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Abstract7

We consider a spatially-extended model for a network of interacting FitzHugh-Nagumo neurons8

without noise, and rigorously establish its mean-field limit towards a nonlocal kinetic equation as the9

number of neurons goes to infinity. Our approach is based on deterministic methods, and namely on the10

stability of the solutions of the kinetic equation with respect to their initial data. The main difficulty lies11

in the adaptation in a deterministic framework of arguments previously introduced for the mean-field12

limit of stochastic systems of interacting particles with a certain class of locally Lipschitz continuous13

interaction kernels. This result establishes a rigorous link between the microscopic and mesoscopic scales14

of observation of the network, which can be further used as an intermediary step to derive macroscopic15

models. We also propose a numerical scheme for the discretization of the solutions of the kinetic model,16

based on a particle method, in order to study the dynamics of its solutions, and to compare it with the17

microscopic model.18

Keywords: Mean-field limit, neural network, FitzHugh-Nagumo, Wasserstein distance.19

1 Introduction20

The FitzHugh-Nagumo (FHN) model [21, 30] focuses on the evolution of the membrane electrical potential

of a nerve cell depending on the input it receives. Such variations depend on the ion exchanges between the

neuron and its environment through synapses, which were precisely described by the Hodgkin-Huxley model

[27]. The FHN model was then developed as a simplification of the Hodgkin-Huxley model. Rather than

precisely describe all the variations of activatory and inhibitory channels of ions, the FHN model gathers all

the fast excitable dynamics in the variable v, which is still considered as the electrical membrane potential,

and the slow refractory dynamics in a newly introduced adaptation variable w. It can be written as follows

*joachim.crevat@math.univ-toulouse.fr
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for t > 0: 
dv

dt
= N(v)− w + Iext,

dw

dt
= τ (v + a− bw),

(1.1)

where Iext stands for the input current the neuron receives from its environment, τ ≥ 0, a ∈ R and b ≥ 0

are some given constants, and N(v) is a nonlinearity which models the cell excitability. A typical choice

for the nonlinearity N (see for instance [2, 5, 29, 30]) is the cubic function

N : v 7→ v (α− β v2) (1.2)

for any α, β > 0. Since the input Iext is the result of the interactions between the nerve cell and its

neighbours, we can replace it with an interaction term with other similar neurons, to consider an individual-

based model for a network of n interacting neurons, where n ∈ N. Biological observations seem to exclude

the case of homogeneous interactions [32, 40], and show that the interactions inside a network of neurons

are spatially structured [7]. Hence, as in [7, 28], we choose to modulate the neural connectivity with a

spatial weight. Thus, we consider the following spatially-extended FHN system for n interacting neurons

for t > 0: 

dxi
dt

= 0,

dvi
dt

= N(vi)− wi −
1

n

n∑
j=1

Ψ(xi,xj)(vi − vj),

dwi
dt

= τ (vi + a− bwi).

(1.3)

where each neuron within the network is labelled by its index i ∈ {1, ..., n}, xi ∈ Rd with d ∈ {1, 2, 3}21

is a parameter which stands for the position of the neuron i, and (vi, wi) ∈ R2 is the couple membrane22

potential and adaptation variable of the neuron i. Here, the connectivity weight Ψ : R2d → R models23

the effect of spatial dependence on the strength of neuronal interactions which we assume to be of electric24

type. More precisely, for every neural cell i, each other neuron j contributes in the input current received25

by neuron i, and we write this interaction using Ohm’s law via Ψ(xi,xj)(vi − vj), which is then summed26

over the network. In doing so, we assumed that conductances from the neuron j to the neuron i, denoted27

Ψ(xi,xj), are modulated by the positions of the two neurons i and j. Moreover, the scaling factor 1/n is28

introduced in order to renormalize the contributions of each neuron. From a biological viewpoint, since29

a neuron interacts with its closest neighbours, a reasonable choice for Ψ(xi, ·) is the indicator function of30

a small ball centered in xi. Here, the framework considered in this paper admits only bounded Lipschitz31

continuous connectivity kernels.32

The main purpose of this article is to rigorously derive a kinetic mean-field model of the FHN system (1.3)33

as the number of neurons n goes to infinity. The classical method to derive a mean-field description from34

an individually based model is to study the time evolution at each location of the probability of finding35

neurons characterized by a certain couple potential-adaptation variable. The framework of this approach is36

to work in a probability measure set independent on the number of neurons. Thus, we recall the following37

notion of empirical measure.38
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Definition 1.1 (Empirical measure). To each n-tuple Xn = (xi)1≤i≤n ∈
(
Rd
)n

, Vn = (vi)1≤i≤n ∈ Rn and

Wn = (wi)1≤i≤n ∈ Rn, one associates its empirical measure:

µ(Xn,Vn,Wn) :=
1

n

n∑
j=1

δ(xj ,vj ,wj). (1.4)

Let us highlight that an empirical measure is a probability measure on Rd+2. As the number of neurons n

goes to infinity, the interaction term in (1.3) is expected to formally satisfy:

1

n

n∑
j=1

Ψ(x,xj)(v − vj) →
∫

Ψ(x,x′) (v − v′) f(t,dx′, dv′, dw′),

where f(t,dx,dv,dw) is the probability measure of finding neurons in an elementary volume of side dx with

a potential membrane and an adaptation variable in an elementary interval respectively of length dv and

dw at time t ≥ 0 within the cortex. Our purpose is thus to prove the convergence of the empirical measures

associated to the solutions of the FHN system (1.3) towards such a probability measure f satisfying the

following nonlocal kinetic equation:

∂tf + ∂v (f [N(v)− w −K[f ]]) + ∂w (f A(v, w)) = 0, t > 0, (x, v, w) ∈ Rd+2, (1.5)

where 
K[f ](t,x, v) :=

∫
Rd+2

Ψ(x,x′)(v − v′)f(t,dx′,dv′, dw′),

A(v, w) := τ (v + a− bw).

The term −∂v (fK[f ]) describes nonlocal interactions through the whole network, and ∂v (f(N(v)− w)) +

∂w (f A(v, w)) accounts for the local reaction due to the excitability of nerve cells. Since this PDE can

be written in a divergence form, we directly have the conservation of mass, which leads us to complement

(1.5) with an initial condition:

f(0, ·) = f0. (1.6)

The derivation of the kinetic equation (1.5) joins a large literature in mathematical neuroscience and39

kinetic theory. Indeed, the problem of the mean-field limit of systems of interacting particles towards40

kinetic models has been widely investigated, varying the types of interactions. We mention the work of41

Dobrushin [17], who introduced some classical methods to prove the mean-field limit of an individual-based42

model of interacting particles with a bounded globally Lipschitz continuous interaction kernel towards a43

Vlasov equation, using a stability result of the solutions to the kinetic model with respect to their initial44

data, in a suitable topology of probability measures. Such a stability result is called Dobrushin’s estimate.45

See for instance [22] for a more recent review of this approach. Then, similar results have been proved for a46

larger variety of interaction kernels. For example, in [25], the authors proved the mean-field limit towards47

a Vlasov equation, in the case where the interaction kernel has a singularity. Besides, in [4], the authors48

introduced an extension of the classical mean-field theory from [17] which also works for a certain class of49

locally Lipschitz continuous interaction kernels.50

Coming back to a neuroscience viewpoint, in [18, 38], the authors analysed the mean-field limit of a network51

of neurons modeled by their firing rates, divided into a fixed number of populations, with random synaptic52

3



weights whose probability distributions only depend upon the population indexes. They also studied the53

influence of the noise on collective behaviors in the network. Another perspective is to focus on the54

probability that each neuron releases an action potential. This kind of model is called time-elapsed neuron55

(see for instance [12–14, 33–35]). Here, in this article, we use another approach, with the derivation of a56

kinetic equation from the FHN model, which does not abstract the emission of action potentials, following57

the example of the Hodgkin-Huxley model.58

The mean-field limit of the stochastic spatially-extended FHN model for interacting neurons has already59

been studied in the specific case of a compactly supported connectivity kernel in [28], and in the case60

when each cell interacts only with its p nearest neighbours in [28, 31]. Other approaches are considered61

in the literature to adjust the interactions with other quantities than space. For example, in [2, 5], the62

authors focused on the mean-field limit of a stochastic FHN model or Hodgkin-Huxley model of n neurons63

interacting through electro-chemical synapses towards a kinetic PDE similar to (1.5). In [29], the authors64

proved a similar result for a stochastic FHN model of a neural network with homogeneous conductance. We65

also mention works like [6, 36] which prove the synchronization of mean-field models of neural networks66

of respectively Hodgkin-Huxley and FHN type. The specificity of our present article compared to the67

literature is that we only consider spatially-weighted neural networks without noise.68

The main contribution of this article is the rigorous justification of the kinetic model (1.5) we considered69

in [16] as the mean-field limit of the FHN system (1.3). It provides a mesoscopic description of the neural70

network, which can be used as an intermediary step for the derivation of macroscopic models from the FHN71

system (1.3), as in [16]. Here, we work with an initial data for (1.5) which is not compactly supported in72

general, but with finite exponential moments. Even though the main mathematical methods that we use73

were introduced in [4], to our knowledge, they have not been applied for the FHN system in a deterministic74

and spatially structured framework. Furthermore, we consider a numerical scheme for the kinetic equation75

(1.5), using a particle method, in order to display some numerical simulations of this model. It appears76

that for certain sets of parameters, we observe some dynamics usually expected for macroscopic models.77

We also compare this scheme with the FHN system (1.3), to get some numerical evidence of the relevance78

of the kinetic equation (1.5).79

Here, in our framework the interaction kernel (x,y, v) 7→ Ψ(x,y) v is locally Lipschitz continuous but80

not globally. Indeed, it is Lipschitz continuous on every bounded sets of Rd+1 but its Lipschitz constant81

goes to infinity with the diameter of the set considered. Therefore some terms of higher order arise in82

the computation of a Dobrushin’s estimate. Thus, we need additional assumptions to control these terms,83

and hence to compute a similar stability estimate. In the spirit of [4], we circumvent this issue with the84

estimate of exponential moments of the solution of the kinetic equation (1.5), and with an appropriate85

division of the set of integration in the nonlocal terms, to get a suitable estimate. We mention that in86

