (ωj)
m
j=1

i.i.d.∼ Λ
as

∂̂p,qk(x,y) =

∫
Rd
〈∂pφω(x), ∂qφω(y)〉R2 dΛm(ω) =

1

m

m∑
j=1

〈
∂pφωj (x), ∂qφωj (y)

〉
R2

= 〈ϕp(x), ϕq(y)〉R2m , (13)

where Λm = 1
m

∑m
j=1 δωj ,

ϕp(x) =
1√
m

(
∂pφωj (x)

)m
j=1

= ∂pϕ0(x)︸ ︷︷ ︸
∈R2m

=
1√
m

(
ωp
j

[
c|p|

(
ωTj x

)
; c3+|p|

(
ωTj x

)])m
j=1

. (14)

Specifically, if p = q = 0 then (13) boils down to the celebrated RFF technique [18]:

k̂(x,y) = 〈ϕ0(x), ϕ0(y)〉R2m , ϕ0(x) =
1√
m

(
cos
(
ωTj x

)
; sin

(
ωTj x

))m
j=1

.

Our goal is to prove that similarly to p = q = 0 [(7)], fast approximation of kernel derivatives [(9)] is
attainable. Alternatively, we establish that the derivative (see ϕp and (13)-(14)) of the RFF feature map
(ϕ0) is as efficient for kernel derivative approximation as ϕ0 for kernel value approximation.

3 MAIN RESULT

In this section we present our main result on the uniform approximation quality of kernel derivatives using
RFFs. Its proof is available in Section 4.

Theorem (Uniform guarantee on kernel derivative approximation). Suppose that k : Rd×Rd → R is a con-

tinuous, bounded and shift-invariant kernel. For p,q ∈ Nd, assume Cp,q =
√∫

Rd |ωp+q|2 ‖ω‖22 dΛ(ω)/σp,q <

∞ and for some constant K ≥ 1, the following Bernstein condition holds:∫
Rd

|ωp+q|n

(σp,q)
n dΛ(ω) ≤ n!

2
Kn−2, n = 2, 3, . . . , (15)

3By the dominated convergence theorem, the differentiation is valid if
∫
Rd |ω

p+q| dΛ(ω) <∞.
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where σp,q =
√∫

Rd |ωp+q|2 dΛ(ω). Let Lm =
√

6K
2
√
m

, C1 = 14
√

6 ln 2 + 1, C2 = 36K[ln 2 + 1] and C3 =

7
√

6
(

1 +
√
π

ln
3
2 2

)
. Then for any t > 0 and compact set S ⊂ Rd

Λm

({
ω1:m :

∥∥∂p,qk − ∂̂p,qk∥∥
L∞(S×S)

≥ σp,q

(
C3

√
d ln (16|S|Cp,q + 4)

√
m

+
C1√
m

+
C2

m
+ +

24
√

6√
m

[√
t+

Lmt

2

])})
with probablity at most 2e−t.

Remarks.
• Growth of |Sm|: The theorem proves the same dependence [(9)] on m and |S| as is known for kernel

values (p = q = 0). The result implies that∥∥∂p,qk − ∂̂p,qk∥∥
L∞(Sm×Sm)

a.s.−−→ 0

if |Sm| = eo(m).

• Requirements for p = q = 0: In this case σ0,0 = 1,

–
∫
Rd
|ω0+0|n
(σ0,0)n dΛ(ω) = 1, thus (15) holds (K = 1).

– The only requirement is the finiteness of C0,0 =
∫
Rd ‖ω‖

2
2 dΛ(ω), which is identical to that imposed in

[29, Theorem 1] for kernel values.

• L∞(S × S)-based Lr(S × S) guarantee: From the theorem above one can also get (see Section 4) the
following Lr(S× S) guarantee, where r ∈ [1,∞).

