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Solving Time Domain Audio Inverse Problems
using Nonnegative Tensor Factorization

Çağdaş Bilen, Alexey Ozerov, and Patrick Pérez

Abstract—Nonnegative matrix and tensor factorizations (NMF
and NTF) are important tools for modeling nonnegative data,
which gained increasing popularity in various fields, a significant
one of which is audio processing. However there are still many
problems in audio processing, for which the NMF (or NTF)
model has not been successfully utilized. In this work we propose
a new algorithm based on NMF (and NTF) in the short-time
Fourier domain for solving a large class of audio inverse problems
with missing or corrupted time domain samples. The proposed
approach overcomes the difficulty of employing a model in the
frequency domain to recover time domain samples with the
help of probabilistic modeling. Its performance is demonstrated
for the following applications: Audio declipping and declicking
(never solved with NMF/NTF modeling prior to this work);
Joint audio declipping/declicking and source separation (never
solved with NMF/NTF modeling or any other method prior
to this work); Compressive sampling recovery and compressive
sampling-based informed source separation (an extremely low
complexity encoding scheme that is possible with the proposed
approach and has never been proposed prior to this work).

I. INTRODUCTION

Nonnegative matrix factorization (NMF) [1] and nonneg-
ative tensor factorization (NTF) [2] decompositions have re-
cently found great success in applications to audio modeling,
notably for source separation [3]–[5], compression [6], [7],
music transcription [8], [9] and audio inpainting [10]–[12]. It
is now well-established in the audio signal processing commu-
nity that spectrograms of natural audio signals exhibit a low-
rank NMF (or NTF in case of multi-source signals) structure.
They are indeed composed of relatively few characteristic
spectral patterns modulated in time (e.g., harmonic combs) that
are well approximated by rank-1 nonnegative matrices/tensors.
Within all these applications the power-spectrograms of single-
channel or multichannel audio signals (usually powers of their
short-time Fourier transforms (STFT)) are decomposed using
NMF or NTF models.

However, these methods address quite poorly the situations
when some chunks or samples of audio signals are missing
in time domain, as for example in the situations of audio
declipping or declicking, as described in a general audio
inpainting paper [13]. Indeed, the NMF/NTF-based audio
inpainting methods [10]–[12] assume that the audio data is
missing directly in the corresponding time-frequency domain,
usually the STFT domain. This is in fact the most convenient
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situation since the modeling itself is formulated in the STFT
domain, and thus it becomes quite easy to take properly
into account the missing values. In the case of audio with
missing samples in the time domain, one can convert the
missing information into an STFT domain formulation by
simply assuming that all the STFT frames corresponding to
missing time samples are missing in entirety. However, this
will often lead to the loss of a huge amount of available
information. In the case of a clipped audio for example, every
STFT frame may be clipped, thus this naive solution would
lead to considering the whole signal to be missing, even though
there is perhaps only 20 % of the signal that is clipped
in the time domain. Another problem of NMF/NTF-based
audio inpainting methods [10]–[12] which consider fully-
missing STFT coefficients is that NMF/NTF models are phase-
invariant and thus they only allow estimating the magnitudes
of the missing coefficients. As a result, the phase information,
which is very important for audio perceptual quality, still needs
to be reconstructed somehow. A popular approach by Griffin
and Lim [14] is usually used for the phase reconstruction, but
it performs quite poorly in many situations. As an alternative,
a so-called high resolution NMF (HR-NMF) approach was
proposed [15], [16]. This approach extends the NMF to model
temporal dependencies between time-frequency bins, which
yields better phase estimates. However, for the moment this
approach is quite computationally expensive and it is limited
to harmonic sounds. At the same time, when some samples
are missing in the time domain and one manages to estimate
properly the phase-invariant NMF model and the missing
samples from these observations, the resulting phase estimates
should be better than those obtained via Griffin and Lim’s
approach [14], since missing samples in time domain does
not mean completely discarding the phase information in the
STFT domain.

In this work, we propose a new approach allowing the
estimation of lost time domain audio samples of audio sources
and/or their mixture via applying a low-rank NMF/NTF model
to latent power-spectrograms of the signals in the time fre-
quency domain. The proposed method uses Itakura Saito (IS)
divergence [4] for measuring how well the given NMF/NTF
model parameters estimate the signal variances while using all
the information available from all of the known time domain
samples from the sources and/or the mixture. The model
parameters are estimated using a generalized expectation-
maximization (GEM) algorithm [17] and Wiener filtering
[18] is used to recover the unknown signals. Unlike some
other approaches that directly apply NMF/NTF model on
the STFT coefficient magnitudes or powers, the proposed
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Fig. 1: The general framework of the proposed algorithm illustrating recovery of a mixture signal and its sources from a subset
of the quantized samples of the sources and/or the mixture. The top section displays the time domain signals and an illustration
of the generalized time domain audio inverse problem (recovering the sources from the measurements). The middle section
illustrates the framed time domain variables, and the setup of the framed-time domain audio inverse problem (recovering the
framed sources from the framed measurements). The middle section also illustrates a summary of the proposed algorithm steps.
The bottom section illustrates the final output of the algorithm in time domain.

approach is formulated as a probabilistic Gaussian model
on the complex-valued STFT coefficients. This enables us
to estimate the NMF/NTF model in a maximum likelihood
(ML) sense directly from the time domain observations, thus
avoiding sub-optimally converting this missing information
into the STFT domain. Furthermore, thanks to the flexibility
of the NMF/NTF representations, the proposed framework can
take into account mixtures of several sources, where both the
sources and the mixtures can be partially or fully-missing in
time domain. Last but not least, when the observed signals are

not only partially lost but also corrupted, such as by noise or
quantization, these corruptions can also be taken into account
in the proposed approach. Within this general formulation the
proposed framework is not limited to audio inpainting, but also
becomes useful for different new applications related to audio
compression, enhancement and source separation. This work
builds on several previous conference/workshop publications
[19]–[24] by the authors. Particular instances of the proposed
approach for some specific applications have been presented in
[19]–[21] and summarized in [22]. In this paper, we provide a
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generalized formulation that is highly flexible to be adapted to
various applications. We also present more comprehensive and
extended experimental results, notably new experiments on
compressive sampling recovery. The audio source separation
approach presented in [23] falls within this general formulation
as well, but it is not considered here for conciseness. Finally,
while we here formulate the framework in the case of single-
channel audio mixtures, its extension to the multichannel case
is straightforward, which has been demonstrated in [24] for
the declipping application.

More specifically, our general framework allowing recov-
ering audio sources from partially observed and possibly
quantized time domain audio samples of the sources and/or
their mixture is applied here to the following existing or new
applications:
• Time domain audio inpainting and audio declipping [13],

[19], [25]–[28], where the mixture consisting of just one
source is partially observed due to, e.g., clipping. This is
an existing application and we propose a new method to
solve it.