[10, 23], the authors tackled a similar difficulty for some kinetic models of collective motion, and they chose87

to work with compactly supported solutions specifically to overcome this problem, controling the growth88

of velocity support to construct measure solutions.89

2 Main result90

This section is devoted to the statement of our main result on the mean-field limit from the solution of91

the microscopic model (1.3) towards the solution of the kinetic equation (1.5) as the number of neurons n92
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goes to infinity.93

Before stating our main result, let us precisely define the notion of solution of the kinetic equation (1.5)94

we use in this article. In the following, we denote by P2(Rd+2) the set of probability measures on Rd+2
95

with finite moments of order 2.96

Definition 2.1 (Measure solution of (1.5)). Consider an initial data f0 ∈ P2(Rd+2). Let T > 0. Then, f

is said to be a measure solution of (1.5) with initial data f0 if f ∈ C ([0, T ],P2(Rd+2)) and for all t ∈ [0, T ],

f(t) = Zf0(t, ·)#f0,

where # is our notation for the push-forward1, and Zf0 is defined for all t ∈ [0, T ] and all z = (x, v, w) ∈
Rd+2 through

Zf0(t, z) := (x,Vf0(t, z),Wf0(t, z)) , (2.1)

where (Vf0 ,Wf0) is a solution of the characteristic system associated to (1.5) for t > 0 and z = (x, v, w) ∈
Rd+2: 

∂tV(t, z) = N(V(t, z))−W(t, z)−
∫

Ψ(x,x′)
(
V(t, z)− V(t, z′)

)
f0(dx′,dv′, dw′) ,

∂tW(t, z) = A(V(t, z),W(t, z)),

V(0, z) = v , W(0, z) = w .

(2.2)

Remark 2.2. In the rest of this paper, for the sake of clarity, we will use the notation z = (x, v, w) ∈ Rd+2
97

and z′ = (x′, v′, w′) ∈ Rd+2.98

As we can expect from this notion of measure solution to (1.5), the regularity of the solution to the

characteristic system (2.2) is crucial. Therefore, we need to clearly define our framework for the connectivity

kernel Ψ and the nonlinear function N to prove, on the one hand, the existence and uniqueness of solutions

to the FHN system (1.3) and the kinetic equation (1.5), and on the other hand, to prove our result of

mean-field limit. In the following, in the spirit of [4, 10], we choose a connectivity kernel Ψ : R2d → R
satisfying

Ψ ∈ Lipb(R2d), (2.3)

where Lipb(R2d) is the set of bounded and globally Lipschitz continuous functions from R2d to R. In the

following, we note L > 0 the Lipschitz constant of the connectivity kernel Ψ, and

‖Ψ‖∞ := sup
(x,y)

|Ψ(x,y)| .

Here, the Lipschitz continuity of the connectivity kernel is only a technical assumption. On the other hand,

the choice of a bounded Ψ seems to be reasonable from a biological viewpoint, since currents transmitted

1For all h, map from Rd+2 to itself, for all probability measure µ, the notation ν = h#µ is equivalent to∫
1B(z)ν(dz) =

∫
1B(h(y))µ(dy)

for all B measurable subset of Rd+2.
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through synapses are bounded. We also choose a locally Lipschitz continuous nonlinearity N : R→ R such

that there exist two constants κ, κ̃ > 0 satisfying:
v N(v) ≤ κ |v|2 ∀ v ∈ R,

(v − u) (N(v)−N(u)) ≤ κ̃ |v − u|2 ∀ (v, u) ∈ R2.

(2.4)

Then, it remains to choose a suitable topology on P2(Rd+2) to state our result of mean-field limit. The99

most convenient distance to describe the convergence of an empirical measure in such problems is the100

Wasserstein distance [4, 10, 22, 23], recalled in the next definition.101

Definition 2.3 (Wasserstein distance of order 2). Let µ and ν be two probability measures of Rd+2 with

finite moments of second order. The Wasserstein distance of order 2 between µ and ν is defined by

d2(µ, ν) = inf
π∈Λ(µ,ν)

 ∫∫
Rd+2×Rd+2

‖(x− x′, v − v′, w − w′)‖2 π(dx,dv,dw,dx′, dv′,dw′)


1
2

,

where ‖(x, v, w)‖ stands for the euclidean norm of the vector (x, v, w) in Rd+2 for all x ∈ Rd and (v, w) ∈
R2, and Λ(µ, ν) is the set of couplings of µ and ν, that is to say for all π ∈ Λ(µ, ν), for all function

φ ∈ C (Rd+2) such that φ(z) = O(|z|2) as |z| goes to infinity,∫∫
φ(x, v, w)π(dx, dv,dw,dx′, dv′,dw′) =

∫
φ(x, v, w)µ(dx, dv,dw),

and ∫∫
φ(x′, v′, w′)π(dx, dv,dw,dx′,dv′, dw′) =

∫
φ(x′, v′, w′) ν(dx′,dv′, dw′).

In this paper, we choose to work with the Wasserstein distance of order 2 instead of 1 as in [10, 17, 22] to102

deal with the nonlinearity N , which naturally makes appear some moments of second order in v and w in103

the computation of the stability estimate.104

Then, as explained in the introduction, to circumvent the issues caused by the class of interaction kernel

we consider, even if it is not needed for the existence and uniqueness of a measure solution to (1.5), we

make some assumptions on the initial data of the kinetic equation (1.5). Thus, we consider an initial data

f0 ∈ P2(Rd+2) satisfying: ∫
eα0 〈v,w〉 f0(dx, dv,dw) < +∞, (2.5)

for some constant α0 > 0, using the notation for all (v, w) ∈ R2:

〈v, w〉 := (1 + |v|2 + |w|2)1/2. (2.6)

Now, we have all the tools we need to state our main theorem.105

Theorem 1 (Mean-field limit). We consider a connectivity kernel Ψ satisfying (2.3), and a locally Lipschitz106

continuous nonlinearity N satisfying (2.4). Let T > 0.107
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(i) Consider two initial data f0,1 and f0,2 ∈ P2(Rd+2) such that d2(f0,1, f0,2) < 1. Assume that f0,2 sat-

isfies (2.5) for some constant α0 > 0. Further assume that there exist f1 and f2 ∈ C ([0, T ],P2(Rd+2))

two measure solutions of the kinetic equation (1.5) respectively with initial conditions f0,1 and f0,2.

Then there exist two positive constants CT > 0 and KT > 0 such that for all t ∈ [0, T ],

d2(f1(t), f2(t)) ≤ KT d2(f0,1, f0,2)β(t), (2.7)

where β(t) := e−CT t.108

(ii) For all n ∈ N, consider the initial data (xi, v0,i, w0,i)1≤i≤n ∈
(
Rd+2

)n
and its associated empirical

measure f0,n. Consider an initial data f0 ∈ P2(Rd+2). Then, for all n ∈ N, there exists a unique

solution (xi, vi, wi)1≤i≤n ∈
(
Rd+2

)n
of the FHN system (1.3) with initial data (xi, v0,i, w0,i)1≤i≤n, and

for all t ∈ [0, T ], we note its associated empirical measures fn(t). There also exists a unique measure

solution f ∈ C ([0, T ],P2(Rd+2)) to (1.5) with initial data f0. Further assume that f0 satisfies (2.5)

for some positive constant α0 > 0 and that

lim
n→+∞

d2(f0,n, f0) = 0. (2.8)

Then, we get:

lim
n→+∞

sup
t∈[0,T ]

d2(fn(t), f(t)) = 0. (2.9)

The proof of Theorem 1 is postponed to Section 5. The first part (i) is the stability result of the measure109

solutions to (1.5) with respect to their initial data. Our approach follows the idea from [4, 10, 17, 22].110

Indeed, the main difficulty comes from the interaction kernel of the form (x,x′, v) 7→ Ψ(x,x′) v, which is111

only locally Lipschitz continuous.112

As for the second part (ii), the existence and uniqueness of the FHN system (1.3) follows from the Cauchy-113

Lipschitz Theorem, and the proof of the well-posedness of the kinetic equation (1.5) relies on the well-114

posedness of the characteristic system (2.2) using an classical arguments as in [22]. Then, the mean-field115

limit from (1.3) towards (1.5) is just a consequence of the first part (i).116

Remark 2.4. We can extend the result of existence and uniqueness of the solution to (1.3) and the117

Definition 2.1 of measure solutions of (1.5) to the case where Ψ is only bounded and continuous with118

respect to its first variable uniformly relative to its second variable.119

The rest of this paper is organized as follows. In Section 3, we prove an a priori estimate for the solution120

of the kinetic equation (1.5) which will be crucial for the proof of Theorem 1. Then, in Section 4, we121

present the proof of the existence and uniqueness of the measure solution of the kinetic equation (1.5).122

Furthermore, we prove our main result of mean-field limit in Section 5 and present as an application123

a stability result regarding monokinetic solutions in the following Section 6. Finally, in Section 7, we124

provide a numerical scheme for the kinetic equation (1.5) based on a particle method, and we display125

some numerical simulations, to illustrate the results established in Sections 5 and 6, and to show that this126

numerical scheme accurately reproduces the behavior of a large neural network.127
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3 A priori estimate128

In this section, we prove an a priori estimate of the exponential moments of a solution of the kinetic

equation (1.5). We will need to work with the characteristic system (2.2). In Section 4, we will prove that

for all T > 0, the characteristics are well-defined in C ([0, T ], E), where

E :=
{
U ∈ C (Rd+2,R) | ‖U‖E < ∞

}
, (3.1)

with

‖U‖E := sup
(x,v,w)∈Rd+2

|U(x, v, w)|
〈v, w〉

. (3.2)

This choice of Banach space is justified since in general, the characteristics are not bounded, so we need129

to control some moments in v and w.130

Lemma 3.1. Let T > 0. We consider a connectivity kernel Ψ satisfying (2.3) and a locally Lipschitz

continuous nonlinearity N satisfying (2.4). Let p ≥ 1. Consider an initial data f0 ∈ P2(Rd+2) satisfying

(2.5) for some α0 > 0 is a positive constant. Assume that there exists f ∈ C ([0, T ],P2(Rd+2)) a measure

solution of (1.5) and a couple (Vf0 ,Wf0) ∈ C ([0, T ], E)2 solution of the characteristic system (2.2), such

that if we define Zf0 := (idRd ,Vf0 ,Wf0) , then for all t ∈ [0, T ],

f(t) = Zf0(t)#f0.