Under the same conditions and notations as in the theorem, for any t > 0

Λm

ω1:m :
∥∥∂p,qk − ∂̂p,qk∥∥

Lr(S×S)
≥ σp,q

[
πd/2|S|d

2dΓ
(
d
2 + 1

)] 2
r
(
C3

√
2d ln (16|S|Cp,q + 4)

√
m

+

+
C1√
m

+
C2

m
+

24
√

6√
m

[√
t+

Lmt

2

])})
≤ 2e−t.

This shows that ∥∥∂p,qk − ∂̂p,qk∥∥
Lr(S×S)

= Oa.s.

(
m−

1
2 |S| 2dr

√
log |S|

)
.

Consequently, if |Sm| → ∞ as m→∞ then ∂̂p,qk is a consistent estimator of ∂p,qk in Lr(Sm× Sm)-norm

provided that m−
1
2 |Sm|

2d
r

√
log |Sm|

m→∞−−−−→ 0.

• Bernstein condition with [p; q] 6= 0: Next we illustrate how the Bernstein condition [(15)] translates
to the efficient estimation of ‘not too large’-order kernel derivatives in case of the Gaussian kernel. For
simplicity let us consider the Gaussian kernel in one dimension (d = 1); in this case Λ = N

(
0, σ2

)
is a

normal distribution with mean zero and variance σ2. Let r = p+ q ∈ N+ and denote the l.h.s. of (15) as

Ar,n(Λ) =

∫
R |ω|

rndΛ(ω)[√∫
R |ω|

2r
dΛ(ω)

]n .
By the analytical formula for the absolute moments of normal random variables

Ar,n(Λ) =

σnr(nr − 1)!!

{
1 if nr is even√

2
π if nr is odd

[σ2r(2r − 1)!!]
n
2

=

(nr − 1)!!

{
1 if nr is even√

2
π if nr is odd

[(2r − 1)!!]
n
2

. (16)
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Since Ar,n(Λ) does not depend on σ, one can assume that σ =
√∫

R |ω|2dΛ(ω) = 1 and Λ = N (0, 1).

Exploiting the analytical expression obtained for Ar,n(Λ) one can show (Section 4) that for
– r = 1: Since A1,n(Λ) ≤ n!

2 , (15) holds with K = 1.
– r = 2: K = 2 is a suitable choice in (15).
– r = 3 and r = 4: Asymptotic argument shows that (15) can not hold.
It is an interesting open question whether one can relax (15) while maintaining similar rates, and what
are the trade-offs.

• Difficulty: The fundamental difficulty one has to tackle to arrive at the stated theorem is as follows.

By differentiating (10) one gets

∂p,qk(x,y)=

∫
Rd

ωp(−ω)qc|p+q|
(
ωT (x− y)

)
dΛ(ω).

By defining

gz(ω) = ωp(−ω)qc|p+q|
(
ωT z

)
, (17)

the error we would like to control can be rewritten as the supremum of the empirical process

sup
x,y∈S

∣∣∂p,qk(x,y)− ∂̂p,qk(x,y)
∣∣= sup

z∈S∆

|(Λ− Λm)gz|,

where G := {gz : z ∈ S∆}. For p = q = 0 (i.e., the classical RFF-based kernel approximation)

gz(ω) = cos
(
ωT z

)
(z ∈ S∆)

which is a uniformly bounded family of functions:

sup
z∈S∆

‖gz‖L∞(Rd) ≤ 1.

This uniform boundedness is the classical assumption of empirical process theory, and allowed one [29] to
get the optimal rates. For p,q ∈ Nd\{0}, however, the functions gz are unbounded and so G is no longer
uniformly bounded in L∞

(
Rd
)
. Therefore, one has to control unbounded empirical processes for which

only few tools are available.

The key idea of our paper is to apply a recent technique which bounds the supremum as a weighted sum
of bracketing entropies of G at multiple scales. By estimating these bracketing entropies and optimizing
the scale the result will follow. This is what we detail in the next section.

4 PROOFS

We provide the proofs of the results (main theorem and its consequence, remark on the Bernstein condition)
presented in Section 3. We start by introducing a few additional notations specific to this section.