• Joint audio inpainting and source separation [20], where
the mixture consisting of several latent sources is partially
observed due to, e.g., clipping. The problem itself exists,
but to the best of our knowledge, it was never addressed
in a direct and systematic manner.

• Compressive sampling recovery [29], where the mixture
consisting of just one source is partially observed due to
a random sub-sampling. This is an existing application
and we propose a new method to solve it.

• Compressive sampling-based informed source separation
[21], where the mixture is observed and it consists of
several latent sources that are partially observed after a
random sub-sampling and quantization. This is a new
informed source separation [7], [30] scheme resulting in
an extremely fast encoder and a slow decoder.

The rest of this paper is organized as follows. The problem
is formally defined in Section II and the proposed algorithm
to solve it is described in Section III. Experiment results for
various applications are given in Section IV and lastly final
remarks and conclusions are presented in Section V. Readers
willing to understand better and in detail the applications,
before diving into the theoretical framework in Sections II
and III, are invited to go through Section IV first.

II. PROBLEM DEFINITION

Let us consider a single-channel1 mixture that is composed
of J sources, among which each of the sources and/or the mix-
ture might be fully, or partially observed and/or corrupted with
noise (e.g., quantization noise). For a mixture of length T , the
mixture samples, x′′t ,2 are measured at a subset Ξ′′ ⊂ J1, T K of
the entire time domain. Hence, the measured mixture samples

1For sake of simplicity, we only consider the single-channel case here. The
proposed algorithm in this paper can be readily extended to multichannel case
in a similar way as it is done in [24] for the declipping application.

2Throughout this paper the time domain signals will be denoted by letters
with two primes, e.g., x′′, the framed-time domain signals by letters with
one prime, e.g., x′, and complex-valued STFT coefficients by letters with no
prime, e.g., x.

can be represented in terms of unknown source samples,
s′′jt, j ∈ J1, JK, as

x′′t =

J∑
j=1

s′′jt + a′′t , ∀t ∈ Ξ′′, (1)

where a′′t represents the noise on the measurement sample
due to various effects such as quantization. Furthermore, the
individual sources may also be sampled at known subsets of
the support Ω′′j ⊂ J1, T K, j ∈ J1, JK to obtain measured source
samples, y′′jt, such that

y′′jt = s′′jt + b′′jt, ∀t ∈ Ω′′j ,∀j ∈ J1, JK (2)

where b′′jt represents the noise for samples of each source.
Lastly, for some problems such as declipping, we may also be
given a set of C constraints, Γ′′c (s′′), c ∈ J1, CK, where each
constraint, Γ′′c (s′′), is in one of the following forms:

s′′jctc ≥ γ
′′
c , s

′′
jctc ≤ γ

′′
c ,

J∑
j=1

s′′jtc ≥ γ
′′
c ,

J∑
j=1

s′′jtc ≤ γ
′′
c (3)

in all of which γ′′c is a known constant and tc and jc are known
time and source indices respectively.

Generalized Time Domain Audio Inverse Problem: Given
all of the above definitions, we define the generalized audio
inverse problem in time domain as that of recovering the
sources,

{
s′′jt
}
∀t,j (and hence their mixture), given the noisy

and incomplete measurements,
{
y′′jt
}
∀t∈Ω′′

j ,∀j
and {x′′t }∀t∈Ξ′′ ,

such that the constraints, {Γ′′c (s′′)}∀c, are satisfied.

III. PROPOSED APPROACH

A simple illustration of the known and unknown signals in
the generalized time domain audio inverse problem is shown
in the top section of the Figure 1, whereas the proposed
algorithm in this work to solve this problem is illustrated in
the middle section in the same figure. The individual steps
of the proposed approach are explained in detail through the
following subsections.

A. Redefining the Problem for a Frequency Domain Solution

The problem defined in Section II deals with constraints
and unknowns in time domain, and as a result solving it with
an approach that utilizes STFT domain constraints (such as
the NTF model that will be introduced in Section III-B) can
be computationally heavy and even intractable. To rectify this
issue, we will introduce the framed-time domain and STFT
domain notations, using which, we will define a modified
problem that is much easier to handle.

The framed-time domain (or sometimes called windowed-
time domain) is the representation of the time domain sig-
nal after it is split into (often overlapping) frames of fixed
length, F , and multiplied by a fixed windowing function.
Assuming that the total number of frames is N , the notations
x′fn, y

′
jfn, s

′
jfn, a

′
fn, b

′
jfn,Ξ

′
n ⊂ J1, F K,Ω′jn ⊂ J1, F K repre-

sent the framed-time domain counterparts of the time domain
notations defined in Section II for the source j ∈ J1, JK, the
intra-frame index f ∈ J1, F K within the frame n ∈ J1, NK.
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The relationships between the framed-time domain variables
are similar to that of the time domain counterparts such that3

x′fn =

J∑
j=1

s′jfn + a′fn, ∀f ∈ Ξ′n,∀n (4)

y′jfn = s′jfn + b′jfn, ∀f ∈ Ω′jn, ∀j, n (5)

We represent the STFT coefficients of the source signals
simply by {sjfn}∀j,f,n. Note that, the STFT coefficients are
simply the Fourier transforms of the framed-time domain
signals, such that sjn = [sjfn]∀f = Us′jn ∀j, n, where
s′jn , [s′jfn]∀f and U is the normalized Fourier transform
matrix satisfying UUH = UHU = I.4

We now define a modified version of the initial problem
using the framed-time domain variables and constraints, all
of which can easily be computed from the time domain
counterparts. This new definition of the problem has more
relaxed conditions from the original problem in the sense that
the problem is moved to a larger over-complete domain, and
the correlation between the information within different frames
is no longer defined. In the rest of this paper, we shall focus
on solving this relaxed problem rather than the initial one.

Framed-Time Domain Audio Inverse Problem: We define
our problem as that of recovering the sources in framed-
time domain, {s′jfn}∀j,f,n (or equivalently in STFT domain
{sjfn}∀j,f,n since they are related with a unitary transform)
given the noisy and incomplete framed-time measurements,
{y′jfn}∀f∈Ω′

jn,∀j,n and {x′fn}∀f∈Ξ′
n,∀n, such that the con-

straints, {Γ′c(s′)}∀c, are satisfied.

