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Abstract
Colorectal cancer (CRC) is the second leading cause of 
cancer worldwide. CRC is still associated with a poor 
prognosis among patients with advanced disease. On 
the contrary, due to its slow progression from detectable 
precancerous lesions, the prognosis for patients with early 
stages of CRC is encouraging. While most robust methods 
are invasive and costly, actual patient-friendly screening 
methods for CRC suffer of lack of sensitivity and specificity. 
Therefore, the development of sensitive, non-invasive and 
cost-effective methods for CRC detection and prognosis 
are necessary for increasing the chances of a cure. Be-
yond its beneficial functions for the host, increasing 
evidence suggests that the intestinal microbiota is a 
key factor associated with carcinogenesis. Many clinical 
studies have reported a disruption in the gut microbiota 
balance and an alteration in the faecal metabolome of 
CRC patients, suggesting the potential use of a microbial-
based test as a non-invasive diagnostic and/or prognostic 
tool for CRC screening. This review aims to discuss the 
microbial signatures associated with CRC known to date, 
including dysbiosis and faecal metabolome alterations, and 
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the potential use of microbial variation markers for non-
invasive early diagnosis and/or prognostic assessment of 
CRC and advanced adenomas. We will finally discuss the 
possible use of these markers as predicators for treatment 
response and their limitations.
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Core tip: Many clinical studies have reported a disruption 
in the gut microbiota balance and in the faecal meta-
bolome in colorectal cancer. In this review, we describe 
the modifications in the microbiota composition and 
metabolome observed in colorectal cancer (CRC) tissue 
and stool samples. Then, we detail how these microbiota 
modifications may represent novel and promising non-
invasive diagnostic and/or prognostic markers for CRC and 
advanced adenoma.
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INTRODUCTION
Approximately 5% of the population in Western coun­
tries will develop colorectal cancer (CRC) during their 
lifetime[1]. CRC is a heterogeneous disease with a 
wide range of long­term outcomes and responses to 
treatment. Despite recent advances in the genetic and 
molecular characterization of tumours, CRC remains 
associated with a poor prognosis and very low rates 
of long­term survival among patients with advanced 
disease[2,3]. On the contrary, the 5­year survival of 
patients treated during the early stages of CRC, which 
represent only one­third of all CRC patients, is encour­
aging, ranging from 72% to 100%[4]. Therefore, early 
detection of both premalignant lesions and CRC is cru­
cial for increasing the chances of a cure[5]. Moreover, 
accurate determination of the prognosis is crucial for 
the practitioners, in order to optimize and personalize 
treatment strategies. Given the poor prognosis of 
this cancer, it is essential to validate new diagnostic 
and prognostic markers. Studies on the implications 
of the gut microbiota in CRC are now increasing[6­11]. 
Identification of a CRC­associated dysbiosis and/or the 
targeted detection of procarcinogenic bacterial species 
and/or their effectors in stool or tissue samples may 
represent promising tools to overcome the limitations 
and the poor performance of current CRC screening 

tools and prognostic/predictive factors. This review will 
focus on gut microbiota­related markers, which may be 
new biological markers for CRC screening or prognosis 
determination.

CURRENT STRATEGIES FOR CRC 
SCREENING AND PROGNOSTIC 
FACTORS
Screening strategies
Individual (opportunistic) and population­based (orga­
nized) screening strategies have been established 
permitting the reduction of CRC mortality either by 
detecting CRC or removing premalignant lesions[12]. 
Several CRC screening tests have been used and have 
different degrees of performance that vary worldwide 
and are primarily driven by costs, lifestyle and endoscopic 
resource constraints. In addition to the classic invasive 
endoscopic approaches, there has been great interest 
in developing and evaluating non­invasive methods, 
including radiographic examinations and stool­ and 
blood­based tests, with the goal of creating efficient, 
safe, convenient and cost­effective screening tools[13­18].

Endoscopy is currently the most effective modality for 
detecting asymptomatic premalignant polyps and CRC 
and for preventing CRC development by the immediate 
removal of premalignant lesions[13]. However, this 
procedure requires prior bowel cleansing and causes 
postprocedural discomfort, which are both responsible 
for low participation rates in colonoscopy CRC screening 
programmes[13]. Moreover, the need for general an­
aesthesia and the invasiveness of the procedure exposes 
patients to potentially severe complications[19,20]. Com­
puted tomography (CT) colonography, also known 
as “virtual colonoscopy”, is a non­invasive alternative 
to colonoscopy[21­23]. However, CT colonography pre­
sents some drawbacks such as its high cost, lack of 
standardized methods, need for bowel cleansing, poor 
performance for detecting small or flat lesions, and lack 
of ability to perform immediate biopsy[14,24]. For these 
reasons, other non­invasive stool­ and blood­based tests 
are more promising tools for initial CRC screening in two­
step approaches.

