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Abstract Microstructural evolution governs transient creep processes in the Earth at high temperature,
on time scales from seconds to millions of years. Many experimental constraints and empirical models
have been developed for discrete pieces of this problem, including flow laws and kinetic models for grain
growth and dislocation recovery. We incorporate these models into a thermodynamic framework to
develop a constitutive model for transient creep. The framework employed here is a branch of nonlinear
thermodynamics of irreversible processes called the generalized standard materials formalism developed
in solid mechanics over the last 40 years but minimally applied to geophysical problems. The generalized
standard materials formalism is designed to incorporate a broad range of nonlinearity and coupling in
the constitutive equations. To describe dynamic recrystallization, the model is constructed such that
information propagates upward in length scale: [dislocation density → subgrain size → grain size], with
each property evolving more slowly than the one below. We demonstrate that (1) the grain size-stress
piezometer may contain temperature dependence below a threshold in stress, (2) the microstructural
evolution is strongly temperature dependent and thus dependent on thermal boundary conditions, and (3)
the fraction of mechanical work done to the system that is diverted to changing the microstructure is not
a constant but is at least a function of stress, temperature, dislocation density, and grain size. This kind of
thermodynamically constrained analysis can be applied to torsional deformation experiments to extract
further constraints on the subprocesses of microstructural evolution and transient creep.

Plain Language Summary When rocks deform in the Earth at conditions in which they flow rather
than fracture, the internal structure of the material evolves during deformation. The structure contains
grains that change shape and size by a range of mechanisms, including diffusion and the motion of
dislocations. How fast the structure changes determines the evolving strength of the material. This
strength will control the strength of tectonic plates on a wide range of time scales, from earthquakes to the
convection of the mantle. Here we develop an approach to describing this problem theoretically, using a
branch of thermodynamics developed to describe the behavior of solids during deformation and the wide
range of complex thermal-chemical-mechanical processes that may be occurring within the materials.

1. Introduction

The materials that constitute the Earth deform by a wide range of often-coupled processes, from fracture and
granular flow to multiple diffusion and dislocation creep mechanisms. The relative rates of these processes
are governed by temperature, stress, composition, and aspects of the material microstructure. Small strain
transient creep occurs in response to seismic wave propagation at approximately constant microstructure
and can also occur to larger strains with evolving microstructure in response to earthquakes, volcanism, ice
loading, convection, and other processes. Another manifestation of microstructural change is strain localiza-
tion, which may occur on length scales from millimeters to tens of kilometers and play a first-order role in
controlling the strength of plate boundaries (e.g., Jin et al., 1998; Precigout et al., 2007; Rutter & Brodie, 1988;
Tommasi et al., 1994; Vissers et al., 1995). Increasingly, analysis of many problems in geophysics must incorpo-
rate complex rheological behavior of the lithosphere and convecting mantle, including nonlinear flow laws,
anelasticity, and microstructural evolution.
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To characterize the nonlinear behavior of materials, constitutive models are composed of evolution laws and
equations of state for the relevant state variables (e.g., temperature and grain size). In the geophysics literature,
there has been a recent and necessary movement toward developing such constitutive models in the context
of thermodynamics of irreversible processes (TIP; e.g., Bercovici et al., 2001; Cooper et al., 2016; Covey-Crump,
1994; Hackl & Renner, 2013; Herwegh et al., 2014; Karrech et al., 2011; Ricard & Bercovici, 2009; Rozel et al., 2011;
Sherburn et al., 2011; Stone et al., 2004). The essential idea is to define internal state variables that regulate
the storage of energy in the material structure and the dissipation of energy through various deformation
mechanisms. These internal state variables generally characterize some aspect of the microstructure with
varying degrees of specificity as to the physics of the structure and the mechanism (e.g., hardness, damage,
dislocation structures, grain boundary structures, creep fracture, brittle fracture, and melt/fluid distributions).

Our aim here is to build a tractable TIP framework that incorporates empirical laws from laboratory studies
of microstructural evolution for the analysis of experimental data and extrapolation from laboratory to Earth
conditions. These TIP approaches tend to have a large number of poorly constrained parameters. To minimize
this number, we incorporate as many empirical equations for subprocesses as possible. As an initial attempt,
we treat a well studied but incompletely understood subset of processes, namely, the evolution of dislocation
density and grain size during creep at high temperature.

1.1. Grain Size Evolution Models
Characterizing the relationship between grain size and state variables at steady state is very useful for inter-
preting rock structures in the field and in modeling geophysical processes that are happening much more
slowly than the grain size evolution time scale. The steady state grain size reflects a complex ensemble of
processes of dislocation production, organization, and recovery, interacting with grain boundary formation
and migration. Steady state grain size is often believed to scale with the applied stress level (a piezometer;
e.g., Austin & Evans, 2007; Hackl & Renner, 2013; Shimizu, 2008; Twiss, 1977) with little or no temperature
dependence, which is a conundrum considering that almost all of the subprocesses have different thermally
activated kinetics. In section 3.1, we discuss various models for the steady state condition. Here we briefly
review the range of grain size evolution models, including ones that employ some form of TIP, and then
present an overview of our approach in this paper.

Grain size evolution has been extensively studied in a wide range of rocks, beginning with crustal materials
as grain size variations in ductile deformation are readily observable, in the field and laboratory. In this paper,
we focus on olivine because of the enormous body of work on many aspects of its high-temperature behavior
and because of its importance in controlling the dynamics of the lithosphere and convecting upper mantle.
Because of the complexity of the problem and its rheological importance, a wide range of grain size evolution
models has been proposed for olivine rocks (e.g., Behn et al., 2009; Braun et al., 1999; Hackl & Renner, 2013;
Hall & Parmentier, 2003; Kameyama et al., 1997; Montési & Hirth, 2003; Rozel et al., 2011). Most of these models
assume that grain growth and reduction are occurring simultaneously in a rock with a distribution of grain
sizes, referred to as synchronous models by Hall and Parmentier (2003), such that the grain size (g) evolution
rate ġ = ġ+ + ġ−. Furthermore, while all use essentially the same empirical equation for thermally activated
grain growth (ġ+), they differ widely in the form of the reduction term (ġ−). An important difference is whether
the rate equation depends (1) solely on current values of state variables, including the current grain size (e.g.,
Behn et al., 2009; Hall & Parmentier, 2003; Montési & Hirth, 2003; Rozel et al., 2011) or (2) on the difference
between the current and some target grain size (e.g., Braun et al., 1999; Kameyama et al., 1997).

All the models without a target grain size contain some ad hoc parameter that defines the partitioning of
energy between storage and dissipation. The need for such a parameter was defined by Taylor and Quinney
(1934), as the ratio of stored to inelastic energy, discussed in section 2.4. For example, in Hall and Parmentier
(2003), the grain size reduction rate depends on the current grain size and the dislocation creep strain rate,
ġ− = −𝜆𝜀̇disg, where 𝜆governs how quickly the grain size reduction rate decreases with grain size and disloca-
tion creep rate (𝜀̇dis). An alternative model is that the grain size reduction rate (and thus the steady state grain
size) scales with the total work rate (stress times strain rate, that is, power/volume, hence wattmeter), rather
than with either stress or strain rate alone (Austin & Evans, 2007, 2009; Ricard & Bercovici, 2009; Rozel et al.,
2011). In this case, 𝜆AE (our added subscript) is the fraction of energy available for deformation that is diverted
into changing the grain size instead of being dissipated as dislocation creep (Austin & Evans, 2007, 2009). The
value of 𝜆 is a primary unknown and is either considered to be constant (Austin & Evans, 2007, 2009) or has
an assumed functional form (Herwegh et al., 2014; Ricard & Bercovici, 2009; Rozel et al., 2011). One of the
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motivations for our study is to determine the partitioning of energy between storage and dissipation (i.e., the
𝜆); the thermodynamic framework utilized here yields this partitioning as a result, not as an assumption.

1.2. Our Approach
Here we present an approach based on the continuum thermodynamics formalism (e.g., Germain et al., 1983),
known as the generalized standard materials (GSM) formalism (e.g., Halphen & Nguyen, 1975) for nonlinear TIP,
applied to deforming solids. This formalism has been successfully applied to detailed analysis of energy bal-
ances in localization in elastoplastic materials such as steels or pseudoelastic deformation of shape memory
alloys (e.g., Chrysochoos, 1985; Chrysochoos et al., 1995, 2008). In those experiments, the primary observable
is the time-varying temperature field due to heat production from irreversible processes and the distribution
of rheological properties, using full-field thermal measurements. In high-temperature experiments, we can-
not directly observe the temperature field (that has small perturbations at high temperature), so we focus
instead on the prediction of microstructure, specifically the dislocation density and grain size.

First, we present a general overview of the GSM thermomechanical framework. In section 3, we present the
experimental constraints on the physics of microstructural evolution in olivine. In section 4, we integrate these
empirical constraints into the GSM, to construct a model for microstructure evolution. We limit our applica-
tions to processes at high temperature (T∕Tm > 0.5, where Tm is the melting temperature for the pure phase,
which for natural olivine, Fo∼ 90, Tm ≈ 1900 ∘C) and low stress (𝜎∕M <1E−2 where M is an elastic modulus)
conditions. We incorporate two microstructural state variables (mean dislocation density and grain size). In
section 6, we apply this model to existing steady state grain size data and then present the transient behav-
ior. Torsion experiments contain much unmined information on the evolution of microstructure and rheology
and have captured the onset of strain localization (e.g., Hansen et al., 2012). To extract these constraints, we
develop a method for analyzing microstructural and mechanical evolution in torsion experiments.

2. TIP and the GSM

Historically, TIP was initially developed as a linear theory by Onsager, de Groot and Mazur, and Meixner (e.g.,
De Groot & Mazur, 1984). Linear TIP is limited to near-equilibrium open systems, in which fluxes are linear
functions of thermodynamic forces (also called affinities) and can be coupled to each other via constant coef-
ficients. State variables of number N can be treated as a set v and generally include the temperature T , the
components 𝜀ij of the strain tensor, and 𝛼k of the vector gathering any structural and compositional variables,
that is, v = {T , 𝜀ij, 𝛼k}. The fluxes or rates of change of state variables are linear functions of the thermody-
namic forces vector F, as constrained by the formalism. In the linear TIP, forces and fluxes of all state variables
are related by a matrix L of constant coefficients associated with chemical and/or thermal diffusivities and/or
viscosities, such that ̇v = LF. The matrix L contains the Onsager coefficients; it is constrained to be symmet-
ric, positive and definite in order to guarantee entropy positivity. The internal entropy source is then defined
as F.LF ≥ 0 (where . indicates the inner product).

The linear TIP breaks down when the relationship between the forces and fluxes becomes nonlinear, requiring
nonconstant coefficients, existence of thresholds, nonlinear or nonregular constitutive equations, or by other
means, which are common in deforming solids. Nonlinear TIP has been developed with a range of formalisms.
The branch utilized here, the GSM formalism, will be explained in detail below, following a presentation of
aspects general to all branches of TIP.

2.1. Overview of Near-Equilibrium TIP
In the context of near-equilibrium TIP, the deformation process is considered to be a quasi-static, possibly dis-
sipative process. The thermodynamic definition of a quasi-static process is one that can be approximated as
a succession of equilibrium states, connected by a duration in which the state variables change and energy
can be stored and dissipated, as illustrated in Figure 5a. The overall disequilibrium of the macroscopic system
may contain gradients in temperature, strain, and other state properties and can be treated as a ensemble of
subsystems in local equilibrium. The approximation of local equilibrium (local state axiom) is a statement that
the subsystems are defined as each being small enough to define a single local mean temperature that is rep-
resentative of the local thermal state, as well as for the ensemble of state variables. The absolute temperature
is by construction the partial derivative of the specific internal energy with respect to the specific entropy,
T = 𝜕e

𝜕s
= e,s, the latter form being a shorthand we will commonly employ. The equilibrium state of each vol-

ume material element is described using a finite set of N state variables, which depict the material state and
its change over time. The potential e is then a state function.
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Table 1
Table of Symbols for Thermodynamic Properties

Thermodynamic quantities

Symbol Name Units

e specific internal energy J/kg

s specific entropy J/K/kg

S volumetric entropy J/K/m3

T temperature K

T0 equilibrium temperature K

Ψ Helmholtz free energy potential J/kg3

Φ dissipation potential W/m3

Φ∗ dual dissipation potential W/m3

1 intrinsic dissipation W/m3

2 thermal dissipation W/m3

A conjugate variable (𝜕Ψ∕𝜕𝛼̇) various

X thermodynamic force (𝜕Φ∕𝜕𝛼) various

𝜌 mass density kg/m3

q⃗ heat flux W/m2

𝛼 internal state variable

v set of state variables for example, {T , 𝜀, 𝛼i}
̇v set of state variable fluxes for example, {Ṫ , 𝜀̇, 𝛼̇i}
X set of thermodynamic forces for example, {Xth, Xv , X𝛼i

}

2.1.1. First Law
The differential local form of the First Law of thermodynamics is written as

𝜌ė = 𝝈 ∶ D − divq + rext, (1)

where 𝜌 is the mass density, e is the internal energy, q is the heat flux vector (inward positive), rext is any
additional heat supply (e.g., external radiation energy rate or internal radioactive decay, which are not invoked
in this paper), and 𝝈 and D are the Cauchy stress and strain rate tensors, respectively. Under the small strain
approximation the tensor D tends toward the time derivative of the strain tensor denoted by 𝜺̇.

For problems of solid deformation, the Helmholtz free energy potential Ψ is more useful than e, because the
directly measurable T replaces s as the state variable. The Legendre transformation from the internal to the
Helmholtz free energy is defined as Ψ = e − Ts. This thermodynamic potential describes the same physical
properties of the local equilibrium state and is now the state function, Ψ = Ψ(v), where v = {T , 𝜀ij, 𝛼k} is
the set of state variables. Symbols are defined in Table 1.