B. Applying NTF Model estimated via a GEM Algorithm

In order to make the problem described in Section III-A
easier to solve, we make a number of assumptions:

Assumption 1. The noise is independently Gaussian dis-
tributed with known variance: The noise time samples for the
observations, {a′jfn}∀j,f,n and {b′fn}∀f,n, are independently
distributed with zero mean Gaussian with known variances,
{σ2

a,jfn}∀j,f,n and {σ2
b,fn}∀f,n respectively, i.e.

a′jfn ∼ Nc(0, σ
2
a,jfn), b′fn ∼ Nc(0, σ

2
b,fn), ∀j, f, n. (6)

Assumption 2. The sources are independently Gaussian
distributed: Similarly, the unknown STFT coefficients of
the sources, {sjfn}∀j,f,n, are also independently distributed
with zero mean complex valued Gaussian with variance
{vjfn}∀j,f,n, i.e.

sjfn ∼ Nc(0, vjfn), ∀j, f, n. (7)

Even though it is known that the noise in practice (such as
quantization noise) is not always Gaussian, modeling the noise
as Gaussian is still known to be a good enough approximation
that provides significant computational advantage. Similarly

3From this point on, we shall use simply ∀n to denote ∀n ∈ J1, NK, ∀f to
denote ∀f ∈ J1, F K and ∀j to denote ∀j ∈ J1, JK, unless a subset of these
sets is specified, e.g. Ξ′

n.
4xT and xH represent the non-conjugate transpose and the conjugate

transpose of the vector (or matrix) x respectively.

the assumption of Gaussian distribution for the sources is also
very common in audio community and accepted as a good
approximation. It is noted when dealing with non-stationary
signals that the assumption of gaussianity in the sources often
results in very little loss in the source separation performance
with the added benefit of much lower computational require-
ments [31]. Without further assumptions the variances vjfn
in (7) would be difficult to estimate, since there are as many
parameters (variances) as the observations. Hence in this work
we will also assume that the variances vjfn are structured via
a low-rank nonnegative tensor.

Assumption 3. Variances of the sources form a low rank
NTF structure: The tensor of source variances, [vjfn]j,f,n, is
represented as the sum of few rank-1 nonnegative tensors, i.e.

vjfn =

K∑
k=1

qjkwfkhnk, ∀j, f, n (8)

with number of components, K, sufficiently small. This so-
called PARAFAC/CANDECOMP [32] NTF model can be
parametrized by θ = {Q,W,H}, such that Q = [qjk]j,k ∈
RJ×K

+ , W = [wfk]f,k ∈ RF×K
+ and H = [hnk]n,k ∈ RN×K

+ .

The assumption of a low rank NTF structure on the joint
variances of audio sources is well known in the audio source
separation community and it is shown to be an accurate model
for audio signals in practice [7], [30], [33]. Please note that
when the signal is treated as a single source (i.e. without source
separation and J = 1), the tensor of source variances reduces
to a matrix and the decomposition is simply a low-rank NMF
representation.

We can define the observed mixture vector at frame n, x′n,
and the observed source vector at frame n for source j, y′jn,
as

x′n ,
[
x′fn

]
∀f∈Ξ′

n

∈ R|Ξ
′
n|×1, (9)

y′jn ,
[
y′jfn

]
∀f∈Ω′

jn

∈ R|Ω
′
jn|×1. (10)

Hence for each frame we can define the observed data vector,
o′n, and each unknown source vector, s′jn, as

o′n ,
[
y′1n

T
, · · · ,y′Jn

T
,x′n

T
]T
. (11)

Given the three assumptions above, we propose estimating the
NTF model θ in the ML sense as

θ = arg max
θ′

p({o′n}∀n |θ
′). (12)

To achieve that we employ a GEM algorithm [17], while
considering as latent data the totality of in general missing
source STFT coefficients S = [sjfn]∀j,f,n. The algorithm
iteratively alternates between an expectation step (E-step)
for estimating the posterior power spectra of the signal and
a maximization step (M-step) for updating the NTF model
parameters. These two main steps can be summarized as
follows:

• E-step: Estimate conditional expectations of source
power spectra |sjfn|2, given the current model θ and the
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observations:

p̂jfn = E
[
|sjfn|2

∣∣o′n;θ
]
, ∀j, f, n. (13)

• M-step: Re-estimate NTF model parameters such that
the 3-valence tensor of the NTF model approximation,
V = [vjfn]∀j,f,n, is as close to the 3-valence tensor
of estimated source power spectra, P̂ = [p̂jfn]∀j,f,n, as
possible with respect to the IS divergence [4]

DIS(P̂‖V) =
∑
∀j,f,n

dIS(p̂jfn‖vjfn), (14)

where dIS(x‖y) = x/y − log(x/y) − 1, and p̂jfn and
vjfn are as specified respectively by (13) and (8).

The details of the E-step and the M-step are given in Sec-
tions III-C and III-D. In certain problems additional steps
might also be required to satisfy certain constraints for the
time domain signal or the NTF model parameters. It is
described in Section III-E how these additional constraints
can be handled by the proposed algorithm. A summary of
the overall algorithm is given in Algorithm 1.

C. E-Step: Estimating Posterior Statistics
Following our assumptions of independently Gaussian dis-

tributed signals, we can write the posterior distribution of each
source frame sjn given the corresponding observed data o′n
and the NTF model θ (or equivalently V = [vjfn]∀j,f,n with
vjfn defined in (8)) as sjn|o′n;θ ∼ Nc(ŝjn, Σ̂sjnsjn) with ŝjn
and Σ̂sjnsjn being, respectively, posterior mean and posterior
covariance matrix of the STFT coefficients, sjn. These terms
can be computed respectively by Wiener filtering as [18]

ŝjn = ΣH
o′
nsjnΣ−1o′

no′
n
o′n, (15)

Σ̂sjnsjn = Σsjnsjn −ΣH
o′
nsjnΣ−1o′

no′
n
Σo′

nsjn , (16)

given the definitions of the covariance matrices

Σo′
no′

n
=


Σy′

1ny′
1n

. . . 0 ΣH
x′
ny′

1n

...
. . .

...
...

0 . . . Σy′
Jny′

Jn
ΣH

x′
ny′

Jn

Σx′
ny′

1n
. . . Σx′

ny′
Jn

Σx′
nx′

n

 , (17)

Σo′
nsjn =

[
0T
L1,jn×F ,Σ

T
y′
jnsjn ,0

T
L2,jn×F ,Σ

T
x′
nsjn

]T
, (18)

Σy′
jny′

jn
= U(Ω′jn)Hdiag

(
[vjfn]∀f

)
U(Ω′jn)

+ diag
([
σ2
b,jfn

]
∀f∈Ω′

jn

)
, (19)

Σx′
nx′

n
= U(Ξ′n)Hdiag

([∑
∀j
vjfn

]
∀f

)
U(Ξ′n)

+ diag
([
σ2
a,fn

]
∀f∈Ξ′

n

)
, (20)

Σx′
ny′

jn
= U(Ξ′n)Hdiag

(
[vjfn]∀f

)
U(Ω′jn), (21)

Σy′
jnsjn = U(Ω′jn)Hdiag

(
[vjfn]∀f

)
, (22)