Notations: The volume of A ⊆ Rd is defined as vol(A) =
∫
A

1 dx. γ(a, b) =
∫ b

0
e−tta−1dt is the incom-

plete Gamma function (a > 0, b ≥ 0) that satisfies γ(a+ 1, b) = aγ(a, b)− bae−b and γ
(

1
2 , b
)

=
√
πerf

(√
b
)

,

where erf(b) = 2√
π

∫ b
0
e−t

2

dt is the error function (b ≥ 0). Let (F , ρ) be a metric space. The r-covering number

of F is defined as the size of the smallest r-net, i.e., N(r,F , ρ) = inf
{
` ≥ 1 : ∃ (fj)

`
j=1 s.t. F ⊆ ∪`j=1Bρ(fj , r)

}
,

where Bρ(s, r) = {f ∈ F : ρ(f, s) ≤ r} is the closed ball with center s ∈ F and radius r. For a set of real-
valued functions F and r > 0, the cardinality of the minimal r-bracketing of F is defined as N[ ](r,F , ρ) =
inf{n ≥ 1 : ∃ {(fj,L, fj,U )}nj=1, fj,L, fj,U ∈ F (∀j) such that ρ (fjL , fj,U ) ≤ r and ∀f ∈ F ∃j fj,L ≤ f ≤ fj,U}.

The proof of the main theorem is structured as follows.
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1. First, we rescale and reformulate the approximation error as the suprema of unbounded empirical
processes, for which bounds in terms of bracketing entropies at multiple scales can be obtained.

2. Then, we bound the bracketing entropies via Lipschitz continuity.

3. Finally, the scale is optimized.

Step 1. It follows from (17) that,

‖gz‖ := ‖gz‖L2(Rd,Λ) =
√

Λg2
z ≤

√∫
Rd
|ωp+q|2 dΛ(ω)︸ ︷︷ ︸

=:σp,q

.

Define fz(ω) := gz(ω)
σp,q

so that

‖fz‖ ≤ 1 ∀z ∈ S∆ ⇒ sup
f∈F
‖f‖ ≤ 1, (18)

where F := {fz : z ∈ S∆}. The target quantity can be rewritten in supremum of empirical process form as

sup
x,y∈S

∣∣∂p,qk(x,y)− ∂̂p,qk(x,y)
∣∣ = sup

z∈S∆

|Λgz − Λmgz| = σp,q sup
f∈F
|(Λ− Λm)f | =: σp,q ‖Λ− Λm‖F .

By the Bernstein condition [(15)] the following uniform bound holds:

sup
fz:z∈S∆

Λ|fz|n ≤
∫
Rd

|ωp+q|n

(σp,q)
n dΛ(ω) ≤ n!

2
Kn−2 (n = 2, 3, . . .). (19)

The uniform L2(Λ) boundedness of F [(18)] with its Bernstein property [(19)] imply by [34, Theorem 8] that
for all t > 0 and for all scale S ∈ N

Λm

({
ω1:m : sup

f∈F

∣∣√m(Λ− Λm)f
∣∣ ≥ min

S
ES +

36K√
m

+ 24
√

6

[√
t+

Lmt

2

]})
≤ 2e−t, (20)

where

ES := 2−S
√
m+ 14

S∑
s=0

2−s
√

6Hs +
36KH0√

m
, Lm :=

√
6K

2
√
m
, Hs := ln(Ns + 1),

Ns := N[ ](2
−s,F , ‖·‖), H0 = ln(N0 + 1),

and N0 is the cardinality of the minimal generalized bracketing set of F . Formally, N0 = N0(K) := inf{n ≥
1 : ∃fj,L, fj,U ∈ F (j = 1, . . . , n), Λ |fj,L − fj,U |n ≤ n!

2 (2K)n−2 (n = 2, 3, . . .), and for ∀f ∈ F , ∃j ∈
{1, . . . , n} such that fj,L ≤ f ≤ fj,U}.