2.1.2. Second Law
The differential, local form of the Second Law can be written as

𝜌ṡ − S∘ext = 𝜌ṡ −
rext

T
+ div

(q
T

)
= S∘int ≥ 0, (2)

where S∘ext is the external entropy source, the rate of entropy exchange with the neighboring local systems per
volume, and where S∘int is the internal entropy source, the rate of internal production of entropy (e.g., Coleman
& Noll, 1963; Germain et al., 1983; Tolman & Fine, 1948; Truesdell, 1969). This internal source of entropy is the
difference between the overall entropy production rate per volume, 𝜌ṡ, and S∘ext, which has two contributions:

(1) rext (2) a surface exchange term, the entropy flux, div
(

q
T

)
, describing a conductive exchange through the

surface of the system, written in a local volume form. The Second Law holds that the internal entropy source
must be nonnegative for any thermodynamic process. The rate of dissipated energy,, is defined as = TS∘int.
(Note that the ∘ notation indicates a path dependence to the rate quantity, such that it is not a state function,
an important but subtle distinction discussed further in section 2.3.)
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To define the dissipation in terms of the Helmholtz potential Ψ, the div
(

q
T

)
term in equation (2) is expanded

and multiplied through by T , such that the Second Law becomes 𝜌Tṡ − rext + div (q) − q
T
⋅ grad(T) ≥ 0. Then,

when the First Law is substituted in, along with the time derivative ofΨ = e−Ts, (Ψ̇ = ė−Ṫs−Tṡ) the definition
of s in terms of Ψ as s = − 𝜕Ψ

𝜕T
, and the expansion of the time derivative of Ψ(v), Ψ̇ = 𝜕Ψ

𝜕T
Ṫ + 𝝏𝚿

𝝏𝜺
∶ 𝜺̇ + 𝝏𝚿

𝝏𝜶
.𝜶̇,

we get

 = 1 +2 = 𝝈 ∶ 𝜺̇ − 𝜌
𝝏𝚿
𝝏𝜺

∶ 𝜺̇ − 𝜌
𝝏𝚿
𝝏𝜶

.𝜶̇ −
q
T
⋅ grad(T) ≥ 0, (3)

Thus, the internal dissipation rate can be split into two terms, the so-called intrinsic dissipation 1 = 𝝈 ∶ 𝜺̇ −
𝜌 𝝏𝚿

𝝏𝜺
∶ 𝜺̇ − 𝜌 𝝏𝚿

𝝏𝜶
.𝜶̇ and the thermal dissipation, 2 = − q

T
⋅ grad(T). The intrinsic dissipation is associated with

irreversible change of the microstructure (including viscous flow, plastic deformation, degradation, or dam-
age), while the thermal dissipation is induced by heat diffusion within the system, and both are positive. The
property  ≡ 0 defines a reversible thermodynamic process. Up to this point, these discussions apply equally
to linear and nonlinear TIP.

2.2. Constitutive Models in the GSM Formalism
The GSM formalism was developed to expand from the limitations of the linear TIP in applications to deform-
ing solids. The GSM enables nonlinearity in the constitutive behavior to be incorporated by introducing the
dissipation pseudopotential,Φ, which is parallel in structure to the free energy potential but describes all irre-
versible processes that result in entropy change (Halphen & Nguyen, 1975). In the GSM formalism, constitutive
models are derived from these two thermodynamic potentials, constructed from state laws and evolution laws
for the state variables that control all thermal-mechanical properties. Derived in a parallel manner, the state
and evolution laws are the partial derivatives of the free energy potential and the dissipation pseudopotential,
respectively. The state laws are defined as

⎧⎪⎨⎪⎩
s = −Ψ,T

𝝈r = 𝜌𝚿,𝜺

A = 𝜌𝚿,𝜶

, (4)

where A is the vector gathering the conjugate variables associated with the internal state variables and 𝝈r is
the reversible stress, whose definition is discussed below.

In the GSM formalism, the evolution equations derive from the dissipation potential Φ(𝜺̇, 𝜶̇,q; T , 𝜺,𝜶), a func-
tion of the fluxes of the state variables, with T and other state variables acting as parameters. (The semicolon
indicates a distinction between the variables to the left and the parameters to the right, emphasizing that
state variables can act as parameters for a given function. In this case of the dissipation potential, the vari-
ables are fluxes of state variables, and the parameters are the state variables themselves). The dissipation
potential must verify some convexity properties to ensure the Clausius-Duhem inequality holds true for all
thermodynamic processes:

• Convexity of Φ(̇v)
• Positivity of Φ(̇v)
• Φ(̇v = {0,0, 0}) = 0

The mathematical properties (convex, positive, and minimal and zero when all fluxes are zero) of the dissipa-
tion potential ensure the positivity of  regardless of the thermodynamic path.

In the general case, the partial derivatives of the dissipation potential define the evolution equations:

⎧⎪⎨⎪⎩
− gradT

T
= 𝚽,q

𝝈 ir = 𝚽,𝜺̇

X = 𝚽,𝜶̇

, (5)

where X is a set of thermodynamic forces associated with the fluxes 𝜶̇ and 𝝈 ir is the irreversible stress. In the
GSM formalism, the stress is defined as 𝝈 = 𝝈r + 𝝈 ir (Germain et al., 1983); the determination of which com-
ponents exist depends on the choice of state variables. When the total strain rate 𝜺̇ is not required to describe
the irreversibility,𝝈 ir = 0 and𝝈 = 𝝈r . This stress partitioning is not common outside of the GSM formalism but
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is important for establishing relations between the state and rate equations, that is, the conjugate variables
and the thermodynamic forces.

To that end, from the state and evolution equations above, the intrinsic dissipation 1 is defined as a sum of
the products of forces and fluxes of the state variables. Under the small strain hypothesis, 1 as derived from
the Clausius-Duhem inequality reads:

1 = (𝝈 − 𝝈r)∶ 𝜺̇ − A𝜶̇. (6)

It can also be derived from the dissipation potential, as

1 = 𝝈ir ∶ 𝜺̇ + X ⋅ 𝜶̇ (7)

Inspection of the two above equations illuminates that (𝝈 − 𝝈r) = 𝝈ir, discussed above, and −A = X . The
second point is essential to the energy balance and observance of the second law in the GSM: the thermody-
namic force X = 𝜕𝚽

𝜕𝜶̇
driving dissipation is opposite in magnitude to the conjugate variable A = 𝜌 𝜕𝚿

𝜕𝜶
, which is

the change in stored energy associated with 𝜶.

The GSM allows for flexibility in the form of the constitutive equations and evolution laws in that the descrip-
tive (or natural) variables can be exchanged in a parallel way for the thermodynamic potentials and the
dissipation pseudopotentials. Whereas the Legendre transformations allow the changing of natural state
variables (i.e., T for s) for the thermodynamic potentials, the Legendre-Fenchel transformations change the
descriptive variables for the dissipation potentials. For example, X = 𝝏𝚽

𝝏𝜶̇
, while the dual potential is such that

𝜶̇ = 𝝏𝚽∗

𝝏X
. This property is utilized in this paper.

2.3. Heat Equation and Energy Balance
The heat equation presented here is general to TIP, but in the GSM, the various components of the work rates
are defined to track the removal of the energy storage rates in the microstructure from the intrinsic dissipa-
tion heat source, developed in this and the following section. To recall, the combined first and second laws
(equations (1) and (3)) give, under the small strain hypothesis

𝝈 ∶ 𝜺̇ −1 = 𝜌ė − 𝜌Tṡ = 𝜌Ψ̇ + 𝜌Ṫs. (8)

It is necessary to expand the entropy rate term, 𝜌Tṡ, in order to capture the potential couplings among the
state variables, as

𝜌Tṡ = −𝜌T
dΨ,T

dt
= −𝜌TΨ,TT
⏟⏞⏟⏞⏟

𝜌C𝜀,𝛼

Ṫ −
(
𝜌TΨ,T𝜺 ∶ 𝜺̇ + 𝜌TΨ,T𝛼 ⋅ 𝜶

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

w∘
the

+w∘
thc

, (9)

where C𝜀,𝛼 is the heat capacity at constant strain and 𝜶. Assuming the Fourier law, q = −kgrad(T), is valid, the
heat equation can be written as

𝜌C𝜀,𝛼 Ṫ − div(k ⋅ grad(T)) = 1 + T𝝈r
,T ∶ 𝜺̇ + TA,T .𝜶̇

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
w∘

h

+rext, (10)

where k is the thermal conductivity tensor and recall that 𝚿,𝜺𝝈
r and 𝚿,𝜶 = A. The rate w∘

h is the overall heat
source induced by the deformation process. Following Chrysochoos et al. (2008), we distinguish between
time derivatives and work rates, signified by ẋ and x∘, respectively, where the energy rates depend on the
path; although they are rates, they are not simply the time derivatives of state functions and are not generally
state functions themselves. On the left-hand side, the term 𝜌C𝜀,𝛼 Ṫ is the heat rate stored (or released) and
−div(k ⋅ grad(T)) represents the heat losses (or gains) by conduction. Thus, the left-hand side is a partial
differential expression of the temperature.

On the right-hand side, the different heat sources are grouped: the intrinsic dissipation 1 with the thermo-
mechanical coupling sources showing the temperature sensitivity of the conjugated variables 𝝈r and A and
the external heat supply rext. The thermomechanical coupling sources can be split into two parts: the ther-
moelastic source w∘

the due to thermoelasticity and the other thermomechanical coupling sources w∘
thc (i.e.,

HOLTZMAN ET AL. 6
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Table 2
Table of Work Rate Terms in the GSM in General, and Applied to This Model

Work rate term Symbol GSM, general This model

deformational w∘
def

𝝈 ∶ 𝜺̇ 𝜎𝜀̇

elastic w∘
el

𝝈 ∶ 𝜺̇el 𝜎(𝜀̇ − 𝜀̇vi
)

viscous w∘
vi 𝝈 ∶ 𝜺̇vi 𝜎𝜀̇vi

stored w∘
s 𝜌 𝜕Ψ

𝜕𝜶
∶ 𝜶̇ = A.𝜶̇ Agġ + Ad ̇𝜌d

dissipated w∘
dis

w∘
def

− (w∘
el
+ w∘

st) 𝜎𝜀̇vi
+ Xdḋ + Xgġ

inelastic w∘
in w∘

def
− w∘

el
𝜎𝜀̇vi

couplings

thermal-elastic w∘
the

+ w∘
thm

𝜌T 𝜕𝝈r

𝜕T
∶ 𝜺̇ + 𝜌T 𝜕A

𝜕T
𝜶̇ 0

elastic stored w∘
e + w∘

s 𝜌Ψ,𝜺 ∶ 𝜺̇ + 𝜌Ψ,𝜶𝜶̇ 𝜎(𝜀̇ − 𝜀̇vi
) + Adḋ + Agġ

work rate ratios

Taylor-Quinney Fw∘
w∘s
w∘in

Ad 𝜌̇d+Agġ

𝜎(
∑

i 𝜀̇vi
)

𝛽TQ
w∘

dis
w∘in

= 1 − F∘w

𝜆AE –
Ad 𝜌̇

+
d
+Agġsd

𝜎
(
𝜀̇gbs+𝜀̇disl

)
Note. these definitions depend on the state variables and mechanical models chosen; in
this model, we choose 𝜀 and 𝜀v , not 𝜀el . Also, we do not use w∘

v in the text.

latent heat release by reaction or rate of phase change or microstructure change, the focus of this paper). It is
important to point out that the two terms w∘

the and w∘
thc in equation (9) do not, in general, correspond directly

to the coupling terms T𝝈r
,T ∶ 𝜺̇ and TA,T .𝜶̇; their relation depends on the chosen set of state variables and the

nature of the thermomechanical coupling. The only general relation we can write relates their sums, as

w∘
the + w∘

thc = T𝝈r
,T ∶ 𝜺̇ + TA,T .𝜶̇. (11)

If we suppose that 𝜌 and C𝜀,𝛼 are material constant and if the conductivity tensor k also remains constant and
isotropic, the heat equation can be simplified as

𝜌C𝜀,𝛼 Ṫ − kΔT = w∘
h + rext, (12)

where ΔT is the Laplacian of T . In this paper, we solve a simplified form of this equation.

2.4. Stored Energy Ratio and Dissipation Fraction
The famous (in metallurgy) Taylor-Quinney coefficient, Fw (Taylor & Quinney, 1934), was originally defined as
the ratio of stored to inelastic energy. Assuming a fixed value of this ratio has been and still is widely used
for predicting mechanical behavior in engineering contexts. To reiterate, one of the aims of this paper is to
assess the partitioning between stored and dissipated energy as a predictor of microstructural evolution and
steady state, without assuming any ratio values a priori. Recently, Rittel and Zhang (2017) showed that this
partitioning varies widely in metals and can also depend on loading geometry.

The energy partitioning is presented here starting from the rates, laid out in Table 2, followed by the corre-
sponding path-integrated total values. In the present context, the intrinsic dissipation 1 is equivalent to the
dissipated work rate w∘

dis, which equals the difference between the total deformation energy rate (w∘
def

) and
the sum of the elastic (w∘

e ) and stored (w∘
s ) energy rates:

w∘
def = 𝜎 ∶ 𝜀̇ (13)

w∘
e + w∘

s = 𝜌Ψ,𝜺 ∶ 𝜺̇ + 𝜌Ψ,𝜶 ∶ 𝜶̇ (14)

1 = w∘
dis = w∘

def − (w∘
e + w∘

s ). (15)
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Figure 1. (a) Dots are dislocations; linear arrays of dots are subgrains; lines are grain boundaries. (b) The steady state
grain size will be the mean of a distribution, in which smaller grains are growing and larger grains are being reduced
during deformation. The energy dissipated when the microstructure is at steady state is accounted for by the steady
state flow laws; this paper addresses the energy dissipation associated with microstructural change.

In section 4.5, it should become clear that these work rates contain a range of internal state variables that all
have their own evolution equations, suggesting that the work rates are not going to be simple time derivatives
of state functions. As with the heat source terms above in equation (9), it is important to point out that the
two terms w∘

e and w∘
s in equation (13) are not necessarily equal to 𝜌Ψ,𝜺 ∶ 𝜺̇ and 𝜌Ψ,𝜶 ∶ 𝜶̇, respectively; only the

equality of the sums is true in general.

