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Study of discounting methods applied to canonical
decomposition of belief functions

Romain Guyard1, Veronique Cherfaoui1

Abstract—In Demspter-Shafer theory the discounting opera-
tion can be used to weak the belief according to the reliability
of the source of information. This is usually done by modifying
basic belief assignment also called mass function. The canonical
decomposition- well adapted for some combination rules- is an
other way to represent the belief of an agent. We propose in this
paper to focus on discounting methods that are directly applied
to the canonical decomposition and we compare them to methods
previously studied in the literature. Then we propose an equation
that implements the discounting on canonical decomposition
strictly equivalent to the classical discounting method. This
approach reduces the computation cost significantly. Finally,
we illustrate the validity of the method by demonstrating the
convergence of the distributed data fusion algorithm using an
operator based on the cautious rule and discounting. using
an application on a distributed data fusion algorithm, we
demonstrate the convergence when the cautious operator is used.

Keywords: Dempster-Shafer theory, canonical decomposition,
discounting

I. INTRODUCTION

Dempster-Shafer theory introduced in [1] is often used to
model both imprecision and uncertainties of an agent or a
data source thanks to belief functions that can be expressed
by different representations. The most common one at credal
level is the mass function. Mass values are the quantity
of knowledge spread among the subsets of the frame of
discernment. There are other representations such as belief
(bel), plausibility (pl) and commonality (q) functions. This
paper focuses on the conjunctive decomposition [2], [3] of the
belief functions. This decomposition produces values known
as weights that represent the quantity of ignorance regarding
one particular element.

Several algorithms use a discounting operation that reduces
the importance of data coming from less trusted sources [4] or
older sources [5]. Classically the discounting operation modi-
fies masses and this has been well studied in [1], [6]. In some
cases, to improve simplicity and efficiency, the discounting
operation could be preferred to be applied on weights. For
instance, the distributed data fusion algorithm presented in
[7] is based on the cautious operator proposed in [3]. The
cautious operator uses the conjunctive decomposition as input
and output.To avoid heavy computations due to conversions
between masses and weights, the discounting is applied on
weights. This operation is necessary to guaranty the self-
stabilization property. We propose to study more attentively
the discounting on the weights.

1 The authors are with Sorbonne Universités, Université de Technologie
de Compiègne, CNRS Heudiasyc UMR 7253, France

This paper first introduces two discounting methods based
on weight representation that try to follow the behavior of the
classical discounting. Then a comparison with mass discount-
ing shows flaws in the weight-based discounting methods.
We introduce then an original method to compute the well
studied discounting directly on the canonical decomposition
with a reduced amount of computations and thus make it
implementable in low computing capacity devices. Finally the
convergence of the algorithm from [7] is proven when the
cautious operator is used in order to perform distributed data
fusion .

II. DISCOUNTING USING CANONICAL DECOMPOSITION OF
BELIEF FUNCTIONS

A. Mass functions and weight representation

Belief functions proposed by Dempster and Shafer are
similar to probabilities but instead of splitting amount of
belief on singletons, quantities, called masses, are split among
subsets. Let be a variable ω, taking values in a finite set Ω
called frame of discernment, 2Ω is the powerset of Ω, A ⊆ Ω
is an element of 2Ω The quantity m(A) is interpreted as the
part of the belief allocated to the hypothesis “the answer ω is
in the subset A of Ω”. The equation 1 shows the mass function
property. ∑

A⊆Ω

m(A) = 1 (1)

The mass m(Ω) represents the ignorance. Every A of Ω
such that m(A) > 0 is a “focal element” of m. A “simple
mass function” has one or two focal element including Ω. If
Ω is the only focal element then the mass function is called
“vacuous” and represents total ignorance. If Ω is not a focal
element then the mass function is called “dogmatic”. In this
paper we assume that mass functions are always non-dogmatic
which is always the case since sensors are always imperfect.

