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Abstract: 12 

The retreat of glaciers in response to climate warming leads to substantial changes in meltwater and sediment 13 

yield. Glacial shrinkage also induces the emergence and growth of proglacial margin landforms which strongly 14 

affect water and sedimentary transfers from the glacier to the outwash plains. On a decadal-timescale, field 15 

observations show that outwash plains of retreating glaciers typically exhibit proximal incision which decreases 16 

in magnitude downstream and stops at an inflection point where aggradation begins. Nevertheless, there is a 17 

lack of knowledge about the rates and magnitude of this fluvial adjustment and the effects of the proglacial 18 

margin configuration on the temperance or the aggravation of this fluvial adjustment to glacier retreat. This 19 

paper investigates the proglacial rivers of 14 retreating glaciers in southeast Iceland over a post-Little Ice Age 20 

timescale, combining fluvial deposits mapping, lichenometric dating and long-profile measurements of 21 

proglacial fluvial terraces. Our results demonstrate that: (1) proximal incision, associated with distal 22 

aggradation and downstream migration of the inflection point is the dominant pattern of proglacial river 23 

response to post-LIA glacier retreat in Iceland; (2) estimated mean rates of downstream migration of the 24 

inflection point range between 5 and 46 m.a
-1

; (3) the downstream migration rate of the inflection point is 25 

positively correlated with the proportion of proglacial lakes within the glacier foreland. These findings suggest 26 

that proglacial margins dominated by proglacial lakes intensify the rates of proximal incision and inflection 27 

point migration. 28 

Keywords: proglacial river, glacial retreat, proglacial landforms, fluvial geomorphology, paraglacial processes 29 

 30 

1. INTRODUCTION 31 

 32 

Since the end of the Little Ice Age, rising temperatures have elevated the equilibrium lines altitude of many 33 

glacial systems and intensified ice melting (Barry, 2006; Vaughan et al., 2013). This implies an adjustment of 34 

glacier geometry, which is usually reflected by the retreat of the glacier front. Glacial retreat leads to the 35 

emergence and growth of proglacial margin landforms at the interface between the glacier and the fluvial 36 
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system (Heckmann et al., 2016; Carrivick & Heckmann, 2017). The water discharge of proglacial rivers is largely 37 

supplied by meltwater and they are directly connected to the glacier, such that sediment released by glacial 38 

melt is immediately available to be carried as fluvial sediment load. The supply of both water and sediment is 39 

highly sensitive to changes in glacier mass balance. The primary hydrological impact of glaciers on downstream 40 

river systems is to modulate the timing and seasonality of hydrological fluxes (Röthlisberger & Lang, 1987). A 41 

shift to deglacial conditions leads to marked changes in the seasonality of river flow (e.g., a shift of the 42 

hydrograph to an earlier peak flow in spring months) and the amount of annual glacier runoff (Bliss et al., 2014; 43 

Milner et al., 2017). Current trends in annual glacial runoff differ among world regions and glacier hypsometry 44 

but there is a consensus on the typical sequence of meltwalter changes during catchment deglaciation (Bliss et 45 

al. 2014): at the beginning of deglaciation, when the glacier is still sufficiently voluminous, the glacial meltwater 46 

tends to increase for a period lasting several decades, before decreasing when the ice stock runs out (Braun et 47 

al., 2000; Jansson et al., 2003; Marren, 2005; Huss et al., 2008). The successive growth and decay of the glacial 48 

meltwater supply during deglaciation periods is both supported by palaeohydraulic studies (Maizels, 1986) and 49 

simulations of meltwater discharge (Bliss et al., 2014). In Iceland, modelling approaches predict increased 50 

meltwater runoff until 2050.  According to these simulations, glacier runoff declines afterwards (Flowers et al., 51 

2005; Jóhannessons et al., 2006; Bliss et al., 2014). A shift to deglacial conditions also affects the sediment 52 

supply to proglacial rivers in three ways: (1) The erosive capacity of a glacier is a function of basal sliding such 53 

that there is a dependence of erosion rate on the ice thickness which rely on the ice mass balance driven by 54 

climate conditions. Thus, in the long term, the loss of glacier thickness and volume limits their own ability to 55 

produce glacigenic material (Hallet et al., 1996; de Winter et al., 2012); (2) Deglaciation produces a lagged 56 

paraglacial sediment pulse caused by the reworking of stored englacial, subglacial and marginal sediments 57 

(Church & Ryder, 1972; Church & Slaymaker, 1989; Ballantyne, 2002; Mercier, 2008). Paraglacial sediment 58 

supply is highest during the initiation of glacial retreat and declines as sediment sources are exhausted or 59 

stabilized; (3) However, glacier retreat also induces the emergence and growth of proglacial margin landforms, 60 

like moraine ridges or proglacial lakes, which trap and store sediments and decrease the sediment connectivity 61 

in the glacier foreland (Cossart, 2008; Cossart & Fort, 2008; Heckmann & Schwanghart, 2013; Carrivick & 62 

Tweed, 2013; Cossart & Fressard, 2017; Cordier et al, 2017, Lane et al., 2017). As a result, the downstream 63 

sediment flux of retreating glaciers may be significantly reduced, particularly where lasting proglacial lakes 64 

develop (Geilhausen et al., 2013 ; Bogen et al., 2015, Staines et al., 2015). Nevertheless, sediment connectivity 65 

may temporarily or durably be restored by rare and extreme floods triggered by rainstorms (Marren & 66 

Toomath, 2013 ; Owczarek et al., 2014), glacial outbursts (Westoby et al., 2014; Worni et al., 2014) or iceberg-67 

jam failures (Roussel et al., 2016). 68 

Changes in meltwater and sediment fluxes from retreating glaciers lead to substantial geomorphic adjustments 69 

of proglacial rivers. Understanding the behaviour of proglacial rivers during periods of rapid change of glacier 70 

mass balance is especially important at present, given that climate change projections indicate that most 71 

glaciated regions will undergo a rapid decrease in glacier extent over the coming century (Marzeion et al., 72 

2012; Radić et al., 2014), coupled with major hydrogeomorphological changes (Bliss et al., 2014; Milner et al., 73 

2017). Reduced sediment flux from a retreating glacier usually induces incision of the upper reach of the 74 

Page 2 of 31

http://mc.manuscriptcentral.com/ldd

Land Degradation & Development

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 

proglacial river (proximal outwash plain) and the formation of a single deep channel (Fahnestock, 1969 ; 75 

Maizels, 1979, 1983 ; Germanoski & Schumm, 1993; Gurnell et al., 1999; Marren, 2005 ; Wilkie & Clague, 2009, 76 

Owczarek et al., 2014). In Iceland, this fluvial response has been observed on the proglacial margins of the 77 

southern glacial outlets of the Vatnajökull icecap, especially on the proglacial rivers of Skaftafellsjökull and 78 

Svínafellsjökull, (Thompson & Jones, 1986 ; Thompson, 1988 ; Marren, 2002; Roussel et al., 2008 ; Marren & 79 

Toomath, 2013, 2014). During the incision phase, fluvial bars tend to merge into larger sedimentary units, 80 

which are not in equilibrium with the water and sedimentary flux (Germanoski & Schumm, 1993). The incision 81 

of the proximal river results in the establishment of glacio-fluvial terraces whose morphosedimentary features 82 

reflect the former hydrological conditions before the incision (Marren, 2005). Flume experiments show that the 83 

long profile of an incising braiding river is usually characterized by an inflection point, downstream of which 84 

aggradation is dominant (Germanoski & Schumm 1993). Indeed, the reworked material of the incising upper 85 

reach is transported and deposited downstream induces an increase of the braiding intensity of the lower 86 

reach of the river. When the sediment delivery deficit continues, flume experiments have shown that the 87 

inflection point, which separates the incision from the aggradation reach, tends to migrate downstream 88 