When the work rates are integrated over the path, the stored energy ratio can then be defined as

Fw =
ws

win
=

wdef − we − wdis

wdef − we
=

ws

ws + wdis
(16)

The difference, wdef −we, represents the inelastic work win. In the case of plastic hardening at finite strain, the
elastic energy generally remains very low relative to the deformation energy, so that Fw ≈ 1 − wdis

wdef
. The time

derivative is

̇Fw = d
dt

ws

win
=

winw∘
s − w∘

inws

w2
in

. (17)

In the metallurgy literature, the stored energy ratio is often considered to be a constant ( ̇Fw = 0), regardless
of the initial hardening state and the loading path (typically Fw ≈ 0.1). In this particular case, the ratio of the
stored energy rate is also constant and equal to the stored energy ratio itself:

Fw∘ =
w∘

s

w∘
in

. (18)

Conversely, if the stored energy ratio changes, the integrated value is no longer equal to the stored energy
rate ratio. This Fw∘ is not exactly the factor 𝜆 invoked by Austin and Evans (2007, 2009) or Rozel et al. (2011) in
the grain size problem, discussed below in section 4.4.3.

HOLTZMAN ET AL. 8
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In many works dealing with plasticity, another Taylor-Quinney coefficient 𝛽TQ is defined by Rittel (1999) as

𝛽TQ = 1 − Fw∘ =
w∘

dis

w∘
in

(19)

and represents the proportion of the inelastic energy rate that is dissipated. Often supposed to be a phe-
nomenological constant, this convenient coefficient allows estimating the dissipated work from mechanical
data and the plasticity-induced self-heating, using a simple equation without a thermodynamic framework.
We emphasize that within the present GSM framework, no hypotheses or assumptions on Fw and 𝛽TQ are nec-
essary; they are simply derived from the energy balance predictions since the thermodynamic and dissipation
potentials are known.

3. Microstructural Evolution and Mechanical Behavior of Olivine

In this section, we lay out the experimental observations, physical models, and questions regarding
microstructural evolution that motivate our approach and we seek to integrate into a thermodynamic model.
During deformation at high temperature, dislocations undergo nucleation, glide, climb, annealing, and cross
slip, enabling motion, strain, and organization into subgrain structures. As illustrated in Figure 1, grain growth
and reduction mechanisms occur simultaneously; the evolution and emergence of a steady state mean grain
size will reflect the spatiotemporal balance of a range of grain growth and reduction mechanisms. These cou-
pled processes may be occurring simultaneously but at different rates according to an individual grain size
in a heterogeneous distribution. Below, we discuss these processes in turn, building toward the question
of how they interact to determine the rates of grain size evolution and a steady state grain size. We begin
with a discussion of the data for steady state grain size, followed by the empirical steady state flow laws.
Then we discuss dislocation-scale processes and then grain-scale processes; in each, there are processes that
reduce and increase the length scale of the microstructure. Our approach is not to explicitly describe with
mechanistic models all of the possible processes contributing to grain size evolution; rather, it is to provide a
framework with which we can assess, primarily in experimental data, the energetic roles of the ensembles of
active processes.

3.1. Steady State Grain Size
Experimental observations of recrystallized grain size or steady state grain size indicate the existence of a
piezometer, a relationship between the grain size and the ambient stress level (e.g., Twiss, 1977). In Figure 2,
we plot recrystallized grain size data as a function of stress, from van der Wal et al. (1993), Bystricky et al. (2000),
and Karato and Toriumi (1980), which were all deformed at significantly different temperatures as indicated.
These data can be fit with an empirical model of the form

gss = Cpz𝜎
−u, (20)

where Cpz = 0.015 and u = 1.33 (van der Wal et al., 1993) or Cpz = 0.02 and u = 1.4 (Hirth & Kohlstedt,
2015). This piezometric relation also indicates that there is little to no temperature dependence to the olivine
piezometer (Karato & Toriumi, 1980; van der Wal et al., 1993) nor for the quartz piezometer (e.g., Stipp & Tullis,
2003; Stipp et al., 2006). This observation poses a conundrum, as many of the processes involved in defor-
mation and grain size change are known to be thermally activated, discussed below. The lack of temperature
dependence of the steady state grain size could emerge if the temperature dependencies of the subpro-
cesses are the same, while the kinetics of grain size evolution can still depend on temperature (e.g., Austin &
Evans, 2007). Resolving this problem is important for understanding the extrapolation of experimental data to
the Earth.

There also is ambiguity in this data set, regarding the data above about 250 MPa (102.4), as illustrated in
Figure 2. Most of the data points are from the small grains that nucleate around the edges of coarse grains
during deformation to small strains; the initial grain sizes in those experiments are far from the steady state
value. In torsion experiments on olivine aggregates to very large strains, Bystricky et al. (2000) demonstrated
that mean grain size continued to decrease to large strain. As illustrated in Figure 2, the final grain size (the red
dot in Figure 2) was significantly smaller than the piezometer prediction. Thus, it remains ambiguous whether
the reduction in grain size above about 250 MPa is due to (a) a change in mechanism of grain size reduction
above some threshold in stress, similar to that observed in quartz (Kidder et al., 2016; Stipp et al., 2010), or (b)
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Figure 2. Recrystallized grain size data from multiple experimental
laboratories. Blue dots: Anita Bay (wet) dunite; Green dots: Aheim (wet)
dunite; Black dots: (dry), all from van der Wal et al. (1993); Red dot is one
experiment from Bystricky et al. (2000). Hollow red circles are from Karato
and Toriumi (1980). Black line is the grain size piezometer of Twiss (1977);
red line is the Hirth and Kohlstedt (2015) adjustment to the Twiss
piezometer; green line is the subgrain size piezometer of Toriumi (1979).

the difference between small strain recrystallized grain size and the large
strain steady state grain size, with steady state grain size not yet reached for
much of the data from experiments at lower stress and strain. We return to
this question in section 6. As more torsion experiments are performed, we
will be able to assess the kinetics of grain size evolution and characterize
the steady state.

3.2. Steady State Flow Laws
At upper mantle pressures and temperatures, olivine is expected to deform
under some combination of diffusion creep (through lattice and grain
boundary pathways), dislocation creep, and dislocation-accommodated
grain boundary sliding (GBS). The empirical flow laws for each deforma-
tion mechanism follow the same basic form (e.g., Hansen et al., 2011; Hirth
& Kohlstedt, 2003), determined for steady state creep rates.

𝜀̇i(𝜎, g, T) = C0
vi
|𝜎|ni g−mi exp(−Qi∕RT)sgn(𝜎) = Cvi

(T)|𝜎|ni g−mi sgn(𝜎)
(21)

where Cvi
(T) = C0

vi
exp(−Qi∕RT) and i = 1 for diffusion creep, i = 2 for

dislocation creep and i = 3 for GBS creep. The g is grain size (usually d by
convention, but here d is used to indicate dislocation-associated proper-
ties); Qi is the thermal activation energy; 𝜎 is the differential stress, a scalar
representative of simple stress states (tension, compression, or shear), dis-
cussed further in Appendix B. The absolute value is used, along with the
sgn (sign) to ensure that the stress and strain have the same sign; for sim-

plicity, in the rest of this paper, we simply write 𝜎 and apply only monotonous loading, though the model
could be modified for cyclic or other loading paths. Effects of pressure, water fugacity, fH2O and melt fraction
𝜙 are well studied, but not incorporated in this paper, with parameter values are shown in Table 3. These pro-
cesses are considered to act in series, as 𝜀̇ =

∑
i 𝜀̇i. A deformation mechanism map provides a convenient

way to view the composite strain rate and the dominant deformation mechanism in each mechanism as func-
tions of grain size and stress (Figure 3). We plot a deformation mechanism map for Hansen et al. (2011), which
we will use in the calculations. Because of the grain size sensitivity of all but dislocation creep, as grain size
evolves, the viscosity will change significantly. At a given temperature, the field boundary (FB) is a relationship
between stress and grain size at which strain rates of two mechanisms are equal:

gFB.12 =

(
Cv2

Cv1

𝜎n−1

)1∕m

=

(
C0

v2

C0
v1

𝜎n−1 exp
(

Q2 − Q1

RT

))1∕m

, (22)

and similarly for gFB.23 and gFB.13 (though it may be covered by i = 2). The role of the field boundaries will be
discussed below.

3.3. Dislocations: Kinetics and Energetics
During deformation, dislocations are produced at, for example, Frank-Read sources. At high temperature in
silicates, dislocation dynamics are coupled to grain size evolution. Dislocations can organize into subgrain
walls by diffusive climb; when these reach a high enough misorientation angle, they become grain boundaries
(i.e subgrain rotation recrystallization). Alternatively, gradients in dislocation density drive grain boundary
migration to form small new grains (i.e., grain boundary migration/nucleation recrystallization). Dislocations
in a crystal can be distinguished into two populations, forest and mobile, such that 𝜌d = 𝜌f + 𝜌m; mobile
dislocations contribute to both the stored energy and energy dissipation, while the less or immobile forest
dislocations contribute to the stored energy and thus to the processes leading to grain size change. There
is constant exchange between the two: dislocations nucleate, migrate, anneal away, become tangled, climb
and organize into subgrain walls, and work their way free to become mobile again. Assuming an experimental
sample can be perfectly quenched, the observed dislocation distribution is a snapshot; it is not always clear
if this snapshot is dominated by forest or mobile dislocations. Recent models may help interpret observed
structures (e.g., Boioli et al., 2015). In the formulation developed here, we do not distinguish between forest
and mobile dislocations. If dislocation and GBS flow laws were expressed explicitly as a function of the mobile
dislocation density, such a distinction would be useful.
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Table 3
Flow Law Parameters

i, Mechanism: C0
vi

ni mi Qi

Hirth and Kohlstedt (2003)

1: diffusion 1.5E9 1 3 375E3

2: dislocation 1.1E5 3.5 0 530E3

3: disGBS1 6500 3.5 2 400E3

Hansen et al. (2011)

1: diffusion 4E7 1 3 375E3

2: dislocation 1.1E5 3.5 0 530E3

3: disGBS 6.3E4 2.9 0.73 400E3

Note. Units of Ai are (μmp∕MPan/s). The activation volume term is not
used in this paper. Hirth and Kohlstedt values are for T ≤ 1250 ∘C.
disGBS = dislocation creep-accommodated grain boundary sliding.

The empirical observation that there exists a steady state dislocation density
associated with a single value of stress (a piezometer) is expressed as

𝜌ss
d = 𝛽

b2

(
𝜎
𝜇

)s

, (23)

where 𝜇 is the shear modulus, b is the Burgers’ vector, and the empirically
determined parameters (e.g., 𝛽 = 1.74 × 10−3 (m−2) and s = 1.37; Bai &
Kohlstedt, 1992). Thus, the dislocation density is apparently insensitive to
temperature and chemical environment (Bai & Kohlstedt, 1992; Karato &
Jung, 2003). There is also a piezometer for the subgrain size, discussed in
section 3.5.4.

The internal energy per unit volume from dislocation density is modeled as

Ed(not E𝜌) = (c1𝜇b2)𝜌d, (24)

where c1 = 1.88, according to Hirth and Kohlstedt (2015, their 𝛼). If
equation (23) is substituted in for 𝜌d (not including subgrains), we obtain the
energy associated with the steady state dislocation density:

Ed(not Ess
𝜌 ) =

(
c1𝛽

𝜇s−1

)
𝜎s. (25)

Experiments have shown that dislocation density reaches a steady state saturation in response to a stress
pulse (that is then held constant) by 1–2% strain (Durham & Goetze, 1977; Durham et al., 1977). In the version
of the model developed here, we calculate the evolution; we do not assume that the dislocation density is
necessarily at its steady state saturation at each time step.

Similar to the grain size evolution, we use a serial or synchronous dislocation density evolution model based
on the simple form discussed above, 𝜌̇d = 𝜌̇d+ + 𝜌̇d− , where, generically, both constants can be written as
Bi = Bo

i f (T). The recovery term, 𝜌̇d− ≤ 0, has been studied in annealing experiments on olivine and an empirical
form proposed (Goetze & Kohlstedt, 1973; Kohlstedt et al., 1980):

𝜌̇d− = −Bo
d−𝜌d

q exp
(−(Qd− + PV∗

d− )
RT

)
, (26)

where q = 2, the activation energy Qd− = 300 ± 15 kJ/mol, the activation volume V∗ = 11 ± 1 cm3/mol
(Kohlstedt et al., 1980), and P is the pressure (or mean stress, 𝜎̄ = (𝜎1 + 𝜎3 + 𝜎3)∕3). Bo

d− is not given but is

Figure 3. Deformation mechanism of flow laws from Hansen et al. (2011). Red line indicates the field boundary between
diffusion and grain boundary sliding creep; blue line indicates field boundary between grain boundary sliding and
dislocation creep.
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Figure 4. (a) Dislocation density annealing data and fits to the function for 𝜌̇− (equation (26)), with Q𝜌̇− = 300 kJ/mol.
(b) Reproduction of the 𝜌d piezometer (thick red dashed line, equation (23), by steady state solution of two kinetic laws
(equation (A1)), first assuming that their activation energies Qd are the same (blue line) and then that the difference
between the two is ΔQd = 100 [kJ/mol]. The latter requires a value of Bd+ to be adjusted by a factor of 100. The lines for
ΔQd = 100 are shown over a range of 1000–1400 ∘C, which may fall in the range of data uncertainty and should be
further explored.

determined here to be Bo
d− = 3.6E−6 (s−1m2(q−1)), by fitting the data as shown in Figure 4a, neglecting the

pressure dependence.

For the stress dependence of dislocation density production rate, we do not find an empirical study of the Bd+

term. Therefore, we propose the following form

𝜌̇d+ = Bo
d+𝜎

p exp

(
−Qd+

RT

)
(27)

and deduce a constraint on the magnitude of the parameters, as follows. Assuming that recovery and
production are independent serial processes, we write the evolution 𝜌̇d as

𝜌̇d = Bd+ (T)𝜎p − Bd− (T)𝜌d
q. (28)

In Appendix A, we derive constraints on these Bd coefficients that allow us to focus on the coefficients in the
grain size evolution, but we expect that future experiments will provide much better constraints on these
values.