Σx′
nsjn = U(Ξ′n)Hdiag

(
[vjfn]∀f

)
, (23)

Σsjnsjn = diag
(

[vjfn]∀f

)
, (24)

where U(Ω′jn) is the F × |Ω′jn| matrix of columns from
U with index in Ω′jn and L1,jn ,

∑j−1
l=1 |Ω

′
ln|, L2,jn ,∑J

l=j+1 |Ω
′
ln|. The term diag(x) represents a diagonal matrix

with the vector x along the diagonal.
Finally, the posterior power spectra, P̂ = [p̂jfn]∀j,f,n can

be computed as

p̂jfn = E
[
|sjfn|2

∣∣o′n;θ
]

= |ŝjfn|2 + Σ̂sjnsjn(f, f). (25)

D. M-step: Updating NTF Model Parameters

Estimating NTF model θ in the ML sense is proven [4]
equivalent to minimizing the IS divergence DIS(P̂‖V) as
defined in (14) between the tensor of variances, V, and the
given posterior power spectra tensor, P̂.

A common optimization approach to estimate the model
parameters, θ, that minimizes (14) is using multiplicative up-
dates (MU) as described in [4]. In our case, starting from some
initial nonnegative model parameters, the model parameters
that minimize (14) can be found by applying several iterations
of the following updates

qjk ← qjk

(∑
f,n wfkhnkp̂jfnv

−2
jfn∑

f,n wfkhnkv
−1
jfn

)
, (26)

wfk ← wfk

(∑
n,j qjkhnkp̂jfnv

−2
jfn∑

n,j hnkqjkv
−1
jfn

)
, (27)

hnk ← hnk

(∑
f,j qjkwfkp̂jfnv

−2
jfn∑

f,j wfkqjkv
−1
jfn

)
. (28)

In the beginning of the proposed GEM algorithm, the model
parameters can be initialized randomly with nonnegative val-
ues. In the following iterations however, the update of the
model parameters can be always applied starting from the
current model parameters (instead of randomly initializing
them before MU iterations each time P̂ is updated).

E. Applying Additional Constraints

In many practical audio inverse problems, there may be
additional knowledge on the signal to be estimated apart
from the observed samples. We shall consider mainly two
complementary types of knowledge on the signal to be treated,
which provide:

i Constraints on NTF model parameters, such as some char-
acteristic spectral patterns being active, some frequency or
time bins being silent, or simply the frequency response
being symmetric (time domain signal being real valued);

ii Constraints on framed-time domain samples, such as the
constraints, {Γ′c(s′)}∀c, that were defined earlier.

The additional constraints on the model parameters, θ, are
often easy to incorporate during the MU iterations or simply
initializing them in a specific way. For instance, the symmetry
in frequency (hence being real valued in time) can be enforced
if the matrix W is updated to be always symmetrical along the
frequency axis. Similarly if some of the characteristic spectral
patterns are known a priori to be present in the sources, W
can be initialized with a specific dictionary and then may
never be updated to enforce using only these patterns. Another
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example is, when certain entries of the matrices W,H and Q
are known to be zero, they can be simply initialized to be
zero and these zero values will be automatically enforced in
the following MU iterations. Lastly, in certain applications,
it is even possible to change the model to enforce additional
structures on the matrices W,H and Q, such as sparsity by
small modifications on the MU equations [34].

Dealing with constraints on framed-time domain samples,
unlike the constrains on the model parameters, is not straight-
forward. When a framed-time domain sample is known to
be clipped or quantized, the original value of this sample
is known to be above (below) a certain threshold or to lay
within a certain interval, and the resulting posterior probability
distribution of the sample is no longer Gaussian. As a result,
estimating the posterior power spectrum with this modified
probability distribution is not as simple as described in Sec-
tion III-C. To overcome this problem, we propose to estimate
the posterior power spectrum by computing the posterior
mean, ŝjn and the posterior covariance, Σ̂sjnsjn , as described
in Section III-C, but then projecting them so as to satisfy the
time domain constraints to obtain modified statistics, s̃jn and
Σ̃sjnsjn respectively. As a result, the modified posterior power
spectrum (to be used as the input for the NTF model update
in M-step) is obtained as

p̃jfn = |s̃jfn|2 + Σ̃sjnsjn(f, f). (29)

We define several approaches to compute the aforementioned
modified statistics to satisfy the constraints in framed-time
domain samples:

1) Unconstrained: The simplest way to perform the esti-
mation is to ignore completely the constraints, treating
the problem as a more generic audio inpainting in time
domain. Hence during the iterations, the “constrained”
signal is taken simply as the estimated signal, i.e.
s̃jn = ŝjn,∀n, j, as is the posterior covariance matrix,
Σ̃sjnsjn = Σ̂sjnsjn ,∀n, j.

2) Ignored projection: Another simple way to proceed is
to ignore the constraint during the iterative estimation
process and to enforce it at the end as a post-processing
of the estimated signal. In this case, the signal is treated
the same way as in the unconstrained case during the
iterations.

3) Signal projection: A more advanced approach is to
update the estimated signal at each iteration so that the
magnitude obeys the constraints. As an example, let us
suppose we have a constraint in the form s′jcfcnc

≥ γ′c
and it is not satisfied by the estimated posterior mean,
i.e. ŝ′jcfcnc

< γ′c. We can simply set s̃′jcfcnc
= γ′c and

s̃′jfn = ŝ′jfn for the rest of the support (and s̃jn = Us̃′jn).
Formally we can define,

{s̃′jfn}∀j,f,n = argmin
{z′

jfn}∀j,f,n

∑
∀j,f,n

|z′jfn − ŝ′jfn|2

s.t. {Γ′c(z′)}∀c (30)

Note that this approach does not update the posterior
covariance matrix, i.e. Σ̃sjnsjn = Σ̂sjnsjn ,∀n, j.

4) Covariance projection: In order to update the posterior

Algorithm 1 GEM algorithm for solving Time Domain Audio
Inverse Problems with NTF model

1: procedure RESTORE-AUDIO-WNTF
2: Initialize nonnegative θ = {W,H,Q} randomly
3: repeat
4: E-step : Estimate ŝjn, Σ̂sjnsjn ,∀n, j, given θ, o′jn

∀n, j . see § III-C
5: Time domain constraints : Estimate s̃jn, Σ̃sjnsjn ,

∀n, j and P̃ given {Γ′c}∀c . see § III-E
6: M-step : Update θ given P̃ . see § III-D, § III-E
7: until convergence criteria met
8: end procedure

mean and the posterior covariance matrix in a consistent
manner, we can re-compute the posterior mean and the
posterior covariance by (15) and (16) respectively, by
treating the projected signal samples in (30) at the support
Ω′m,jn , {f |s̃′jfn 6= ŝ′jfn} as observed values for the
current iteration. If the resulting estimation of the sources
violates the time domain constraints on additional indices,
those samples are also projected to obey the constraints
and treated as observed. This process is repeated until a
posterior mean, s̃jn, and a posterior covariance, Σ̃sjnsjn ,
that are consistent with all the time domain constraints,
are obtained. Note that in addition to updating the pos-
terior covariance matrix, this approach also updates the
entire posterior mean (or estimated signal) and not just
the posterior mean at the indices of violated constraints.