Step 2. We continue the proof by bounding the entropies H0 and Hs (s ≥ 1) in (20). Using (15) for the
envelope function F := supf∈F |f |, we get

Λ (Fn) = Λ

([
sup
f∈F
|f |
]n)

= Λ

(
sup
f∈F
|f |n

)
≤
∫
Rd

|ωp+q|n

(σp,q)
n dΛ(ω) ≤ n!

2
Kn−2, n = 2, 3, . . .

Hence F also satisfies the weaker Λ (Fn) ≤ n!
2 (2K)n−2 (n = 2, 3, . . .) Bernstein condition. Consequently, one

can choose N0 = 1 [34, remark after Definition 8], and H0 = ln(N0 + 1) = ln 2.
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Next we bound Hs (s ≥ 1). The F function class is Lipschitz continuous in the parameters (fz1 , fz2 ∈ F):

|fz1
(ω)− fz2

(ω)| =
∣∣ωp(−ω)qc|p+q|

(
ωT z1

)
− ωp(−ω)qc|p+q|

(
ωT z2

)∣∣
σp,q

=
|ωp+q|

∣∣c|p+q|
(
ωT z1

)
− c|p+q|

(
ωT z2

)∣∣
σp,q

(a)

≤ |ω
p+q|
σp,q

∣∣ωT (z1 − z2)
∣∣

(b)

≤ |ω
p+q|
σp,q

‖ω‖2︸ ︷︷ ︸
=:G(ω)

‖z1 − z2‖2 ,

where we used the Lipschitz property of u 7→ c|p+q|(u) (with Lipschitz constant 1) in (a) and the Cauchy-
Bunyakovskii-Schwarz inequality in (b). Thus, by [35, Theorem 2.7.11, page 164] for any δ > 0,

N[ ](δ,F , ‖·‖) ≤ N
(

δ

2 ‖G‖
, S∆, ‖·‖2

)
, (21)

where

‖G‖ =

√∫
Rd
G2(ω)dΛ(ω) =

√∫
Rd

|ωp+q|2

σ2
p,q

‖ω‖22 dΛ(ω) =: Cp,q.

From Lemma 2.5 in [33] it follows that

N (r,M, ‖·‖2) ≤
(

2|M |
r

+ 1

)d
, ∀r > 0

for any compact M ⊂ Rd. Choosing M = S∆, δ = 2−s and using that |S∆| ≤ 2|S|, one can bound the l.h.s.
in (21) as

Ns = N[ ]

(
2−s,F , ‖·‖

)
≤ N

(
1

2s+1Cp,q
, S∆, ‖·‖2

)
≤
(

2s+3|S|Cp,q + 1︸ ︷︷ ︸
≤2sK̃|S|

)d
,

where K̃|S| = 8|S|Cp,q + 1. Thus for any s ≥ 1,

Hs = ln(Ns + 1) ≤ d ln
(

2sK̃|S| + 1︸ ︷︷ ︸
≤2s(K̃|S|+1)

)
≤ d

[
s ln 2 + ln

(
K̃|S| + 1

)]
≤ s d

[
ln 2 + ln

(
K̃|S| + 1

)]
︸ ︷︷ ︸

d ln(2K̃|S|+2)=:K|S|

.

Hence,

ES ≤ 2−S
√
m+ 14

√
6 ln 2 + 14

S∑
s=1

2−s
√

6sK|S|︸ ︷︷ ︸
14
√

6K|S|
∑S
s=1 2−s

√
s

+
36K ln 2√

m
. (22)