3.4. Grain Size: Kinetics and Energetics
While the dislocation density responds relatively quickly to changes in the stress state, grain size evolves
more slowly, driven by local changes in the dislocation density. Local stress may change transiently at the
grain scale as the grain boundary and dislocations structures evolve. Whether local grain size is decreasing
by grain boundary migration or subgrain rotation recrystallization, both mechanisms involve a local reduc-
tion of energy stored in dislocations, associated with a local increase in energy stored in grain boundaries.
Similarly, grain growth over a population results in a net decrease of energy stored in grain boundaries. If net
growth is occurring and grain size-sensitive creep is important, average stress may rise (if deforming under
strain-controlled boundary conditions). boundary conditions), such that dislocation density will then increase.
On the meaning of local in this analysis, we are assuming average values of dislocation density and grain size,
where that average must be considered to be meaningful over a large enough number of grains, over a time
window long enough that we can assume the average stress is constant. In this section, we discuss briefly the
various processes that can be considered in the model, limiting our discussion to levels of detail appropriate
to our analysis.

In the thermodynamic framework, the energy stored in the microstructure is important in the energy balance.
The equation of state for the internal energy associated with grain boundaries per unit volume, Egb, can be
estimated as

Egb =
c2𝛾

g
, (29)
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where 𝛾 is the surface energy per unit area of grain boundaries (J/m2). For spherical grains in a cubic volume
and the geometric factor c2 = 𝜋 (Austin & Evans, 2007; 2009) or c2 = 2 (Hirth & Kohlstedt, 2015). It is likely
that 𝛾 is a function of T (Philpot et al., 1990), but this effect is not taken into consideration as an additional
nonlinearity, as it is not expected to be strong (e.g., Hirth & Kohlstedt, 2015). In the following, we discuss
empirical and phenomenological models for the specific kinetic processes of grain size evolution that will
eventually be coupled to changes in the stored energy.

3.4.1. Static Grain Growth
In the absence of deformation, grains will tend to grow (with smaller ones consumed) such that the mean
grain size increases, driven by the reduction of surface energy of grain boundaries. The following empirical
relationship is commonly used:

ġgg = Cgg exp

(−Qgg

RT

)
g1−v

v
, (30)

where v ≥ 2, depending on the mechanism of grain growth (e.g., Austin & Evans, 2009; Evans et al., 2001;
Karato, 1989) and the geometry of secondary phases (e.g., Evans et al., 2001; Hiraga et al., 2010). Values for
Cgg = 2.0E−2 (mv/s) and Qgg = 200 (kJ/mol) are empirically determined, with significant uncertainty (Evans
et al., 2001; Karato, 1989). Note that second phases can slow this rate of growth (e.g., Tasaka & Hiraga, 2013).

3.4.2. Stress-Induced Grain Growth
Though it is infrequently considered in the grain size evolution models, deformation may enhance grain
growth by at least two mechanisms. The existence of dislocations (or gradients in dislocation density) can
provide a driving force for grain growth (e.g., Austin & Evans, 2009; Karato, 1989; Toriumi, 1982). If migration
causes the growth of grains at the expense of smaller grains, then the mean grain size will increase. In exper-
iments on polycrystalline aluminum, Li et al. (2016) observe much more rapid grain growth in samples with
an applied stress than during static annealing. However, studies on calcite observe no obvious effect of defor-
mation on grain growth rate (e.g., Austin & Evans, 2009). For olivine, Toriumi (1982) suggests that the effect
may be very difficult to isolate. Alternatively, Kellermann Slotemaker et al. (2004), Kellermann Slotemaker
and De Bresser (2006) demonstrate that grain switching during deformation can lead to enhanced grain
growth. To our knowledge, no current grain size evolution models in the Earth science literature incorpo-
rate a stress-enhanced grain growth mechanism. As discussed below, we allow for the possibility but will not
emphasize it until this model is used to analyze experimental data.

3.4.3. Stress-Induced Grain Size Reduction: Dynamic Recrystallization
The internal energy associated with dislocations can be transferred to the formation of increased grain bound-
ary length, either by (1) migration of grain boundaries, rearranging and replacing regions of high dislocation
density with dislocation-free regions, nucleating new grains, called nucleation recrystallization (e.g., Derby &
Ashby, 1987; Guillope & Poirier, 1979; Rutter, 1995), or by (2) reorganizing dislocations into ordered subgrain
walls, called subgrain rotation recrystallization (e.g., Shimizu, 1998, 2008). In both cases, while Egb increases
with grain size reduction, the total change depends on the subgrain and dislocation densities that can change
more rapidly than grain size. In subgrain rotation recrystallization, if the thermal conditions allow sufficiently
fast climb, then the tangles organize into subgrain walls. As these walls incorporate more dislocations, eventu-
ally the misorientation angle is large enough that they qualify as new recrystallized grains. The driving force for
grain size reduction is the local reduction of internal energy associated with replacing dislocation tangles and
subgrain walls with grain boundaries. Thus, there should be (at least) a stress dependence and a temperature
dependence to the rate of grain size reduction.

We propose a stress-driven (sd) evolution equation for mean grain size of the following form that includes
both growth and reduction:

ġsd(T , 𝜎) = Csd(T)𝜎a

( cg

g2
−

cg

g2
att

)
, (31)

where cg = c2𝛾 . The term in parentheses is the driving force calculated as the difference in thermodynamic
forces between two states; these forces will be defined and derived in section 4.4.3. The gatt is the grain size at
the attractor, determined by an equation of state, the possibilities for which are discussed below. The thermal
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terms are all of the form C(T) = Co exp(−Q∕RT). We provide a stress dependence with an unknown exponent,
a, to account for any stress dependence to the grain size rate that is not accounted for by the stress depen-
dence of the dislocation density increase (also a function of stress), which might arise due to effects of stress
on grain growth (section 3.4.2) or recrystallization processes; a can be determined empirically, but for now we
assume a = 1.

The form of the driving force
(

cg

g2 − cg

g2
att

)
will be derived within the thermodynamic formalism in section 4.4.3.

The use of an attractor has advantages and disadvantages: it allows the stress-driven term to change sign
when grain size is above or below the attractor, as illustrated in Figure 6; however, it requires the knowledge
or hypothesis of an attractor that the system somehow knows about. For near equilibrium, this notion is rea-
sonable. Because this attractor and the prefactors (Csd(T)𝜎a) are both functions of the thermodynamic state,
the direction and rate of grain size evolution can be strongly coupled and nonlinear. In our model, we allow
these dependencies but do not specify a mechanism, because our aim is to constrain these rates empirically.
For example, if the recrystallization mechanism changes as a function of thermodynamic state, the empiri-
cally determined parameters should change. However, the choice of gatt may reflect a particular mechanism;
below, we describe several candidates.

3.5. Candidates for Grain Size Attractor Functions
When used as an empirical model for analysis of data, the choice of the attractor grain size gatt will constitute
the central hypothesis of the analysis; the empirical parameters in the various aspects of the model (i.e., Csd,
a) will depend on the choice of gatt. Here we discuss four possible choices and end with the subgrain size
piezometer, used in this paper.

3.5.1. Twiss Grain Size Piezometer
The model of Twiss (1977) assumes that the steady state grain size will be that at which the energy stored in
the dislocation structure (presumably all dislocations, mobile and forest) is equal to that stored in the grain
boundary structure. In other words, the energy stored in the microstructure seeks a state of equipartition-
ing between dislocations and grain boundaries, ΔEdisl = ΔEgb, where the Δ indicates the change in internal
energy due to the presence of the structures. Equating equations (25) and (29) and rearranging as a function
of stress,

gTw
ss =

(
c2

c1

𝛾𝜇s−1

𝛽

)
𝜎−s. (32)

This equation implies that the exponents s = u (and indeed 1.37 ≈ 1.4). Using the Twiss model as the attrac-
tor implies that the system will organize toward a state of equipartitioning of stored energy among the two
dominant aspects of the microstructure, dislocations, and grain size. One compelling feature of this model is
that it explains the temperature independence of the piezometer in that the relative energies only depend
on stress; for olivine, neither energies have significant temperature dependence (Hirth & Kohlstedt, 2015). A
recent analysis of creep and grain size data for olivine (Hirth & Kohlstedt, 2015) reduces the grain size pre-
dictions of the Twiss model by a factor of 0.45, as illustrated in Figure 2. Shimizu (2008) argues that the Twiss
model works better for subgrain size than grain size.

3.5.2. FB Hypothesis
In the FB hypothesis (de Bresser et al., 1998, 2001), the steady state grain size will tend to fall near the boundary
between diffusion and dislocation creep fields. In this hypothesis, the FB acts as an attractor because the grain
size will continue to reduce in the dislocation creep regime, but once in the diffusion creep regime, the pro-
duction of dislocations will diminish and thus the grain size reduction rate; surface energy-driven grain growth
will then cause grains to grow back up toward the dislocation creep field, as implied in Figure 1. Precigout
et al. (2007) proposed that the FB hypothesis is consistent with the location of the empirical piezometer if the
FB is that between diffusion creep and dislocation-accommodated GBS creep, using the Hirth and Kohlstedt
(2003) flow laws. Subsequently, the Hansen et al. (2011) flow laws provide a significantly different location for
the diffusion-GBS FB.

As an attractor, the FB hypothesis implies that the system will organize toward a state of equipartitioning
between two dominant dissipative creep mechanisms. Because the position of the FB is temperature depen-
dent, the FB hypothesis suggests a moderate temperature dependence of the steady state grain size or
requires another explanation for a lack of temperature sensitivity. Using the FB hypothesis as an attractor
would introduce another degree of thermomechanical coupling.
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The wattmeter model of Austin and Evans (2007, 2009) is something of a hybrid model; because the grain
size reduction rate depends on the dislocation creep rate, the reduction decreases as the grain size enters the
diffusion creep field, and the static grain growth can take over.

3.5.3. Kinetic Models
Another class of models for steady state grain size pose that it occurs when the rate of grain growth is balanced
by the rate of nucleation of new small grains (e.g., Derby, 1991; Derby & Ashby, 1987; Shimizu, 1998, 2008).
Because these kinetic processes are temperature dependent, weak to moderate temperature dependence of
the steady state grain size is expected. These models are focused more on nucleation recrystallization. Since
the driving force for these kinetic processes is the reduction of some spatial and/or temporal difference in
internal energy (elastic energies around dislocations or surface energy of grain boundaries), the energetic and
kinetic approaches should eventually converge. Here we focus on subgrain rotation recrystallization.

3.5.4. Subgrain Size Piezometer
The subgrain size is a natural attractor when the recrystallization mechanism is subgrain rotation; by defini-
tion, new grains nucleate at this grain size. Conceptually, the justification is the same as for the Twiss grain
size piezometer, which the steady state relationship occurs when energy stored in the subgrain structure
equals that in the mobile dislocations within subgrain interiors. In line with Twiss’s (1977) argument, the steady
state mean grain size will not likely be exactly the grain size of the attractor, because of grain growth during
deformation, as illustrated in Figure 2. Several subgrain piezometers, gsg(𝜎), exist for olivine (e.g., Karato &
Toriumi, 1980; Toriumi, 1979; Twiss, 1977). We use the empirical Toriumi (1979) subgrain piezometer (plotted
in Figure 2) because it is provided in the form gsg(𝜌d):

gsg(𝜌d) =
csg√
𝜌d

, (33)

where csg = 15 is a phenomenological constant considered to be independent of the temperature, recently
demonstrated to agree well with both experimental and natural samples (Hansen & Warren, 2015). In this
paper, we use this subgrain size piezometer as the attractor, such that gatt = gsg(𝜌d). There is a strong physical
justification for this choice: The attractor depends on the dislocation density (which is a function of stress
and temperature) and thus induces a strong coupling between the evolution of the two microstructural state
variables. However, this choice is specific to this mechanism; if a system enters a grain nucleation recrystal-
lization regime, this choice of gatt could be misleading. We also note that we are implicitly assuming that the
distribution of gsg can be defined by a mean value, as we do with the grain size, reflecting the idea that the
distribution evolves in a self-similar way with changing stress state (Cooper et al., 2016; Stone et al., 2004).

3.6. Synthesis
Here we bring together these various empirical constraints and models and present the design of the study.
The model developed below uses two microstructural state variables, mean grain size, and mean dislocation
density. The motivation of the subsequent thermodynamic framework is to track energy partitioning among
that dissipated in purely irreversible creep and that which goes into changing the microstructure. Because
the processes involved are nonuniformly temperature sensitive, the temperature evolution must be tracked
and the sensitivity to the thermal conditions explored. Consistent with our physical view, the evolution of the
dislocation density is the driver for grain size evolution; 𝜌d evolves relatively quickly and the grain size lags
behind: [𝜌d → gsg → g], in sequence of decreasing rates of kinetic response to changing stress. The time
scale of that lag is governed by temperature and stress; we consider these to be the least well constrained
parameters in this model. The grain size is responding to the attractor defined by the subgrain size (gatt = gsg),
which is a function of the current dislocation density. In the next section, we incorporate these empirical
pieces into the GSM framework.