IV. IMPORTANT APPLICATIONS AND EXPERIMENTAL
RESULTS

The proposed algorithm is adapted to solve a number of
audio inverse problems, some of which are explored for the
first time in this work. For each of these problems, we
performed a set of experiments on various audio examples
and compared the performance to that of known state of the
art algorithms when applicable.

In the experiments below, all the audio signals are sampled
at 16 kHz, and the STFT within the various instances of the
proposed algorithm is computed using a half-overlapping sine
window of 1024 samples (64 ms).

A. Time Domain Audio Inpainting and Audio Declipping

The problem of recovering audio samples that are lost or
corrupted is often called audio inpainting [13]. We use the term
“time domain audio inpainting” to refer to the problems with
missing or corrupted time domain audio samples as opposed
to the audio inpainting problems with missing samples in the
STFT domain, for which NMF/NTF models are already being
used prominently [10]–[12]. We still prefer to differentiate
these problems from “audio interpolation” since the missing
samples might sometimes arrive in large gaps instead of being
distributed over time, and sometimes we might even encounter
time domain samples missing in conjunction with missing
STFT coefficients as can be encountered with audio editing
applications. Two specific instances of the time domain audio
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inpainting problem are called audio declipping and audio
declicking [13], in which one recovers the time domain audio
samples that are lost due to clipping and clicking effects
caused by audio recording and compression processes. The
declipping problem in particular provides additional challenges
with respect to the general time domain audio inpainting
problem, because it often includes additional constraints for
the time domain signal to be estimated. In the recent years,
the models based on sparse, cosparse or group-sparse represen-
tations in certain dictionaries are shown to be performing best
to solve these problems [13], [25]–[28]. Clipping and inter-
polation from a Bayesian perspective has been also addressed
earlier [35]–[38], mostly relying on autoregressive modeling.
Though recent approaches [13], [25]–[28] have been shown
performing better than (or on par with) them (see, e.g., [13],
[25]). Despite the success of modeling audio signals with low
rank NMF representations, the time domain audio inpainting
problem, especially with the additional constraints as in audio
declipping, is not trivial to solve with an NMF/NTF model in
the time-frequency domain. This is possibly the main reason
why these models have not been utilized in time domain audio
inpainting problems successfully. The proposed approach can
overcome this limitation and provides a new perspective on
time domain audio signal recovery with equivalent or better
performance than the state of the art.

In our experiments with the audio declipping problem, we
consider an audio signal with no known source information
(as such it is modeled as a single source, J = 1) that is
clipped to a known threshold of magnitude τ > 0. Thus the
signal is accurately known for a subset of the support, Ξ′′,
where signal magnitude is smaller than τ . For the remaining
support, Ξ̄

′′
= J1, T K \ Ξ′′, the signal is unknown but obeys

the time domain constraints of the form,

s′′tc ≥ τ, for x′′c,tc > 0
s′′tc ≤ −τ, for x′′c,tc < 0

, ∀tc ∈ Ξ̄
′′
. (31)

where x′′c,tc is the clipped signal. We also assume that there
is no observation noise, i.e., σ2

a,fn = σ2
b,jfn = 0, ∀j, f, n, in

(6).
In [28], various state of the art audio declipping algorithms

are compared based on the experiments performed on music
and speech examples. We have repeated these experiments
using our approach with the same methodology and the
datasets as reported in [28] and provided an overall comparison
of our algorithm to the other approaches. The experiment
procedure can be summarized as follows; 10 music and 10
speech signals, each of length of 4 seconds, are scaled to have
maximum magnitude of 1 in time domain, and then artificially
clipped at eight different clipping thresholds (uniformly spaced
from 0.2 to 0.9). The proposed algorithm is tested with
four different methods to handle the clipping constraints as
described in Section III-E, namely Unconstrained (NMF-U),
Ignored Projection (NMF-IP), Signal Projection (NMF-SP)
and Covariance Projection (NMF-CP). The music signals are
declipped with 20 NMF components (K = 20), while 28 com-
ponents are used for speech signals (K = 28). The proposed
GEM algorithm is run for 50 iterations. The performance
of the proposed algorithm is compared to five state of the

art methods: iterative hard-thresholding (HT) [25], cosparsity
(Cosp) [27], orthogonal matching pursuit (OMP) [13], social
sparsity with empirical Wiener operator (SS-EW) and social
sparsity with posterior empirical Wiener operator (SS-PEW)
[28].

The performance metric that is used to compare the al-
gorithms is the improvement of the signal to noise ratio
(computed only on the clipped regions) with respect to the
clipped signal, SNRm, that is computed as [28]:

SNRm = 10 log10

∑
∀t∈Ξ̄′′ |x′′o,t|2∑

∀t∈Ξ̄′′ |x′′o,t − x′′e,t|2
, (32)

where x′′o,t is the original time domain signal sample and
x′′e,t is the estimated signal sample. Finally, the performance
is measured in terms of the SNRm improvement, which is
the difference between the SNRm computed on the estimated
signal and the SNRm computed on the clipped signal.

The average performance of all the algorithms for declip-
ping of music and speech signals is represented on Figure 2.
It can be seen from the overall results that the proposed al-
gorithm with the covariance projection (NMF-CP) has almost
identical performance with the social sparsity based methods
(SS-EW and SS-PEW) proposed in [28] while outperforming
others. It can be also seen in the results that the model based
algorithms (social sparsity and the NMF model) significantly
outperform the methods relying on just sparsity (OMP and
HT) or on just cosparsity (Cosp).

Regarding the effect of clipping constraints, the first thing
to notice is that the performance of NMF-U with respect
to NMF-IP (and NMF-SP) shows that simple constraints on
the signal magnitude can noticeably improve the performance
especially for music signals, hence they should not be ignored
when possible. NMF-IP and NMF-SP are shown to have
almost identical performance, even though the latter applies
the constraints on the posterior mean of the signal at every
iteration and the former simply applies a post processing to
the final result. This observation combined with the superior
performance of NMF-CP compared to the other methods
demonstrates the importance of updating the posterior power
spectrum more accurately for the success of the NMF-based
methods.