Then, there exists a constant CTf0 > 0 which depends only on the parameters of the equation (1.5), on T

and on the moments of f0, and αT := α0 e
−pCTf0 T such that for all t ∈ [0, T ],∫

eαT 〈v,w〉
p
f(t,dx, dv,dw) ≤

∫
eα0 〈v,w〉pf0(dx, dv,dw). (3.3)

Proof. Consider α ∈ C 1([0, T ],R) a positive function to be determined later. Let t ∈ [0, T ]. We have the131

following estimate:132

1

2

d

dt

∫
eα(t) 〈Vf0 (t,z),Wf0

(t,z)〉pf0(dz) ≤
∫ [

1

2
α′(t) 〈Vf0(t, z),Wf0(t, z)〉p

+
p

2
α(t) 〈Vf0(t, z),Wf0(t, z)〉p−2 (I1 + I2 + I3)

]
eα(t) 〈Vf0 (t,z),Wf0

(t,z)〉pf0(dz),

where 

I1 := τWf0(t, z) (Vf0(t, z) + a− bWf0(t, z)) ,

I2 := Vf0(t, z) (N(Vf0(t, z)) − Wf0(t, z)) ,

I3 := −Vf0(t, z)

∫
Ψ(x,x′)

[
Vf0(t, z)− Vf0(t, z′)

]
f0(dz′).

First of all, we can easily compute the first term I1 with Young’s inequality, which yields:

I1 ≤
τ

2
|Vf0(t, z)|2 + τ |Wf0(t, z)|2 +

τ a2

2
− τ b |Wf0(t, z)|2

≤ τ
(

1 +
a2

2

)
|〈Vf0(t, z),Wf0(t, z)〉|2 .
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Furthermore, we deal with the second term I2 using the assumption on N (2.4) and Young’s inequality:

I2 ≤ κ |Vf0(t, z)|2 +
1

2

(
|Vf0(t, z)|2 + |Wf0(t, z)|2

)
≤
(
κ+

1

2

)
|〈Vf0(t, z),Wf0(t, z)〉|2 .

Then, we treat the third term I3 using Young’s inequality and then factorizing by |〈Vf0(t, z),Wf0(t, z)〉|2

as follows:

I3 ≤
3

2
|Vf0(t, z)|2

∫
|Ψ(x,x′)| f0(dz′) +

1

2

∫
|Ψ(x,x′)| |Vf0(t, z′)|2 f0(dz′)

≤ 1

2
‖Ψ‖∞

(
3 |Vf0(t, z)|2 +

∫
|Vf0(t, z′)|2 f0(dz′)

)
≤ 1

2
‖Ψ‖∞

(
3 + sup

s∈[0,T ]
‖Vf0(s)‖2E

∫
|〈v′, w′〉|2 f0(dz′)

)
|〈Vf0(t, z),Wf0(t, z)〉|2 .

Finally, we get that there exists a positive constant CTf0 > 0 such that:

1

2

d

dt

∫
eα(t) 〈Vf0 (t,z),Wf0

(t,z)〉pf0(dz)

≤
∫ [

1

2
α′(t) +

p

2
CTf0 α(t)

]
〈Vf0(t, z),Wf0(t, z)〉p eα(t) 〈Vf0 (t,z),Wf0

(t,z)〉pf0(dz).

We choose for all s ∈ [0, T ], α(s) := α0 e
−pCTf0 s, so that for all s ∈ [0, T ],

α′(s) + pCTf0 α(s) = 0 , α(0) = α0 .

Hence,
d

dt

∫
eα(t) 〈Vf0 (t,z),Wf0

(t,z)〉pf0(dz) ≤ 0.

To conclude the proof, it remains to define:

αT := α(T ),

and we deduce that for all t ∈ [0, T ],∫
eαT 〈Vf0 (t,z),Wf0

(t,z)〉pf0(dz) ≤
∫
eα(t) 〈Vf0 (t,z),Wf0

(t,z)〉pf0(dz)

≤
∫
eα0 〈v,w〉pf0(dz).

133

4 Proof of the well-posedness of the kinetic equation (1.5)134

This section is devoted to the proof of existence and uniqueness of a measure solution to the kinetic equation135

(1.5), in the sense of Definition 2.1. Let T > 0 be a fixed final time and f0 ∈ P2(Rd+2). First, we focus on136

the well-posedness of the characteristic system (2.2), and then we will conclude by defining the measure137

solution to (1.5) as the push-forward of the initial data by the solution of the characteristic system.138
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4.1 Proof of the well-posedness of the characteristic system (2.2)139

As a preliminary step, we establish the existence and uniqueness of the solution of the characteristic system140

(2.2) in C ([0, T ], E), where E is defined with (3.1)-(3.2).141

Proposition 4.1. Let T > 0. Consider an initial data f0 ∈ P2(Rd+2). Then, there exists a unique couple

(Vf0 ,Wf0) solution of (2.2) on [0, T ] such that

Vf0 ,Wf0 ∈ C ([0, T ], E).

Proof. Since we cannot directly conclude with the Cauchy-Lipschitz theorem because of the term resulting142

from the nonlocal interactions in (2.2), our approach is based on the construction of a Cauchy sequence143

(Vp,Wp)p∈N in C ([0, T ], E), in order to circumvent this difficulty. Then, we will define the couple (Vf0 ,Wf0)144

as its limit as p tends to infinity.145

Step 1: construction of the sequences146

First, we prove the following lemma, which yields the existence and uniqueness of the solution of a system147

of equations approximating (2.2), in which we consider the contribution of the interactions as a source148

term.149

Lemma 4.2. Let T > 0. Under the assumptions of Proposition 4.1, assume that there exists U ∈
C ([0, T ], E) of class C 1 in time. Then, there exists unique couple (V,W) ∈ C ([0, T ], E)2 solution of class

C 1 in time of the following system for t > 0 and z = (x, v, w) ∈ Rd+2:

∂tV(t, z) = N(V(t, z))−W(t, z)−
∫

Ψ(x,x′)(U(t, z)− U(t, z′)) f0(dz′),

∂tW(t, z) = A(V(t, z),W(t, z)),

V(0, z) = v, W(0, z) = w.

(4.1)

The proof of Lemma 4.2 only relies on classical arguments, but for the sake of completeness, it is postponed

to the Appendix A. Then, by induction, Lemma 4.2 implies the existence and uniqueness of a sequence

(Vp,Wp)p∈N, such that (V0,W0) := (0, 0), and for all p ∈ N, for all t ∈ [0, T ] and z = (x, v, w) ∈ Rd+2,
Vp+1(t, z) = v +

∫ t

0

[
N(Vp+1(s, z))−Wp+1(s, z)−

∫
Ψ(x,x′)(Vp(s, z)− Vp(s, z′)) f0(dz′)

]
ds,

Wp+1(s, z) = w +

∫ t

0
A(Vp+1(s, z),Wp+1(s, z)) ds.

(4.2)

Step 2: Cauchy sequences150

Now, we want to prove that for all t ∈ [0, T ], {Vp(t)}p∈N and {Wp(t)}p∈N are two Cauchy sequences in E .

For all p ∈ N, we define for all z ∈ Rd+2:

Gp+1(t) :=
(
‖Vp+1(t)− Vp(t)‖2E + ‖Wp+1(t)−Wp(t)‖2E

) 1
2 ,
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and we want to prove by induction that this quantity is summable. Let p ∈ N, t ∈ [0, T ] and z = (x, v, w).

Thus, we have:

1

2

(
|Vp+2(t, z)− Vp+1(t, z)|2 + |Wp+2(t, z)−Wp+1(t, z)|2

)
≤
∫

[T1(s) + T2(s) + T3(s) + T4(s)] ds,

where for all s ∈ [0, t],

T1(s) := τ (Wp+2(s, z)−Wp+1(s, z)) [(Vp+2(s, z)− Vp+1(s, z)) − b (Wp+2(s, z)−Wp+1(s, z))] ,

T2(s) := (Vp+2(s, z)− Vp+1(s, z)) [N(Vp+2(s, z))−N(Vp+1(s, z))] ,

T3(s) := − (Vp+2(s, z)− Vp+1(s, z)) (Wp+2(s, z)−Wp+1(s, z)) ,

T4(s) := − (Vp+2(s, z)− Vp+1(s, z))

×
∫

Ψ(x,x′)
[
(Vp+1(s, z)− Vp+1(s, z′))− (Vp(s, z)− Vp(s, z′))

]
f0(dz′).

Let s ∈ [0, t]. The first term T1(s) is easily controled using Young’s inequality:151

T1(s) ≤ τ

2

(
|Vp+2(s, z)− Vp+1(s, z)|2 + |Wp+2(s, z)−Wp+1(s, z)|2

)
≤ τ

2
|〈v, w〉|2 |Gp+2(s)|2 (4.3)

Then, we treat the second term T2(s) using assumption (2.4) satisfied by N :

T2(s) ≤ κ̃ |Vp+2(s, z)− Vp+1(s, z)|2 ≤ κ̃ |〈v, w〉|2 |Gp+2(s)|2 . (4.4)

Furthermore, we can estimate the third term T3(s) with Young’s inequality:152

T3(s) ≤ 1

2

(
|Vp+2(s, z)− Vp+1(s, z)|2 + |Wp+2(s, z)−Wp+1(s, z)|2

)
≤ 1

2
|〈v, w〉|2 |Gp+2(s)|2 . (4.5)

Finally, to deal with the nonlocal term T4(s), using the boundedness of Ψ and Young’s inequality, we can

compute:

T4(s) = (Vp+2(s, z)− Vp+1(s, z))

×
∫

Ψ(x,x′)
[
(Vp+1(s, z′)− Vp(s, z′))− (Vp+1(s, z)− Vp(s, z))

]
f0(dz′)

≤ 1

2
|Vp+2(s, z)− Vp+1(s, z)|2

+
1

2
‖Ψ‖2∞

∫ (∣∣Vp+1(s, z′)− Vp(s, z′)
∣∣2 + |Vp+1(s, z)− Vp(s, z)|2

)
f0(dz′).