4. GSM Formalism Applied to Microstructural Evolution in Olivine

Here we apply the GSM formalism to the problem of microstructural evolution during creep, as illustrated
conceptually in Figure 5. The state variables for this system are incorporated into the set v = {T , 𝜀, 𝜀vi

, 𝜌d, g}.
The system is open to mechanical work and heat flux but closed to mass flux (Figure 5b), and internally, energy
is partitioned into a portion stored in the elasticity and the microstructure and a portion dissipated by creep
(Figure 5c). The basic mechanical behavior is a Maxwell viscoelastic model of a spring and nonlinear dashpots
in series, such that the strain is decomposed into a contribution from the spring and the dashpots (𝜀 = 𝜀e+𝜀vi

),
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Figure 5. Schematic of the model, with work rates defined in Table 2. (a) Two states in T − 𝜀 − 𝜎 − 𝜌d − g space,
connected by a path with irreversible dissipation. The 𝜀 is the total strain, but 𝜀v (not shown) is also needed to describe
the state. (b) In the 0-D thermodynamic system of interest here, deformation (work) is applied to a representative
elementary volume (orange circle), which is open to heat but not mass. (c) Inside the representative elementary volume,
energy can be stored or dissipated. (d) The mechanical model consists of a Maxwell body with three nonlinear creep
mechanisms and two microstructural state variables, dislocation density, and grain size. Lines indicate couplings; grey:
diffusion creep and grain boundary sliding depend nonlinearly on grain size; orange: dislocation and grain boundary
sliding creep both involve dislocation production and motion. Some of those dislocations go into changing the grain
size (red line). Any changes in mean dislocation density and grain size involve dissipated energy (purple dots) and a
change in the stored energy (blue tanks).

described by a form of Hooke’s law: 𝜎 = M(𝜀 − 𝜀v), where M is the relevant elastic modulus, 𝜀 is the total
strain, and 𝜀v is the total viscous strain. We use three creep mechanisms (dashpots in Figure 5d), two of which
depend nonlinearly on grain size (diffusion and GBS creep), and two of which depend nonlinearly on stress
(GBS and dislocation creep), and all are nonlinear in temperature. Under the quasi-static approximation, the
evolution of stress is slow enough that the steady state flow laws are valid for every time interval between
two successive states.

We use two microstructural state variables, for the mean dislocation density and mean grain size, such that
𝛼1 = 𝜌d and 𝛼2 = g, that govern the energy stored in the microstructure (Figure 5d). The dislocation density
evolution model is derived in section 3.3; the grain size evolution model is developed in section 3.4, with a
significant part to be derived below, in section 4.4.3. The evolution laws are constructed from equations (21),
(28), and (31). In Figure 5d, the elements representing energy storage are attached to the viscous dashpots,
because they are closely coupled. We will show that small changes in the stored energy yield large changes
in the total energy dissipated.

Up front, we make several major simplifications:

1. We consider only scalar values of stress and strain.
2. We assume that mass density is constant, considering a silicate rock that undergoes no reactions, no thermal

expansion, or mechanical dilatancy due to cavitation or granular flow, all of which would change the density
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Table 4
Empirical Evolution Law Parameters for Dislocation Density and Grain Size

Symbol Name Value Units Notes

Dislocations

𝜌d dislocation density s.v. (m−2) Equation (23)

s stress exponent 1.37 — Equation (23)

𝛽 dislocation prefactor 1.74E−3 — Equation (23)

b Burger’s vector 0.5E−9 (m) Equation (23)

c1 geometric constant 1.88 — Equation (24)

𝜇 shear modulus 50E9 (Pa) Equation (24)

Bo
d−

𝜌̇d− rate constant 3.6E−6 (s−1 m2(q−1)) Equation (26)

q exponent 2 — Equation (26)

Qd− activation energy 300E3 (J/mol) Equation (26)

Bo
d+

𝜌̇d+ rate constant 4.9E−4 (s−1m−2 Pa−p) Equation (27)

p exponent s ∗ q=2.74 — Equation (27)

Qd+ 𝜌̇d+ activation energy 300E3 (J/mol) Equation (27)

Grain size

g grain size s.v. (m) Equation (29)

c2 constant 𝜋 — Equation (29)

𝛾 surface energy 1.0 (J/m2) Equation (29)

Co
gg rate constant 2.0E−8 (mv s−1) Equation (30)

v exponent 2 — Equation (30)

Qgg activation energy 200E3 (J/mol) Equation (30)

Co
sd

rate constant 4.0E−22a (Pa1−a m2 s−1) Equation (31)

a exponent 1.0 — Equation (31)

Qsd activation energy 200E3 (J/mol) Equation (31)

gsg subgrain size (m) Equation (33)

csg subgrain piezometer constant 15 — Equation (33)

Note. Sources are cited near the equations listed in last column. The least constrained parameters are Bo
d+

,
Qd+ , Co

sd
, a, Qsd. s.v. indicates a state variable.

aThis value depends on the choice of gatt; the value chosen here causes calculated steady state grain sizes
to land on roughly on the experimental data in Figures 2 and 7 when gatt is the subgrain piezometer.

and thus require mass balance calculations and equations for density. In what follows, we calculate all values
per unit volume.

3. Dislocation densities and grain sizes measured in natural and laboratory rocks are nonsingular distributions.
The use of only the mean values of properties of the microstructure relies on a fairly strong assumption that
the distribution remains self-similar as the mean value evolves.

4.1. Helmholtz Free Energy Potential and State Laws
The volume free energy potential can be constructed in many ways, reflecting the conception of the physical
problem and the physical couplings that we choose to consider. Here because the mostly empirical studies
of aspects of the problem are separated, as described in section 3, we construct the potential as a sum of the
elastic, microstructural, and thermal contributions:

Ψ(v) =
1
2

M(𝜀 − 𝜀v)2

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
Ψel

+

Ψd
⏞⏞⏞⏞⏞⏞⏞

(c1𝜇b2)𝜌d +
c2𝛾

g
⏟⏟⏟

Ψg

−

Ψth
⏞⏞⏞

1
2

C0
𝜃2

T0
, (34)

where 𝜀v =
∑

i 𝜀
vi and 𝜃 = T − T0. T0 is a reference temperature, or in the case of experiments, the initial

temperature. The definitions of the internal energies for grain size (surface energy of grain boundaries) and
dislocation density (elastic strains around dislocations) were given in section 3 and equations (24) and (29),
respectively. Symbols are summarized in Tables 1 and 4.
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The state equations, derived from the partial derivatives of the free energy potential with respect to each state
variable, represent the conjugate variables associated with each state variable. In calculating these derivatives,
we illuminate what couplings we are considering in the free energy potential. For example, here we make the
approximation to neglect the temperature dependences of 𝜇, b, c1, c2, 𝛾 , so no thermomechanical coupling
terms will be derived from this form of free energy potential; all temperature effects occur in the dissipation
potential. The possible effect of temperature on surface energy, 𝛾(T), was as discussed in section 3.4. Thus,
the state equations read ⎧⎪⎪⎪⎨⎪⎪⎪⎩

A𝜀 =
𝜕Ψ
𝜕𝜀

= M(𝜀 − 𝜀v) = 𝜎r

Avi
= 𝜕Ψ

𝜕𝜀vi

= −𝜎r

Ad = 𝜕Ψ
𝜕𝜌d

= c1𝜇b2

Ag = 𝜕Ψ
𝜕g

= −c2𝛾g−2

Ath = 𝜕Ψ
𝜕T

= −s

. (35)

4.2. Dissipation Potential and Rate Equations
The dissipation pseudopotential Φ is a function of the state variable fluxes ̇v = {q⃗, 𝜀̇, 𝜀̇vi

, 𝜌d, ġ} and
parametrized by v . We construct a function Φ based on the empirical models discussed in section 3, which
are measured in isolation from each other. The additive decomposition of the dissipation potential comes
from the hypothesis that the irreversible mechanisms induced by diffusion, dislocation and GBS creep, and
grain size and dislocation density changes, can be simply superimposed. So the function is constructed
as follows:

Φ(̇v;v) =
∑

i

Φvi
(𝜀̇vi

;v) + Φd(𝜌d;v) + Φg(ġ;v) + Φth(q⃗;v). (36)

In a Maxwell-type viscoelastic model, irreversibility induced by the viscous flow laws (the dashpots) is associ-
ated with the viscous strain rates, 𝜀vi

. For the model employed here, the chosen state variables for strain are
{𝜀, 𝜀vi

}. The irreversibility due to deformation alone (not microstructure change, ġ, 𝜌d) is described by 𝜀v , so
there is no dissipation associated with the total strain, that is, Φ,𝜀̇ = 0, so 𝜎 ir = 0 and 𝜎 = 𝜎r .

In this model, we switch to the dual pseudopotential, Φ∗, which is the Legendre-Fenchel transform of the
pseudopotential. Φ∗ is now a function of the set of thermodynamic forces X , which we refer to as X =
{−∇T

T
, Xvi

, X𝜌, Xg}, instead of the fluxes ̇v , better reflecting the form of all the empirical kinetic models in
section 3. However, recall that both forms are strictly equivalent from a physical standpoint. For example, it is
convenient to introduce terms in the potential for the steady state flow laws (i.e., 𝜀̇vi

= 𝜕Φ∗
vi
∕𝜕Xvi

), which are
easily identifiable when standard empirical flow laws exist in the literature, (cf. equation (21)). The additive
partition of irreversible mechanisms leads us to propose this dual dissipation potential:

Φ∗(X ;v) =
∑

i

Φ∗
vi
(Xvi

;v) + Φ∗
d(Xd;v) + Φ∗

g(Xg;v) + Φ∗
th(Xth;v). (37)

The different terms of Φ∗ will be successively defined in sections 4.4.1 to 4.4.4.

As already mentioned, in section 2.2, the thermodynamic forces are the partial derivatives of the dissipation
pseudopotential with respect to the flux of each state variable. In this model we obtain⎧⎪⎪⎪⎨⎪⎪⎪⎩

X𝜀̇ = 𝜎 ir = 𝜕Φ
𝜕𝜀̇

= 0

Xvi
= 𝜕Φ

𝜕𝜀̇vi

Xd = 𝜕Φ
𝜕𝜌̇d

Xg = 𝜕Φ
𝜕ġ

Xth = 𝜕Φ
𝜕q⃗

. (38)

However, as discussed above, we prefer to use the dual version of the previous equations, which give us the
viscous flow laws and the kinetic equations for dislocation density and grain size:

⎧⎪⎪⎨⎪⎪⎩

𝜀̇vi
= 𝜕Φ∗

𝜕Xvi

𝜌̇d = 𝜕Φ∗

𝜕Xd

ġ = 𝜕Φ∗

𝜕Xg

q⃗ = 𝜕Φ∗

𝜕Xth

. (39)
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Figure 6. (a) The dissipation potential for stress-driven grain size evolution, Φ∗
sd

, is a convex function centered on the
difference between the thermodynamic driving force component Xg and a reference Xgatt

. (b) The derivative of this
function with respect to Xg gives ġsd, which is a positively sloping line. (c) When this rate is recast in terms of the grain
size (relative to the attractor grain size, gatt, it shows that the grain size will decrease when g> gatt; the stress-driven
grain growth can occur when g < gatt, but the effect is limited by the presence of 𝜎 in the function, so the effect be
mitigated at low stress (implied by the dashed line).

Note that the total strain rate 𝜀̇ cannot be derived from the dissipation potential since 𝜎 ir = 0. This is consis-
tent because the total strain is not used to describe the irreversible mechanisms. The strain will be related to
the other state variables through the state laws. Regarding the other rate equations, it is clear now how the
empirical laws proposed in section 3 fit into the GSM. Below, we elucidate the different thermodynamic forces.

4.3. Relationships Between Thermodynamic Forces and Conjugate Variables
As discussed above in section 2, the intrinsic dissipation was defined and written as the product of the
thermodynamic forces and fluxes associated with state variables. The intrinsic dissipation is written as

1 =
∑

i

X𝜀̇vi
𝜀̇vi

+ Xgġ + Xd𝜌̇d ≥ 0 (40)

Following the Clausius-Duhem inequality (cf. equation (3)), the intrinsic dissipation can also be written as

1 =
(
𝜎 − A𝜀

)
𝜀̇ −

∑
i

Avi
𝜀̇vi

− Agġ − Ad𝜌̇d ≥ 0, (41)

By inspection of equations (40) and (41), and noting that both expression of 1 must be identical whatever
the thermodynamic process, we obtain

⎧⎪⎪⎨⎪⎪⎩
𝜎 = A𝜀 = 𝜎r

Xvi
+ Avi

= 0
Xd + Ad = 0
Xg + Ag = 0

. (42)

4.4. Construction of the Dissipation Potential
In the following, we consider the different irreversible mechanisms accompanying the deformation process.

4.4.1. Nonlinear Viscous Creep
Regarding the viscous flow laws introduced in equation (3.2), we propose a contribution to the dissipation
potential of the following form

Φ∗
vi
(Xvi

;v) =
1

ni + 1
Cvi

(T)g−mi |Xvi
|ni+1, (43)

where Xvi
= 𝜎 and, according to equations (35) and (42), Cvi

(T), i ∈ {1, 2, 3} are functions of temperature
for each of the three flow laws. Note that the values of the thermodynamic force associated with each of the
viscous strain rates are by construction (i.e., dashpots in series) equal to 𝜎, which is itself equal to 𝜎r .

4.4.2. Stress-Driven Dislocation Density Evolution
To calculate the dissipation potential, recall that 𝜌̇d = 𝜕Φ∗

𝜕Xd
. Because Ψd is linear in 𝜌d (Ψd = c2𝜇b2𝜌d), Xd is

composed of only constants (−c2𝜇b2). Since we cannot write 𝜌d in terms of Xd , the integration of the empirical
equation for dislocation density evolution (equation (28)) is simply

Φ∗
d(Xd;v) =

(
Bd+ (T)𝜎p − Bd− (T)𝜌

q
d

)
Xd, (44)
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We note that 𝜎 here is interpreted as a parameter in the dissipation potential, as it is not a state variable but
is a function of them, 𝜎 = M(𝜀 − 𝜀v). For lack of more empirical insight, we assume that the thermodynamic
force for dislocation density evolution, Xd , only affects Φ∗

d . Because of the smooth transitions among mobile
and forest dislocations, subgrains and grain boundaries, we expect that these discrete evolution laws and
dissipation potential terms are artificially decoupled.