Even though the performance is not better than the social
sparsity approaches at first glance, the proposed algorithm has
room for improvements in various aspects:

• NMF model can be easily extended to other, more
structured NMF-like models such as source-excitation
model or harmonic NMF [31]. As shown in [31] in
case of source separation, having a specific model with
structure that is well adapted to the considered class of
signals (e.g., speech, music, etc.) may improve the overall
performance.

• It is shown in the results that the performance of our
method depends significantly one the way the clipping
constraint is handled. Therefore an alternative, more
accurate computation of the posterior power spectrum
might also improve the results further, whereas in dic-
tionary based methods there is no approximation for the
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(a) Average SNRm improvement computed over 10 music signals.

Speech @ 16 kHz
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(b) Average SNRm improvement computed over 10 speech signals.

Fig. 2: The average performance of all the audio declipping algorithms as a function of the clipping threshold (lower threshold
corresponds to more severe clipping).

clipping constraints, hence performance improvement in
this regard is not possible.

It should be noted that dealing with time domain constraints
while enforcing a model on the STFT domain comes at a com-
putational cost in the Wiener filtering stage of the proposed
algorithm. Luckily, this step is independent for each frame
of the signal and hence can be easily parallelized, e.g., using
graphical processing units (GPUs), to get a significant speed-
up. On the other hand, estimating the signal independently
within each window comes with the disadvantage that the
estimation is not possible when there are no observed samples
within a window. In practice, however, the loss of an entire
window due to clipping is not probable for natural audio
signals when the window size is chosen properly and the
clipping threshold is not extremely low.

B. Joint Audio Inpainting and Source Separation

The audio source separation is a well known problem for
which the NMF/NTF modeling in the time-frequency domain
is shown to be quite successful [3]–[5]. However in all source
separation problems, the audio mixture is assumed to be
known perfectly whereas in practice the mixture can also have
missing or corrupted (due to noise or quantization) samples in
time domain. This joint problem naturally arises when one
would like to perform source separation on a mixture that is
degraded due to clipping effects or other degradations. This
problem can also often arise in audio editing applications
where some part of the audio is intentionally removed to
suppress unwanted artefacts. Additionally one can also con-
sider the case when source separation is not really needed,
but a multi-source model is still employed to improve the
performance of audio inpainting when dealing with mixtures
of different sources.

A source separation problem with an incomplete and/or
corrupted mixture is in fact a new problem that we introduce
and address in this work, which, to our best knowledge,
has not been properly solved by any of the existing source
separation approaches in the literature, except a naive way:
sequentially performing audio inpainting followed by source

separation on the reconstructed mixture. The latter sequential
approach can be quite suboptimal since neither of these two
tasks use all of the information efficiently. The problem of
jointly performing the two tasks is for the first time addressed
by our proposed approach, which can recover the signal in a
way that is more consistent with the multiple source nature
of the corrupted mixture while simultaneously estimating the
individual sources.

The global setup of our modeling to handle joint audio
declipping and source separation is the same as the one
for declipping in Section IV-A, except that J > 1 sources
are considered instead of just one. In order to assess the
performance of declipping and source separation using the
proposed algorithm, 5 different music mixtures5, each com-
posed of 3 sources (bass, drums and vocals), are considered
under 3 different clipping conditions. For each mixture with a
maximum magnitude of 1 in time domain, 3 clipping levels at
the thresholds of 0.2 (heavy clipping), 0.5 (moderate clipping)
and 0.8 (light clipping) are considered, resulting in a total
of 15 mixtures with different clipping levels. Each mixture
is reconstructed by joint declipping and source separation,
sequential declipping and source separation and only source
separation ignoring the clipping artefacts. The proposed GEM
algorithm (run for 100 iterations) has been used for all the
reconstructions6 with K = 15 components. Inline with [33]
and so as to inject some information about the sources to be
separated, the sources in the mixtures are artificially silenced
during a percentage of the total time, and the corresponding
indices in H are set to zero so as to inject this information
into the modeling. An example of the activation periods of
the sources and corresponding indices set to zero in H during
NTF model estimation are shown in Figure 3. Similarly Q is
simply chosen as a J × K matrix with a single 1 on each
column and zeros everywhere else, to describe the assignment

5The mixtures are taken from the “professionally produced music record-
ings” task dataset of SiSEC 2015 source separation evaluation campaign
(https://sisec.inria.fr/sisec-2015/).

6For declipping only, the algorithm is used with a single source (as in
Sec. IV-A), and for source separation only, the algorithm is used with the
observed support set being the entire time axis.
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Fig. 3: Depiction of the experiment set-up for the injection
of information on different source characteristics. The infor-
mation on the known silent time durations of each source
(represented in different colors) is directly utilized by setting
the corresponding coefficients in H to 0. Note that the matrices
H and W are formed by concatenating the Hs for each source
and W s for each source (depicted above) along the component
dimension respectively.

of the components to the sources.
It should be noted that, the sequential reconstruction as well

as performing only the source separation in this experiment
could also have been performed with other existing methods
from the literature. However, we have opted for using the
same algorithm for each recovery scenario so as to clearly
observe the difference due to jointly treating the two problems,
rather than other differences in the reconstruction algorithms.
Furthermore, as it is demonstrated that the performance of
our algorithm for declipping is on par with the state of the art
algorithms in Section IV-A, we find this comparison still very
relevant.

The results of the simulations can be seen in Figure 4. Signal
to noise ratio on the clipped support (SNRm) computed as
in (32) for the declipped mixture is shown to demonstrate
the declipping performance while signal to distortion ratio
(SDR) as described in [39] is shown to demonstrate the source
separation performance.

The results in Figure 4 show that when the clipping is
severe, joint approach is almost always preferable since it
provides improvement on both the quality of the mixture
and the quality of the separated sources with respect to
source separation without declipping. This is as opposed to
the sequential approach which provides comparable quality
improvement in the mixture at the expense of the performance
in source separation. In fact, for heavy clipping the declipping
in sequential approach often reduced the performance of
source separation noticeably with respect to separation without
declipping. As the clipping gets lighter, the performance of
sequential method approaches to that of joint method, and
finally performs slightly better for light clipping. The joint
optimization, however, still has few drawbacks which could be
improved upon. The declipping in the sequential approach is
performed with K = 15 components without any restrictions
whereas the joint optimization is performed with the additional

limitation that each source uses 5 components independently.
Hence it is not possible that two sources share a common
component in the joint optimization. This can be overcome
by devising better methods to inject the prior information
regarding the sources, see, e.g., [23]. It should be also noted
that the sequential optimization is approximately twice as fast
as joint optimization due to handling much less complicated
problems in either steps of the sequential processing. The
fact that the Wiener filtering stage is independent for each
window and can be parallelized to provide significant speed
improvements, can be helpful to overcome this problem in the
future.