Step 3. By (22), to control ES as a function of the scale S, we study the behaviour of the h(t) = 2−t
√
t

function. It is easy to verify that h is monotonically decreasing on
[

1
2 ln 2 ,∞

)
as its derivative

h′(t) =
1
2 t
− 1

2 2t −
√
t2t ln 2

22t
≤ 0

9



on
[

1
2 ln 2 ,∞

)
. Using this monotonicity, one gets h(s) ≤

∫ s
s−1

h(x)dx for any s such that 1
2 ln 2 ≤ s − 1 ⇔

1
2 ln 2 + 1 ≤ s, specifically for all 2 ≤ s since 1

2 ln 2 < 1. Hence, applying change of variables (2−x = e−t, i.e.
x = t

ln 2 ) we arrive at

S∑
s=1

2−s
√
s = h(1)︸︷︷︸

1
2

+
∑S
s=2 h(s)︸︷︷︸

≤
∫ s
s−1

h(x)dx

≤ 1
2 +

∫ S
1
h(x)dx = 1

2 + 1

ln
3
2 (2)

∫ S ln 2

ln 2
e−t
√
tdt

≤ 1
2 + 1

ln
3
2 (2)

∫ S ln 2

0
e−t
√
tdt = 1

2 + 1

ln
3
2 (2)

[√
π

2 erf(
√
S ln 2)− 2−S

√
S ln 2

]
.

Plugging this estimate to (22) results in

ES ≤ 2−S
√
m+ 14

√
6 ln 2 +

36K ln 2√
m

+ 14
√

6K|S|

(
1

2
+

1

ln
3
2 (2)

[√
π

2
erf
(√

S ln 2
)
− 2−S

√
S ln 2

])

≤ 2−S
√
m+ 14

√
6
√
K|S| ×

(
1

2
+

1

ln
3
2 (2)

√
π

2

)
+ C1 +

C2√
m

≤ 2−S
√
m+ 14

√
6
√
d ln (16|S|Cp,q + 4)

(
1

2
+

1

ln
3
2 (2)

√
π

2

)
+ C1 +

C2√
m

=: (∗),

where we used the fact that erf(b) ≤ 1 for any b ≥ 0, 2−S
√
S ≥ 0, C1 = 14

√
6 ln 2, C2 = 36K ln 2 and

K|S| = d ln
(

2K̃|S| + 2
)

= d ln (16|S|Cp,q + 4). Let us choose the scale S such that 2−S
√
m ≤ 1, i.e.

lnm
2 ln 2 ≤ S. In this case, by defining C3 = 7

√
6

(
1 +

√
π

ln
3
2 (2)

)
, we have

(∗) = 1 + C3

√
d ln (16|S|Cp,q + 4) + C1 +

C2√
m
.

Combining this result with (20), we obtain

Λm

({
ω1:m : ‖Λ− Λm‖F ≥

C3

√
d ln (16|S|Cp,q + 4)

√
m

+
C1 + 1√

m
+
C2 + 36K

m
+

24
√

6√
m

[√
t+

Lmt

2

]})
≤ 2e−t.

By redefining C1 and C2 as C1 = 14
√

6 ln 2 + 1, C2 = 36K[ln 2 + 1] and taking into account the σp,q
normalization, the claimed result follows.

The proof of the consequence is as follows. Let r ∈ [1,∞) be fixed. Then

∥∥∂p,qk − ∂̂p,qk∥∥
Lr(S×S)

=

(∫
S

∫
S

∣∣∣∂p,qk(x,y)− ∂̂p,qk(x,y)
∣∣∣r dxdy

) 1
r

≤
(∫

S

∫
S

∥∥∂p,qk − ∂̂p,qk∥∥r
L∞(S×S)

dxdy

) 1
r

=
[∥∥∂p,qk − ∂̂p,qk∥∥r

L∞(S×S)
vol2(S)

] 1
r

=
∥∥∂p,qk − ∂̂p,qk∥∥

L∞(S×S)
vol

2
r (S).

Using the fact (which follows from [10, Corollary 2.55]) that vol(S) ≤ πd/2|S|d

2dΓ( d2 +1)
one arrives at

∥∥∂p,qk − ∂̂p,qk∥∥
Lr(S×S)

≤
∥∥∂p,qk − ∂̂p,qk∥∥

L∞(S×S)

[
πd/2|S|d

2dΓ
(
d
2 + 1

)] 2
r

.