(Germanoski & Harvey, 1993). At the same time, glacial retreat promotes the formation of proglacial lakes that 89 

trap the coarser fraction of the sediment flux and may strengthen the proximal river incision and the 90 

aggradation of the distal river reach (Embleton & King, 1968; Chew & Ashmore, 2001; Benn et al., 2003; 91 

Gardarsson & Eliasson, 2006; Schomacker, 2010; Carrivick & Tweed, 2013; Bogen et al., 2015). Nevertheless, 92 

this pattern of fluvial response to glacier retreat can vary over space and time due to topographical constrains 93 

induced by marginal landforms: (1) the spatial and temporal evolution of the overall sediment connectivity 94 

within the proglacial margin can lead to damming and localised river aggradation (Cossart, 2008 ; Cossart & 95 

Fort, 2008); (2) Channel pattern changes can be controlled by moraine ridges between which the river is forced 96 

to find a course (Marren & Toomath, 2013, 2014). 97 

Field observations report that most proglacial rivers associated with retreating glaciers in Iceland exhibit 98 

proximal incision which decreases in magnitude downstream and stops at an inflection point where 99 

aggradation begins (Marren, 2005 ; Roussel et al., 2008 ; Marren & Toomath, 2013). However, no studies have 100 

measured longitudinal profile adjustments of this type on a large sample of proglacial rivers and over a 101 

sufficiently long time period to determine whether this behaviour is a representative response to glacial 102 

retreat. Furthermore, there is a lack of information about the rates and magnitude of this fluvial adjustment 103 

and the effects of the glacial retreat rate and the proglacial margin configuration on the temperance or the 104 

aggravation of the fluvial response to glacier retreat. 105 

Therefore, this paper investigates the proglacial landscapes and the outwash plains of 14 retreating glaciers in 106 

southeast Iceland over a post-Little Ice Age timescale. It combines quantitative assessment of the glacier 107 

retreat, the landform assemblage of the proglacial margin and the post-LIA outwash plains changes through 108 

lichenometric dating and longitudinal profile measurements of active outwash and fluvial terraces. The aims of 109 

this paper are threefold: (1) to test the representativeness of the outwash plains response to glacier retreat 110 

described above over the time-scale of centuries; (2) to assess the rates of this fluvial response through the 111 
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reconstruction of the downstream migration of the inflection point; (3) to explore the influence of the 112 

landforms assemblage of the proglacial margin on the rate of the outwash plains response. 113 

2. Materials and Methods 114 

Site conditions and history 115 

Three southern Icelandic marginal areas were selected: the Sólheimajökull area in the south of the 116 

Mýrdalsjökull icecap, the Öræfajökull and southeastern Vatnajökull areas, both located on the southern margin 117 

of the Vatnajökull icecap (Figure 1). These three study areas present a sample of 14 glacier tongues which feed 118 

12 proglacial rivers (Table 1). Two pairs of formerly coalescent glaciers feed proglacial rivers which merge 119 

within the proglacial margin (Hrútárjökull/Fjallsjökull and Skálafellsjökull/Heinabergsjökull). None of the 120 

studied glaciers exhibit surge dynamics (Thórarinsson, 1969; Björnsson et al., 2003; Ingólfsson et al., 2016). 121 

Three glaciers (Sólheimajökull, Kotárjökull and Heinabergsjökull) are known to be jökulhlaup outlets (Thompson 122 

& Jones, 1986; Sigurðsson, 1998; Björnsson, 1992; Roberts et al., 2003; Russell et al., 2003, 2010). For 123 

convenience, the investigated glaciers and outwash plains are called afterward by their ID number (Table 1) 124 

instead of their Icelandic name. Additional information on site conditions and history is available in the 125 

appendix. 126 

Methods 127 

In order to address the aims of this study, we followed three stage methodological workflow (Figure 2) 128 

including field surveying and GIS mapping of proglacial landforms, lichenometric dating of outwash terraces, 129 

and topographic surveys of the active proglacial rivers and outwash terraces. 130 

Proglacial landform mapping 131 

The proglacial margin plays an essential role in sediment connectivity and may impose sediment flux 132 

discontinuities into the glaciofluvial continuum. Therefore, characterizing the landform assemblage of the 133 

proglacial margins is essential to fully assess the fluvial response of outwash plains to post-LIA glacial retreat. 134 

The mapping work is based on the recognition of 11 typical classes of proglacial landforms in the field (Figure 2-135 

A): Glacier front, fresh proximal till deposits (including dirty cones, hummocky debris, dead-ice with 136 

supraglacial debris), moraine ridge, active and abandoned intra-morainic plain, intra-morainic lake, proglacial 137 

lake, alluvial fan, rocky outcrop, active outwash and fluvioglacial terraces. Artificial dams and embankments 138 

built in the proglacial margins were also mapped as they may act on the sediment connectivity and marginal 139 

landforms evolution (e.g. inhibiting basal erosion of morainic ridges). LIA moraines mark the maximum glacier 140 

snout position during the LIA and their locations are well known for most of the glaciers we investigated. They 141 

have already been examined and mapped by several authors (Thórarinsson, 1956; Evans et al., 1999, 2017; 142 

Bradwell, 2004; Chenet et al., 2010, Hannesdóttir et al., 2015). In the field, the locations of LIA moraines and 143 

outwash terraces were collected using a handheld GPS (Trimble Geoexplorer XH). Post-processing of the GPS 144 

signal enabled a planimetic precision of 1.5 m on average. The fieldwork phase ensured the robustness of the 145 

subsequent mapping work based on the photo-interpretation of recent photographs with GIS software. 146 

Coupling this field database to 2009 and 2012 georeferenced orthophotos (2 m resolution on average) 147 
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provided by DigitalGlobe® within ArcGIS software (10.4), the landform assemblages in the proglacial margin, 148 

the outwash terraces, and the active outwash were mapped. The proglacial margin areas provide a quantitative 149 

assessment of the deglaciated surface since the LIA. An average linear retreat of the glacier fronts was 150 

computed by dividing the proglacial margin area by the glacier front length for each glacier. A manual 151 

measurement of the linear retreat of glacier fronts was also performed, along the centerline of the glacier 152 

tongues, between the maximum LIA moraines and the glacier front in 2009. 153 

Lichenometric dating 154 

Lichenometric dating of outwash terraces (Figure 2-B) was performed using the generalized extreme value 155 

approach (GEV) described in Jomelli et al. (2007) for the statistical treatment of the measurements of the 156 

longest axis of the thalli of Rhizocarpon Geographicum. This procedure has already been successfully applied in 157 

Iceland to date the LIA moraines of the south Vatnajökull (Chenet et al., 2010). This method provides a more 158 

statistically robust estimate of the age of the deposits because it takes into account the bias induced by the 159 

strategy of data collection (i.e. the selection of the largest thalli whose distribution is similar to the model GEV). 160 

In addition, this method provides confidence intervals to assess the quality of the estimated age.  161 

In the field, measurement of lichen long axes was carried out according to the procedure recommended by 162 

Jomelli et al. (2007): (i) a random selection of 50 boulders distributed over the whole surface of the deposit; (ii) 163 

on each boulder, the long axis of the largest thallus of Rhizocarpon Geographicum was measured with an 164 

accuracy of 0.5 mm. Coalescing lichens and thalli with irregular shape are systematically rejected. Consistent 165 

with all lichenometric methods, two datasets of thalli long axis were collected in the field: on already dated 166 

surfaces and on the deposits requiring dating. Eight well-known dated surfaces in an area of ca. 45 km2 in 167 

south foreland of Vatnajökull were used to ensure that climatic conditions do not vary excessively (Chenet et 168 

al., 2010). Dated surfaces included jökulhlaup deposits, lava flows, rockfalls, dams, and moraines; all made of 169 

basalt to ensure lithological homogeneity. Surfaces were dated using historical descriptions, aerial photographs 170 