The commonality of A is noted q(A) and is defined by the
formula 2. The commonality of A represents the quantity of
knowledge on A and on every set that includes A. Common-
alities can be used as an equivalent representation of the mass
function.

q(A) =
∑
B⊇A

m(B) (2)

Another representation of belief functions used in this paper
is the canonical decomposition presented by [2]. The result
of the decomposition is a weight value for each subset A ⊂
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Ω, A 6= Ω noted w(A). The equation 3 shows how to compute
weight from masses. One can see that this function requires
exponential computations and thus its usage should be avoid
in systems with limited computational capacity.

w(A) =
∏
B⊇A

q(B)(−1)|B|−|A|+1

(3)

To convert weights to masses |2Ω| simple support belief
functions are created as shown in equation 4. Then they are all
combined using the conjunctive combination operator shown
in 5. {

µ(A) = 1− w(A)

µ(Ω) = w(A)
(4)

(m1 ∩© m2)(A) =
∑

B
⋂
C=A

m1(B)m2(C) (5)

B. Belief combination

In order to improve the knowledge and reduce uncertainties,
mass functions can be combined. The well-known method
of combination is the Dempster conjunctive rule shown in
equation 6.


(m1 ⊕m2)(∅) = 0

A 6= ∅ (m1 ⊕m2)(A) = 1
1−K

∑
B
⋂
C=Am1(B)m2(C)

where K =
∑
B
⋂
C=∅m1(B)m2(C)

(6)
This rule requires the independence of sources. If it is not

the case (for example, when a source gives information which
is generated using data from other sources) the fusion operator
has to be idempotent. To fulfill this requirement, the cautious
operator has been proposed in [3]. This operator is applied on
weight using the operator minimum as shown in equation 7.

(w1 ? w2)(A) = min(w1, w2) (7)

C. Discounting operation

The discounting proposed by Shafer in [1] and called in
this paper “mass-linear-discounting” is given by Equation 8.
mα(A) is the mass linear discounted with a factor of α ∈
[0, 1]. The value of α depends on the reliability of the source.

{
A 6= Ω mα(A) = αm(A)

mα(Ω) = (1− α) + αm(Ω)
(8)

Some variants of mass discounting was proposed by Mercier
in [8] to take the context into account and in [9] to consider
the temporal evolution of information.

In [10], the authors proposed a discounting directly applied
on weights. It consists in adding a value β ∈ R+ to the
weights as described in Equation 9. We will called it “weight-
summed-discounting”.

Let wβsummed(A) be the weight-summed-discounting of
w(A) with a factor of β ∈ R+

wβsummed(A) = min(1, w(A) + β) (9)

This discounting on weights has been chosen because it
works with an algorithm using cautious operator based on
weight representation. Also, discounting the weights avoids
the transformation from weight to mass representation and
then go back to weights. These conversions require exponen-
tial computation and thus it becomes hard to implement it
in embedded devices. Even if this discounting operation has
been chosen to fulfill the convergence of the algorithm [11],
there is no study to our knowledge that discuss its behavior.

It is easy to notice that the classic mass-linear-discounting
is a proportional discounting and the weight-summed-
discounting is additive.Thus we propose two other propor-
tional discounting operations that are applied on weights. To
decrease the quantity of information of a belief function it
is necessary to increase the ignorance represented directly by
the weights.

Let wγWLinear(A) be the weight-linear-discount of w(A)
with a factor of γ > 1 computed by the equation 10.

wγWLinear(A) = min(1, γw(A)) (10)

In order to follow the behavior of the mass-linear-
discounting, it may be better to reduce the weight of a
proportion of 1 − w(A) instead of w(A). This discounting
will be called “one-minus-weight-linear-discounting”.

Let wδ1−WLinear(A) be the one-minus-weight-linear-
discount of w(A) with a factor of δ > 1 computed by the
equation 11.

wδ1−WLinear(A) = min(1, w(A) + δ(1− w(A)) (11)

The discounting operators must keep the masses positive
and the sum of all masses equals to one. The conjunctive
operator conserves those properties. Thus if the equations
4 are mass functions then the underlying weight function
is also a belief function. In the case the belief function is
not separable, weights are greater than 1 thus the masses of
support functions computed in equation 4 are negative. Hence
the minimum operator of the three last equations has been
added. The impact of this minimum should be analyzed in
further study.

In [12], the authors proposed a contextual discounting that
will be compared in further studies.