Hence the main theorem implies the claimed Lr(S× S) bound.
The Bernstein condition-related results can be obtained as follows. Recall that the goal is to check

(15) and we apply the expression for Ar,n(Λ) given in (16).
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• For r = 1:

A1,n(Λ) =

∫
R
|ω|ndΛ(ω) = (n− 1)!!

{
1 if n is even√

2
π if n is odd

≤ (n− 1)!! ≤ (n− 1)! ≤ n!

2
,

where the last inequality is equivalent to 2 ≤ n. Hence, (15) is satisfied with K = 1.

• For r = 2: In this case nr is even and A2,n(Λ) = (2n−1)!!

3
n
2

by (16). For (15), it is enough (Kn−2 ≤ Kn)

that for some K ≥ 1 and for n = 2, 3, . . .

A2,n(Λ) ≤ n!

2
Kn ⇔ (2n− 1)!!︸ ︷︷ ︸

2n√
π

Γ(n+ 1
2 )

≤ n!︸︷︷︸
Γ(n+1)

1

2

(√
3K
)n (a)⇐ 2n√

π
≤ 1

2

(√
3K
)n
⇔ 2√

π
≤

(√
3K

2

)n
. (23)

In (a) we used that Γ
(
n+ 1

2

)
≤ Γ(n+ 1) for n ≥ 2. (23) holds e.g. with K = 2 since 1 < 2√

π
<
√

3.

• For r = 3: Let us restrict n to even numbers (n = 2`, ` ∈ N+) in (15). In this case by by (16)

A3,n(Λ) = (3n−1)!!

(5!!)
n
2

, and (15) can be written as

(6`− 1)!!

15`︸ ︷︷ ︸
23`
√
π

Γ(3`+ 1
2 ) 1

15`

?
≤ (2`)!

2
K2`−2, ∀` ∈ N+.

Using the bound, Γ
(
3`+ 1

2

)
≥ Γ (3`) = (3`− 1)!, we have(

8

15

)`
1√
π

(3`− 1)!
?
≤ (2`)!

2
K2`−2, ∀` ∈ N+

should also hold. By the Stirling’s formula u! ∼
√

2πu
(
u
e

)u
, hence(

8

15

)`
1√
π

√
2π(3`− 1)

(
3`− 1

e

)3`−1
?
≤
√

2π(2`)

2

(
2`

e

)2`

as `→∞. Taking ln(·) however

ln(l.h.s.) = ` ln

(
8

15

)
+ ln

(
1/
√
π
)

+ ln
(√

2π(3`− 1)
)

+ (3`− 1) [ln(3`− 1)− 1] ∼ (3`− 1) ln(3`− 1),

ln(r.h.s.) = ln
(√

2π(2`)
)
− ln(2) + 2`[ln(2`)− 1] ∼ 2` ln(2`).

Since ln(l.h.s.) is asymptotically larger than ln(r.h.s.), (15) can not hold.

• For r = 4: nr is even, A4,n(Λ) = (4n−1)!!

[7!!]
n
2

by (16), and (15) is equivalent to

(4n− 1)!!︸ ︷︷ ︸
22n
√
π

Γ(2n+ 1
2 )

≤ n!

2
Kn−2

(√
7× 5× 3

)n
.

By using the Γ(z + 1) = zΓ(z) recursion:

Γ

(
2n+

1

2

)
=

(
2n− 1

2

)
︸ ︷︷ ︸

1.

(
2n− 3

2

)
︸ ︷︷ ︸

2.

· · ·
(
n+

3

2

)
︸ ︷︷ ︸

n−1.︸ ︷︷ ︸
≥(n−1)n−1

Γ

(
n+

3

2

)
?
≤ n!︸︷︷︸

Γ(n+1)

Kn−2︸ ︷︷ ︸
K−1Kn−1

.

Since Γ
(
n+ 3

2

)
> Γ(n + 1) for all n ∈ N+ and f(n) = nn grows faster than g(n) = Kn for any fixed K,

(15) can not be satisfied for all n ≥ 2.
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