(available since 1945), and personal communications from the Skaftafell Park staff. Additional consideration of 171 

the statistical treatments applied to the lichenometric database are available in several papers (Cooley et al., 172 

2006; Naveau et al., 2007; Rabatel et al., 2008). 173 

Topographic survey 174 

Longitudinal topographic profiles of active outwash and outwash terraces were surveyed in the field. 175 

Immediately downstream of LIA moraines of each investigated glacier, valley transverse profiles were also 176 

undertaken in order to capture the nesting of outwash terraces (Figure 2-C). Following the main direction of 177 

flow, longitudinal profiles of the active outwash and terraces were surveyed from the LIA moraines to the 178 

downstream edge of the fluvial deposit (confluence with a tributary or the shoreline). Transverse topographic 179 

profiles located just downstream of LIA moraines enable the computation of the relative altitude of each 180 

outwash terraces in respect to the active outwash. They are essential to align longitudinal profiles between 181 

them and to capture the downstream migration of the inflection points separating the upstream incising reach 182 

from the downstream aggrading reach of the proglacial rivers. These profiles were achieved using a laser 183 

telemeter (Impulse 200LR from Laser Technology) with a centimeter accuracy and a tripod target. The average 184 
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distance between two measurements was 20 meters. Two measurements by stations (foresight and backsight) 185 

were carried out in order to systematically check that the difference between measurements were below the 186 

telemeter accuracy (0.03m) and to limit error propagation. As the objective was to assess the topography of 187 

the outwash plains, measurements were carried out between topographic stations located on the heads of 188 

fluvial bars. Therefore, fine topography at the channel scale was not captured. Each topographic station was 189 

located using a handheld GPS (Trimble Geoexplorer XH). 190 

Reconstruction of the downstream migration of the inflection point (IP) 191 

Inflection points (sensu Germanoski & Harvey, 1993) separate upstream incising reaches from downstream 192 

aggrading reaches of a river. The reconstruction of changes in the location of the inflection point (IP) 193 

characterizes the evolution of the extent of proximal outwash affected by incision. IP changes were 194 

reconstructed based on the identification of intersection points of the longitudinal profiles of two successive 195 

(dated) terrace generations. These intersections are the former IP location separating the incision and the 196 

aggradation reach of the outwash plain at the date of the youngest of the intersecting terrace profiles (Figure 197 

2-D). For each reconstructed IP, its location (distance from LIA moraines and elevation) was validated in the 198 

field and recorded with the handheld GPS (Trimble Geoexplorer XH). The initial IP location (distance = 0 m) at 199 

the LIA glacial maximum coincides with the contact between the LIA moraines and the oldest and highest 200 

outwash terrace (T1), if lichenometric dating of the latter is younger than LIA moraine ridges. In other words, at 201 

the LIA glacial maximum, aggradation of the outwash is likely predominant and there is no upstream incision 202 

because there is no outwash upstream to the LIA moraines.  The reconstruction of the former location of the 203 

inflection point when T1 was incised and the IP location observed in 2007 enabled the computation of average 204 

rates of longitudinal migration (increasing distance of the IP from the LIA moraines) and altitudinal lowering 205 

(decrease in the IP elevation) of the IP through time. A synthetic metric of average rate of downstream 206 

migration of the inflection point was also computed as the Euclidean norm of the vector (square root of the 207 

sum of the square of coordinate values) defined by the two values of longitudinal migration and altitudinal 208 

lowering of the inflection points. Note that this average rate of IP downstream migration does not necessarily 209 

reflect a gradual progression of the inflection point as IP migration may occur suddenly during extreme events.  210 

Finally, a stepwise multiple linear regression was performed in order to test the effect of proglacial landform 211 

assemblage on the downstream migration rates of the inflection point. 212 

 213 

3. RESULTS 214 

Proglacial landform assemblages  215 

The proportion of each landform unit within the post-LIA proglacial margin has been quantified (Table 2 and 216 

Figure 3). Glacigenic deposits, combining moraine ridges and fresh proximal till deposits, are the most 217 

abundant proglacial landforms (respectively 44.8 % and 5.2% on average of the investigated proglacial 218 

margins). The marginal landscape is obviously dominated by glacial deposits associated with seasonal 219 

fluctuations of glacier fronts and the continuous re-advances of the 1970s and 1980s. Proglacial margins of the 220 

steepest, Öræfajökull glaciers (glaciers 2 to 10), show a higher proportion of moraine deposits. Steep proximal 221 
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topography is associated with a large amounts of moraine deposits that may be related to large production 222 

rates of glacigenic sediments and/or limited fluvial reworking. Abandoned and active intra-morainic plains form 223 

respectively around 16.8 % and 8.9 % on average of the proglacial landforms. The abundance of these two 224 

types of landforms testify the involvement of fluvial processes in the morphogenesis of the proglacial margin. 225 

Rocky outcrops (11.4% on average) are only present in the proglacial margins of piedmont glaciers (Glaciers 1, 226 

11, 12 and 13) whose tendency to overdeepening would generally exhume more resistant areas of the glacial 227 

bed, and in the foreland of glacier 6 where steep proximal relief tends to rapidly clean the glacial bed and 228 

remove till layers via gravity and runoff processes. Proglacial and intra-morainic lakes (respectively 10.4% and 229 

1.5% on average) are totally absent from the proglacial margins of the steepest glaciers of the Öræfajökull 230 

sector (glaciers 6 and 7), most likely due to the extreme steepness of the ablation zone and the glacier 231 

forefield. Alternatively, proglacial lakes are common on the margin of piedmont glaciers of the southeastern 232 

sector of Vatnajökull where their large frontal lobes probably favored overdeepening of the marginal areas 233 

during the LIA glacier advance. Alluvial fans (0.6 % on average) are only present in steep marginal settings 234 

(glaciers 7 and 9). This association seems logical since development of alluvial fans is strongly dependent on the 235 

presence of steep marginal slopes. Embankments (0.3 % on average) are only present on the margins of two 236 

piedmont glaciers (glaciers 3 and 13). Artificial embankments are associated either with tourist trails running 237 

through the proglacial margin (in the case of glacier 13), or with consolidation structures of the main Icelandic 238 

road (road number 1) built through the LIA moraines (glacier 3). 239 

Outwash terrace mapping and dating 240 

Outwash terrace mapping and lichenometric dating (Figure 3) emphasizes four types of fluvial processes 241 

affecting the proglacial river responses to post-LIA glacier retreat: (1) post-LIA transient aggradation; (2) 242 

incision and contraction of the proximal outwash; (3) shifts in the location of the fluvial activity due to stream 243 

capture occurring within the proglacial margin and (4) outwash incision prior to LIA glacial maximum. Based on 244 

the analysis of glacier foreland mapping and lichenometric dating of outwash terraces, an overview of 245 

successive aggrading and incising stages of proximal outwash response to post-LIA glacial retreat has been 246 

produced (Figure 4). The outwash terraces of the proglacial rivers 6 and 7 could not be dated due to the 247 

absence of lichens: the oldest terrace (T1) of the outwash plain 6 is the historic jökulhlaup deposit of 1727 and 248 

is exclusively composed of fine materials devoid of lichens. The terrace (T1) of the outwash plain 7 is lightly 249 

vegetated and its abandonment by proglacial flows might be recent and artificial, relating to the upstream 250 

embankment structure (Figure 3). The youth of this fluvial deposit may explain the absence of lichens on the 251 

proximal surfaces. 252 

Post-LIA transient aggradation of proximal outwash 253 

First generation outwash terraces (T1 on Figure 3) are adjacent to the moraines ridges marking the maximal 254 

glacier extent during the LIA. They are interpreted as fill terraces built up by the aggrading proglacial river 255 

during the LIA glacier advances. Dating reveals that proximal aggradation, or at least the maintenance of the 256 

outwash plain in a steady state, has persisted after the glaciers reached their maximum LIA extent and their 257 

fronts likely initiated their retreat or stagnation phase. This post-LIA aggradation stage (or steady state phase) 258 
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affected the proximal outwash of the proglacial rivers 1, 2, 5, 8, 9, 11, 13 and 14. The duration of this 259 

aggradation or steady state stage (computed as the difference between the T1 lichenometric dating and the 260 

age of LIA moraines) is highly variable and ranges between 5 (±14) and 147 (±15) years for the outwash 11 and 261 