4.4.3. Grain Size Evolution
As discussed in section 3.4, the grain size evolution equation has additive (serial) terms for static growth and
stress-driven change. These terms can be separated in deriving the dissipation potential, as Φ∗

g(Xg;v) =
Φ∗

gg +Φ∗
sd. To obtain Φ∗

gg, substituting in Xg = c2𝛾∕g2 (recalling that X = −A with equations (35) and (39) into
equation (30) yields

Φ∗
gg(Xg;v) =

Cgg(T)
𝛾

(c2𝛾)
v−1

2
2

v + 1
X

v+1
2

g . (45)

The stress-driven grain size evolution term (growth and reduction associated with deformation) is more hypo-
thetical and less empirically constrained than other aspects of this problem (section 3.4). Therefore, unlike the
above terms, we derive an evolution law from a potential. Ideally, we want to quantify the notion of a distance
from steady state that can be modulated by a given process. An approach to this problem is illustrated qual-
itatively in Figure 6. In the context of the GSM, we seek a simple quadratic (convex) form in Xg. Near steady
state it is reasonable to hypothesize that the driving force is the difference between the present state and the
steady state, with the notion of a steady state determined by a known function of an attractor grain size gatt,
as illustrated in Figure 6a:

Φ∗
sd(Xg;v) =

Csd(T)
2

𝜎a
(

Xg − Xgatt

)2
. (46)

The stress-driven grain size evolution rate ġsd is the partial derivative of this piece of the dissipation potential
with respect to the thermodynamic force driving grain size evolution Xg, which is linear with distance from
steady state:

ġsd =
𝜕Φ∗

sd

𝜕Xg
= Csd(T)𝜎a

(
Xg − Xgatt

)
, (47)

as shown in Figure 6b. When we substitute in Xg, we get

ġsd = Csd(T)𝜎a

(
c2𝛾

g2
−

c2𝛾

g2
att

)
. (48)

This function gives a nonlinear function of grain size, as illustrated in Figure 6c, when plotted against g∕gatt.

In the present form of the model, this equation represents a single process, subgrain rotation recrystalliza-
tion, that will have single values of the constants, and a single function for gatt. As an initial hypothesis to
be tested against experimental data, we propose that function is the subgrain size piezometer, such that
gatt = gsg and allow the rate to also be functions of stress (ġsd ∝ 𝜎a) and temperature, assuming that
Csd(T) = C0

sd exp(−Qsd∕RT). As shown in Figure 6c, grain size will decrease when g> gatt, and increase when
g < gatt. When stress is very low, the rate is very small, so the stress-driven grain growth behavior is self-limited
(dashed line in Figure 6), as we show in section 5.3. The latter effect may still be exaggerated, but we do not
yet have the experimental data to constrain any asymmetry in the function for Φ∗

sd that would be required.
Importantly, gatt is a function of the dislocation density, which is a function of stress and temperature, strongly
coupling the evolution equations ([𝜌̇d → ġsg → ġ]). Therefore, the attractor can be a moving target during
the evolution of the system and the coefficients C determine how well g can keep up with gatt.

4.4.4. Thermal Dissipation Potential and Fourier’s Law
The main goal of the thermal dissipation potential Φ∗

th(Xth;v) is to include in the model heat diffusion mech-
anisms, generally described by Fourier’s law. By construction, we must have q⃗ = 𝜕Φ∗

𝜕Xth
= −k∇T , where k is the

isotropic heat conduction coefficient. We then propose the following expression for Φ∗
th:

Φ∗
th = kT

2
X2

th. (49)
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As seen in equation(10) the heat diffusion equation is a partial differential equation involving time and space
variables. For the sake of simplicity we will consider in the following a simplified version of this equation lead-
ing to an ordinary differential equation (ODE) in time (Chrysochoos & Louche, 2000). Under several conditions
(e.g., homogeneity of the heat source field and linearity of the thermal boundary conditions), the Laplacian
term reflecting heat conduction can be replaced by a simple linear term in temperature variation 𝜃. The heat
diffusion can then be simplified as

𝜌c

(
𝜃̇ + 𝜃

𝜏th

)
= 1, (50)

more usefully viewed as 𝜃̇ = 1

𝜌c
− 𝜃

𝜏th
, and where 𝜏th is a time constant characterizing the local heat losses.

Below we will consider three cases for thermal conditions: isothermal (𝜏th → 1), adiabatic (𝜏th → ∞) and an
intermediate case where there is a finite 𝜏th based on experimental results, described in Appendix B2.

4.4.5. Concluding Comments on the Dissipation Potential
In the previous sections 4.4.1 to 4.4.4 we defined step by step the different contributions constituting of the
dissipation potential. In the GSM framework, we have shown that a sufficient condition to get constitutive
equations in agreement with the second principle of thermodynamics is to use a dissipation potential Φ∗(X )
having the following properties:

• Convexity of Φ∗(X )
• Positivity of Φ∗(X )
• Φ∗(X = {0,0, 0}) = 0

where X symbolizes the set of thermodynamic forces that drive dissipation, as described in section 4.2. Even
if the properties [i] and [iii] of the potential Φ∗(X ) proposed above are verified, its positivity [ii] still has to
be checked a posteriori. Indeed, Φ∗(X ) depends not only on the X values but also on the different material
constants present in the model. As will be demonstrated in section 5, the total dissipation is found to be
positive for all thermodynamic processes studied here, even if, in a case where grain size reduction is causing
a storage of energy, the energy storage rate is significantly less than the viscous dissipation due to creep
mechanisms.

4.5. Work, Energy, and the Taylor-Quinney Coefficient
As discussed in section 2.4, the GSM formalism enables the tracking of stored and dissipated energy during
deformation. We calculate the internal dissipation 1 during the computation to determine the temperature
change and other aspects of the energy budget in postprocessing. In particular, we are interested in compar-

ing the ratio of stored to dissipated work rate Fw∘ and the 𝜆AE, discussed in section 1.1. Recall that Fw∘ = w∘s
w∘in

.

The stored work rate w∘
s (the fraction of mechanical energy rate that goes into changing the microstructure)

is w∘
s = Ad𝜌̇d + Agġ, and the inelastic work rate w∘

in = 𝜎(
∑

i ̇𝜀vi
), such that

Fw∘ =
w∘

s

w∘
in

=
Ad𝜌̇d + Agġ

𝜎(
∑

i 𝜀̇vi
)

=
−
(

Xd𝜌̇d + Xgġ
)

𝜎(
∑

i 𝜀̇vi
)

. (51)

Thus, because Ad = c1𝜇b and Ag = −c2𝛾g−2, Fw∘ > 0 when energy is being increasingly stored in the
microstructure, and Fw∘ < 0 when energy is being dumped from the microstructure and turning into heat.
Also, when the microstructure is in steady state (𝜌̇d, ġ = 0), Fw∘ = 0. Therefore, since𝜆AE is intended to describe
partitioning at steady state, Fw∘ ≠ 𝜆AE.

Though similar in its role as a ratio of energy dissipation and storage rates,𝜆AE must have a different definition.
Austin and Evans (2007, 2009) define the internal dissipation (using our equivalent notation) as

1 = (1 − Rdisl)𝜎𝜀̇v + (1 − 𝜆AE)Rdisl𝜎𝜀̇v , (52)

where the ratio of dislocation creep rate (disl) to total creep rate Rdisl =
w∘

disl

w∘in
= 𝜀̇Disl

𝜀̇v
(which is 𝛽 in their terminol-

ogy). Because we are considering flow laws for two dislocation-based processes, we include GBS along with
dislocation creep, such that 𝜀̇Disl = 𝜀̇gbs+𝜀̇disl. The𝜆AE is specifically the fraction of energy that would otherwise
be dissipated as dislocation creep that is instead diverted into changing the microstructure (through motion
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of dislocations into subgrain walls and grain boundaries) and thus the stored energy in the microstructure.
Furthermore, 𝜆AE cannot equal zero at steady state, because the grains would grow by the static grain growth
term, and dislocations would anneal, so the microstructure would not be in steady state. Therefore, we define
𝜆AE as follows: because Ad𝜌̇d = Ad(𝜌̇+d + 𝜌̇−d ) and Agġ = Ag(ġsd + ġ+), we propose that only the stress-driven
terms contribute to 𝜆AE, with the annealing terms removed, such that

𝜆AE =
Ad𝜌̇

+
d + Agġsd

𝜎
(
𝜀̇gbs + 𝜀̇disl

) . (53)

Thus, at steady state, 𝜆AE > 0. Note that this equation is identical to solving equation (22) in Austin and Evans
(2009) for 𝜆 (assuming 𝜌̇d = 0). This value will be plotted in the following results. Austin and Evans (2007,
2009) chose a fixed value of 𝜆AE = 0.1 based on studies on metals, citing energy partitioning measured by
Chrysochoos et al. (1989).

5. Solutions and Results

Of the many possible variations of the model developed above, the system of coupled, nonlinear differential
equations to be solved is constructed from the Maxwell-type mechanical model, the flow laws and the evo-
lution laws for 𝜌d and g (equations (21), (28), and (31)). The dislocation density evolution model is derived in
section 3.3 and Appendix A; the grain size evolution model is developed in sections 3.4 and 4.4.3. The dissi-
pation 1 (equation (41)), which enters into the temperature evolution (equation (50)), and the equation of
state for subgrain size gsg as the attractor gatt provide closure to the system:

With the following closure equations

gatt = gsg =
csg√
𝜌d

(55)

1 = 𝜎
(∑

𝜀̇vi

)
− Agġ − Ad𝜌̇d. (56)

Recall that the thermal terms (Cvi
, B, C) are all of the form X(T) = X0 exp(−Q∕RT), neglecting pressure depen-

dences. In the solutions presented in this paper, we integrate the above equations under strain-controlled
conditions, 𝜀̇ = 𝜀̇control, leaving stress-controlled conditions for future work. In postprocessing, we calculate
the various work rates and 𝜆AE (equation (53)).

In the following, we first present steady state solutions fit to experimental data, and then provide
time-dependent solutions with the intent to show the general behavior of the system of ODEs (i.e., zero spa-
tial dimensions), followed by an application to analysis of data from torsional deformation experiments. For
strain-controlled conditions (equation (54)), we first present results from two runs differing only in their ther-
mal time constants 𝜏th = [1E2, 1E4], approximating isothermal and adiabatic conditions, respectively. We then
present the results for a suite of numerical tests varying strain rate and temperature, [𝜀̇, T0], to look at the pre-
dictions for steady state grain size, also for isothermal and adiabatic conditions. We then solve these equations
in a geometry approximating torsional deformation experiments, to illustrate how experimental data will
constrain unknown constants in the evolution equations for dislocation density and grain size.
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Figure 7. Steady state solutions (equation (57)) overlying the experimental
data from Figure 2 (gray dots) and the solutions from the ordinary
differential equations (red hollow dots) presented in subsequent figures. The
solid black line is the steady state solution assuming Qgg = Qsd, as in the
ordinary differential equation calculations. The colored lines show the
steady state solutions assuming (as an arbitrary example) that Qgg is 20%
greater than Qsd; redder lines reflect higher temperature. The black dashed
line is the Toriumi subgrain piezometer, gatt = gsg(𝜎).

5.1. Steady State Solutions
In principle, a steady state (for microstructure and mechanical properties)
is possible only if the heat loss is nonzero, that is, a nonadiabatic pro-
cess. In the present model, this is the case when 𝜏th is constant and short
compared to the experiment duration. The steady state grain size can be
approximated by assuming that the dislocation density is at its steady
state, determined by the piezometer (section 3.3 and equation (55), such
that the attractor grain size gatt is a function of stress at steady state. The
grain size evolution equation can be set to zero such that its static grain
growth and stress-driven terms are equal and solved for grain size (also
assuming that vgg = 2), taking the positive solution of the quadratic:

gss =
Cgg(T)gatt +

√
Cgg(T)2g2

att + 16Csd(T)2𝜎2ac2
g

4Csd𝜎acg
. (57)

The results, shown in Figure 7, demonstrate the steady state solutions
closely fit the gatt line above a critical level of stress. Below that level, static
grain growth pushes the steady state grain size above the attractor line,
referred to as the grain growth-dominated regime. This result also implies
that the grain size will never be smaller than the subgrain size (gatt), which
is physically sensible. The steady state predictions fits very well with the
numerical solutions (open red circles) and falls within range of the experi-
mental data (gray dots) from Figure 2. If Qgg ≠ Qsd, there is a temperature
dependence to the steady state at stresses in the grain growth-dominated

regime, but not above. These lines were calculated with Qgg = 1.2Qsd, resulting in higher temperatures yield-
ing higher steady state grain size in the growth-dominated regime. In the time-dependent solutions, we
assume that Qgg = Qsd and can fit the experimental data fairly well adjusting Csd, as shown in Figure 2. The

Figure 8. Results for isothermal (solid dots) and adiabatic (hollow circles) conditions, all as a function of strain. (a) Stress,
(b) temperature, (c) dislocation density, 𝜌d , and (d) grain size, g.
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Figure 9. Results for isothermal (solid dots) and adiabatic (hollow circles) conditions, all as a function of strain. (a) Free
energy stored in microstructural state variables (MSV), dislocation density, 𝜌d (blue) and grain size, g (purple). (b) Viscous
dissipations, black = total dissipation 1, others are dissipation contributions from each creep mechanism
(green = diffusion creep; red = dislocation creep; orange = dislocation-accommodated grain boundary sliding creep).
(c) Dissipation contributions from changing g (purple) and 𝜌d (blue). (d) 𝜆AE , energy partitioning coefficient.

agreement between the steady state and numerical solutions is demonstrated. In the following sections, we
look at time-dependent solutions for further insight into the physics.
5.2. Single-Run, Strain-Controlled Experiment
We present the solutions to equations (54)–(56) in Figure 8, comparing an isothermal run (a thermal time
constant of 𝜏th = 100 s), with an approximately adiabatic run (𝜏th =1E4 s) The calculation is run to a small strain
of 𝜀f = 0.4, at an initial temperature of 1000 ∘C. Under constant strain rate conditions, the stress increases
rapidly until it begins to yield, reaches a peak, and then decreases, for both isothermal and adiabatic runs. The
isothermal run reaches steady state at about 𝜀 = 0.2; the adiabatic run does not reach steady state because
temperature is continually increasing, as shown in Figure 8b. The thermal condition is important; temperature
increases by>40 ∘C in the adiabatic case by𝜀 = 0.4. In the second row of Figure 8, we show the evolution of the
microstructural state variables. Dislocation density increases quickly as the stress rises (Figure 8c), while grain
size gradually decreases. For both, the adiabatic case leads to more gentle microstructural change because
of the higher temperatures and thus lower stresses. In a constant stress calculation, not performed here, the
feedbacks would be more intense.