C. Compressive Sampling Recovery

Compressive sampling [29] is the theory and application of
(often) randomly subsampling a signal that is known to be
compressible (e.g., with sparse or low rank representations)
in an incoherent domain and making sense of the random
samples by using the prior information of compressibility. As
our algorithm is well fitted for time domain audio inverse
problems, the reconstruction of the randomly sampled audio
signals is another field of application for which it can be
useful. Even though all the model-based signal estimations
rely on compressibility of signals, the differentiating factor of
compressive sampling comes from the fact that the compact
representation of the signal is in an incoherent (in layman
terms, very different or opposite) domain to the sampling
domain. As an example, frequency domain and time domain
are two domains which are maximally incoherent, i.e., an
impulse (maximally compact) signal in one is a uniform
energy (maximally distributed) signal in the other.

Looking from the compressive sampling perspective, the
compressible characteristics of the audio signals exploited
by our algorithm are two fold: i) the significant reduction
of the probability space of the possible solutions given the
known samples, through the maximum likelihood estimate ii)
the further reduction of the possible solutions through the
low rank modeling of the NMF/NTF representation in the
STFT domain. This application can in fact be seen as another
instance of audio inpainting, however we have investigated it
separately as the random subsampling changes the characteris-
tic of the problem with respect to the other more typical audio
inpainting problems such as audio declipping. It must be also
noted that, this application is more than mere interpolation
from irregular samples, as the reconstruction model enforces
dimensionality reduction in an incoherent domain, fitting well
into the compressive sensing paradigm.

In order to demonstrate the ability of the proposed ap-
proach to reconstruct randomly subsampled signals, we have
randomly subsampled a typical music signal of 4 seconds
at different average rates (percentage of retained samples at
2, 4, 8, 16, 32), and then reconstructed with our algorithm in a
similar fashion to the experiments in Section IV-A, but without
any clipping constraints (hence J = 1 and σ2

a,fn = σ2
b,jfn =

0, ∀j, f, n). The reconstruction is performed with different
number of components (K = 2, 8, 24, 32, 48, 72) in order to
observe the sensitivity of the results to the parameter K. In
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(a) Declipping performance for clipping level 0.2.
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(b) Source separation performance for clipping level 0.2.
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(c) Declipping performance for clipping level 0.5.
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(d) Source separation performance for clipping level 0.5.
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(e) Declipping performance for clipping level 0.8.
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(f) Source separation performance for clipping level 0.8.

Fig. 4: The declipping and source separation performance of joint optimization compared to sequential.

order to provide a reference for the reconstruction capability
of our algorithm, the results with shape preserving piecewise
cubic interpolation are also provided7.

The reconstruction results can be observed in Figure 5. The
first thing to notice is that the reconstruction results with the
proposed algorithm (solid lines) are significantly better than
the results with simple interpolation (dashed lines) as expected.
Another noticeable behaviour in the results is that once the
number of components, K, is sufficiently large, the recon-
struction performance does not seem to suffer. This behaviour
is unlike what we have observed for other problems such as
declipping, for which the choice of number of components is
an important factor for obtaining best performance. Looking
more closely to the estimated NMF components, we have seen
that the maximum likelihood estimate combined with random
sampling already provided a strong prior for signal estimation
and the benefit from low rank model was minimal in this

7For the interpolation, the interp1() function of Matlab 2016a is used with
phcip method, which gave the best results among the available interpolation
methods.

case. Hence, as long as the number of components are chosen
sufficiently large, the accuracy of estimated variances, V, are
effectively independent of K.

D. Compressive sampling-based informed source separation

Informed source separation (ISS) [7], [30] is a variant
of source separation that is in fact a source compression
problem assuming that the mixture is known. The ISS problem
can be defined as the problem of encoding multiple audio
sources to create a bitstream (also called a side-information)
so that the audio from the sources can be recovered given the
bitstream and the mixture of the sources. The main difference
of ISS from joint compression of multiple audio signals is the
assumption that the mixture is available at both encoding and
decoding stages. Several ISS methods were proposed [7], [30],
[40] including those based on the NTF modeling [7], [30].
In all these approaches the encoding stage is usually more
complex and computationally expensive than the decoding
stage. The framework proposed in this work can be used
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Fig. 5: The reconstruction performance measured in terms of
SNRm of a 4s long music signal from its random samples.
The reconstruction results with our proposed algorithm (solid
lines) are shown for different percentage of samples and
different number of components, K, used in our approach. The
results with shape preserving piecewise cubic interpolation are
also shown for comparison (dashed lines), with the colors
indicating corresponding percentage of samples.

to realize a new variant of ISS, where the computational
complexity is moved from the encoder to the decoder side. To
our best knowledge, this is another application that is realized
for the first time with our proposed algorithm. This feat is
accomplished by reducing the encoder to simply subsampling
the sources in a random and independent fashion and quan-
tizing the samples. The proposed algorithm can then be used
to recover the sources at the decoder side given the encoded
samples and the mixture, similar to the case of compressive
sampling recovery (in fact this can be seen as more practical
use of compressive sampling recovery in audio). This new
approach, which we call compressive sampling-based ISS
(CS-ISS), is inline with both the compressive sampling [29]
paradigm, since the sampling is random and in a sufficiently
incoherent domain, and with the distributed source/video cod-
ing [41], [42], since the posterior source dependencies (the
sources are highly correlated a posteriori given the mixture)
and the source structure are exploited only at the decoding
stage, thus allowing the complexity shift. The CS-ISS also
allows independent structures between the encoder and the
decoder, i.e., the decoder algorithm can be modified without
the need to change the encoder and the encoded bitstream.
More precisely, by that we mean that given a bitstream a
totally different source recovery algorithm (e.g., based on
social sparsity) may be developed and applied for decoding.

A summary of our CS-ISS scheme is shown in Figure 6. In
order to assess the performance of our approach, three (J = 3)
11-second long sources of a music recording are encoded and
then decoded using the proposed CS-ISS with different levels
of quantization (16 bits, 11 bits, 6 bits and 1 bit) and different
raw sampling bitrates8 per source (0.64, 1.28, 2.56, 5.12 and
10.24 kbps/source). Since uniform quantization is used, the
noise variance in time domain is σ2 = ∆2/12 where ∆ is the
quantization step size. Hence σ2

b,jfn = ω2
f∆2/12, where ω2

f

8The raw sampling bitrate is defined as the bitrate before the entropy
encoding step.
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Fig. 6: The encoding and decoding processes for the compres-
sive sensing-based informed source separation.

are the framing (or STFT) window coefficients. The mixture
is available in entirety at the decoder, therefore the noise
variance of the mixture is zero (σ2

a,fn = 0). It is assumed
that the random sampling pattern is pre-defined and known
during both encoding and decoding. The quantized samples
are truncated and compressed using an arithmetic encoder with
a zero mean Gaussian distribution assumption. At the decoder
side, following the arithmetic decoder, the sources are decoded
from the quantized samples using 50 iterations of the GEM
algorithm with the number of components fixed at K = 18,
i.e. in average 6 components per source. The quality of the
reconstructed samples is measured with SDR as described
in [39]. The resulting encoded bitrates and SDR of decoded
signals are presented in Table I along with the percentage of
the encoded samples in parentheses. Note that the compressed
rates in Table I differ from the corresponding raw bitrates due
to the variable performance of the entropy coding stage, which
is expected.