5 respectively (Figure 4 and Table 3). The outwash 7 is the only one which seems to persist in the aggradation 262 

stage (Figure 4). Nevertheless, as its proximal reach is affected by an artificial embankment, its fluvial response 263 

is not fully controlled by natural drivers. Based on the other investigated outwash surfaces, aggradation may be 264 

considered as a transient stage of post-LIA outwash response. 265 

Contraction and incision of the proximal outwash 266 

The post-LIA contraction of the proximal outwash width is detectable in the successive abandonment of 267 

outwash terraces (T2 to T5 on Figure 3) by proglacial rivers. These fluvial deposits are interpreted as nested cut 268 

terraces and reveal the incising dynamic affecting proximal outwash. This glaciofluvial evolution follows the 269 

transient aggradation stage and is still currently the dominant behaviour in most of the rivers. The outwash 270 

plain 7 is the only one which appears to still be aggrading or remaining in a steady state, likely due to the 271 

artificial constraints described above (Figure 4). On the other outwash plains, the proximal fluvial activity was 272 

gradually concentrated downstream of a single breach in the LIA moraines. Currently, the active outwash plain 273 

is framed by multiple paired or unpaired terraces whose preservation is dependent on the lateral mobility 274 

and/or the rate of proximal river incision (Charlton, 2008). 275 

Stream capture and shift in the outwash plain location 276 

The mapping of glacier forelands (Figure 3) and the sequence of outwash terrace abandonment (Figure 4) also 277 

shows a typical marginal fluvial process: stream capture within the proglacial margin leading to a shift of the 278 

outwash plain location. This process affected the outwash plain 3 in 1939 (±3), 5 in 1891 (±3), 11 in 1914 (±8) 279 

and 1959 (±5), and 13 in 1918 (±7). Stream capture seems to preferentially occur within proglacial margins 280 

where two ice lobes were coalescent at the LIA glacial maximum (Figure 3). This is the case for the glaciers 3, 11 281 

and 13 (Figure 3) whose glacial fronts were respectively coalescing with those of 4, 12 and the western arm of 282 

13 at the LIA glacial maximum. Stream capture and location shift of the proximal outwash plain can occur 283 

slowly, and follows a sequence of proximal outwash narrowing: In the foreland of glaciers 11 and 12(Figure 3), 284 

three outwash terraces (T1, T2 and T3) were formed due to the contraction of the proximal braiding belt of the 285 

outwash plain shared by the two coalescing glaciers. In 1914, about 50 years after the LIA glacial maximum, a 286 

first stream capture occurred within the glacier 11 proglacial margin causing the abandonment of the outwash 287 

plain T3 and the development of the outwash plain T4. After 45 years of activity (during which T4 may have 288 

eroded the outwash terrace T3), a new stream capture occurred in the proglacial margin of glacier 11. T4 is 289 

abandoned in 1959 in favour of glacier 11 intra-morainic plains and the outwash plain which is still currently 290 

active. Ultimately, proximal incision and stream capture processes do not exclude each other. Moreover, 291 

according to our results, stream captures occur exclusively in the incising stages of the proximal outwash.  292 

Proximal outwash incision prior to the LIA maximum 293 

The lichenometric dating of the first terrace generation (T1) of the proglacial rivers 3 and 4 predates the LIA 294 

glacial maximum (M1). According to these lichenometric ages, the abandonment of outwash T1 downstream of 295 
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the glacier 3 may have occurred 16 years (±25 yr.) before the LIA maximum. But, as the absolute uncertainty 296 

exceed the difference between the ages of M1 and T1, proximal outwash incision and LIA maximum could also 297 

have occurred synchronously between 1864 and 1873. Dating results are much more surprising for the river 4, 298 

since the abandonment of the oldest terrace occurred almost two centuries (179 ±21 years) before the LIA 299 

maximum (Figure 3 and Figure 4). Thus, proximal incision, or at least lateral contraction, of the outwash of the 300 

rivers 3 and 4 began before the glacier reached its maximum LIA extent. Early incision also affected the 301 

outwash 6 whose T1 terrace (Figure 3) was built by the 1727 jökulhlaup. The incision of this deposit may be 302 

independent of the fluctuations of the front of the glacier 6 and is instead related to a progressive return of the 303 

proglacial river to pre-jökulhlaup conditions (Thompson & Jones, 1986). 304 

 305 

Outwash long profile adjustment 306 

Outwash longitudinal profiles reveals a dominant pattern of fluvial adjustment characterized by a proximal 307 

incision often accompanied by distal aggradation (Figure 5). The inflection point (IP) connecting the incising 308 

upper reach and the aggrading lower reach tends to migrate downstream through time. 309 

Proximal incision, slope decrease and distal aggradation 310 

Post-LIA proximal incision can be quantitatively assessed for the rivers 1, 2, 8, 9 and 14, which were not 311 

affected by stream captures or early incision prior to the LIA glacial maximum. These proglacial rivers present 312 

several nested outwash terraces, the oldest of which, (T1) is always backed by the LIA moraine ridges (Figure 313 

5). More recent outwash terraces can be disconnected from these moraines. This is the case for the rivers 8, 9 314 

and 14. This observation reflects either a downstream migration of the proximal outwash contraction or the 315 

destruction of the upstream part of recent terraces due lateral erosion and avulsion of the active river channel. 316 

Following the transient aggradation stage (or steady state stage), the initiation of proximal incision implies the 317 

abandonment of the oldest outwash terrace (T1) by river flows. As proximal degradation continues, proglacial 318 

rivers abandon younger terraces. This is particularly the case for the rivers 2 and 14 where six and four 319 

generations of terraces are distinguishable, respectively. The rate of proximal outwash incision, computed over 320 

the period from the abandonment of the oldest terrace until 2007, averages 0.073 ± 0.03 m.a
-1

and ranges from 321 

0.045 ± 0.006 m.a
-1

 to 0.131 ± 0.012 m.a
-1

 for the rivers 2 and 14 respectively (Table 3). 322 

The slope of the proximal rivers has decreased almost systematically since the LIA maximum. This is 323 

qualitatively detectable on Figure 5 by a visual comparison of the long profiles of the first generation of post-324 

LIA outwash terraces (T1) with those active in 2007 (A). The mean slope of the proximal rivers (the first 500 325 

meters from the maximum LIA moraines) were calculated using a simple linear regression: results indicate that 326 

proximal slope decreased by 0.011 m.m
-1

 (SD =0.009 m.m
-1

) on average between the first-generation of post-327 

LIA outwash terraces and the active rivers in 2007. However, there is a high variability in the post-LIA lowering 328 

of the proximal slope. For example, the proximal slope values of the active and the outwash terraces of the 329 

proglacial river 7 are identical, in agreement with the absence of proximal incision (Table 3). Conversely, the 330 

proximal slope of the river 9 decreased by 0.0311 m.m
-1

, dropping from 0.0339 m.m
-1

 in 1891 (79 years after 331 

the LIA maximum) to 0.0028 m.m
-1

 in 2007 (195 years after the LIA maximum PAG). For the river 9, the 332 
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comparison of the old (terrace T1) and current (2007) proximal slopes is only based on the first 200 meters 333 

from the LIA maximum moraines due to the narrowness of the conserved fragment of T1 terrace. 334 