Non­invasive stool­based early CRC screening mo­
dalities involve either detecting occult bleeding in the 
stool, such as with guaiac fecal occult blood test (gFOBT) 
and faecal immunohistochemical testing (FIT), or 
detecting DNA, RNA and protein markers of neoplasia 
in faeces. The rationale for the use of such tools is that 
the mucosa of both polyps and CRC is more fragile and 
vascularized and thus bleeds and desquamates more 
easily than normal colonic mucosa. The effectiveness 
of gFOBT and FIT have been established for reducing 
both CRC incidence and mortality, thus permitting their 
use in many CRC screening programmes[2,19,21,25­36]. 
However, these techniques have been criticized for their 
relatively low specificity[14]. Therefore, new molecular 
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CRC screening methods targeting abnormal proteins 
or mRNA expression (e.g., PKM2, β­actin expression), 
gene mutations (e.g., KRAS, APC, P53), microsatellite 
instability (MSI) or aberrantly methylated promoter 
regions present in stool or body fluids are a developing 
area of investigation to establish innovative large­
scale screening programmes[13,14,37­45]. As many tissues 
release some of their constituents in the bloodstream, 
the detection of circulating tumour cells DNA (cfDNA) 
in the blood is a recent area of great interest in CRC 
screening[46­49]. Although these biomarker tests show 
promising sensitivities, their high costs and high test 
positivity rates may lead to greater demands on endo­
scopy departments, and the absence of large­scale 
validation currently remains the main limitation of their 
routine use in population­based CRC screening pro­
grammes[18,40,41]. 

Prognostic and predictive factors
Many prognostic factors including many socioeconomic 
and clinical factors are routinely used to optimize 
and personalize treatment strategies[50­53]. However, 
pathological factors are currently the most powerful tools 
that are routinely used to adapt therapeutic strategies, 
especially for conditioning the administration of non­
operative treatments, such as chemotherapy and radio­
therapy. The TNM international staging system remains 
the gold­standard for determining both CRC prognosis 
and treatment indications[4,54­56]. Unfortunately, this 
classification is largely imperfect, which is highlighted by 
the constant changes it undergoes with the advances 
in the field of CRC research. Furthermore, it has some 
limitations. In particular, it is inaccurate for some sub­
groups of patients whose prognosis and indications for 
adjuvant treatments remain unclear. Therefore, some 
other pathological prognostic factors are routinely used, 
such as the presence of lymphovenous and/or perineural 
invasion[57­60], tumour budding[61,62] and tumour differen­
tiation grade[63,64].

In addition, studies have shown tumour genomics 
and cellular alterations can supplement clinicopatho­
logical factors. Aneuploidy[65], tumour-infiltrating lympho-
cytes[66,67], overexpression of the CEA in tumours[68], 
allelic loss in DCC, TP53, APC and MCC genes[69,70], TP53 
gene mutations[71], expression of CD44 protein[72], high 
levels of thymidylate synthetase[73], and the detection of 
MSI and both RAS and BRAF genes mutations all play 
prominent roles in determining CRC prognosis and in 
personalizing treatments. They are independent strong 
prognostic factors[74­82] and are also predictive of the 
response to some widely used chemotherapy regimens, 
including targeted therapies and immunotherapy[74,76,83­94].

Serum prognostic factors [e.g., C­reactive protein 
(CRP), carcinoembryonic antigen (CEA), and cfDNA] can 
also be very useful tools. Both CRP and serum albumin 
levels are associated with a worse prognosis but are 
not routinely used as prognostic factors for CRC[95­101]. 
The CEA level is a well­recognized and routinely used 
independent prognostic factor for CRC[102,103]. Persis­

tently elevated CEA levels after treatment are correlated 
to both a higher risk of recurrence and decreased sur­
vival. Similarly, normal CEA levels after treatment are 
associated with improved recurrence­free and overall 
survival[104]. In addition to CRC screening, investigations 
evaluating cfDNA have recently gained attention in the 
field of CRC research. The detection and the quanti­
fication of specific gene mutations (RAS and BRAF genes) 
or DNA methylation alterations[105,106] are correlated with 
CRC prognosis[107,108], independent of the tumour stage. 
In the future, monitoring of cfDNA levels may guide 
therapeutic strategies[109,110] and improve patient follow­
up, allowing the earlier detection of recurrence.

As we previously mentioned, all these screening 
strategies and prognostic markers present many limita­
tions. Therefore, there is still a need to develop other 
effective non­invasive screening and prognostic tools 
to replace or supplement those currently in use, with 
the aim of decreasing CRC mortality and optimizing 
treatment strategies. The study of intestinal microbiota 
provides new leads to identify powerful biomarkers.

MICROBIAL SIGNATURES IN CRC
Functions of intestinal microbiota on gut homeostasis
The intestinal microbiota and its host have coevolved 
to establish a symbiotic relationship leading to digestive 
system homeostasis. Many metabolic, immunological, 
structural and protection functions that are essential to 
the health of the host are performed by the intestinal 
microbiota. Thus, one of the major functions of the gut 
microbiota is to ferment complex carbohydrates in order 
to produce a large amount of metabolites (short chain 
fatty acids (SCFAs), bile acids, choline, essential vitamins, 
etc.), some of which represent energetic and nutrient 
substrates for intestinal cells[111,112]. Others are involved 
in the regulation of cellular processes or participate in 
regulating hepatic lipid and glucose homeostasis[112,113]. 
Another function of the gut microbiota is the main­
tenance of epithelial homeostasis since commensal 
bacteria can promote epithelial integrity[114]. They can 
induce structural and functional maturation of the colonic 
epithelium with strong modulation of mucus cells[115]. 
The intestinal microbiota also plays a fundamental role 
in the development, maturation and function of the host 
immune system[115,116] and also confers resistance to 
colonization by pathogenic microorganisms by competing 
both for nutrients and attachment sites to the intestinal 
epithelium, by producing and secreting antimicrobial 
compounds, such as bacteriocins, and by strengthening 
epithelial tight junctions[117].

