

Understanding microalgae lipids recovery by membrane processes: cross-flow filtration of a representative synthetic mixture

Erika Clavijo

Clavijo E., Villafaña Lopéz L., S. Liu, P. Bourseau, M. Frappart, C. Monteux, E. Couallier

http://www.gepea.fr/

WCCE 2017, Barcelona-Spain

Parachlorella kessleri can accumulate up to 45% (w) of lipids of the dry matter (Montalescot, 2015) **Complex mixture** of suspended cellular components

Interfacial phenomena impact the membrane filtration process: lipid droplets stabilized by the polar compounds deeply impact the triglycerides (TAG) recovery.

GEF

2. Objective

Objective: understanding lipids separation by membrane processes from a synthetic mixture of ground microalgae, in presence of polar compounds stabilizing the water-oil interface

3. Methodology: 3 stages

Stage I: Definition of a microalgae synthetic mixture (o-w emulsion)

P. kessleri ground microalgae samples characterization

> Particle size analysis Lipids profile

Stage II: Interfacial phenomena at the emulsion L-L interface

Surfactants at the oil-water interface

Interfacial tension: pendant drop method

Surfactants at the air-water interface

-Pressure – area isotherms (Langmuir balance) -Monolayer observation (AFM) **Stage III:** Lipids separation by Membrane filtration

Test of 5 membranes:

- PES 200kDa et 300kDa
- PAN 500kDa
- PVDF 0.4 et 1.5 μm

1 Stage I: Definition of a microalgae synthetic mixture (o-w emulsion)

4. Results - Stage I: Synthetic mixture formulation

Stage II: Interfacial phenomena at the L-L interface

5. Results - Stage II: oil-water interface characterization

Adsorption at the interface

Interface at the equilibrium

UNIVERSITÉ DE NANTES

5. Results - Stage II: air-water interface characterization

ALGOSOLIS

5. Results - Stage II: monolayer AFM analysis

50/50 %w 25 mN/m

10.0 nm

8.0

6.0

4.0

2.0

0.0

-2.0

-4.0

-6.0

-8.0

-10.0

6. Results - Stage III: lipids separation by membrane filtration

Stage III: Lipids separation by membrane filtration

6. Results - Stage III: lipids separation by membrane filtration

Permeate flux evolution during the emulsion filtration

Total Resistance evolution during the emulsion filtration

6. Results - Stage III: lipids separation by membrane filtration

Emulsion granulometry evolution during filtration

7. Conclusions

Stage I:

• *P. kessleri* ground samples were **characterized** and a **synthetic mixture** was obtained as an oil-in-water emulsion. The lipid phase was composed by a mixture of Vegetable oil, phospholipids and glycolipids.

Stage II:

- **Surfactant mixture** behavior is close to the **phospholipid**.
- **Non-synergistic** behavior was observed between surfactants.
- **Phospholipid** was more efficient for the **reduction of the interfacial tension** than glycolipid.

Stage III:

- The **PAN 500kDa membrane** exhibited the most **suitable characteristics** for oil concentration purposes in terms of permeate flux, retention and cleanability.
- Coalescence phenomena was observed during filtration suggesting that shearing forces may destabilize the interface
 → rearrangements at the interface may leads to destabilization

Atlantic ocean

La Baule

Saint-Nazaire

AlgoSolis R&D facility

Polytech' Nantes Graduate shool of the University of Nantes Process and Bioprocess Engineering

U

CINIS

UNIVERSITÉ DE NANTES

ALGOSOLIS

GEPEA

GEPEA lab. (CRTT)

Thank you for your attention