Consequently, the slope measurements on this outwash plain reflect more closely the proximal concavities and 335 

are difficult to compare with the other rivers.  336 

Decrease of the proglacial rivers slopes is mainly due to the proximal incision of the outwash plains. However, 337 

proximal incision is often associated with a distal aggradation of the outwash plain, which contributes to the 338 

overall decrease of the proglacial river slope. Indeed, nine of the twelve studied outwash plains present this 339 

type of post-LIA adjustment of their longitudinal profile: these include the outwash plains of glaciers 2, 3, 4, 5, 340 

8, 9, 11, 13 and 14 (Figure 5).  341 

Downstream migration of the inflection point (IP) 342 

Post-LIA changes in the location of the inflection point (IP) were reconstructed for the proglacial rivers 2, 3, 4, 343 

5, 8, 9, 11, 13 and 14 (Figure 5). The longitudinal profiles of terraces and active outwash of the proglacial rivers 344 

1, 6 and 7 do not exhibit inflection points. Results demonstrate the post-LIA downstream migration of the 345 

inflection points, indicating a longitudinal increase of the extent of proximal outwash area affected by incision 346 

(Figure 4). This evolution may indicate a perennial sediment deficit in the marginal area leading to a 347 

downstream progression of the proximal incision. According to these results, the sediment recharge of the 348 

proglacial rivers is primarily carried out by the reworking of bed material (proximal incision) rather than lateral 349 

erosion of the former proximal outwash terraces (proximal contraction).  350 

Average rates of longitudinal migration, elevation lowering and downstream migration of the inflection points 351 

were also computed for the proglacial rivers 2, 3, 4, 5, 8, 9, 11, 13 and 14 (Table 3). Rates of IP longitudinal 352 

migration average 20.4 m.a
-1

 (SD=13.6 m.a
-1

) and range from 5.2 m.a
-1

 for the river 5 to 46. 4 for the river 14. 353 

Altitudinal lowering rates of the inflection points average 0.3 m.a
-1 

(SD=0.15 m.a
-1

) and range from 0.09 m.a
-1

 354 

for the river 9 to 0.5 m.a
-1

 for the river 14. The synthetic rates of IP downstream migration are similar to 355 

longitudinal migration rates (average = 20.4 m.a
-1

, SD=13.6 m.a
-1

 and values range from 5.2 m.a
-1

 for the Virkisá 356 

to 46. 4 for the Hoffellsá). 357 

A category of proglacial rivers in which the downstream migration of the inflection point is rather slow can be 358 

identified. These are rivers 4, 5, 8, and 9, whose post-LIA average rates of IP longitudinal migration and 359 

elevation lowering are respectively lower than 15 m.a
-1

 and 0.2 m.a
-1

. A second category of proglacial rivers 360 

(rivers 2, 11 and 14), exhibit the highest rates of IP longitudinal migration and elevation lowering, exceeding 28 361 

m.a
-1

 and 0.40 m.a
-1

 respectively. Between these two categories, the rivers 13 and 3 display intermediate rates 362 

of IP longitudinal migration (16.85 and 26.5 m.a
-1

 respectively) and IP elevation lowering (0.25 and 0.32 m.a
-1

 363 

respectively). These results suggest that the proximal sediment deficit of the rivers 4, 5, 8 and 9 is less severe 364 

than for the rivers 2, 11, and 14, whose inflection points, and the spatial extent of proximal incision, rapidly 365 

migrated downstream. 366 

Linear regression analysis (Figure 6-A) indicates that average rates of longitudinal migration and altitudinal 367 

lowering are significantly and positively correlated (R²=0.791, P=0.001). It suggests that the overall process of 368 

post-LIA downstream migration of proximal incision involves the same proportion of longitudinal migration and 369 

elevation lowering of the IP whatever the intensity of the downstream migration. 370 
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The stepwise multiple linear regression procedure test the dependency of the IP downstream migration rate on 371 

the landform assemblage of the proglacial margin and the post-LIA glacial retreat. The linear stepwise 372 

procedure only selected the proportion of proglacial lakes within the marginal landscape as a significant model 373 

parameter (t=3.527, p=0.01). The downstream migration rate of the inflection point is positively and 374 

significantly correlated with the percentage of proglacial lakes within the proglacial margin (R²=0.640, P=0.010). 375 

According to this result (Figure 6-B), the development of large proglacial lakes in the glacier foreland increases 376 

the rate of that the IP migrates downstream. 377 

Atypical outwash adjustments 378 

The outwash plains of the glaciers 1, 6 and 7 exhibit different post-LIA adjustments of their longitudinal profile 379 

(Figure 5). The outwash plain of glacier 1 has experienced an incision of its proximal part since the LIA 380 

maximum. However, no evidence of distal aggradation was found in the field. In addition, the post-LIA decrease 381 

of the proximal slope remains extremely low (0.013 m.m
-1

 for T1 terrace versus 0.012 m.m
-1

 for the river in 382 

2007). The deep incising efficiency of recurrent volcanic jökulhlaups which affect the Glacier 1 glacier foreland 383 

may produce this uniform degradation of the entire outwash plain and inhibits post-LIA distal aggradation. The 384 

glacier 6 is also affected by volcanic jökulhlaups. Moreover, its outwash terrace T1 (Figure 5) constitutes the 385 

deposit of the historical jökulhlaup of 1727. The incision of this deposit may be independent of the fluctuations 386 

of the glacier front and is rather related to a progressive return of the river 6 to the pre-jökulhlaup conditions 387 

(Thompson & Jones, 1986). Alternatively, the case of the outwash plain 7 is more surprising: no incision of the 388 

abandoned and vegetated outwash plain was observed on the field. As mentioned above, the vegetated 389 

outwash plain of glacier 7 seems extremely recent (absence of lichens). Its abandonment by proglacial flows 390 

seems artificial and related to the embankment structure located on the right bank of the upstream reach of 391 

the river 7 (Figure 3). As a consequence, the abandoned outwash plain of the river 7 and the decrease in the 392 

lateral extent of the fluvioglacial dynamic cannot be considered as a purely natural response of the proglacial 393 

river to glacial retreat. Alternatively, large alluvial fans located within the proglacial margin of this steep glacier 394 

may provide an abundant sediment supply that mitigates the marginal sediment deficit and inhibits proximal 395 

incision. 396 

Local controls on the long profile of active outwash in 2007 397 

Long profiles of the active outwash of the glacier 4, 8, 10 and 13 (in 2007) reveal the local controls exerted by 398 

embankment structures or rocky outcrops on the efficiency of sediment transport. Indeed, these long profiles 399 

display significant decrease of local river slope values in the upstream vicinity of bridgeworks (related to the 400 

Icelandic Ring Road) or rocky outcrops. These zones force sediment deposition, related to dam effects and 401 

lateral constraints exerted by embankment and outcrops, and can hinder the downstream migration of 402 

sedimentary waves and mitigate the standard pattern of post-LIA adjustment of the outwash long profile by 403 

moderating proximal incision. Alternatively, the large alluvial fan located on the left bank of the river 14 seems 404 

to exert a control over the river long profile. A local increase in the slope value can be observed in the vicinity 405 

of the fan toe, probably due to lateral sediment contribution coming from the alluvial fan (Knighton, 1998). 406 

Conversely, the alluvial fan located on the left bank of the distal part of the outwash plain 2 does not seem to 407 
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exert any control over the slope values of the active river in 2007. Nevertheless, it appears that presence of 408 

large active alluvial fans can also modify the post-LIA adjustment of the outwash long profile by exerting 409 

control over local slope values. 410 

 411 

4. DISCUSSION 412 

The dominant sequence of post-LIA outwash adjustment: a two-stage descriptive model 413 