CRC-associated gut microbiota dysbiosis
Approaches used to study the gut microbiome: 
The gut microbiota has a very large diversity of microbial 
populations such as bacteria, archaea, eukaryotes 
and viruses. Because the colonic microbiota is mostly 
represented by bacteria, the bacterial community 
is the most studied. Both tissue and faecal samples 
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with samples from healthy individuals. The complexity 
of the gut microbial ecosystem associated with other 
technical or biological parameters, such as the geo­
graphical location of the studied populations, the lifestyle, 
the diet, the sample type (faeces, mucosa, tumour), the 
location of the tissue sampled (i.e., right or left colon), 
the age of the individual, the stage of the disease, the 
number of patients studied, the molecular approach 
used (metagenomics, 16S rRNA gene NGS), the regions 
of the 16S rRNA targeted (V1­V2, V3, V3­V5, V4­V6 
regions) for the NGS approach, and the taxonomic level 
considered, contribute to the lack of consensus on the 
definition of the composition of dysbiotic microbiota in 
patients with CRC. 

Alpha diversity metrics, which represent the specific 
richness and the distribution of individuals within the 
species were found to be increased in adenoma and 
adenocarcinoma tissues compared with in normal mu­
cosa[134­136]. However, these parameters were unchanged 
in faecal samples[125,134,137,138], suggesting that the in­
crease in diversity was limited to the neoplastic lesions 
and did not extend to the entire mucosa.

Significant shifts can be observed in the composition 
of the bacterial community at the phylum taxonomic 
level but also on a finer phylogenetic scale in CRC 
samples. However, these modifications vary depending 
on the analytic techniques used and the sample location 
(mucosa, adenocarcinoma, stool). It is accepted 
that Bacteroidetes, Fusobacteria and Proteobacteria 
are enriched, while Firmicutes is decreased in CRC 
patients[10,139] (Figure 1). A similar dysbiosis has been 
described in CRC animal models[140,141]. In a taxonomy­
based analyses conducted in 2013, Ahn et al[142] de­
scribed a lower relative abundance of Clostridia and 
increased Fusobacterium and Porphyromonas in case 
subjects compared with control subjects. Additionally, 
the genera Bacteroides and Prevotella, Bacteroides 
fragilis, Enterococcus faecalis, Streptococcus bovis, 
Streptococcus gallolyticus and Escherichia coli 
were overrepresented, while Bacteroides vulgatus, 
Lactobacillus and Faecalibacterium prausnitzii were 
decreased in the faeces or tumours of patients with 
CRC[123­125,131,143­146]. Other studies found that Parvimonas 
micra, Solobacterium moorei, Peptostreptococcus sto­
matis were consistently enriched in the microbiomes of 
the stools of CRC patients[126,131]. Many studies showed 
an enrichment of Fusobacterium nucleatum in stool and 
tissue samples from patients with colorectal carcinoma, 
which were confirmed by quantitative polymerase chain 
reaction (PCR)[126,131,147­149] (Figure 1). In addition to 
taxonomic studies, a metagenomics analysis showed an 
enrichment of virulence­associated bacterial genes in the 
tumour microenvironment[132]. Many studies reported 
a high prevalence of toxin genes expressed by some 
species described above. Most of enterotoxigenic B. 
fragilis (ETBF) strains detected in mucosal samples from 
patients with CRC harboured the bft gene, which encodes 
the bacterial toxin B. fragilis toxin (BFT)[149] (Figure 1). 
ETBF and BFT carrying strains were detected more 

provide information about the structure of bacterial 
populations. The analysis of tissues is more relevant for 
evaluating the mechanisms of microbiota involvement 
in physiopathology. However, sampling of mucosa­
associated bacteria by endoscopic biopsy of intestinal 
tissue is an invasive procedure. It is more difficult to 
implement than collection of a faecal sample, especially 
in healthy donors. Therefore, the vast majority of studies 
on the diversity and richness of the gut microbiota are 
conducted on stool samples, which are more useful for 
identifying diagnostic or prognostic markers for patho­
logies such as CRC.

The first data concerning the gut microbiota were 
provided by cultural approaches. However, these ap­
proaches allow only limited evaluation of this ecosystem, 
since less than 30% of intestinal bacteria have been 
cultivated to date. Since the 1990s, the advent of 
molecular tools targeting the bacterial 16S ribosomal 
RNA (rRNA) gene has revolutionized our knowledge of 
the gut microbiota from both faeces and tissues. Thus, 
genetic fingerprinting techniques (terminal restriction 
fragment length polymorphism (T­RFLP), denaturing 
gradient gel electrophoresis (DGGE), hybridization 
approaches (fluorescence in situ hybridization (FISH), 
microarrays) and clone library analysis have been ap­
plied to provide a more complete description of its struc­
ture[118­122]. Currently, quantitative PCR (Q­PCR) and 
16S rRNA gene next­generation sequencing (NGS) are 
the most used methods for describing the composition 
of the intestinal bacterial community and therefore for 
comparing the gut microbiota of healthy individual to 
that of patients with diseases. Thus, modifications in 
the microbiota composition, also called dysbiosis, in 
faeces and tissues have been described in CRC[123­130]. 
These different approaches allow only taxonomic identi­
fication of microbial communities. However, the gut is 
a complex and variable ecosystem. Understanding its 
function and the specific role of the different bacterial 
populations is essential. A metagenomics approach 
(shotgun sequencing) makes taxa identification possible 
and allows exploration of the metabolic potential of 
the intestinal microbiota[126,131,132]. Thus, the American 
Human Microbiome Project (HMP) and the European 
“MetaHIT” (Metagenomics of the Human Intestinal Tract) 
consortia were formed in order to generate a catalogue 
of genes carried by the gut microbiota[133]. Intestinal 
microbial dysbiosis was recently investigated in patients 
with CRC[125,126,131,132]. Combining the metagenomics data 
available in databases with the application of other high­
throughput meta­omics approaches, it is now possible 
to gain a better insight into the microbial function and to 
reveal the link between genetic potential and functionality 
in the gut microbiota. 