Next, we illustrate aspects of the energetics for the same runs. In Figure 9a, the energies stored in 𝜌d and g
increase and then plateau, but neither reach equality (as would be expected for the Twiss piezometer model).
In Figure 9b, we plot the total intrinsic dissipation 1 (equation (41)), as well as that due to each creep mech-
anism. Those creep mechanisms are summing to almost the total value, whereas the dissipations associated
with changing the microstructural state variables, 𝜌d and g, are much smaller, as shown in Figure 9c. While
GBS clearly dominates in this case, the temperature increase in the adiabatic case causes a decrease in all the
more nonlinearly stress-dependent mechanisms, that is, a relative increase in diffusion creep. The dissipation
rates due to microstructural change (Figure 9c) show negative values of the microstructural contribution to
the dissipation, indicating that energy is initially being stored, as 𝜌d increases or g decreases. These dissipation
rates are very small relative to the creep contributions, so even though they are negative early in the evolution
as energy is stored in the dislocation density, the total remains positive. Finally, we plot 𝜆AE (equation (53)
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Figure 10. Suites of runs represented in stress-grain size (a, c) and stress-temperature spaces (b, d). The top row is for
nearly isothermal runs (𝜏th = 100 s), and the bottom row is nearly adiabatic (𝜏th = 1E4 s). The dashed red dashed line in
(b) and (d) is the Twiss piezometer; the dashed green line is the Toriumi subgrain piezometer, which is the gatt in this
model. Note that the grain size initially migrates toward gatt, but grain growth drives grain sizes toward the Twiss
attractor; the steady state value is controlled by varying C0

sd
. The initial grain size is 8 μm. Dot radius increases with time,

or strain, up to a final strain of 3.0. The bottom two panels (e, f ) show the stress-driven grain size evolution ġsd for each
run (e) as a function of X , and (f ) as a function of g∕gatt, as illustrated qualitatively in Figure 6. Redder colors are higher
temperatures. Note that ġsd > 0 only for short times in the initial stages of higher-temperature runs. Lower-temperature
runs experience more severe reduction.
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Figure 11. The 𝜆AE versus stress and temperature. The partitioning
coefficient is a function of temperature and grain size but may or may not
be a state function. Thus, during an evolution, a material will change its
partitioning, but that ratio should migrate on this surface with additional
dimensions for 𝜌d and g.

and Figure 9d) from the values shown in Figures 9b and 9c. In this run, 𝜆AE

is always positive, starts large as dislocation density increases as stress is
loaded into the material, and then decreases toward about 0.05, but does
not reach 0.

5.3. Multiple Runs, Varying [𝜺̇p, T0]
Here we demonstrate the behavior of the solutions in a more compact
way, for two sets (isothermal and adiabatic) of 25 runs varying 𝜀̇p and
T0, plotting 𝜎 versus g and 𝜎 versus T in Figure 10. The top row shows
the isothermal runs; the tadpole tails show the evolution in time through
each space, with dot size increasing with time or strain. Isothermal runs
take fairly straight paths from the peak stress and initial grain size to the
final stress and grain size. Runs at higher stress reach steady state at a
smaller grain size, while the lower stress (slower and higher temperature)
runs experience net grain growth. In panels (a) and (c), the green dashed
line is the Toriumi subgrain size piezometer, gatt = gsd(𝜎). While there is
some motion toward gatt, grain growth is clearly important and leads to a
steady state value that is very close to the Twiss piezometer as modified
by Hirth and Kohlstedt (2015; red dashed line, same as in Figure 2). Note
that the Twiss line corresponds to a certain value of Csd, chosen to illustrate
this point. In the adiabatic cases, the final grain sizes look fairly similar as
the isothermal cases, but the paths taken to get there are very different,

decreasing in stress while increasing in grain size and temperature making more circuitous tadpole tails than
the isothermal cases, with more scatter in the final values (that are not at steady state). In the right panel plots
of T − 𝜎 space, the isothermal cases are self-evident. Shear heating appears clearly in the lower right panel,
occurring more strongly for the higher strain rate runs, at a given temperature and more dramatically for the
lower temperature runs.

Associated with each of these runs, we plot ġsd in Figures 10e and 10f. The higher stress, lower-temperature
runs are dominated by stress-driven reduction, while the lower stress, higher-temperature run appear to have
some stress-driven grain growth occurring. However, it is clear that this occurs only at low strain during initial

Figure 12. Reduced analysis of torsion experiments. (a) Sample geometry. (b) Each ordinary differential equation model
run represents a concentric annulus, described in Appendix B. (c) Top view of annuli. (d) A row of 0-D models with
boundary conditions on strain rate, and illustrating the limitation that heat can only diffuse out of each ring, not from
one ring to another, in this simple form of the model.
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transient creep (where the dot size represents the evolution of the run). We leave further assessment of the
relative contributions of static and stress-driven grain growth to analysis of torsion experiments.

We also plot 𝜆AE (at the final strain step for each run) in Figure 11. Overall, for the range of conditions explored,
0.025 < 𝜆AE < 0.35. It is clearly a function of T and 𝜎 but also g and 𝜌d (not shown); that is, 𝜆AE(v), but is not a
state function as it is derived from w∘

st. The value of 𝜆AE = 0.1 used by Austin and Evans (2007, 2009) lies in the
middle of the range. There are clear systematics to the values of 𝜆AE: the surface makes a clear cuspate form,
such that at a given temperature,𝜆AE decreases with increasing stress and similarly for fixed stress and increas-
ing temperature. In other words, creep dissipation increases faster than the storage of energy, reflecting an
increase in the diffusion creep component with decreasing grain size (at higher stresses).

5.4. Application to Torsion Experiments
As discussed above, one aim of this model is to provide an integrative thermodynamic framework for the anal-
ysis of experiments. Torsion experiments at high temperature and pressure provide both the ability to deform
to large strains and also contain a gradient of increasing strain from center to edge. This analysis is a reduced
time-dependent simulation of a torsion experiment, as illustrated in Figure 12. The torsion sample is treated
as a set of concentric cylindrical rings or annuli; the set of rings is subjected to a constant twist rate, such that
each is sheared at a rate that is linearly proportional to their distance from the center, as 𝛾̇i =

ri

R
𝛾̇max. Each ring is

considered to be homogeneous in the z direction (no strain localization) and in the 𝜃 direction, such that each
ring can be described by a single ODE calculation. In Appendix equation (A1), we demonstrate that this setup
does not violate mechanical equilibrium for idealized torsional deformation. We also articulate the relation-
ships between the strain and stress components in torsion and the 0-D models. The major limitation of this
approach may be in the thermal behavior; in the present model, heat cannot diffuse between 0-D models, so
we cannot assess the extent to which heat generated by mechanical dissipation inside the sample affects the
behavior. We use a thermal time constant 𝜏th = 700 s, a value that comes from the temperature-time curves
measured after the furnace is switched off, discussed further in equation (A3).

We compare to the data from one torsion experiment performed at the University of Minnesota (D. King et al.,
personal communication, April 27, 2013) at 1250 ∘C, with a twist rate of 1.7E−4 radians/s (at the outer edge, 𝛾̇ =
1.7E−4 s−1, sample radius 4.8 mm), with initial grain size g0 = 8 μm. Torque was measured on an internal load
cell, and the mean grain size was measured by a linear intercept method. While there are many uncertainties in
the parameter choices, the primary unknowns in our view, at present, are Co

sd, a, Qsd, as discussed in section 2
and Table 4. For this illustrative example, we sought values of Co

sd and a that are consistent with the grain size
profile and torque-time curve.

The results, illustrated in Figures 13, show that we are able to match the grain size profile and the torque-time
curve fairly well, for the chosen values of unknowns. In the T-radius plot (Figure 13d), there is little change
in T for the experimental 𝜏th = 700 s; thus, it is not likely that at 1250 ∘C there is significant internal heating.
We need observations of dislocation density to constrain further, the degree of disequilibrium between the
dislocation density and the mean grain size. Note that these values will depend on the choice of gatt; these
values are not intended to be used for extrapolation to natural conditions until we can perform a systematic
analysis over multiple experiments.

In future work, we will have dislocation density profiles and experiments performed at different temperatures
and multiple twist rates. There now exists an efficient means to measure dislocation density across such a large
sample (Wallis et al., 2016); this technique will be used in the future analysis of torsion experiments. We will
perform robust inversions for unknown parameters and explore different hypotheses for gatt. The constants
in the evolution laws (if the evolution laws are meaningful) should not depend on the mechanical or thermal
boundary conditions. This independence can be tested when the appropriate experiments can be compared,
including strain-controlled and stress-controlled experiments at different conditions.

6. Questions and Discussion

The GSM thermodynamic formalism is used to build a framework for the analysis of dislocation density and
grain size evolution in experiments, toward a better understanding of microstructure evolution and tran-
sient creep, as well as the characterization of the steady state. This formalism introduces the dissipation
pseudopotential Φ, which provides far more freedom in the form of the evolution laws than the linear TIP
(i.e., for grain size and dislocation density in this study). In the analysis of experimental data, many forms of
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Figure 13. Application of analysis to interpretation of data from torsion experiments. All plots except lower right plot show data as a function of radius, center to
edge, with time indicated by gray values increasing to black. (a) Grain size. The values of g decrease from center to edge, because the differential stress increases
from center to edge. Data from one experiment described in the text are shown in red dots. (b) Dislocation density increases from center to edge, but at the
outer edge does reach a peak and then decreases, as stress drops (due to grain size reduction). (c) The shear stress increases from center to edge but remains
fairly flat, without a dramatic decrease. (d) Temperature. With such a short thermal time constant of 𝜏th = 700 s, there is negligible dissipative heating. Note that
thermal diffusion is not being calculated along the radius. (e) Strain rates of each creep mechanism. Colors are as in Figure 9. The whole sample is in grain
boundary sliding creep. (f ) Torque as a function of shear strain at the outer radius. Red circles are data from the same experiment as the grain size profile and are
fairly well matched by the calculation.

empirical, experimentally constrained laws for a subprocess (such as annealing rates) or mechanistic models
can be incorporated into the framework. In the following, we discuss (1) comparison to experimental data, (2)
questions on the form of our model, (3) its relation to other analyses, and (4) application to natural conditions,
in particular mantle convection and strain localization in the lithosphere.

6.1. Comparison to Experimental Data
In Figure 7, we demonstrated that we could fit the g − 𝜎 data with one adjustable parameter (C0

sd), with the
prediction that there is a threshold in stress below which a temperature-dependence emerges a temperature
dependence emerges due to the static grain growth term, and above which the grain size and the subgrain
size converge. As discussed in section 3.1, it is possible that recrystallized grain size data from small strain
compression experiments on single-crystal or coarse-grained samples may not represent the true steady state
values. If the recrystallization mechanism changes, the slope could change as well. With those caveats, the
possibility of a temperature dependence cannot clearly be ruled out from the data. The prediction of a stress
threshold below which the slope changes and a temperature dependence emerges is a clear testable pre-
diction. Valuable tests will come from careful analysis of mechanical and microstructural data from torsion
experiments. In our illustration of this method on data from one experiment, we were able to fit the torque
curve and final grain size distribution fairly well. Low strain creep and stress-relaxation tests will provide useful
constraints on the microstructural evolution laws.

Furthermore, both calibration of this model and comparison to predictions of other existing models may
become clearest by comparing strain-controlled and stress-controlled experiments (e.g., Hansen et al., 2012).
The mechanical and thermal boundary conditions (e.g., isothermal vs. adiabatic) control the behavior of
feedbacks through the microstructure and constitutive equations. For example, under strain-controlled con-
ditions, as grain size decreases, diffusion creep rate increases, and the dislocation creep rate diminishes, so
the grain size cannot be further reduced. In contrast, under constant stress conditions, as grain size decreases,
the dislocation creep rate will remain constant as the diffusion creep rate increases and the total strain rate
rises, increasing total dissipation. The access to thermal feedbacks (shear heating) will then strongly depend
on the thermal boundary conditions. Different microstructural evolution models should make testable

HOLTZMAN ET AL. 28



Journal of Geophysical Research: Solid Earth 10.1029/2018JB015613

predictions for experimentalists, including the sensitivity of the piezometric function to mechanical and
thermal boundary conditions, even if the internal heat production cannot be directly measured.

6.2. Questions on the Model Form
As discussed in sections 1.1, 3.4.3, 3.5, and 4.4.3, the use of an attractor form of an evolution equation implies
that the system in its present state has knowledge of some more optimal state (analogous to a chemical reac-
tion that knows where the equilibrium state is). The FB hypothesis is compelling, but we would want that
behavior to emerge, not be predetermined by an empirical grain size piezometer as the attractor (i.e., the
answer). For near equilibrium, the notion of an attractor has a clear physical reasoning. The subgrain size as
gatt has a direct physical link to the recrystallization process as a function of the dislocation density, discussed
in section 3.5.4. That an energy balance such as the Twiss model predicts the subgrain size (Shimizu, 2008)
lends credence to its role as gatt; the energy difference drives the kinetics. However, as discussed, gsg works
conceptually as the attractor only for subgrain rotation recrystallization, not for nucleation recrystallization.
Changing attractors as demanded by the data is a possible means of hypothesis testing.

The treatment of dislocation dynamics we employ fits with what Cooper et al. (2016) call an average dislocation
approach. An alternative approach to describing the behavior of the dislocation substructure combined with
mechanical data is contained in the Hart mechanical equation of state and hardness parameter concept, as
applied to rocks by, for example, Covey-Crump (1994), Stone et al. (2004), Sherburn et al. (2011), and Cooper
et al. (2016). The kinetics of creep can be described by this single state variable, hardness, associated with the
fractal subgrain structure, though values for olivine (Cooper et al., 2016) and halite (Stone et al., 2004) scale
differently due to different dislocation dynamics (Cooper et al., 2016). The present framework can be modified
to incorporate the hardness approach and simulate load relaxation tests, in order to explore different choices
of microstructural state variables and candidates for gatt.