According to our results, the dominant response of Type I (sensu Maizels, 1993) Icelandic proglacial rivers to 414 

post-LIA glacier retreat follow two successive stages: (1) a first stage of transient aggradation, or steady state, 415 

of the proximal outwash, (2) a second stage characterising by proximal incision, distal aggradation and the 416 

downstream migration of the inflection point (IP) which separates the upstream incising reach and the 417 

downstream aggrading reach of proglacial rivers. 418 

Stage I: Outwash transient aggradation (or in balance), a paraglacial signature? 419 

During the first stage, even if the post-LIA glacial retreat is initiated, the outwash plain is still aggrading or, at 420 

least, kept in a steady state (Figure 7-A). Two explanations of this transient aggrading stage are possible: (1) 421 

The glacial front may have registered a slight retreat during stage I and experienced a steady period with minor 422 

seasonal fluctuations that maintain high glacigenic sediment supply to proglacial rivers in which aggradation 423 

continues (or remains in its LIA maximum state); (2) Alternatively, if the ice front registered a pronounced and 424 

continuous post-LIA retreat, the transient aggradation stage can only be related to efficient recharge of the 425 

marginal sediment stock by paraglacial processes and / or greater rates of subglacial sediment evacuation. In 426 

particular, in the early stages of deglaciation, thermokarstic processes, related to the dismantling of dead-ice 427 

moraines, may be able to compensate for the decrease of glacigenic sediment supply induced by glacial retreat 428 

for a time (Mercier et al., 2009, Irvine-Fynn et al., 2011). When the efficiency of subglacial sediment evacuation 429 

decrease, thermokarstic processes cease and the moraine ridges are stabilized, the paraglacial recharge of the 430 

proglacial fluvial system is no longer sufficient to maintain high sediment supply and stage I ends.  431 

According to lichenometric dating of the first generation outwash terraces (T1), the duration of the transient 432 

aggrading stage is highly variable: it averages 61.8 years (SD= 40.48 years) and ranges between 5 (±14) and 147 433 

(±15) years. However, the range of duration of post-LIA transient aggradation stage of the South Icelandic 434 

fluvioglacial plains is in agreement with previous studies on the duration of paraglacial processes as effective 435 

sediment providers for the proglacial fluvial system. On the proglacial margin of the Small River Glacier in 436 

Canada, marginal deposits and mostly abandoned intra-morainic plains have been shown to cease to function 437 

as sediment sources after several decades (Orwin and Smart, 2004). Our results tends to support this 438 

hypothesis of a stabilization of morainic ridges and intra-morainic deposits within half a century or even a 439 

century. This period of time is too short to encompass all of what is commonly referred as the so-called 440 

paraglacial period (Ballantyne, 2002, Mercier, 2010, Cossart, 2005). More likely, the duration of stage I is only 441 

the time period during which the effectiveness of paraglacial processes is sufficient to, at least, keep the 442 

outwash plain in balance. As the marginal landscape differs widely from one glacier to another, the duration of 443 
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the transient aggrading period also varies accordingly. This variability may be related to the amount of the 444 

morainic sediment stock in the proglacial margin and its sensitivity to potential reworking processes. 445 

In particular, the presence of dead ice in the moraine deposits may play a major role in the initiation of debris 446 

flows eroding moraine ridges inducing the recharge of the proglacial fluvial system with paraglacial sediments 447 

(Church & Ryder, 1972, Church & Slaymaker 1989, Mercier, 2009).  448 

Stage II: proximal incision, distal aggradation and downstream progression of incision wave 449 

The incision stage of the proximal outwash plain is initiated when the sediment stock of the proglacial margin is 450 

deficient and / or disconnected and the efficiency of paraglacial remobilization of the morainic and intra-451 

morainic deposits is no longer sufficient to maintain the outwash plain in balance (Figure 7-A). The erodibility of 452 

the marginal sediment stock and the continuation of glacial retreat results in the lowering of the local base 453 

level which promotes stream captures within the proglacial margin. The occurrence of stream captures implies 454 

the abandonment by proglacial flows of former intra-morainic plains, often to the benefit of a single moraine 455 

breach which constitutes the favoured outlet of water and sediment flows to the outwash plain.  456 

This post-LIA response of the marginal channel network was also observed in Spitsbergen on the Lovén glacier 457 

margins (Griselin 1982, Mercier, 2001, Mercier & Laffly, 2005). The response of south-Icelandic outwash plains 458 

to post-LIA glacial retreat is the consequence of this marginal sediment deficit and the concentration of water 459 

and sediment flux at a single moraine breach: The sediment recharge of the outwash plain is primarily carried 460 

out by the incision of the proximal fluvioglacial plain, resulting in the abandonment of the previous aggrading 461 

outwash plain and the contraction of the proximal fluvial activity width. The production of glaciofluvial 462 

sediments in the upstream incising reach caused further aggradation in the downstream reach. As the marginal 463 

sediment deficit continues, the degradation of the proximal outwash progresses downstream as an incision 464 

wave (Germanosky & Harvey, 1993). Rather than a uniform degradation of the outwash plain, the successive 465 

formation of different terrace generations reflect the crossing of geomorphological thresholds and the 466 

nonlinearity of the fluvioglacial response to fluctuations of water an sediment fluxes. These crossing of 467 

geomorphological thresholds may be linked to abrupt variations in the efficiency of the marginal sediment 468 

connectivity caused especially by moraines dams and their failures (Cossart, 2008, Cossart & Fressard, 2017). 469 

Proglacial lakes within the marginal landscape also play a key role as they interrupt the delivery of water and 470 

sediment to the outwash plain (Schomacker, 2010; Carrivick & Tweed, 2013; Geilhausen, 2013; Bogen et al., 471 

2015, Staines et al., 2015). According to our results, the abundance of proglacial lakes within the proglacial 472 

margin speed up the downstream progression of the incision wave affecting proximal outwash. They clearly 473 

reduce the marginal sediment connectivity in trapping the coarsest part of the glacigenic sediment production. 474 

Thus, in a similar way to artificial dams, proglacial lakes deliver at their outlets “hungry water” prone to channel 475 

incision (Kondolf, 1997) and bed armoring (Vericat et al., 2006). High-magnitude/low-frequency events 476 

emerging from proglacial lakes as outburst floods (Westoby et al., 2014; Worni et al., 2014), rainstorm floods 477 

(Marren & Toomath, 2013) and iceberg jam floods (Roussel et al., 2016) may be able to temporarily reconnect 478 

the sediment connectivity between the proglacial lake and the outwash plain. 479 

Singularities in the dominant outwash adjustment model 480 
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The dominant sequence of post-LIA response of the South Icelandic type I outwash developed above has to be 481 

qualified on the basis of field observations. The reported singularities are not major divergences from the 482 

overall logic of the dominant outwash plain adjustment. They rather reflect the effects of individual marginal 483 

landscape assemblages on the response of outwash plains to post-LIA glacial retreat. 484 