Cancer-associated microbiome alterations: To 
date, there is no consensus in terms of the microbiota 
modifications observed in CRC using high­throughput 
sequencing of the bacterial 16S rRNA gene and meta­
genomics both in faecal and tissue samples compared 
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often in stool samples from CRC patients compared 
with samples from controls[150]. Many studies reported 
that mucosa­associated BFT­producing B. fragilis was 
more prevalent in late­stage CRC[130,149]. Other toxins 
named cyclomodulins [cytolethal distending toxin 
(CDT), colibactin, cytotoxic necrotizing factor and 
cycle inhibiting factor], which are carried by E. coli, 
were more prevalent in CRC samples[145,146,151,152]. In 
particular, the colibactin toxin, which is synthesised 
from the pks island, was preferentially detected in 
strains isolated from CRC patients[145,146,152] (Figure 
1). These toxin genes could be targets of interest for 
developing new prognostic or diagnostic factors.

The majority of published data were obtained in the 
adenocarcinoma stage. However, the intestinal mucosa 
might present different ecological niches according to 
the stage of colorectal tumour progression. Due to dif­
ficulties in sampling patients during the early stages of 
the disease, studies focusing on the temporal evolution 
of microbiota dysbiosis during colorectal carcinogenesis 
are scarce. Nevertheless, metacommunities can be 
defined from the bacterial community configurations 

by Nakatsu et al[153]. In early stages of CRC, bacteria 
belonging to Fusobacterium, Parvimonas, Gemella and 
Leptotrichia genera were more abundant[153]. Moreover, 
the occurrence of Escherichia coli, Pseudomonas 
veronii and Lactococcus were specific to adenomatous 
lesions[135,153], whereas Fusobacterium enrichment 
was observed in carcinomas[153]. Additionally, the abun­
dance of Bacteroides fragilis and Granulicatella were 
progressively increased during the adenoma­carcinoma 
sequence. Lu et al[135] showed that there was a clear 
increase in both Proteobacteria and Bacteroidetes in 
tissues from patients with colorectal adenoma compared 
with tissues from healthy volunteers. Kostic et al[147] 
found that Fusobacterium spp. were enriched in human 
colonic adenomas relative to the surrounding tissues and 
in stool samples from patients with colorectal adenoma 
compared with samples from healthy subjects. In 
addition, Lactococcus and Pseudomonas were enriched in 
preneoplastic tissue, whereas Enterococcus, Bacillus, and 
Solibacillus were reduced. A high frequency of colibactin­
producing E. coli and enterotoxigenic Bacteroides fragilis 
were also observed in adenomas from patients with 

Tumor-associated dysbiosis Fecal dysbiosis

Proteobacteria
→  Shigella  spp.
→  Serratia  spp.
→  Salmonella  spp.

→  Colibactin+-Escherichia coli

Bacteroidetes

→  BFT-producing-B. fragilis
→  Prevotella  spp.

Fusobacteria

→  Fusobacterium nucleatum

Firmicutes

→  Streptococcus bovis
→  Faecalibacterium  spp.

→  Streptococcus  spp.
→  Lactobacillus  spp.
→  Roseburia  spp.
→  Pseudobutyrivibrio

Actinobacteria

→  Coriobacteriaceae

Proteobacteria

→  Shigella  spp.
→  Salmonella  spp.

→  Colibactin+-Escherichia coli

Bacteroidetes

→  BFT-producing-B. fragilis
→  Alistipes spp.

→  Porphyromonadaceae
→  Prevotella  spp.

 Fusobacteria

→  Fusobacterium nucleatum

Firmicutes

→  Staphylococcaceae
→  Enterococcus faecalis
→  Parvimonas micra
→  Solobacterium moorei
→  Peptostreptococcus stomatis

→  Lactobacillus  spp.
→  Ruminococcus  spp.
→  Faecalibacterium  spp.
→  Roseburia  spp.

Actinobacteria

→  Coriobacteriaceae
→  Bifidobacterium spp.

Other

→  Akkermansia spp.

→  Methanobacteriales
→  Treponema spp.

Fecal metabolome changing

→  Amino acids
→  H2S

→  Butyrate
→  Secondary bile acids

Bacterial/metabolic composition shift during carcinogenesis

Figure 1  Bacterial and metabolic composition shifts during carcinogenesis. BFT: B. fragilis toxin.
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Familial Adenomatous Polyposis[154]. Recently, Eklöf et 
al[151] showed that the prevalence of colibactin­producing 
E. coli were progressively increased in the adenoma­
carcinoma sequence.