Moreover, factorizing each term with |〈v, w〉|2, we get:153

T4(s) ≤ 1

2
|〈v, w〉|2 ‖Vp+2(s)− Vp+1(s)‖2E

+
1

2
‖Ψ‖2∞

(∫
|〈v′, w′〉|2 f0(dz′) + |〈v, w〉|2

)
‖Vp+1(s)− Vp(s)‖2E

≤ 1

2
|〈v, w〉|2

[
|Gp+2(s)|2 + ‖Ψ‖2∞

(∫
|〈v′, w′〉|2 f0(dz′) + 1

)
|Gp+1(s)|2

]
. (4.6)
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Finally, (4.3), (4.4), (4.5) and (4.6) together yield that there exist two positive constants C1 > 0 and C2 > 0

independent of p such that:

|Vp+2(t, z)− Vp+1(t, z)|2 + |Wp+2(t, z)−Wp+1(t, z)|2

≤ |〈v, w〉|2
[
C1

∫ t

0
|Gp+1(s)|2 ds + C2

∫ t

0
|Gp+2(s)|2 ds

]
,

which implies, by dividing this inequality by |〈v, w〉|2 and then taking the supremum on Rd+2:

|Gp+2(t)|2 ≤ C1

∫ t

0
|Gp+1(s)|2 ds + C2

∫ t

0
|Gp+2(s)|2 ds. (4.7)

On the one hand, using Grönwall’s lemma, we have for all t ∈ [0, T ]:

|Gp+2(t)|2 ≤ C1 e
C2 T

∫ t

0
|Gp+1(s)|2 ds. (4.8)

On the other hand, for all t ∈ [0, T ],

|G1(t)|2 = ‖V1(t)‖2E + ‖W1(t)‖2E ≤ CT , (4.9)

for some constant CT > 0, since V1 and W1 ∈ C ([0, T ], E) according to Lemma 4.2. Hence, by induction,

we can deduce from (4.8) and (4.9) that for all p ∈ N and all t ∈ [0, T ]:

|Gp+1(t)|2 ≤ CT

(
C1 e

C2 T t
)p

p !
, (4.10)

which is summable. Consequently, for all t ∈ [0, T ], {Vp(t)}p∈N and {Wp(t)}p∈N are Cauchy sequences154

in E . Since E is a Banach space, and since for all p ∈ N, Vp and Wp ∈ C ([0, T ], E), there exist Vf0155

and Wf0 ∈ C ([0, T ], E) such that for all t ∈ [0, T ], Vp(t, ·) (respectively Wp) converges towards Vf0(t, ·)156

(respectivelyWf0) uniformly in E . Thus, passing to the limit p→ +∞ in (4.2), we get that for all z ∈ Rd+2,157

(Vf0(·, z),Wf0(·, z)) is a solution of (2.2) of class C 1 in time.158

Step 3: Uniqueness159

Now, we want to check that the solution of (2.2) is unique. Suppose that there exist Z1 := (idRd ,V1,W1)

and Z2 := (idRd ,V2,W2) such that (V1,W1) and (V2,W2) are two solutions of (2.2) in C ([0, T ], E)2. We

define for all t ∈ [0, T ]:

G(t) :=
(
‖V1(t)− V2(t)‖2E + ‖W1(t)−W2(t)‖2E

) 1
2
. (4.11)

Thus, using similar computations as previously, we get that there exists a positive constant C such that

for all t ∈ [0, T ]:

|G(t)|2 ≤ C

∫ t

0
|G(s)|2 ds.

Using Grönwall’s inequality we get that Z1 = Z2.160

161
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4.2 Construction of the measure solution to (1.5)162

We have proved so far that there exists a unique map Zf0 := (idRd ,Vf0 ,Wf0) such that (Vf0 ,Wf0) is a

solution of the characteristic system (2.2) in C ([0, T ], E). We define:

f : t 7→ Zf0(t)#f0. (4.12)

Thus, for all t ∈ [0, T ]:∫ (
|x|2 + |v|2 + |w|2

)
f(t,dz) =

∫ (
|x|2 + |Vf0(t, z)|2 + |Wf0(t, z)|2

)
f0(dz)

≤
∫
|x|2f0(dz) +

(
‖Vf0(t)‖2E + ‖Wf0(t)‖2E

) ∫
|〈v, w〉|2 f0(dz),

which is uniformly bounded. Hence, for all t ∈ [0, T ]:

f(t) ∈ P2(Rd+2).

Then, we want to prove that f ∈ C ([0, T ],P2(Rd+2)), where P2(Rd+2) is equiped with the Wasserstein

distance d2. Let t and t′ ∈ [0, T ]. Notice that the measure (Zf0(t)×Zf0(t′))#f0 ∈ Λ(f(t), f(t′)). Therefore,

we have:

d2
2(f(t), f(t′)) = inf

π∈Λ(f(t),f(t′))

∫∫
|z1 − z2|2 π(dz1dz2)

≤
∫
|Zf0(t, z)−Zf0(t′, z)|2 f0(dz)

≤
(
‖Vf0(t)− Vf0(t′)‖2E + ‖Wf0(t)−Wf0(t′)‖2E

) ∫
|〈v, w〉|2 f0(dz).

Since Vf0 and Wf0 ∈ C ([0, T ], E), and f0 ∈ P2(Rd+2), we have that:

f ∈ C ([0, T ],P2(Rd+2)).

Hence, f is a measure solution of (1.5) in the sense of definition 2.1.163

5 Proof of Theorem 1164

This section is devoted to the proof of our main result Theorem 1. We start with the stability result (i).165

Our approach consists in using an estimate of the Wasserstein distance between two measure solutions of166

(1.5). Then, we will show how this stability result implies the mean-field limit result (ii).167

5.1 Proof of the stability result168

For j ∈ {1 , 2}, we define the map Zj such that for all t ∈ [0, T ] and all z = (x, v, w) ∈ Rd+2:

Zj(t, z) := (x,Vj(t, z),Wj(t, z)),
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where (Vj ,Wj) is the solution of the characteritic system (2.2) with initial data f0,j . Vj and Wj are

in C ([0, T ], E) according to Proposition 4.1. Let π ∈ Λ(f0,1, f0,2) be the optimal measure to compute

d2(f0,1, f0,2), that is

d2(f0,1, f0,2) =

(∫∫
‖z1 − z2‖2 π(dz′1, dz′2)

) 1
2

.

The existence of such a minimizing measure is proved in [39]. First, we want to estimate the function D[π]

defined for all t ∈ [0, T ] with

D[π](t) :=

(∫∫ ∥∥Z1(t, z′1)−Z2(t, z′2)
∥∥2

π(dz′1,dz′2)

) 1
2

.

Then, we will be able to conclude using the fact that for all t ∈ [0, T ],

d2(f1(t), f2(t)) ≤ D[π](t).

Step 1: Estimate of D[π]169

Let t ∈ [0, T ], z1 = (x1, v1, w1) and z2 = (x2, v2, w2) ∈ Rd+2. We start by estimating the integrand

‖Z1(t, z1)−Z2(t, z2)‖2. Then, we will integrate with respect to the measure π(dz1, dz2) in order to estimate

D[π]2(t). In the following, for j ∈ {1, 2}, we use the shorthand notations Vj := Vj(t, zj) and V ′j := Vj(t, z′j),
and the same for Wj . First, we have:

1

2

d

dt
‖Z1(t, z1)−Z2(t, z2)‖2 ≤ Tl,1 + Tl,2 + Tnl, (5.1)

where 

Tl,1 := τ (W1 −W2) [(V1 − V2) − b (W1 −W2)] ,

Tl,2 := (V1 − V2) [(N(V1)−N(V2)) − (W1 −W2)] ,

Tnl := (V1 − V2)

[∫
Ψ(x1,x

′
1) (V1 − V ′1) f0,1(dz′1)−

∫
Ψ(x2,x

′
2) (V2 − V ′2) f0,2(dz′2)

]
.

By integrating (5.1) with respect to the measure π(dz1,dz2), we get:

1

2

d

dt
D[π](t)2 ≤

∫∫
[Tl,1 + Tl,2 + Tnl] π(dz1, dz2). (5.2)

We easily treat the first local term Tl,1 using Young’s inequality:170 ∫∫
Tl,1 π(dz1,dz2) ≤ τ

2

∫∫ (
|V1 − V2|2 + |W1 −W2|2

)
π(dz1, dz2) − τ b

∫∫
|W1 −W2|2 π(dz1,dz2)

≤ τ

2
D[π](t)2. (5.3)

Then, we can estimate the second local term Tl,2 using Young’s inequality and the assumption on N (2.4)171

as follows:172 ∫∫
Tl,2 π(dz1,dz2) ≤

∫∫ [
κ̃ |V1 − V2|2 +

1

2
|V1 − V2|2 +

1

2
|W1 −W2|2

]
π(dz1,dz2)

≤
(

1

2
+ κ̃

)∫∫
‖Z1(t, z1)−Z2(t, z2)‖2 π(dz1,dz2)

=

(
1

2
+ κ̃

)
D[π](t)2. (5.4)
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Now, we deal with the nonlocal terms Tnl. Since we have:

Ψ(x1,x
′
1)
(
V1 − V ′1

)
+ Ψ(x2,x

′
2)
(
V2 − V ′2

)
= Ψ(x1,x

′
1)
[
(V1 − V2) −

(
V ′1 − V ′2

)]
+
(
Ψ(x1,x

′
1)−Ψ(x2,x

′
2)
) (
V2 − V ′2

)
,

we get: ∫∫
Tnl π(dz1,dz2) ≤ J1 + J2 + J3,

where 

J1 :=

∫∫ ∫∫
|Ψ(x1,x

′
1)| |V1 − V2|2 π(dz′1, dz′2)π(dz1, dz2),

J2 :=

∫∫ ∫∫
|Ψ(x1,x

′
1)| |V1 − V2| |V ′1 − V ′2|π(dz′1, dz′2)π(dz1,dz2),

J3 :=

∫∫ ∫∫ ∣∣Ψ(x1,x
′
1)−Ψ(x2,x

′
2)
∣∣ |V1 − V2|

∣∣V2 − V ′2
∣∣ π(dz′1, dz′2)π(dz1,dz2).