Coalescent glacier fronts at the LIA maximum and stream capture  485 

The post-LIA response of the outwash plains 3, 5, 11 and 13 demonstrate that processes of marginal stream 486 

capture and large-scale shifts of the outwash location appear to be associated with a particular glacial 487 

configuration: Two coalescent lobes at the LIA maximum (Figure 7-B). As the contact between two glacier lobes 488 

is a preferential outlet for water and sediment fluxes (Thompson & Jones, 1986), the active proximal outwash 489 

plain is typically located downstream of the junction of the glacier fronts at the LIA glacial maximum. When the 490 

ice fronts of coalescent glaciers were disconnected following the post-LIA glacial retreat, the outwash plain 491 

shared by coalescent lobes was abandoned in favour of the intra-morainic plains of each of the two forefields 492 

which then developed two distinctive outwash plains. Downstream progression of incision waves and stream 493 

capture processes do not exclude each other. They may succeed each other in the history of outwash plain 494 

response to post-LIA glacial retreat. 495 

Outwash incision prior to the LIA maximum 496 

Evidence of proximal outwash plain incision prior to the LIA maximum (proglacial rivers 3 and 4) suggests two 497 

alternative interpretations: (1) a lateral contraction and/or a stream capture and a shift in the location of the 498 

fluvial activity may occur during periods of glacial advance or glacial stagnation. In periods of glacial advance, 499 

this kind of adjustment may be related to the damming effect of proglacial moraine ridges which spatially 500 

constrain and channelize water and sediments flows; (2) A lateral contraction and/or a stream capture and a 501 

shift in the location of the fluvial activity may be caused by a transient retreat of the ice front during the LIA. 502 

The later advance of the ice front, up to the maximum glacial extension of the LIA, does not produce a 503 

sufficient aggradation or widening of the outwash plain to destroy or bury the glaciofluvial deposit built prior to 504 

the temporary LIA glacial retreat. These scenarios may explain the conservation of outwash terraces older than 505 

the LIA maximum. 506 

Deviation to the dominant outwash adjustment model: Jökulhlaups outwash (Type III) 507 

The glacial tongues of the glaciers 1 and 6 are known to be outlets of jökulhlaups triggered by subglacial 508 

eruptions (Sigurðsson, 1998). Our results show an alternative post-LIA response of the longitudinal profile of 509 

the outwash plains 1 and 6. The river 1 experienced an incision of its upper reach since the LIA maximum. 510 

However, no evidence of distal aggradation was found in the field. In addition, the post-LIA decrease in the 511 

proximal outwash slope remains extremely low (0.013 m.m
-1

 for T1 and 0.012 m.m
-1

 for the active outwash). It 512 

suggests that the strong incisional power of the volcanic jökulhlaups that affect the foreland of glacier 1 is 513 

responsible for this uniform degradation of the outwash plain and the absence of distal aggradation. The 514 

outwash plain 6 is also affected by volcanic jökulhlaups (the outwash terrace T1 is the major deposit of the 515 

1727 historical jökulhlaup). Following Thompson & Jones (1986), we believe that the successive incisions of this 516 

inherited deposit are independent of the fluctuations of the glacier 6 and rather testify to the gradual return of 517 
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the outwash plain to pre-jökulhlaup conditions. In more general terms, and as Nicholas & Sambrook-Smith 518 

(1998) suggest, in terms of morphogenesis and reworking of the fluvioglacial sediment stock, the outwash 519 

plains impacted by jökulhlaups (Type III) are insensitive to the range of meltwater discharge associated with the 520 

"normal" glacial ablation. The size of the material deposited during these catastrophic floods is beyond the 521 

scope of seasonal proglacial flows. Consequently, the re-shaping of fluvioglacial forms of type III outwash is 522 

totally independent of glacial fluctuations. Their fluvial morphogenesis seems to depend exclusively on the 523 

frequency and magnitude of volcanic jökulhlaups. 524 

 525 

5. CONCLUSION 526 

Mapping, lichenometric dating and long-profiles surveys of Icelandic proglacial margins, glacio-fluvial terraces 527 

and active proglacial rivers permit to address the threefold aims of this study:  (1) Proximal incision, associated 528 

with distal aggradation and downstream migration of the inflection point, is the dominant pattern of proglacial 529 

river response to post-LIA glacier retreat in Iceland. The post-LIA contraction and incision of Icelandic proximal 530 

outwash plains usually occurs after a first transient aggradation or steady state stage of proximal outwash 531 

(duration ranges between 5 ±14 and 147 ±15 years) which may be related to efficient recharge of the marginal 532 

sediment stock by paraglacial processes and / or greater rates of subglacial sediment evacuation. Proximal 533 

incision, distal aggradation and downstream migration of the inflection point can precede or be preceded by 534 

stream capture phenomena which particularly affects marginal landscapes where two glacier fronts were 535 

coalescent at the LIA maximum. Outwash plain incision prior to the LIA maximum have been observed and may 536 

be related to damming effect of proglacial moraine ridges or transient glacial retreat during the LIA. Two 537 

proglacial rivers affected by historical jökulhlaups exhibit an alternative adjustment rather controlled by 538 

extremes events than by glacier retreat. (2) The mean rates of downstream migration of the inflection point 539 

average 20.4 m.a
-1

 (SD=13.6 m.a
-1

) and range from 5.2 m.a
-1

 for the river 5 to 46. 4 for the river 14. IP migration 540 

results suggest that the proximal sediment deficit of the rivers 4, 5, 8 and 9 is less severe than for the rivers 2, 541 

11 and 14, whose inflection points, and the spatial extent of proximal incision, rapidly migrated downstream. 542 

(3) The downstream migration rate of the inflection point is positively correlated with the proportion of 543 

proglacial lakes within the glacier foreland. These findings suggest that proglacial margins dominated by 544 

proglacial lakes intensify the rates of the fluvial adjustment to glacial retreat. 545 
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Figures and Tables 832 

Figure 1: Location of investigated glaciers and associated proglacial rivers 833 
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Figure 2: Methodological workflow: A - Field prospection and GIS mapping of proglacial and glaciofluvial 834 

landforms ; B - Lichenometric dating of outwash terraces ; C - Topographic survey: Cross section and long 835 

profile of active outwash and terraces ;  D - Method for the determination of the Inflection Point migration 836 

Figure 3: Outwash terraces mapping and dating 837 

Figure 4: Overview of aggrading and incising stages in the post-LIA outwash adjustment 838 

Figure 5: Long profiles of dated outwash terraces (T1 to T4) and active outwash in 2007 (A) 839 

Figure 6: A - Linear regression between average rates of altitudinal lowering and longitudinal migration of the 840 

inflection points. B - Linear regression between average rates of IP downstream migration and the proportion 841 

of proglacial lakes in the marginal area. 842 

Figure 7: A - The dominant sequence of post-LIA fluvial adjustment: a two-stages descriptive model. B - LIA 843 

coalescent glaciers specific case, with stream capture and shift in the outwash location. 844 

Table 1: Main characteristics of glaciers and associated proglacial rivers investigated in this study. 845 

 846 

Table 2: Post-LIA glacier retreat and landform assemblages of proglacial margins 847 

ID Name

LIA max 

dating (cal. 

yr. AD)*

Confidence 

interval*

Glacier 

Area 

(Km²)

Glacier 

length (km)

Glacier Slope 

(°)

Elevation 

max (m 

a.s.l.)