Finally, most of these studies do not take into account 
the heterogeneity of this pathology. As an example, 
Prevotella and Firmicutes populations were more 
abundant in individuals with proximal tumours, whereas 
Bacteroidetes populations were overrepresented in distal 
cancers[155]. More recently, a drastic difference in the 
microbial composition has been observed in the mucosa 
of colitis­associated CRC patients, with an increase in the 
Enterobacteriaceae family and the Sphingomonas genus 
and a decrease in Fusobacterium and Ruminococcus 
genera, when compared with the mucosa of sporadic 
CRC patients[156]. Similarly, we observed that colibactin­
producing E. coli were more frequently identified 
in microsatellite stable (MSS) CRC[157]. In the same 
way, high colonization by F. nucleatum and negative­
colibactin E. coli bacteria were detected in patients with 
MSI (microsatellite instability) compared with the MSS 
phenotype[149,157,158]. All these data suggest that the 
dysbiosis signature of CRC might be different according 
to the tumour phenotype and/or molecular alterations.

In conclusion, all these data show that there is an 
adenoma­ and a CRC­associated signature in the micro­
biome (Figure 1). Metagenomics studies showed a 
redundancy in the metabolic functions of the intestinal 
microbiota. Therefore, studies of metabolites might 
reflect the CRC­associated microbiota dysbiosis with a 
lower heterogeneity than taxonomic determination.

Profiling metabolome alterations in CRC 
Metabolite analysis procedures: The metabolome 
has been defined as the complete complement of all 
small molecule (< 1500 Da) metabolites found in a 
specific cell, organ or organism[159]. Global metabolomics 
alterations reflect changes due to environmental factors, 
diet, drugs, exercise, genetic variation and regulation, 
changes in the gut microflora, and altered kinetic 
activity or levels of enzymes[160]. The most widely used 
analytical high­throughput tools for metabolomics 
studies are nuclear magnetic resonance (NMR) and mass 
spectrometry (MS), and they both can provide comple­
mentary snapshots of the metabolome of body fluids[161]. 
Sample preparation is arguably the most critical step 
in metabolomics, but there is no universal, robust and 
repeatable approach defined. NMR spectroscopy benefits 
from being highly reproducible[162] and offers the potential 
to precisely quantify compounds in complex mixtures 
without complex sample preparation requirements[163]. 
Gas chromatography coupled with MS (GC­MS), which 
is used for the analysis of volatile low molecular weight 
metabolites, and liquid chromatography coupled with MS 
(LC­MS), which is used for the analysis of non­volatile 
components, have a higher sensitivity than NMR, but the 
sample preparation must be more fastidious. For more 
details regarding sample preparation in metabolomics, 
several authors previously described methods for NMR, 

GC­MS and LC­MS analysis[163].
During the last decade, using NMR and/or MS, 

metabolic profiles of colorectal tumour biopsies and 
matched colon mucosa samples revealed potential 
biomarkers in carbohydrate metabolism, short­chain fatty 
acid and other lipid metabolism, nucleotide biosynthesis, 
and secondary bile and steroid metabolism[164,165]. 
The repertoire of metabolic derangements derived 
from cancer cells, their microenvironment and the gut 
microbiota composition and activity may culminate in a 
distinct metabolic phenotype (also called metabotype) 
that characterizes the pathology of CRC. Metabolome 
analysis of blood and urine samples from CRC patients 
were performed, and several studies reported relevant 
biomarkers for CRC[166­168]. However, the transient loca­
lization of faeces in the colon and rectum makes it an 
ideal matrix for gaining information about the health 
and pathological state of the colon and rectum, and 
thus for colorectal cancer diagnosis[169]. Faecal samples 
consist of a diverse range of endogenous metabolites 
including tumour cell metabolites and gut microbiota 
metabolites[169].

Microbial influence on the faecal metabolome: 
When ingested, the majority of food nutrients are ab­
sorbed in the small intestine. The residues that reach the 
colon are complex nutrients, generally fibres (complex 
carbohydrates), but also protein residues and host 
products such as mucin and bile acids secreted by the 
liver in response to fat ingestion[170]. These compounds 
are metabolized by the microbial populations into a 
diversity of metabolites that can be use by the host 
colonic cells[171]. The gut microbiota makes an important 
contribution to human metabolism by providing 
enzymatic functions that are not encoded by the human 
genome, such as the breakdown of polysaccharides 
and polyphenols and the synthesis of vitamins by fer­
mentation and anaerobic degradation[172].