Finally, we do not yet have a quantitative notion of how to characterize the transition from near-equilibrium
to far-from-equilibrium in this microstructural problem. This open question may be relevant in designing
and interpreting experiments and also in understanding problems like postseismic relaxation in which the
propagation of large stress pulses may be governed by transient creep (e.g., Freed et al., 2010). Far from equi-
librium may be characterized by a situation in which the stress and the dislocation structure evolve much more
quickly the than the grain boundaries can form or migrate. Nonetheless, the GSM formalism may be able to
describe such situations by introducing terms into the dissipation potential for higher-stress-level dissipative
mechanisms low-temperature plasticity (e.g., Kameyama et al., 1999), comminution, or cataclasis.

6.3. Comparison to Other Grain Size Evolution Models
The broad questions that have emerged in this work can be lumped into (1) the temperature dependence to
steady state grain size, (2) the form of the grain size reduction term, and (3) the physical origin of the wattmeter
scaling.

(1) While it is clear that the kinetics of microstructural evolution are strongly temperature dependent, the
apparent lack of temperature dependence to the olivine piezometer is a conundrum. Only the Twiss model,
based on equipartition of energy, does not depend on temperature. The apparent lack of temperature depen-
dence to steady state grain size in olivine may be reassessed in experiments, in light of modern high strain
torsion experiments (e.g., Bystricky et al., 2000; Hansen et al., 2012) and high-resolution electron backscatter
diffraction imaging of the subgrain structure (e.g., Wallis et al., 2016). Other minerals exhibit a stronger tem-
perature dependence (e.g., Austin & Evans, 2007; Shimizu, 2008), suggesting that the signal may be present
but more subtle in olivine.

(2) As discussed in section 1.1, there are many forms of grain size evolution models, varying mainly in the form
of the reduction term, ġ−, depending on some combination of 𝜎, 𝜀̇, T , and g. Some incorporate an attractor
(e.g., Braun et al., 1999; Kameyama et al., 1997; Montési & Hirth, 2003); the rest depend only on state variables
but have some form of energy partitioning function (e.g., Behn et al., 2009; Ricard & Bercovici, 2009; Rozel
et al., 2011). Explicitly incorporating the dislocation dynamics into the grain size reduction term via the sub-
grain size and the dislocation density is a means to physically justify the attractor and a path to incorporating
much more realistic microphysical models describing recrystallization by subgrain rotation. The use of only
the mean values of 𝜌d and g relies on a fairly strong but common assumption that the distributions remain
self-similar as the mean value evolves. Others (e.g., Hackl & Renner, 2013; Ricard & Bercovici, 2009; Rozel et al.,
2011) build physically rich evolution laws that are functions of the grain size distribution, not just the mean.
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While the role of the distribution in grain growth laws is relatively established (e.g., Ricard & Bercovici, 2009),
incorporating dislocation density distributions into a continuum mechanistic model of dislocation dynamics
and recrystallization in polycrystals is relatively open (e.g., Cooper et al., 2016; Hackl & Renner, 2013).

(3) The question of why the steady state grain size and ġ− would depend on the viscous work rate 𝜎𝜀̇v , rather
than the stress (or strain rate) alone, was an underlying motivation for this study, as there is an intuitively
appealing aspect to the idea articulated by Poliak and Jonas (1996) and Austin and Evans (2007, 2009). Rozel
et al. (2011) state that the Second Law requires that grain size reduction function scale with the dissipated
energy. Here we show that the use of the GSM formalism allows many forms of grain size evolution law to be
consistent with the Second Law. We have only shown that scaling by dissipation is not required but have not
disproven the wattmeter concept in any sense. As discussed in section 4.5, 𝜆AE (equation (53)) is identical to
equation (22) in Austin and Evans (2009), but we do not use it to derive ġsd. Thus, our result offers concep-
tual consistency with the wattmeter but removes the constraints on the form of ġ because the GSM enables a
𝜆-free Clausius-Duhem equation (40). We demonstrate that the 𝜆AE varies widely at steady state (0 < 𝜆AE < 1)
and depends on {T , 𝜎, g, 𝜌d} in the current analysis. While our equation for gss (equation (57)) does not resem-
ble the wattmeter solution, it is expected that ġsd ∝ 𝜆AE(T , 𝜎, g)𝜎𝜀̇dis should work as an evolution equation
(assuming 𝜌̇d = 0), where the actual ġ function would determine the behavior of 𝜆AE(T , 𝜎, g). This point of
convergence remains to be tested.

6.4. Application to Natural Settings
Microstructural evolution involving dislocations and grain size is a component in the dynamics of a vast range
of settings in the solid Earth, from glacier flow to lithospheric shear zone evolution to mantle convection. Here
we wish to mention briefly two questions, namely, the influence of grain size evolution on mantle convection
and on strain localization in the lithosphere.

Grain size evolution during convection of materials with access to stress-, temperature-, and grain
size-sensitive creep gives the system access to interesting potential feedbacks. Hall and Parmentier (2003)
demonstrated that weakly deforming regions in convective cells can become stronger due to grain growth
but can rapidly weaken if stressed sufficiently, due to grain size reduction. Rozel (2012) showed that con-
vection with grain size evolution can lead to secular periodicity not accessible with temperature- and
stress-dependent convection alone, due in part to memory effects reflecting grain growth. To better under-
stand these predictions, the stress (including the pressure) dependence of grain size evolution is critical, both
the rates and the steady state. The possible existence of a temperature-dependent, grain growth-dominated,
steady state part of the piezometric function may lead to new expectations for grain size evolution in the con-
vecting mantle. Much work remains to understand relationships between convection patterns, microstructure
evolution, and seismically measurable properties.

For strain localization in the lithosphere, the lower-temperature and higher stress conditions lead to more
rapid grain size reduction than in the asthenosphere, a process that is likely to be important in the occurrence
of localized plate boundaries characteristic of plate tectonics (e.g., Jin et al., 1998; Rutter & Brodie, 1988; Vissers
et al., 1995). The model in this paper is limited to quasi-static conditions but is likely to be relevant to strain
localization in the lithosphere. Many modeling studies have considered the feedbacks, positive and negative,
between shear heating by viscous dissipation, grain growth and grain diminution competition, and stress-
and grain size-sensitive creep mechanisms (e.g., Braun et al., 1999; Foley et al., 2012; Kameyama et al., 1997;
Landuyt & Bercovici, 2009; Montesi & Zuber, 2002; Regenauer-Lieb & Yuen, 1998, 2003; Thielmann, 2017). The
interactions of these effects will depend on length scales and thermal boundary conditions, including the rate
of heat loss relative to entropy production and the kinetics of each process. The feedbacks also depend on
the mechanical boundary conditions, namely, constant displacement rate versus constant stress, the latter of
which can produce unstable feedbacks more easily (e.g., Hansen et al., 2012). Here we allow for the empirical
possibility of different thermal sensitivities to grain growth and diminution rates, with the impression that the
latter is poorly constrained. In future work, when we analyze torsion experimental data to better constrain the
scaling parameters, we will develop a reduced model with a single state variable (grain size) with behavior
similar to the present model for simpler integration into geodynamic models.

7. Conclusions

We develop a set of constitutive equations to describe creep and microstructure evolution in a Maxwell-type
viscoelastic material with strongly coupled thermomechanical behavior. The GSM formalism is designed to
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incorporate a broad range of nonlinearity in the constitutive equations and coupling among them. In this
model, dislocation density evolution (on relatively short time scales) drives grain size evolution (at longer time
scales), functionally coupled by an equation of state for the subgrain size. Most subprocesses are described
by empirical laws that are incorporated into the thermodynamic framework, limiting the number of uncon-
strained parameters. The model can reasonably fit steady state grain size data with one adjustable parameter
and predicts a temperature dependence below a level of stress, but not above. Many grain size evolution mod-
els require an energy partitioning factor to determine how much of the mechanical energy is diverted from
creep to microstructure evolution. In the GSM approach, by virtue of a dissipation pseudopotential and the
form of the Clausius-Duhem inequality, this value is not assumed but is predicted by the model. We demon-
strate how the model can be used to analyze experimental data, in particular, applied to torsional deformation
experiments, in order to empirically constrain unknowns in the model and illuminate inconsistencies.

Appendix A: Dislocation Density Evolution Constraints

The following derivation allows us to extract some further empirical constraints from measurements on dis-
location density evolution. We solve for the steady state conditions and set them equal to the piezometer to
constrain the Bd+ from empirical constraints on Bd+ . We rearrange 𝜌d = 0 as

𝜌ss
d =

(
Bd+

Bd−
𝜎p

)1∕q

=
(Bo

d+

Bo
d−

exp
(
ΔQd

RT

))1∕q

𝜎p∕q, (A1)

where ΔQd = Qd− − Qd+ , recalling that we assume Bi(T) = Bo
i exp

(
−Qi

RT

)
. Now we can constrain values of

Bd+ in two ways, for our present purposes without the necessary experimental data. First, if we assume that
Qd− = Qd+ = 300 (kJ/mol), we can set the definition of the steady state 𝜌d defined by kinetic equations to be
equal to the piezometer given in equation (23),(

Bd+

Bd−

)1∕q

𝜎p∕q = 𝛽

b2

(
𝜎
𝜇

)s

. (A2)

Then, solving for the primary unknowns and assuming that s = p∕q, 𝜎 cancels and we obtain

Bd+ = Bd−

(
𝛽

b2𝜇s

)q

(A3)

and we obtain Bo
d+

= 3.6E−6, as illustrated by the dashed line running through the piezometer in Figure 4b.

Alternatively, we do not assume equality of activation energies for the dislocation evolution terms in
equation (A1) nor that the parameters can be constrained by the temperature-independent piezometer, as in
equation (A3). We do not see a reason a priori that the rates of dislocation annihilation and production should
have the same activation energy. The preexponential term will depend on the activation energies ΔQd and
can be determined as shown in Figure 4b. It is possible that there is a weak temperature dependence to the
piezometric data that cannot be ruled out, as illustrated in Figure 4b; for the temperature range of 400 ∘C, and
ΔQd = ±50 (kJ/mol), there is a small finite width to the predictions that may be within experimental uncer-
tainty, but a large change in the value of Bo

d+
required to bring the fits back toward the data. Thus, we leave

these questions to be pursued in future empirical studies.

Appendix B: Mechanics of Torsion Experiments

As discussed in the text, all state variables and parameters can be tensorial, but we restrict this analysis to
scalar values. How that reduction occurs depends on the type of experiment being considered. For example,
in a uniaxial compression test, the stress tensor 𝜎 is reduced to the differential stress, 𝜎 = 𝜎1 −𝜎3 = 2𝜏 , where
the single subscripts indicate the eigenvalues of the principal stress tensor of any 𝜎ij . The 𝜏 is the magnitude
of the shear stress.

Torsional deformation creates a complex stress distribution in the sample. We want to be able to interpret
both the macroscopic mechanical behavior, that is, the measured torque as well as the microstructures. As
shown in Figure 12a, we use the symbols and terminology of Paterson and Olgaard (2000), who were primar-
ily concerned with the relationship between stress and strain in torsion samples with those in the uniaxial
compression samples in which the flow laws are determined. In uniaxial compression, the equivalent stress is
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the differential stress. Their conclusion for torsion was that 𝜎eq =
√

3𝜏 and 𝜀eq = 𝛾√
3

. The measured torque is

 = 2𝜋 ∫ 𝜏rr2dr and in time (t) = 2𝜋 ∫ 𝜏r(t)r2dr.

B1. Zero-Dimensional Simplification for Analysis of Large Strain Experiments
As illustrated in Figure 12, we consider each finite width annulus of the torsion sample to be a single homo-
geneous 0-D model. The question is the relationship of the scalar value for strain that we integrate and the
actual strain in the torsion sample at a given point. To calculate the strain rate tensor for torsion, we start with
the velocity field at point m: vi =

[
vr, v𝜃, vz

]
=
[

0, r𝜃̇z
h
, 0
]

, where h is the height of the sample. The velocity gra-

dient tensor G = ∇vi and the strain rate tensor D = 1
2

(
G + GT

)
. The nonzero components of D are D𝜃z = 𝛾̇ and

Dz𝜃 = 𝛾̇ , where 𝛾̇ = r𝜃̇
2h

. Thus, there are no components in the strain tensor that are affected by the large strain
or complicate the relationship between what we integrate and the mechanical properties; at any moment,
the strains and strain rates are simply related by 𝜎eq =

√
3𝜏 , which we incorporate in the calculations. Note

that this approximation does not hold for simple shear; the circular rotation of the torsion sample removes
the component of the stress tensor that causes rotation of stress with large strain in simple shear.

An important criterion for the reduction of the torsion to quasi-1-D is that we are not violating mechanical
equilibrium by treating each annulus as an independent model in terms of stress (they are only connected
by the linear increase in the imposed shear strain rate from center to edge. Violating mechanical equilibrium
would mean that there are gradients stress components that must be non-nul and calculated. Because there
is no 𝜕𝜎𝜃z

𝜕r
component in the equilibrium statement for torsional deformation, the approximation of torsion as

concentric annuli does not violate mechanical equilibrium (Germain et al., 1983).

B2. Thermal Time Constant of the Paterson Machine
For this study, we estimate this time constant empirically from the measured thermal relaxation curves for the
Paterson gas-medium deformation apparatus. The thermal relaxation constant 𝜏th is the time for the temper-
ature to reach 1∕e of its initial value. In this case, from 1473 to 541 K, takes about 700 s (L. Hansen, personal
communication, December 23, 2012). This value is probably an upper bound because it is measured when
the furnace is switched off, such that convection of argon gas around the sample is decreasing in vigor (A.
Quintanilla Terminel, personal communication, March 13, 2012).
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