The two first terms J1 and J2 are easy to estimate, using the fact that Ψ is bounded and Young’s inequality.

We find: 
J1 ≤ ‖Ψ‖∞D[π](t)2,

J2 ≤ ‖Ψ‖∞D[π](t)2.

Furthermore, since Ψ satisfies the assumption (2.3), we have for all (x1,x
′
1) and (x2,x

′
2) ∈ R2d:∣∣Ψ(x1,x

′
1)−Ψ(x2,x

′
2)
∣∣ ≤ min

{
L
(
|x1 − x2|+ |x′1 − x′2|

)
, 2 ‖Ψ‖∞

}
. (5.5)

Let R(t) > 0 to be determined later. We define the sets
εR(t) :=

{
z ∈ Rd+2 , |V2(t, z)| ≤ R(t)

}
,

ΘR(t) :=
(
Rd+2 × εR(t)

)2
.

(5.6)

Then, we can deal with the third term J3 using (5.5) and then splitting the set of integration into ΘR(t)

and its complementary ΘC
R(t):

J3 ≤
∫∫ ∫∫

min
{
L
(
|x1 − x2|+ |x′1 − x′2|

)
, 2 ‖Ψ‖∞

}
|V1 − V2|

∣∣V2 − V ′2
∣∣ π(dz′1,dz′2)π(dz1, dz2)

≤ J31 + J32,

where 
J31 := L

∫∫ ∫∫
ΘR(t)

|V1 − V2|
(
|x1 − x2|+ |x′1 − x′2|

) ∣∣V2 − V ′2
∣∣ π(dz′1,dz′2)π(dz1, dz2),

J32 := 2 ‖Ψ‖∞
∫∫ ∫∫

ΘC
R(t)

|V1 − V2|
∣∣V2 − V ′2

∣∣ π(dz′1, dz′2)π(dz1,dz2).
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We can treat the term J31 with the Cauchy-Schwarz inequality:

J31 ≤ 2LR(t)

∫∫ ∫∫
ΘR(t)

|V1 − V2|
(
|x1 − x2|+ |x′1 − x′2|

)
π(dz′1, dz′2)π(dz1,dz2)

≤ 2LR(t)D[π](t)2 + 2LR(t)

(∫∫
|V1 − V2|2 π(dz1,dz2)

) 1
2
(∫∫

|x′1 − x′2|2 π(dz′1,dz′2)

) 1
2

≤ 4LR(t)D[π](t)2.

Then, using the Young and Cauchy-Schwarz inequalities, we can estimate the second term J32(s) as follows:

J32(s) ≤ ‖Ψ‖∞D[π](t)2 + ‖Ψ‖∞
∫∫ ∫∫

ΘC
R(t)

∣∣V2 − V ′2
∣∣2 π(dz′1, dz′2)π(dz1,dz2)

≤ ‖Ψ‖∞D[π](t)2

+ ‖Ψ‖∞
(∫∫ ∫∫ ∣∣V2 − V ′2

∣∣4 π(dz′1, dz′2)π(dz1,dz2)

) 1
2

∫∫ ∫∫
ΘC
R(t)

π(dz′1,dz′2)π(dz1, dz2)


1
2

≤ ‖Ψ‖∞D[π](t)2 + C

(∫
|V2|4 f0,2(dz2)

) 1
2

 ∫
εC
R(t)

f0,2(dz2)


1
2

.

On the one hand, according to Lemma 3.1, there exists a constant αT > 0 such that we have:∫
εC
R(t)

f0,2(dz2) ≤
∫
εC
R(t)

eαT |V2|

eαT R(t)
f0,2(dz2) ≤ e−αT R(t)

∫
eα0 〈v2,w2〉 f0,2(dz2).

On the other hand, there exists a constant C > 0 such that∫
|V2|4 f0,2(dz2) ≤ C

∫ (
1 + eαT |V2|

)
f0,2(dz2) < ∞,

according to Lemma 3.1. Finally, there exists a constant C > 0 such that

J32 ≤ C (1 +R(t))D[π](t)2 + C e−
αT
2
R(t).

and consequently, there exists a constant C̃ > 0 such that∫∫
Tnl π(dz1dz2) ≤ C̃ (1 +R(t))D[π](t)2 + C̃ e−

αT
2
R(t). (5.7)

Now, we use (5.3), (5.4) and (5.7) to estimate respectively the local terms Tl,1, Tl,2, and the nonlocal terms

Tnl in (5.2). Finally, we get that there exists a constant CT > 0 such that for all t ∈ [0, T ] and all R(t) > 0:

d

dt
D[π](t)2 ≤ CT (1 +R(t))D[π](t)2 + CT e

−αT
2
R(t). (5.8)
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First, if we choose R(t) = 1 for all t ∈ [0, T ] in the inequality (5.8), Grönwall’s lemma yields that there

exists a constant KT > 0 such that for all t ∈ [0, T ], D[π](t)2 < KT . Then, we define the function

u : t 7→ D[π](t)2

eKT
,

so that for all t ∈ [0, T ] such that u(t) > 0, we have 1 ≤ − ln(u(t)). Let t ∈ [0, T ] such that u(t) > 0.

Then, we choose the quantity R(t) in (5.8) as follows:

R(t) := − 2

αT
ln (u(t)) .

Hence, (5.8) becomes

u′(t) ≤ CT

(
1− 2

αT
ln (u(t))

)
u(t) +

CT
eKT

u(t)

≤ −CT
(

1 +
2

αT

)
u(t) ln (u(t)) − CT

eKT
u(t) ln (u(t))

≤ −C̃T u(t) ln (u(t)) ,

for some constant C̃T > 0. With the convention v ln(v) = 0 if v = 0, according to Osgood’s lemma, we

have for all t ∈ [0, T ]: ∫ u(t)

u(0)

−dy

C̃T y ln(y)
≤ t.

This implies that

ln(− ln(u(t))) − ln(− ln(u(0))) ≥ −C̃T t.

Consequently, since ln(u(0)) < 0, if we define the function

β : t 7→ e−C̃T t, (5.9)

we get that for all t ∈ [0, T ]:

u(t) ≤ u(0)β(t),

and this remains true if u(t) = 0. Finally, we can conclude that for all t ∈ [0, T ]173

D[π](t) ≤ (eKT )
1−β(t)

2 D[π](0)β(t)

≤ K̃T D[π](0)β(t), (5.10)

where K̃T > 0 is a positive constant.174

Step 2: Conclusion of the estimate of the Wasserstein distance175

We note for all j ∈ {1 , 2} and all t ∈ [0, T ]

fj(t) := Zj(t)#f0,j .

Thus, for all t ∈ [0, T ] and for all π ∈ Λ(f0,1, f0,2),

(Z1(t)×Z2(t)) #π ∈ Λ(f1(t) , f2(t)),
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and therefore,

d2(f1(t), f2(t)) ≤
(∫∫

‖Z1(t, z1)−Z2(t, z2)‖2 π(dz1 dz2)

) 1
2

= D[π](t).

Finally, we can conclude using the estimate (5.1):

d2(f1(t), f2(t)) ≤ K̃T D[π](0)β(t)

= K̃T d2(f0,1, f0,2)β(t).

Remark 5.1. If we make the additional assumption that there exists p > 1 such that∫
e〈v,w〉

p
f0,2(dz) < ∞,

then instead of the estimate (5.7), we can conclude using a similar argument that there exists a constant

CT > 0 such that for all t ∈ [0, T ],

d

dt
D[π](t)2 ≤ CT (1 +R)D[π](t)2 + CT e

−αT
2
Rp .

Hence, Grönwall’s lemma yields that for all R > 0 and all t ∈ [0, T ],

D[π](t)2 ≤

(
D[π](0)2 +

e−
αT
2
Rp

1 +R

)
eCT (1+R) t.

Therefore, this implies that for all t ∈ [0, T ] and all R > 0,

d2
2(f1(t), f2(t)) ≤ D[π](t)2 ≤

(
d2

2(f0,1, f0,2) +
e−

αT
2
Rp

1 +R

)
eCT (1+R) t. (5.11)

Choosing for instance

R = − 1

2CT T
ln
(
d2

2(f0,1, f0,2)
)
,

the estimate (5.11) is enough to prove the part (ii) of Theorem 1. Indeed, since (f0,n)n∈N and f0 satisfy

assumption (2.8), we get

lim
n→+∞

sup
t∈[0,T ]

d2(fn(t), f(t)) = 0.

5.2 Proof of the mean-field limit from (1.3) towards (1.5)176

First, the existence and uniqueness of the solution to the FHN system is a direct consequence of the177

Cauchy-Lipschitz theorem. Then, we have already proved the well-posedness of the kinetic equation (1.5)178

in Section 4.179

Now, let us conclude the proof using the stability result from the first part of Theorem 1. We notice that

for all n ∈ N, the empirical measure fn is the measure solution of the kinetic equation (1.5) with initial

condition f0,n. Then, the part (i) of Theorem 1 yields that there exist two positive constants CT and KT

independent of n such that for all t ∈ [0, T ] and for all n ∈ N,

d2(fn(t), f(t)) ≤ KT d2(f0,n, f0)β(t),

18



where

β(t) := e−CT t.