ELA (m 

a.s.l.)**
name

Outwash 

Type***

1 Sólheimajökull 1851 (1839 - 1863) 46.7 15.4 5.1 1480 na Jökulsá Type III

2 Morsárjökull 1888 (1873 - 1903) 26.3 13.1 6.2 1421 1000-1130 Morsá Type I

3 Skaftafelljökull 1878 (1864 - 1892) 87.0 19.0 6.6 1889 1000-1160 Skaftafellsá Type I

4 Svínafellsjökull 1765 (1749 - 1776) 31.7 12.7 12.4 2104 1000-1120 Svínafellsá Type I

5 Virkisjökull 1740 (1731 - 1755) 20.6 11.3 10.7 2076 na Virkisá Type I

6 Kotárjökull 1819 (1809 - 1828) 6.1 6.6 12.8 1840 1000-1130 Kotá Type III

7 Hólárjökull 1844 (1838 - 1857) 5.2 6.9 12.9 1838 na Holá Type I

8 Kvíárjökull 1810 (1798 - 1824) 18.6 11.7 10.3 2010 1010-1130 Kviá Type I

9 Hrútárjökull 1812 (1805 - 1820) 11.9 8.5 14.6 2027 880-910

10 Fjallsjökull 1812 (1798 - 1833) 48.8 13.4 9.1 2040 870-960

11 Skálafellsjökull 1865 (1856 - 1876) 136.2 32.4 3.3 1520 910-1020

12 Heinabergsjökull 1851 (1835 - 1865) 93.8 23.5 4.8 1520 990-1100

13 Fláajökull 1821 (1811 - 1834) 213.1 29.1 3.3 1520 1060-1120 Hólmsá Type I

14 Hoffellsjökull 1888 (1874 - 1898) 246.0 32.0 3.3 1512 1050-1120 Hoffellsá Type I

* after Chenet et al. , 2010 and Roussel et al. , 2008 ; ** after Chenet et al. , 2010 and Hannesdóttir et al. , 2014 ; *** after Maizels, 1993, 1997 ;  "na" for not available

Fjallsá

Kolgrimá Type I

Type I

Glacier River

TOTAL

m² % m² % m² % m² % m² % m² % m² % m² % m² % m²

1 Sólheimajökull 2.1 888 1211 0 0.0 256366 12.4 299121 14.4 13921 0.7 0 0.0 467737 22.6 569831 27.5 466563 22.5 0 0.00 2073538

2 Morsárjökull 2.6 2047 1643 0 0.0 0 0.0 202767 8.5 4981 0.2 334873 14.0 870060 36.4 114907 4.8 862098 36.1 0 0.00 2389686

3 Skaftafelljökull 7.1 2420 2044 0 0.0 0 0.0 237577 3.4 154871 2.2 233199 3.3 3528684 49.8 819307 11.6 2110658 29.8 2521 0.04 7086818

4 Svínafellsjökull 1.6 566 877 0 0.0 0 0.0 228231 14.1 18155 1.1 75034 4.6 1211262 74.7 77301 4.8 10581 0.7 0 0.00 1620564

5 Virkisjökull 1.2 827 1157 0 0.0 0 0.0 140826 11.9 3088 0.3 0 0.0 336390 28.4 98437 8.3 603721 51.1 0 0.00 1182463

6 Kotárjökull 0.5 404 587 0 0.0 99918 20.6 0 0.0 0 0.0 0 0.0 321017 66.1 25122 5.2 39893 8.2 0 0.00 485950

7 Hólárjökull 0.5 774 1258 70171 13.7 0 0.0 19702 3.8 0 0.0 0 0.0 176764 34.4 80554 15.7 166569 32.4 0 0.00 513760

8 Kvíárjökull 5.3 1199 1631 0 0.0 0 0.0 1009960 19.0 25342 0.5 172200 3.2 3135337 59.1 342038 6.4 624307 11.8 0 0.00 5309185

9 Hrútárjökull 2.3 1665 1950 319076 14.1 0 0.0 172327 7.6 10191 0.5 0 0.0 1059046 46.9 544421 24.1 152509 6.8 0 0.00 2257570

10 Fjallsjökull 7.3 1071 1601 0 0.0 0 0.0 203291 2.8 161030 2.2 2113291 29.0 3873712 53.1 434737 6.0 507985 7.0 0 0.00 7294046

11 Skálafellsjökull 9.5 3544 2121 0 0.0 5726805 60.3 220745 2.3 101078 1.1 112348 1.2 1709461 18.0 923917 9.7 708383 7.5 0 0.00 9502737

12 Heinabergsjökull 8.7 1810 3171 0 0.0 67878 1.3 186334 3.6 70993 1.4 1689050 32.6 2687400 51.9 30710 0.6 441328 8.5 0 0.00 5173693

13 Fláajökull 15.1 2562 2429 0 0.0 785263 5.2 236760 1.6 374913 2.5 1246571 8.2 7609144 50.3 1359487 9.0 3500009 23.1 13708 0.09 15125855

14 Hoffellsjökull 0.7 160 335 0 0.0 0 0.0 0 0.0 0 0.0 500736 72.8 186911 27.2 0 0.0 0 0.0 0 0.00 687647

TOTAL 389247 0.6 6936230 11.4 3157642 5.2 938563 1.5 6477302 10.7 27172926 44.8 5420769 8.9 10194605 16.8 16229 0.03 60703512

Rocky outcrop
Fresh proximal 

till deposits 

Deglaciated 

surface 

since the 

LIA (km²)

Computed 

average 

linear 

retreat (m)

Measured 

linear 

retreat (m)

ID Glacier
Alluvial fan Proglacial lake Moraine

Active intra-

morainic plain

Abandoned intra-

morainic plain
Embankment

Intra-morainic 

lake
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 848 

 849 

Table 3: Outwash responses to post-LIA glacial retreat 850 

 851 

ID Glacier name River name
Outwash 

Type*

Duration 

of  

aggradati

on stage 

(yr )

Post-LIA 

proximal 

incision (m.a-

1)

Post-LIA 

decrease of 

proximal 

slope (m.m
-

1
)

Average IP 

longitudinal 

migration 

(m.a
-1

)

Average IP 

altitudinal 

lowering 

(m.a
-1

)

Average 

IP downstre

am 

migration 

(m.a
-1

)

1 Sólheimajökull Jökulsá Type III 41 (±16) 0.047 (±0.002) 0,00057 na na na

2 Morsárjökull Morsá Type I 51 (±18) 0.045 (±0.006) 0,00584 28,7 0,44 28,68

3 Skaftafelljökull Skaftafellsá Type I na na 0,0206 26,5 0,32 26,47

4 Svínafellsjökull Svínafellsá Type I na na 0,0044 8,9 0,13 8,91

5 Virkisjökull Virkisá Type I 147 (±15) na 0,0157 5,2 0,19 5,21

6 Kotárjökull Kotá Type III na na 0,0177 na na na

7 Hólárjökull Holá Type I na 0 0 na na na

8 Kvíárjökull Kviá Type I 60 (±21) 0.076 (±0.004) 0,0122 6,6 0,20 6,57

9 Hrútárjökull

10 Fjallsjökull

11 Skálafellsjökull

12 Heinabergsjökull

13 Fláajökull Hólmsá Type I na na 0,0108 16,9 0,25 16,86

14 Hoffellsjökull Hoffellsá Type I 50 (± 20) 0.131 (±0.012) 0,0056 46,4 0,5 46,38

* After Maizels, 1993, 1997,   "na " for not applicable

na na 30,3 0,47

13,97

30,34

0.068 (±0.003) na 14,0 0,09Fjallsá Type I 79 (±25)

Kolgrimá Type I 5 (±14)
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Figure 1: Location of investigated glaciers and associated proglacial rivers  
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Figure 2: Methodological workflow: A - Field prospection and GIS mapping of proglacial and glaciofluvial 
landforms ; B - Lichenometric dating of outwash terraces ; C - Topographic survey: Cross section and long 
profile of active outwash and terraces ;  D - Method for the determination of the Inflection Point migration  
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Figure 3: Outwash terraces mapping and dating  
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Figure 4: Overview of aggrading and incising stages in the post-LIA outwash adjustment  
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Figure 5: Long profiles of dated outwash terraces (T1 to T4) and active outwash in 2007 (A)  
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Figure 6: A - Linear regression between average rates of altitudinal lowering and longitudinal migration of 
the inflection points. B - Linear regression between average rates of IP downstream migration and the 

proportion of proglacial lakes in the marginal area.  
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Figure 7: A - The dominant sequence of post-LIA fluvial adjustment: a two-stages descriptive model. B - LIA 
coalescent glaciers specific case, with stream capture and shift in the outwash location.  
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