Polysaccharides and non­digestible carbohydrates are 
the primary substrates for microbial fermentation[173]. 
Saccharolytic fermentation of carbohydrates produces 
beneficial metabolites such as short-chain fatty acids[174]. 
However, if there is limited carbohydrate intake, bac­
teria use alternative energy sources, resulting in the 
production of other metabolites that may be more detri­
mental to human health[172]. The three SCFAs acetate, 
propionate and butyrate, which are considered beneficial 
metabolites, are mainly produced from polysaccharides 
and oligosaccharides through their metabolism into 
pyruvate (Figure 2). Propionate and acetate can be 
produced from lactate, while butyrate and acetate can 
be produced from acetyl CoA (Figure 2)[171]. Butyrate 
is an important energy source for gut epithelial cells, 
while propionate and acetate are mostly metabolized 
in the liver for cholesterol synthesis, gluconeogenesis 
or lipogenesis[175]. For more information, the complete 
synthesis and functions of SCFAs was extensively and 
previously described[113,175]. Microbial use of bile salts is 
a classic example of the relationship between the gut 

Villéger R et al . Microbial markers for colon cancer screening



2333 June 14, 2018|Volume 24|Issue 22|WJG|www.wjgnet.com

microbiota metabolism and the host metabolism. The 
primary bile acids cholic acid and chenodeoxycholic 
acid are produced in the liver from cholesterol and are 
conjugated to glycine or taurine. They are secreted by 
the liver following high fat intakes[176]. The intestinal 
microbiota can affect the biotransformation of bile acids 
via deconjugation, dehydrogenation, epimerization, 
and 7α/β­dehydroxylation of primary bile acids to 
generate secondary bile acids[177]. A number of gut 
bacteria possess bile salt hydrolase enzymes that are 
capable of hydrolysing the amide bond between the 
bile acid and its conjugated amino acid, producing 
the secondary bile acids deoxycholate and litocholate 
(Figure 2). Bile salt hydrolase genes were identified in 
Bacteroides, Bifidobacterium, Clostridium, Lactobacillus, 
and Listeria[178]. Deconjugation of bile acids by microbial 
hydrolases leads to an increased level of secondary bile 
acids, especially deoxycholic acid, which is also known 
to exert carcinogenic activity[179]. Polyphenols from fruits 
and vegetables are poorly absorbed in the intestine, 
and 90­95% are metabolized by the gut microbiota[180]. 
The diversity of polyphenol compounds is wide and 
has been summarized by Marín et al[181] and Rowland 
et al[172]. Several gut microbial enzymes can transform 
plant polyphenols, such as phenolic acids, flavonoids, 
and lignans into simple phenolic metabolites[172,181,182]. 
These microbial phenolic metabolites are mostly known 
for their antioxidant activity and have been shown 
to inhibit the production of pro­inflammatory media­

tors[183]. Microbial protein fermentation generates 
potentially toxic and pro­carcinogenic metabolites in­
volved in CRC, such as phenols, sulfides, ammonia 
and nitrosamines[7]. A subset of bacteria, including 
Bacteroidetes and Firmicutes species, produce potentially 
bioactive substances via the degradation of amino 
acids, especially nitrogenous compounds that can exert 
carcinogenic effects[184­186]. Moreover, sulfides produced 
in the gut by the bacterial reduction of dietary sulfate are 
enterotoxic[187]. Microbial metabolism may contribute to 
the toxicity of alcohol, especially in the gastrointestinal 
tract where aerobic and facultative anaerobic bacteria 
convert ethanol to acetaldehyde, which is known to be 
a highly toxic and pro­carcinogenic compound[188]. A 
specific role for bacterial biofilms in colonic metabolome 
was also reported[189]. With organic acids, gas is the 
major products of microbial fermentation in anaerobic 
systems. Anaerobic bacterial fermentation can lead to 
the synthesis of hydrogen, carbon dioxide, or methane 
for the majority. Some minor gases, such as NH3, NH2, 
volatile amines, indolic and phenolic compounds , that 
are mainly associated with peptide fermentation, are also 
produced[190,191] (Figure 2). Among them, H2S is produced 
by sulfate­reducing bacteria (Desulfovibrio spp.) by sulfur 
amino acids and taurine metabolism.

Given the key role of the gut microbiota in dietary 
metabolism and the growing evidence of its potential 
impact on host health, studies were performed to 
elucidate the metabolic functions of the gut micro­
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biota. These studies mostly used metagenomic, meta­
transcriptomic, or metaproteomic approaches, but using 
metabolomics to study the gut microbiota appears to be 
a promising method. Indeed, metabolomics allow the 
measurement of both host and microbial metabolites, 
including metabolites in host samples derived from 
the microbiota and host metabolites processed by the 
microbial population.

Metabolome alterations in CRC: The analysis of the 
CRC­associated metabolome has highlighted differences 
in the biochemical composition of CRC patients’ stools. 
Few animal studies have investigated the metabolomic 
profile of faeces in CRC models. Significant alterations 
were observed in fatty acid metabolites and metabolites 
associated with bile acids (hypoxanthine xanthine, 
taurine) in faeces of Hmga1 mice as analysed by ultra­
performance liquid chromatography UPLC/MS/MS and 
GC­MS[192]. Increased levels of short, arginine­enriched, 
tetra­peptide fragments were reported in the transgenic 
mouse faeces[192]. Similarly, CRC patients were found to 
have higher levels of some amino acids and alterations 
in the levels of some SCFA in their stools compared with 
controls[193]. Butyrate and several butyrate­producing 
bacteria were depleted in CRC patients’ stools[194]. 
Chen et al[143] observed that butyrate and butyrate­
producing bacteria were more prevalent in healthy 
controls than in advanced colorectal adenoma patients, 
with a lower prevalence of Clostridium, Roseburia, 
and Eubacterium spp. and a higher prevalence of 
Enterococcus and Streptococcus spp. Moreover, faecal 
β­glucuronidase activity is increased in patients with 
CRC compared with healthy controls[195]. High­fat 
diets, which are positively correlated with the incidence 
of CRC, lead to an increase in bile secretion, and 
increased faecal bile acid concentrations were reported 
in patients with CRC[196]. High faecal bile concentrations 
were positively correlated with the incidence of CRC, 
with potential tumour­promoting effects of bile acids 
themselves[176]. Furthermore, strong antimicrobial bile 
acid activities lead to significant changes in the gut 
microbiota composition, with a relative increase in 
some Gammaproteobacteria and Bacteroidetes species 
that are associated with CRC[197]. The dietary intake of 
preformed N­nitroso compounds is positively correlated 
with CRC in European populations[185], but these 
compounds can also be formed endogenously via acid­
driven nitrosation in the stomach and by the nitrosation 
of amines that are derived from the microbial 
fermentation of protein in the large intestine[198]. Higher 
levels of H2S were detected in CRC patients than those 
in healthy controls, but no increases in Desulfovibrio 
spp. were observed in faecal samples from patients 
with CRC[199]. Using metabolome screening, a metabolic 
influence of microbial biofilms on colonic tissues and 
the related occurrence of cancer has been reported. It 
was found that host cancer and specific bacterial biofilm 
structures contributed to the polyamine metabolite pool 
(N1,N12­diacetylspermine), which might have an impact 