Finally, using the assumption (2.8), we get that

lim
n→+∞

sup
t∈[0,T ]

d2(fn(t), f(t)) = 0,

which concludes the proof of Theorem 1.180

6 Application: stability of monokinetic solutions181

One of the motivations to study the mean-field model is the analysis of the macroscopic quantities computed

from a measure solution to (1.5), though the equation formally satisfied by the average membrane potential

in the network is not closed. A way to study overcome this difficulty is to look for monokinetic solutions

of (1.5), that is solutions f of the form

f(t,dx, dv,dw) = ρ0(·) dx⊗ δV (t,·)(dv) ⊗ δW (t,·)(dw), (6.1)

where ρ0 is the average density of neurons, and (V,W ) is the average couple membrane potential-adaptation

variable in the network. Therefore, if f is a monokinetic solution of (1.5), then the couple (V,W ) formally

satisfies the nonlocal reaction-diffusion FHN system:
∂tV (t,x)−

∫
Ψ(x,x′) (V (t,x′)− V (t,x)) ρ0(x′) dx′ = N(V (t,x))−W (t,x),

∂tW (t,x) = τ (V (t,x) + a− bW (t,x)).

(6.2)

In this subsection, we consider a connectivity kernel Ψ of the form:

Ψ(x,y) = Φ(x− y),

where Φ : Rd → R is symmetric, which means that the conductance between two neurons only depends on182

the distance between them. We want to use the stability result from Theorem 1 to prove that monokinetic183

solutions of the kinetic equation (1.5) are stable with respect to the Wasserstein distance d2. Under some184

additional assumptions, we can state the following well-posedness result.185

Lemma 6.1. Assume that Φ is a non-negative symmetric connectivity kernel in L1(Rd), and N is the

nonlinearity defined through:

N : v 7→ v − v3. (6.3)

Consider an initial data (ρ0, V0,W0) satisfying

ρ0 ∈ L1 ∩ L∞(Rd), ρ0 ≥ 0, V0,W0 ∈ L∞(Rd). (6.4)

Then for any T > 0, there exists a unique couple (V,W ) which is a classical solution to the nonlocal

reaction-diffusion system (6.2) with initial data (V0,W0), where

V,W ∈ C 1([0, T ], L∞(Rd)).
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The proof of Lemma 6.1 is based on a classical fixed point argument, and we refer to [16] for the details.186

Now, as a direct consequence of Theorem 1, we get the following result of stability of monokinetic solution187

of the equation (1.5).188

Proposition 6.2 (Stability of monokinetic solutions). Let T > 0. Assume that Φ is a non-negative

symmetric connectivity kernel in L1(Rd), and N is the nonlinearity defined through (6.3). Consider the

initial data f0 ∈ P2(Rd+2), and (ρ0, V0,W0) satisfying (6.4) and∫
Rd
ρ0(x) dx = 1,

∫
Rd

(
|x|2 + eα0 〈V0(x),W0(x)〉

)
ρ0(x) dx <∞, (6.5)

for some positive constant α0 > 0. Let (V,W ) be the solution of (6.2) with initial data (V0,W0) provided

by Lemma 6.1, and let f ∈ C ([0, T ],P2(Rd+2)) be the measure solution of (1.5) with initial data f0. Then

there exist two positive constants CT > 0 and KT > 0 such that for all t ∈ [0, T ],

d2

(
f(t) , ρ0(·) dx⊗ δV (t,·)(dv)⊗ δW (t,·)(dw)

)
≤ KT d2 (f0 , ρ0 dx⊗ δV0(dv)⊗ δW0(dw))β(t) , (6.6)

where β(t) := e−CT t.189

Proof. According to the assumption (6.5), we have:∫ (
|x|2 + eα0 〈v,w〉

)
ρ0(x) dx⊗ δV0(x)(dv)⊗ δW0(x)(dw) < ∞,

so ρ0 dx ⊗ δV0(dv) ⊗ δW0(dw) ∈ P2(Rd+2) and satisfies (2.5). Moreover, ρ0 dx ⊗ δV (dv) ⊗ δW (dw) ∈190

C ([0, T ],P2(Rd+2)) is a measure solution of (1.5) since (ρ0, ρ0 V, ρ0W ) is a classical solution of (6.2).191

Thus, we can apply Theorem 1, which yields (6.6).192

7 Numerical simulations193

In this section, we approximate the solution f of the kinetic equation (1.5) for a one-dimensional network

(i.e. d = 1), normalized to [0, 1]. There are few numerical methods specifically adapted to kinetic theory.

In [1], the authors numerically approximate a mean-field model of neural network of FHN type using finite

differences without considering any space dependence. On the contrary, we are particularly interested

in the influence of space in the kinetic model (1.5). In order to approximate (1.5), we use a particle

method. This kind of numerical scheme was first introduced by Harlow [24] for the numerical computation

of specific problems in fluid dynamics, and precisely mathematically studied later [37]. Then, a large

diversity of particle methods were introduced for simulations in fluid mechanics and plasma physics (see

for instance [9, 20, 26] and references therein). Throughout this section, we fix N(v) to be the following

cubic nonlinearity:

N : v 7→ v (1− v) (v − 0.25). (7.1)

7.1 Principle of the particle method194

For T > 0, the standard particle method consists in approximating the solution f of the kinetic equation

(1.5) on [0, T ] by a finite sum of Dirac masses

fM (t,dx,dv,dw) :=
1

M

M∑
i=1

δxi(dx)⊗ δVi(t)(dv)⊗ δWi(t)(dw),
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where M is the number of distinct particles considered in the network, and for all 1 ≤ i ≤M , (Vi,Wi) is the

solution of the characteristic system (2.2) provided by Proposition 4.1 with initial condition (xi, v0,i, w0,i) ∈
R3 and initial measure fM (0, ·). In order to provide an approximation of the macroscopic quantities

necessary to solve (2.2), we approach the Dirac masses by ϕh := h−d ϕ(·/h), where h > 0 is a small fixed

parameter, and

ϕ : z 7→



0 if |z| ≥ 1,

1 + z if |z| ∈ [−1, 0],

1 − z if |z| ∈ [0, 1].

Therefore, we can define the discrete densities on a mesh (yi)1≤i≤ny
of step size h > 0 of the considered

interval [0, 1], where ny ∈ N and h > 0 satisfy h = 1/(ny − 1), with for all 1 ≤ i ≤M :

ρM,h(yi) :=
1

M

M∑
j=1

ϕh(yi − xj),

jM,h(t,yi) :=
1

M

M∑
j=1

ϕh(yi − xj)Vj(t).

(7.2)

The whole point of the particle method is that ny � M . Now, for all 1 ≤ i ≤ M , the couple (Vi,Wi)

is approached by a solution of an approximated characteristic system, noted (Vi,Wi), in which we replace

the nonlocal term in (2.2) with∫
Ψ(xi,x

′)
(
ρM,h(x′)Vi(t) − jM,h(t,x′)

)
dx′, (7.3)

with the same initial data, and we approximate the integral terms in (7.3) with the rectangle method using195

the mesh (yi)1≤i≤ny . Finally, for the time discretization, we use a Runge-Kutta scheme of second order,196

with a time grid of step 0.01. In the following, we work in the case where the neurons in the network197

are homogeneously distributed in the interval [0, 1]. Consequently, we choose the parameters (xi)1≤i≤M198

forming a regular mesh of the interval [0, 1], and we fix for the rest of this section M = 5001 and ny = 501.199

7.2 Numerical investigation of three different regimes200

In this subsection, we display some numerical simulations of the kinetic model (1.5) to observe its dynamics201

for different sets of parameters. The dynamics of the microscopic system (1.3) when the number of neurons202

is large and of the kinetic model (1.5) are both rich, but not well known. Nevertheless, the model (1.1) for203

one isolated neuron has been extensively studied, and its asymptotic behaviors are perfectly predictable.204

Thus, we consider three different sets of parameters corresponding to three different regimes of the FHN205

model (1.1) with Iext = 0.206

(i) Bistable regime: we remove the influence of the adaptation variable w, that is we consider τ = 0.207

In this case, the equation (1.1) admits exactly two stable fixed points at v = 0 and v = 1 and one208

unstable at v = 0.25. Thus, the solution v(t) of the equation (1.1) converges towards 0 as t → +∞209

if v(0) < 0.25, or towards 1 if v(0) > 0.25.210
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Figure 7.1: Bistable regime. (a)-(b) Spatio-temporal evolution of the macroscopic function Vf computed from the

solution f of the kinetic equation (1.5) with τ = 0, and different values of the parameter ε, fixed at (a) 10−1, (b)

10−3. (c) Profile of the macroscopic function Vf (t, ·) at different fixed times, computed with ε = 10−3 and with τ = 0.

(ii) Oscillatory regime: we choose a = −0.25 and b = 3, so that the system (1.1) admits a unique fixed211

point (0.25, 0), which is unstable. We also consider τ = 0.02. Consequently, in this setting, the212

solution of the system (1.1) converges towards a stable limit cycle if it is not initialized at the fixed213

point.214

(iii) Excitable regime: we choose a = 0 and b = 7, so that the system (1.1) admits a unique fixed point215

(0, 0), which is stable. All the solutions of (1.1) converge towards (0, 0) as t → +∞. Moreover, we216

fix τ = 0.002, so that (1.1) exhibits a slow/fast dynamics.217

From now on, we define the connectivity kernel to be

Ψ(x,y) = Gε(x− y) ∀(x,y) ∈ R2 with Gε(x) :=
1√
2π ε

exp

(
−|x|

2

2 ε

)
, (7.4)

where ε > 0 is a rescaling parameter.218

Let us discuss this choice of connectivity kernel in (7.4). First of all, since Ψ is non-negative, we consider219

a purely excitatory regime. Then, the parameter ε > 0 varies between 1 and very small values, in order220

to consider the regime of strong local interactions, which seems reasonable from a biological point of view221

since two neurons interact only through their contact point provided by their shared synapse.222

We are interested in the dynamics of the average macroscopic couple (Vf ,Wf ) computed from the solution223

f of the kinetic model (1.5). In the previous section, we have proved the stability of monokinetic solutions224

(6.1) from well-prepared initial data (see Proposition 6.2). In the following, we present in the three regimes225

discussed above some numerical evidences that monokinetic solutions have a larger basin of attraction in226

the sense that the dynamics of (Vf ,Wf ) is found to be close to the dynamics of the solutions of the nonlocal227

reaction-diffusion system (6.2). To conclude this section, we will compare the dynamics between the FHN228

system (1.3), and the mean-field model (1.5) in the oscillatory regime for different values of n the number229

of neurons.230
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Figure 7.2: Bistable regime. Numerical approximation of the density function f solution of the kinetic equation

(1.5) at fixed time (a) t = 0, (b) t = 75 and (c) t = 150, computed with the parameters ε = 10−3 and τ = 0.