The performance of CS-ISS is compared to a classical ISS
approach with a more complicated encoder and a simpler
decoder presented in [30], as well as much better performing
coding-based approach proposed in [7]. Both the classical ISS
and coding-based ISS algorithms are used with NTF model
quantization and encoding in a similar fashion as in the exper-
iments described by [7], i.e., NTF coefficients are uniformly
quantized in logarithmic domain, quantization step sizes of
different NTF matrices are computed using equations (31)-(33)
from [7] and the indices are encoded using an arithmetic coder
based on a two-state Gaussian mixture model (GMM) (see Fig.
5 of [7]). The approach is evaluated for different quantization
step sizes and different numbers of NTF components, i.e.,
∆ = 2−2, 2−1.5, 2−1, . . . , 24 and K = 4, 6, . . . , 30. The
results are generated with 250 iterations of model update. The
performance of CS-ISS and the earlier approaches are shown
in Figure 7 in which CS-ISS clearly outperforms the classical
ISS approach and is on par with coding-based ISS approach,
even though both of these approaches can use an optimized
number of components as opposed to our decoder which uses a
fixed number of components (the encoder is very simple and
does not compute or transmit this value). The performance
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Bits per Raw rate (kbps / source)
Sample 0.64 1.28 2.56 5.12 10.24

Compressed Rate / SDR (% of Samples Kept)
16 bits 0.50 / -1.64 dB (0.25%) 1.00 / 4.28 dB (0.50%) 2.00 / 9.54 dB (1.00%) 4.01 / 16.17 dB (2.00%) 8.00 / 21.87 dB (4.00%)
11 bits 0.43 / 1.30 dB (0.36%) 0.87 / 6.54 dB (0.73%) 1.75 / 13.30 dB (1.45%) 3.50 / 19.47 dB (2.91%) 7.00 / 24.66 dB (5.82%)
6 bits 0.27 / 4.17 dB (0.67%) 0.54 / 7.62 dB (1.33%) 1.08 / 12.09 dB (2.67%) 2.18 / 14.55 dB (5.33%) 4.37 / 16.55 dB (10.67%)
1 bit 0.64 / -5.06 dB (4.00%) 1.28 / -2.57 dB (8.00%) 2.56 / 1.08 dB (16.00%) 5.12 / 1.59 dB (32.00%) 10.24 / 1.56 dB (64.00%)

TABLE I: The final bitrates (in kbps per source) after the entropy coding stage of CS-ISS with corresponding SDR (in dBs)
for different (uniform) quantization levels and different raw bitrates before entropy coding. The percentage of the samples kept
is also provided for each case in parentheses. Results corresponding to the best rate-distortion compromise are in bold.
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Fig. 7: The rate-distortion performance of CS-ISS using
different quantization levels of the encoded samples. The
performance of the ISS algorithm from [30] and the coding-
based ISS algorithm from [7] are also shown for comparison.

difference with classical ISS is due to the high efficiency
achieved by the CS-ISS decoder thanks to the incoherency
of random sampled time domain and of maximum likelihood
estimation along with low rank NTF model. Also, the classical
ISS approach [30] is unable to perform beyond an SDR of 10
dBs due to the lack of additional information about STFT
phase as explained in [7]. The results indicate that the rate
distortion performance exhibits a similar behaviour as to the
coding-based ISS algorithm. It should be reminded that the
proposed approach distinguishes itself by its low complexity
encoder and hence can still be advantageous against other ISS
approaches with better or seemingly equivalent rate distortion
performance.

The performance of CS-ISS in Table I and Figure 7 indicates
that different levels of quantization may be preferable in dif-
ferent rates. Even though neither 16 bits nor 1 bit quantization
seem well performing, the performance indicates that 16 bits
quantization may be superior to other schemes when a much
higher bitrate is available. Coarser quantization such as 1
bit, on the other hand, had very poor performance in the
experiments. The choice of quantization can be performed in
the encoder with a simple look up table as a reference. One
must also note that even though the encoder in CS-ISS is very
simple, the proposed decoder is significantly high complexity,
typically higher than the encoders of traditional ISS methods.
However, this can also be overcome by exploiting the indepen-
dence of Wiener filtering among the frames in the proposed
decoder with parallel processing, e.g., using GPUs.

V. CONCLUSIONS

In this paper, we have presented a novel approach for time
domain signal estimation in the maximum likelihood manner.
It relies on the low rank NTF modeling of the power spectrum
of the signal and can be applied to many types of problems
that were not previously solved using the NMF/NTF model.
The proposed algorithm is demonstrated to be very effective
for several audio inverse problems while providing multiple
advantages compared to other existing methods. For the audio
declipping problem, clipped sections of music and speech sig-
nals are restored using the proposed approach as well as state
of the art methods, and the proposed algorithm is shown to be
highly competitive while providing complementary advantages
such as naturally handling noise and quantization artefacts
and easily incorporating various types of constraints. For
audio source separation and mixture declipping, the proposed
algorithm is shown to be capable of jointly solving these two
separate problems which was not possible with any other
method in the literature. Joint handling of these problems
is also demonstrated to be more effective than sequentially
approaching each problem in case of severe distortions. The
proposed algorithm is also shown to be highly effective for the
reconstruction of randomly subsampled signals such as in the
case of compressive sampling approaches. This advantage of
our algorithm is further utilised for the problem of informed
source separation, to create a compression scheme which uses
the principles of compressive sampling and distributed coding.
For this application, the proposed algorithm is not only shown
to achieve compression performance equivalent to that of the
state of the art, but also shown to have unique advantages,
specifically having a very simple encoder as well as the
decoding stage being independent of the encoding stage.

The NMF and NTF representations are gaining a lot of
popularity in signal modelling community and we see the
algorithm presented in this paper to be a step towards the
application of these models to a wider class of signal esti-
mation problems. Even though the provided examples in this
paper are all audio inverse problems, the proposed algorithm
is by no means limited to audio applications. It could be used
in any application for which a low rank NMF/NTF model is
an accurate representation for the power spectrum.

We consider several improvements and extensions to the
proposed algorithm as future work. An extension to multi-
channel audio is an interesting step for dealing with real world
audio problems. Furthermore, adapting the proposed algorithm
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for imaging problems with multiple additive components, such
as imaging through transparent and reflective surfaces, is
another intriguing direction.
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