on cancer development and progression[189].
All these data suggest that faecal metabolomics 

may not only be used for diagnostic purposes but may 
also serve as a prognostic tool for CRC treatment in 
the future.

MICROBIAL-RELATED BIOMARKERS FOR 
CRC DIAGNOSIS AND CLASSIFICATION
Validation of multi-bacteria models for early detection 
and/or prognosis determination
Even if a precise microbial signature associated with 
CRC and a precancerous lesion have not been exactly 
defined, different works have shown that dysbiosis may 
provide new significant biomarkers for CRC diagnosis or 
prognostic determination. 

Several studies were able to determine a correlation 
between faecal microbial dysbiosis and CRC prognosis/
diagnosis. In 2014, Zackular et al[140] used faecal samples 
from 30 CRC patients, 30 colonic adenoma patients 
and 30 healthy controls to establish a classification 
model. The authors observed significant differences in 
the gut microbiome of healthy controls when compared 
with those with adenoma or CRC, and faecal microbial 
screening had an accuracy of 0.798 AUC for predicting 
CRC. By combining their gut microbiome data with 
known clinical risk factors (body mass index, age, race), 
they were able to significantly improve the ability of 
faecal microbial screening to discriminate between the 
three clinical groups when compared with risk factors 
alone. Zeller et al[131], with 53 CRC patients, 42 adenoma 
patients and 61 controls, established a 16S­based 
classifier for CRC detection and validated their model 
with an accuracy of 0.82. More recently, Ai et al[200] 
sequenced the 16S rRNA gene from the faeces of 141 
Chinese participants and evaluated the performance of 
different classifiers for predicting CRC based on faecal 
microbiota. The authors reported a strong variation 
in the CRC prediction between the different models 
tested, with the Bayes Net algorithm displaying the best 
performance. Their prediction test, with 0.93 AUC, was 
more accurate than the FOBT, while combining both tests 
improved the accuracy. This list of studies that assessed 
the use of changes in the faecal microbiota for colorectal 
adenoma and CRC screening is non­exhaustive. Among 
these studies, while an association between CRC and 
microbiota is clear, there is limited agreement in the taxa 
reported.

For this reason, Shah et al[201] conducted a micro­
biome­based meta­analysis for CRC, using the results 
from 9 studies and including 79 colorectal adenomas 
patients, 195 CRC patients and 235 controls, in order to 
identify a common microbial marker in stool samples. In 
addition to the previously reported taxa, they highlighted 
a significant increase in Parvimonas micra ATCC 33270, 
Streptococcus anginosus, Parabacteroides distasonis and 
other members of Proteobacteria. Their microbiome­
based CRC versus control classification produced an area 
under the receiver operating characteristic (AUROC) 
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curve of 80.3%, which was 91.3% when combined 
with clinical markers from the bioinformatics pipeline. 
Similarly, Amitay et al[202] conducted a systematic review 
of 19 studies (including most of the studies cited above) 
examining the differences in the gut microbial community 
in faecal samples from people diagnosed with CRC or 
adenomas and from people without colorectal neoplasia 
to generate faecal multi­bacterial models for early 
detection of adenomas and CRC. Overall, they concluded 
that there was limited but encouraging evidence that 
the differences in the faecal gut microbiome between 
people diagnosed with CRC or adenoma and healthy 
controls could be used to develop new faecal tests. The 
authors suggested that future research should focus 
on developing unified documented and reproducible 
protocols for studying the human gut microbiome from 
faecal samples for more comparable results between 
cohorts[202].