Case (i) – Bistable regime.231

We study the kinetic model (1.5) in the bistable regime with τ = 0. As initial condition for our numerical

scheme, we choose for all 1 ≤ i ≤M ,

v0,i =
1

2
erfc

(√
5000(xi − 0.05)

)
, w0,i = 0,

where erfc is the complementary error function.232

In Figure 7.1, we show the spatio-temporal evolution of the macroscopic quantity Vf for different values233

of the parameter ε. First, in the case (a), ε = 10−1 is large compared to the width of the considered234

interval [0, 1]. Thus, the space influence is almost homogenized, and the interactions between the particles235

of the neural network are expected to vanish after a few time. Consequently, for t large enough and for236

all fixed position x ∈ [0, 1], the macroscopic quantity Vf (·,x) is expected to behave as a solution of the237

one-neuron equation (1.1) in the same framework, that is to converge towards one of the two stable fixed238

points. Indeed, we can observe that it converges towards 0. Then, in the case (b), ε = 10−3 is sufficiently239

small to observe another dynamic. Here, the behavior of the function Vf qualitatively looks like an invasion240

front, connecting the steady state 0 to 1, propagating at constant speed. Moreover, as shown in (c), after241

an initial transition phase, the shape of the front seems to be invariant and smooth.242

We note that the qualitative behavior of the macroscopic function Vf when ε is small enough corresponds243

well to the dynamics of the nonlocal reaction-diffusion system (6.2) for which traveling front solutions are244

known to exist [3] when considered on the real line. Regarding the density function f , we show in Figure245

7.2 its temporal evolution for ε = 10−3. We observe that the density f remains concentrated around the246

states v = 1 in an interval [0,x0(t)] and then around v = 0 in the complementary interval [x0(t), 1] for247

some x0(t) ∈ (0, 1) propagating at a constant speed. This shows that f remains close to a monokinetic248

solution of the form ρ0 dx ⊗ δVf (t,·)(dv), where the qualitative behavior of Vf is that of a traveling front, as249

previously detailed. This validates the fact monokinetic solutions seem to have a large basin of attraction.250
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Figure 7.3: Oscillatory regime. (a)-(b)-(c) Spatio-temporal evolution of the macroscopic function Vf computed

from the solution f of the kinetic equation (1.5) with three different values of the parameter ε, fixed at (a) ε = 10−1,

(b) ε = 10−3 and (c) ε = 10−5. (d)-(e) Profile of the macroscopic function Vf (t, ·) computed with ε = 10−5 at time

t = 60 and t = 400 respectively. (f) Trajectory in the phase space (v, w) of the couple (Vf ,Wf ) at fixed time t = 400

computed with ε = 10−5. The other parameters are fixed at a = −0.25, b = 3, and τ = 0.02.

Case (ii) – Oscillatory regime251

In the oscillatory regime, we choose as initial data a perturbation of the steady state (0.25, 0) concentrated

around the position x = 0:

v0,i = 0.25 + 0.5 exp
(
−5000 x2

i

)
, w0,i = 0.

252

In Figure 7.3, we display the spatio-temporal evolution of the macroscopic function Vf computed from253

the solution f of the kinetic equation (1.5) with three different values of the variance of ε. In the first254

case (a), we fix the parameter ε = 10−1. In that case, we expect that the space dependence of Vf to be255

suppressed and we indeed observe synchronized homogeneous oscillations. Then, we reduce the value of256

ε to localize the interactions and enforce the spatial dependence. For both ε = 10−3 and ε = 10−5, we257
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Figure 7.4: Excitable regime. (a) Spatio-temporal evolution of the macroscopic function Vf computed from the

solution f of the kinetic equation (1.5) with ε = 10−5. (b) Corresponding profile of the macroscopic function Vf (t, ·)
computed at different times. (c) Trajectory in the phase space (v, w) of the couple (Vf ,Wf ) at fixed time t = 500

computed with ε = 10−5. The other parameters are fixed at a = 0, b = 7, and τ = 0.002.

observe temporal oscillations whose phase is modulated spatially, similar to what is usually found for the258

local FHN reaction-diffusion system in the oscillatory regime [11]. More precisely, the dynamics is that of a259

modulated traveling wave propagating at constant speed from 0 towards the right, and leaving in the wake260

an oscillatory pattern with a constant frequency and amplitude. This is illustrated in Figure 7.3 panel (f)261

where the trajectory followed by the average couple (Vf ,Wf ) in the phase space at a given time converges262

towards a limit cycle.263

Case (iii) – Excitable regime264

We consider an initial condition that is a perturbation of the steady state (0, 0) concentrated at the middle

of the interval [0, 1], that is for all 1 ≤ i ≤M :

v0,i = exp
(
−5000 |xi − 0.5|2

)
, w0,i = 0.

We report in Figure 7.4, panel (a), the space-time representation of the macroscopic function Vf for265

ε = 10−5. In that case, we see that the dynamics generates two counter-propagating traveling pulses.266

Once again, the behavior of the function Vf is qualitatively the same as the expected dynamics of the267

corresponding macroscopic model (6.2), where it is well known that the nonlocal reaction-diffusion FHN268

system supports traveling pulse solution [19]. We have drawn in Figure 7.4 panel (b) the profile of the269

v-component of the traveling pulse at different times and the corresponding trajectory in the phase plane270

in Figure 7.4 panel (c) where we recover that the profile of the traveling pulse is a homoclinic orbit to the271

stable fixed point (0, 0). The study of traveling pulses in excitable media has received lots of interests in272

the past decades, especially for the local reaction-diffusion FHN system, and to our best knowledge, it is273

the first time that traveling pulses are reported for the FHN kinetic model.274
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Figure 7.5: Profile of the macroscopic function Vf computed from the solution f of the kinetic equation (1.5) with

ε = 10−4, and with the points (xi, vi)1≤i≤n from the solution of the FHN system (1.3), at fixed time t = 225. The

other parameters are the same as in Figure 7.3.

7.3 Numerical comparison between the FHN system and the kinetic model275

We consider a set of parameters corresponding to the oscillatory regime of the FHN model (1.1), that is the276

same parameters and initial condition as in paragraph above. We also fix ε = 10−4, so that the average277

couple (Vf ,Wf ) computed from the solution to the kinetic equation (1.5) presents an oscillatory pattern278

modulated by a traveling wave propagating through space as previously.279

In Figure 7.5, we display the profile of the macroscopic function Vf at fixed time t = 225 with respect to280

x, together with the points (xi, vi)1≤i≤n standing for the solution of the FHN system (1.3) approximated281

with a Runge-Kutta scheme of second order, for different values of n. We choose n = 50 in the case (a),282

n = 100 in the case (b) and n = 500 in the case (c). In the case (a), n is large enough so that the oscillatory283

pattern emerges. Though, the frequency of these oscillations seems to be slightly higher than for the kinetic284

model (1.5). Then, we observe that for a relatively small number of neurons n in the network, the points285

(xi, vi)1≤i≤n match with the trajectory of V (t, ·). Indeed, in the case (b), the oscillations of both models286

(1.3) and (1.5) are almost synchronized, and in the case (c), the points (xi, vi)1≤i≤n overlay the trajectory287

of Vf . It seems that the microscopic system (1.3) does not vary much any more for higher values of n, and288

quickly converges towards the solution of (1.5) as n tends to infinity.289

On the one hand, the computations are obviously quicker than for the microscopic model (1.3) with a too290

large value of n. This is natural since in the numerical scheme of (1.5), we replace the sum over all the291

neurons in the network with a mean-field operator. On the other hand, the kinetic model (1.5) manages to292

accurately represent the behavior of a large neural network, and we still have access to more information293

than with a macroscopic model. Indeed, the kinetic model focuses on an approximation of the density of294

neurons rather than the average membrane potential. This shows the whole interest of the kinetic model295

(1.5) compared to the microscopic model (1.3) and to macroscopic models.296

We mention that in the presence of noise as in [36], the authors showed some numerical simulations of297

the FHN system (1.3) with homogeneous interactions, where the finite number of neurons can cause the298

emergence of relaxation cycles near the transition from the excitable regime to the oscillatory regime,299

whereas the deterministic model still presents a unique stable fixed point.300
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8 Discussion301

In this paper, we have proved the mean-field limit of the deterministic spatially-extended FHN model302

for neural networks towards a nonlocal kinetic equation as the number of neurons goes to infinity. Our303

approach is based on a stability estimate of solutions of the kinetic equation (1.5) with respect to their304

initial data. We have also proved the well-posedness of the kinetic equation in the space of probability305

measures with finite second moments, equiped with the Wasserstein distance of order 2. This mean-field306

limit provides a rigorous link between the microscopic scale of the neural network and a mesoscopic scale,307

which can then be used as an intermediary step for the derivation of macroscopic description of the neural308

network. Our microscopic model was obtained coupling the FHN model for a finite number of neurons,309

whose interactions with their neighbours are modulated only with their spatial position in the network310

with a connectivity kernel Ψ. Moreover, we have ignored the noise in the interactions, so that we only311

used deterministic tools. Finally, our numerical simulations showed that the kinetic model (1.5), with a312

sufficiently localized connectivity kernel, is robust enough to display some qualitative behaviors expected313

for macroscopic quantities in some specific frameworks, while retaining more information than macroscopic314

models.315

Several extensions to this work seem natural. For example, taking inspiration from [8], a possibility could316

be to randomly choose the connectivity weights Ψi,j in (1.3) with a probability law which depends only on317

the distance between the neurons i and j. A direct consequence of a mean-field limit result could be the318

propagation of chaos in the network as the number of neurons goes to infinity, that is the neurons become319

less and less correlated as their number gets large. Furthermore, another interesting extension comes from320

the recent work of Chiba and Medvedev [15] for the Kuramoto model, and to study the mean-field limit321

of the FHN model on various types of random graphs.322
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A Proof of Lemma 4.2326