III. ANALYSIS AND COMPARISON OF DISCOUNTING
METHODS

This section discusses the discounting methods presented
and proposed in the previous section. A “good” discounting
operation reduces the quantity of knowledge evenly on focal
elements. Since it is easier to interpret a belief function with
mass values and for homogeneity, the following always show
masses in figures even if the computation is done on weights.
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A. General behavior differences using examples

In order to analyze the behavior of discounting operations,
we propose to mitigate information several times using the
same discounting operation. Graphs 1 to 4 show all discount-
ing methods applied multiple times with different initial states.
This method considers that there is no new information added
to the system to focus on the behavior of the discounting and
not on any potential fusion operators.

We will consider four examples to highlight differences
between discounting methods. This is not exhaustive analysis
but it will be enough to conclude on which function should
be used.

For each example, the four discounting are given in the
following order:

- top left: mass-linear-discounting with α = 0.3.
- top right: weight-summed-discounting with β = 0.1.
- bottom left: weight-linear-discounting with γ = 1.3.
- bottom right: one-minus-weight-linear-discounting with

δ = 0.3.
In all examples we will consider Ω = {e1, e2, e3}. Only

mass that are relevant for the analysis are plotted.
1) Example 1: The figure 1 shows an example with the

initial state: m({e1}) = 0.5 m({e2}) = 0.4 and m(Ω) = 0.1.
In this example we can see that the mass-linear-discounting

(top left) is smoothly decreasing knowledge with a pro-
portional amount of its value. Masses decrease indefinitely
whereas the weight-summed-discounting (top right) reduces
masses linearly until reaching 0 with rough angles. Only
the one-minus-weight-linear-discounting (bottom right) looks
as smooth as the first graph. Smoothness is important for
transitivity reason. For instance, as discussed in [9] for tem-
poral discounting, two discounting of one second should be
equivalent to one discounting twice as strong. This property
is only verified for the mass-linear-discounting and the one-
minus-weight-discounting.

2) Example 2: The figure 2 shows an example with the
initial state: m({e1}) = 0.2 m({e2}) = 0.1 m({e1, e2}) =
0.6 and m(Ω) = 0.1.

In this example we can see in both weigh summed dis-
counting (top right) and weight-linear-discounting (bottom
left) that the mass associated with the subset {e1, e2} starts
by increasing before decreasing. This is caused by the de-
crease of m({e1}) and m({e2}) also increases m({e1, e2}).
m({e1, e2}) is also decreased but not enough to compen-
sate this effect. A discounting operation should decrease
knowledge and never increase it by definition. Thus, this
behavior should be avoided. In this example, the mass-linear-
discounting and one-minus-weight-linear-discounting have the
same behavior.

3) Example 3: The figure 3 shows an example with the
initial state: m({e1}) = 0.2 m({e2}) = 0.2 m({e1, e3}) =
0.2 m({e2, e3}) = 0.2 and m(Ω) = 0.2.

As expected in this example where all masses are equal at
the initial state, the mass-linear-discounting (top left) shows
similar decreasing for each mass. That is not the case with
the three others. This example shows that an element with an
initial mass equal to 0 ({e3} in this example) can increase

as well. With those discounting functions an element that has
not been observed can be non null. This behavior should been
avoided.

4) Example 4: The figure 4 shows an example 4 with initial
state: m(e1) = 0.4 m(e2) = 0.4 m(e1, e2) = 0.1 and m(Ω) =
0.1.

In this last example, we can see that in the three discounting
based on weights, the conflict can raise significantly. In order
to reduce this conflict, the mass function can be normalized
but this operation can only be done using masses. This remark
nullifies the interest of using discounting on weights. We can
also observe a slight increase of m({e1, e2}) on the graph of
the one-minus-weight-linear-discounting.

5) Comparison conclusion: Those examples show that the
mass-linear-discounting has no misbehavior and are easy to
interpret. The three other discounting can cause issues in most
scenarios. They can increase masses even if there were null.
Moreover masses that are equal before can be different after
discounting. The power of the discounting also depends of
the number of focal elements which lead to a linear by parts
discounting. The mass disappears after few iterations whereas
the mass-linear-discounting always carries a small part of
a data over the multiple iterations. Finally the three weight
discounting operations generate mass on the empty set which
may cause issues in some situations.