We start by proving that for all fixed z ∈ Rd+2, there exists a unique solution (V(·, z),W(·, z)) ∈ C 1([0, T ])2
327

of (4.1) such that for all t ∈ [0, T ], (V(t, ·),W(t, ·)) ∈ C (Rd+2,R)2. Then, we prove that V and W ∈328

C ([0, T ], E), where E is defined with (3.1)-(3.2).329

Step 1: Existence and uniqueness of the solution of (4.1)330

First of all, the function (
v

w

)
7→

(
N(v)− w
A(v, w)

)
is locally Lipschitz continuous in R2. Moreover, since U ∈ C ([0, T ], E), then for all z = (x, v, w) ∈ Rd+2,
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the function

t 7→
∫

Ψ(x,x′)
(
U(t, z)− U(t, z′)

)
f0(dz′)

is continuous on [0, T ]. Therefore, for all z ∈ Rd+2, the Cauchy-Lipschitz Theorem gives us the local

existence and uniqueness of the solution (V(·, z),W(·, z)) of class C 1. Then, using an energy estimate, we

want to prove that for all z ∈ Rd+2, the couple (V(·, z),W(·, z)) is well-defined on [0, T ]. According to the

definition of E , we know that for all (t, z) ∈ [0, T ]× Rd+2:

|U(t, z)| ≤ 〈v, w〉 sup
s∈[0,T ]

‖U(s)‖E . (A.1)

Let z ∈ Rd+2 and t ∈ [0, T ] small enough so that (V,W) exists in (t, z). We have the following energy

estimate:
1

2
∂t

(
|V(t, z)|2 + |W(t, z)|2

)
= I1 + I2 + I3,

where 

I1 := τW(t, z) (V(t, z) + a − bW(t, z)) ,

I2 := V(t, z) (N(V(t, z))−W(t, z)) ,

I3 := −V(t, z)

∫
Ψ(x,x′) (U(t, z)− U(t, z′)) f0(dz′).

First of all, we treat the first term I1 using Young’s inequality

I1 ≤
τ

2
|V(t, z)|2 + τ |W(t, z)|2 +

τ a2

2

≤ τ
(
|V(t, z)|2 + |W(t, z)|2

)
+
τ a2

2
.

Then, we estimate the second term I2 using Young’s inequality and the assumption (2.4) satisfied by N :

I2 ≤ κ |V(t, z)|2 +
1

2

(
|V(t, z)|2 + |W(t, z)|2

)
≤
(
κ+

1

2

) (
|V(t, z)|2 + |W(t, z)|2

)
.

Furthermore, we deal with the second term I3 using Young’s inequality, the assumption that Ψ is bounded

and the estimate (A.1):

I3 ≤
1

2
|V(t, z)|2 +

1

2

∫
|Ψ(x,x′)|2

(
|U(t, z)|2 + |U(t, z′)|2

)
f0(dz′)

≤ 1

2
|V(t, z)|2 +

1

2
‖Ψ‖2∞

(
|U(t, z)|2 +

∫ ∣∣U(t, z′)
∣∣2 f0(dz′)

)
≤ 1

2
|V(t, z)|2 +

1

2
‖Ψ‖2∞

(
|〈v, w〉|2 +

∫ ∣∣〈v′, w′〉∣∣2 f0(dz′)

)
sup
s∈[0,T ]

‖U(s)‖2E

≤ 1

2
|V(t, z)|2 +

1

2
‖Ψ‖2∞

(
1 +

∫ ∣∣〈v′, w′〉∣∣2 f0(dz′)

)
sup
s∈[0,T ]

‖U(s)‖2E |〈v, w〉|
2 .
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Hence, there exist two constants C1 > 0 and C2 > 0 such that for all t ∈ [0, T ] and z ∈ Rd+2,

∂t

(
|V(t, z)|2 + |W(t, z)|2

)
≤ C1

(
|V(t, z)|2 + |W(t, z)|2

)
+ C2 |〈v, w〉|2.

Therefore, Grönwall’s inequality yields that for all t ∈ [0, T ],(
|V(t, z)|2 + |W(t, z)|2

)
≤
(
|v|2 + C2 t |〈v, w〉|2

)
eC1 t. (A.2)

This implies that V(·, z) andW(·, z) are defined on [0, T ], and thus (V(·, z),W(·, z)) ∈ C 1([0, T ]). Moreover,

if we divide (A.2) by |〈v, w〉|2 and if we take the supremum on Rd+2, we conclude that for all t ∈ [0, T ],

‖V(t)‖2E ≤ (1 + C2 t) e
C1 t. (A.3)

Moreover, since Ψ is continuous with respect to its first variable uniformly relative to its second variable,

and since U ∈ C ([0, T ], E), we get that the function

(t, z) = (t,x, v, w) 7→
∫

Ψ(x,x′)
(
U(t, z)− U(t, z′)

)
f0(dz′)

is continous on [0, T ]× Rd+2. Therefore, one can check that for all t ∈ [0, T ],

(V(t, ·),W(t, ·)) ∈ C (Rd+2,R)2. (A.4)

Furthermore, (A.3) together with (A.4) yield that for all t ∈ [0, T ],

(V(t, ·),W(t, ·)) ∈ E2. (A.5)

Step 2: V and W are in C ([0, T ], E)331

It remains to prove that (V,W) ∈ C ([0, T ], E)2. Let us fix t ∈ [0, T ]. Consider t̃ ∈ [0, T ] and z = (x, v, w) ∈
Rd+2. Thus, we have:

1

2
∂t

(∣∣V(t, z)− V(t̃, z)
∣∣2 +

∣∣W(t, z)−W(t̃, z)
∣∣2) = J1 + J2 + J3,

where 

J1 :=
(
W(t, z)−W(t̃, z)

) (
A(V(t, z),W(t, z)) − A(V(t̃, z),W(t̃, z))

)
,

J2 :=
(
V(t, z)− V(t̃, z)

) [(
N(V(t, z))−N(V(t̃, z))

)
−
(
W(t, z)−W(t̃, z)

)]
,

J3 := −
(
V(t, z)− Vp+1(t̃, z)

)
×
∫ [

Ψ(x,x′)
(
U(t, z)− U(t, z′)

)
+ Ψ(x,x′)

(
U(t̃, z)− U(t̃, z′)

)]
f0(dz′).

We deal with the first term J1 using Young’s inequality

J1 ≤
τ

2

(∣∣V(t, z)− V(t̃, z)
∣∣2 +

∣∣W(t, z)−W(t̃, z)
∣∣2) .

Then, we can estimate the second term J2 using Young’s inequality and the assumption (2.4) satisfied by

N :

J2 ≤
(
κ̃+

1

2

) ∣∣V(t, z)− V(t̃, z)
∣∣2 +

1

2

∣∣W(t, z)−W(t̃, z)
∣∣2 .
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Then, to treat the last term J3, we use Young’s inequality and the assumption that Ψ is bounded:

J3 = −
(
V(t, z)− V(t̃, z)

)
×
((
V(t, z)− V(t̃, z)

) ∫
Ψ(x,x′) f0(dz′) +

∫
Ψ(x,x′)

(
U(t, z′)− U(t̃, z′)

)
f0(dz′)

)
≤ 1

2

∣∣V(t, z)− V(t̃, z)
∣∣2

+
1

2
‖Ψ‖2∞

∣∣U(t, z)− U(t̃, z)
∣∣2 +

1

2
‖Ψ‖2∞ ‖U(t)− U(t̃)‖2E

∫
|〈v′, w′〉|2 f0(dz′).

Then, dividing J1, J2 and J3 by |〈v, w〉|2 and taking the supremum on Rd+2, we get that there exist two

constants C1 and C2 such that:

d

dt

(∥∥V(t)− V(t̃)
∥∥2

E +
∥∥W(t)− W(t̃)

∥∥2

E

)
≤ C1

(∥∥V(t)− V(t̃)
∥∥2

E +
∥∥W(t)− W(t̃)

∥∥2

E

)
+ C2

∥∥U(t)− U(t̃)
∥∥2

E .

Using Grönwall’s lemma the assumption U ∈ C ([0, T ], E), we conclude that

lim
t̃→t

(∥∥V(t)− V(t̃)
∥∥2

E +
∥∥W(t)− W(t̃)

∥∥2

E

)
= 0,

and consequently,

(V,W) ∈ C ([0, T ], E)2.
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coherence to incoherence in coupled chaotic sytems. Physical Review E, 85 (2012), 026212.398

[32] David Parker. Variable properties in a single class of excitatory spinal synapse. The journal of399

Neuroscience, 23 (2003), 3154–3163.400

[33] K. Pakdaman, B. Perthame and D. Salort. Dynamics of a structured neuron population. Nonlinearity,401

23 (2010), 55–75.402

[34] K. Pakdaman, B. Perthame and D. Salort. Relaxation and self-sustained oscillations in the time403

elapsed neuron network model. SIAM J. Appl. Math, 73 (2013), 1260–1279.404

[35] K. Pakdaman, B. Perthame and D. Salort. Adaptation and Fatigue Model for Neuron Networks and405

Large Time Asymptotics in a Nonlinear Fragmentation Equation. Journal of Mathematical Neuro-406

science, 4 (2014), 14.407
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