In most cases the mass-linear-discounting should be pre-
ferred. But it has two problems that may reduce its interest
for an implementation in real scenarios. Firstly it is applied
on masses and in some application using weights this will
force conversion and then a lot of computations. The second
issue is when the discounting is used in combination with
the cautious operator as proposed in [11]. The convergence
of a distributed algorithm has been proven in [10] only if the
discounting increase weights and mass-linear-discounting is
not proved to be in this case. Solutions to both this problems
will be demonstrated in the next part of this document.

IV. MASS-LINEAR-DISCOUNTING APPLIED ON WEIGHTS

This part will demonstrate an original equation to use
mass-linear-discounting on weights with a reduced amount
of computation than doing representation conversions.

A. General mass functions properties

Usually weights are defined in R+and could be null. In
the following of this paper, we need to be able to divide by
a weight or a product of weights. The lemma 1 shows that
weights will not be null in our case.

Lemma 1.

Weights of non dogmatic mass function can not be null.

Proof: By definition, commonalities are sum of masses.
This sum always includes m(Ω) because Ω includes all its
subsets by definition. Non-dogmatic mass function has always
Ω as a focal element. Every masses are strictly greater than
0 then commonalities are also greater than 0 strictly. Weights
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Figure 1: Example 1: Discounting shapes

are defined by a product of commonalities and since no
commonality are null then the product is not null. Thus
weights of non dogmatic belief function can not be null.

Lemma 2.

∀A ⊆ Ω, B ⊆ Ω
∑
B⊇A

(−1)|B|−|A|+1 = 0

The lemma 2 is proven using Pascal equivalence. This
equation shows that there is as many even cardinalities than
odd cardinalities in the power set of a set.

Proof: Let A ⊆ Ω, B ⊇ A and 2Ω the power set of Ω.
Let PΩ

Even the set of elements of 2Ω having even cardinal.
Let PΩ

Odd the set of elements of 2Ω having odd cardinal.
Let x = |PΩ

Even| − |PΩ
Odd|.

Let C ⊆ P (Ω) with ∀D ∈ C,B ⊇ D and Ω′ = Ω\A.
Let E ⊂ Ω′, EEven the set of E even and EOdd the set of

E odd.
∀E ⊂ Ω′, A ∪ E ∈ C
Thus, there is a bijective function f :

f :
2Ω′ 7−→ C
E 7−→ A ∪ E

|E| = |f(E)| − |A|

Thus

{
E ∈ EEven |f(E)| − |A|+ 1 ≡ |E|+ 1 ≡ 1mod(2)

E ∈ EOdd |f(E)| − |A|+ 1 ≡ |E|+ 1 ≡ 0mod(2)

So |EEven| = |PΩ
Odd| and |EOdd| = |PΩ

Even|

Let a ∈ [0, |Ω′|[ and Ea the set of every E ⊂ Ea, |E| = a

|Ea| =
(
|Ω′|
a

)
with the binomial coefficient:

(
n
k

)
=

n!
k!(n−k)!

Let ΣEven the sum of |Ea| for every even a and ΣOdd the
sum of |Ea| for every odd a.

ΣEven =
i=b |Ω

′|
2 c∑

i=0

(
|Ω′|
2i

)

ΣOdd =
i=b |Ω

′|
2 c−1∑
i=0

(
|Ω′|

2i+ 1

)

ΣEven =

(
|Ω′|
0

)
+

(
|Ω′|
2

)
+

(
|Ω′|
4

)
+ ... +(

|Ω′|
|Ω′| − 2

)
Using Pascal equivalence we have:
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Figure 2: Example 2: Monotonousness of discounting

ΣEven =

[(
|Ω′| − 1

0

)]
+

[(
|Ω′| − 1

1

)
+

(
|Ω′| − 1

2

)]
+

[(
|Ω′| − 1

3

)
+

(
|Ω′| − 1

4

)]
... +

[(
|Ω′| − 1
|Ω′| − 3

)
+

(
|Ω′| − 1
|Ω′| − 2

)]
+

[(
|Ω′| − 1
|Ω′| − 1

)]
ΣEven =

∑i=|Ω′|−1
i=0

(
|Ω′| − 1

i

)
Symmetrically:

ΣOdd =

[(
|Ω′| − 1

0

)
+

(
|Ω′| − 1

1

)]
+

[(
|Ω′| − 1

2

)
+

(
|Ω′| − 1

3

)]
... +

[(
|Ω′| − 1
|Ω′| − 2

)
+

(
|Ω′| − 1
|Ω′| − 1

)]
ΣOdd =

∑i=|Ω′|−1
i=0

(
|Ω′| − 1

i

)
Thus ΣEven = ΣOdd
So |EEven| = |EOdd|
So |PΩ

Odd| = |PΩ
Even|

So x = 0
So
∑
B⊇A(−1)|B|−|A|+1 = 0

We can now also prove that:

Corollary 3.

∀A ⊆ Ω,∀x ∈ R∗∏
B⊇A(x · q(B))(−1)|B|−|A|+1

=
∏
B⊇A q(B)(−1)|B|−|A|+1

Thus it is possible to simplify every non null real number
in the computation of weights

Theorem 4.

m(Ω) = q(Ω) =
∏
A⊂Ω

w(A)

Proof: By definition, to compute masses with weights,
we have to create simple mass functions for each subset of Ω
defined by the equation 4. We can see that the each weight
became a mass associated with Ω. The second step of the
conversion is to combine the simple mass functions with the
conjunctive operator show in equation 5. There is no other set
that includes Ω except itself. Thus the result of the conjunctive
combination for Ω is the product of every weight and then it
is the mass of Ω.
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Figure 3: Example 3: Change of focal element number

Conjecture 5.

q(A) =
∏
B+A

w(B) =

∏
B⊂Ω w(B)∏
B⊇A w(B)

The theorem 4 validates the conjecture 5 in the particular
case of A = Ω. The second part of the equality is founded
by multiplying the numerator and the denominator by m(Ω)
as shown in theorem 4.

The first equality requires less computations if |A| < |Ω|
2

, otherwise the second equality requires less. The numerator
of the second formula

∏
B⊂Ω w(B) is in fact m(Ω). As it

doesn’t depend of A it can be computed once and used in
every other computation.

B. Simplified version of mass-linear-discounting applied to
weights

In this part we will build an mathematical equivalent of the
mass-linear-discounting usually done on mass functions using
weights. In order to reach this propriety, we convert weights
to masses, we apply the mass-linear-discounting and then we
go back to weights. Since going from weights to masses and
from masses to weights are very heavy on computation, we

will use theorems from the previous section to simplify the
equations. Let respectively be mα(A), qα(A) and wα(A) the
mass, commonality and weight of A discounted with a factor
of α ∈ [0, 1].

Theorem 6. If α = 0 then

wα(A) = 1

Proof: Using the formula 8 we are looking for a mass
function where the only focal element is Ω. m(Ω) is defined
by the lemma 1 : m(Ω) =

∏
A⊂Ω w(A) =

∏
A⊂Ω 1 = 1. If

m(Ω) is equal to 1 then all other masses are null. P. Smets
has proven in [2] that there is only one representation of a
belief function using weights. Thus since we have found one
then it is the only one.
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Figure 4: Example 4: Discounting method creating conflict

Theorem 7. if α 6= 0 and if the conjecture 5 is true then

wα(A) =
∏
B⊇A

 ∏
C+B

w(C) +
1− α
α

(−1)|B|−|A|+1

wα(A) =
∏
B⊇A

 ∏
C⊇B

1

w(C)
+

1− α
α
∏
D⊂Ω w(D)

(−1)|B|−|A|+1

Proof: If we use the commonality definition equation 2
and we apply the discounting of the formula 8 we have:
qα(A) =

∑
B⊇A,B 6=Ω αm(B) + (1− α) + αm(Ω)

By getting out α of the sum we found the definition of the
commonality of A.
qα(A) = α [q(A)−m(Ω)] + (1−α) +αm(Ω) = αq(A) +

(1− α)
Using the conjecture 5:
qα(A) = α

[∏
B+A w(B)

]
+ (1− α)

By replacing q(A) by qα(A) in the equation 3 we have:

wα(A) =
∏
B⊇A

[(
α
∏
C+B w(C)

)
+ (1− α)

](−1)|B|−|A|+1

The corollary of the lemma 1 is used to simplify α if α 6= 0:

wα(A) =
∏
B⊇A

[∏
C+B w(C) + 1−α

α

](−1)|B|−|A|+1

Using the same way with the second part of the equation
of the conjecture 5 we have:

wα(A) =
∏
B⊇A

[∏
C⊇B

m(Ω)
w(C) + 1−α

α

](−1)|B|−|A|+1

m(Ω) 6= 0 because the belief function is non dogmatic. We
can simplify m(Ω) to get the form of 7 as expected:w

α(A) =
∏
B⊇A

[∏
C+B w(C) + 1−α

α

](−1)|B|−|A|+1

wα(A) =
∏
B⊇A

[∏
C⊇B

1
w(C) + 1−α

αm(Ω)

](−1)|B|−|A|+1

Like the formula 5, there is two ways to have the same result
but with different amount of computation depending of the
cardinal of A. The first equation requires less computations if
|A| < |Ω|

2 and otherwise if |A| > |Ω|
2 then the second equation

is faster.
This new formula to compute masses discounting on

weights reduce the number of operations needed. The tables
Ia and Ib illustrate this difference for an Ω of cardinality 3
and 4. The table Ia shows the number of operation needed
at each step of the computation of the discounting by doing
the full conversion. Table Ib shows that using the theorem 7
we need fewer computations to have the same result. With a
cardinal of Ω = 4, we have a reduction close to a factor of 18.



8|Ω| w() to m() discounting m() to w() Total
3 294 8 34 336
4 1440 16 62 1518

(a) By full conversion

|Ω| Number total of operations
3 26
4 90

(b) Using the theorem 7

Table I: Number of operations needed to discount

More |Ω| increase more this difference is important. This new
formula enables the possibility to implement this discounting
in a real embedded device with low computation capabilities.

V. CONVERGENCE USING MASS-LINEAR-DISCOUNTING IN
DISTRIBUTED FUSION CONTEXT

In a distributed data fusion algorithm, the result must
converge to a common value. This is achieved by fusing
step by step with data coming from other nodes. If the
fusion function were used alone, a potential transient error
could be kept in the final result. Moreover, if the situation
evolves and the observation is different from previous data,
the algorithm will always keep a bias. To solve this problem,
a discounting operation must be done. The algorithm in [11]
uses a discounting function that mitigates the importance of
old and distant data in a smart cars data fusion network.

The algorithm from [11] has been proved to be convergent
in [10]. This proof is valid for any discounting function that
follows two rules. First rule : the discounting must be an
endomorphism of (K,?), ie the result of a discounting of
a belief function stays a belief function and the discounting
operator must be distributive with ?. Second rule : the
discounting operator must be expensive on weights. Both rule
are easily checked with weight discounting but the second rule
has to be checked with the mass-linear-discounting.

Theorem 8. The mass-linear-discounting of a non-dogmatic
belief function always increases weights if the discounting
coefficient α is positive.

Proof: The proof of theorem 7 shows that:
qα(A) = α [q(A)−m(Ω)] + (1−α) +αm(Ω) = αq(A) +

(1− α)
q(A) − qα(A) = (1 − q(A))(1 − α) and q(A) > 0 if the

function is non-dogmatic.
Then q(A)− qα(A) is always positive if α > 0. A weight

is a product of commonalities and since q(A) − qα(A) > 0
then wα(A) increases if α > 0.

The theorem 8 proves that the mass discounting increase
weights and thus using all discounting methods presented
in this paper guarantees the convergence of the distributed
algorithm.

VI. CONCLUSION

The discounting operations are an important part of algo-
rithms using belief functions. For instance they are responsible
of the importance of old and distant information in data fusion

algorithms. Tuning the discounting has to be done to map
the time and geographic diffuseness characteristics of the
observed event. In this paper, we have proposed two new ways
of computing discounting using the canonical decomposition.
Then we have analyzed the difference between discounting
methods coming both from the literature and proposed in this
paper. This study shows some flaws in weight discounting
functions using specific scenarios. This analysis shows that
all discounting operators defined on weights have behaviors
that can be problematic. Finally we propose an original
method for computing mass discounting on weights with less
computations that are needed to do the conversion between
this two representations of belief function. This new method
enables the possibility to implement in embedded systems the
well studied and flawless discounting while using for example
the cautious operator on weights. Future works should extend
this method to an application of distributed data fusion in
vehicular network to robustly detect road events.
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