In many studies, patients had a corresponding 
decrease in the Firmicutes/Bacteroidetes ratio, which 
might be an important marker for intestinal dysbiosis 
in colorectal precancerous lesions. F. nucleatum, BFT­
producing B. fragilis, and colibactin­producing E. coli are 
known to be associated with a more aggressive TNM 
stage[130,145,149,158]. Their detection by PCR in tissues or 
faeces might allow the development of rapid tests for new 
prognostic factors. With a 16S rRNA gene sequencing 
approach, F. nucleatum, B. fragilis and Faecalibacterium 
prausnitzii were identified as useful prognostic biomarkers 
for CRC[203]. Indeed, in this study, F. nucleatum and 
B. fragilis were more abundant in the groups with a 
worse prognosis, while Faecalibacterium prausnitzii was 
more abundant in the survival group. Similarly, Mima 
et al[158] showed that the amount of F. nucleatum DNA 
in colorectal cancer tissue was associated with shorter 
survival. Another study demonstrated that the detection 
of F. nucleatum associated with the non­invasive 
screening FIT could be a promising marker for detecting 
neoplastic lesions[204]. Recently, Eklöf et al[151] explored 
the use of microbial markers for bacteria harbouring 
the pks island, which codes for colibactin synthesis, and 
F. nucleatum in stool as potential screening markers 
for CRC. Authors suggested that the presence of the 
pks island and F. nucleatum detection could predict 
cancer with a specificity of 63.1% and a sensitivity of 
84.6%, suggesting the potential value of these microbial 
parameters as putative non­invasive biomarkers for 
CRC detection[151]. Multicentric clinical studies need to 
be performed to validate all these promising results in a 
larger cohort. Moreover, these bacterial markers might 
provide a CRC­associated microbiome risk profile that 
might aid in the early identification of individuals who are 
at risk and require close surveillance.

Screening faecal microbial-related metabolites for CRC 
detection
Screening the faecal metabolome is a promising non­
invasive procedure for obtaining a unique metabolic 
fingerprint to diagnose or determine the prognosis of 

CRC. To our knowledge, only a few studies with different 
metabolomics methods have shown the diagnostic 
potential of faecal samples for human colorectal cancer. 
They are summarized in Table 1. In 2009, Bezabeh 
et al[205] used 1H NMR to detect colorectal neoplasia in 
111 CRC human faecal samples and compared them 
with samples from 412 healthy controls. NMR­based 
metabolic profiling of faecal water extracts from patients 
with colorectal cancer and healthy individuals was able 
to identify potential diagnostic markers, such as SCFA 
(acetate and butyrate) and amino acids (proline and 
cysteine)[206]. More recently, the analysis of lyophilized 
stools by HPLC-GC/MS-MS resulted in the identification 
of 41 relevant faecal metabolites, such as xenobiotics, 
heme, peptides/amino acids, vitamins and co­factors, 
that had increased or decreased concentrations in CRC 
samples[207]. Volatile metabolome profiling of faecal 
samples using GC/TOF­MS also had diagnostic potential 
for detecting colorectal cancer. Phua et al[208] evaluated 
a small cohort and identified three specific markers 
(fructose, linoleic acid, and nicotinic acid) that were 
found at lower levels in the faecal volatile metabolome of 
CRC patients than in that of healthy subjects. A similar 
study using an electronic nose on samples from 40 CRC 
patients, 60 advanced adenoma patients, and 57 healthy 
controls was able to strongly distinguish the faecal 
volatile organic compounds (VOC) profile of patients 
with CRC and advanced adenoma from controls[209]. 
Given the volatility of the analysed compounds, improper 
sample collection and storage can drastically reduce the 
repeatability and robustness of the method. Batty et 
al[210] proposed the use of selected ion flow tube mass 
spectrometry (SIFT­MS) to classify 62 human faecal 
samples with a positive result on FOBT. Indeed, their 
method showed a 75% correct discrimination between 
CRC samples and low risk samples[210]. More recently, 
Sinha et al[211] intended to establish a microbe­metabolite 
correlation through the analysis of lyophilized faecal 
samples of 42 CRC patients and 89 healthy controls 
using HPLC­GC/MS­MS. They reported that CRC was 
independently associated with lower levels of Clostridia, 
Lachnospiraceae, p­aminobenzoate and conjugated 
linoleate and with higher levels of Fusobacterium, 
Porphyromonas, p­hydroxy­benzaldehyde, and palmitoyl­
sphingomyelin. The authors identified a strong microbe-
metabolite correlation in CRC patients. In conclusion, 
the diagnostic potential of metabolic profiling of faeces is 
strongly supported by several human studies, but these 
analytical techniques require standard procedures in 
order to obtain comparable and robust high­quality data.

Prediction of treatment response with microbial-
associated markers
It has long been recognized that the gut microbiota can 
modify the pharmacokinetics of various drugs including 
anticancer therapies thus influencing therapeutic out­
comes[212­217] and/or side effects[218­220]. Irinotecan, which 
is a first­line chemotherapeutic agent for metastatic 
CRC, causes adverse and dose­limiting effects that are 
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largely influenced by bacterial β­glucuronidase[214,219]. 

Metagenomic and metabolomic profiling of patients’ gut 
microbiota could thus be informative before choosing this 
drug to predict side effects. Moreover, specific members 
of the gut microbiota might also drive chemoresistance 
to treatment. Indeed, Fusobacterium nucleatum, causes 
resistance to oxaliplatin and 5­FU through autophagy 
induction in colorectal cancer cell lines in vitro and in vivo 
in mouse models of colorectal xenografts[221]. Conversely, 
the sensitivity of cancer cells to many chemotherapeutic 
agents has been shown to be modulated by intra­
tumoural microbial agents[212,215,216,221,222]. Moreover, the 
gut microbiota also has a long­term impact on both 
the efficacy and toxicity of anticancer therapies. In 
particular, it can modulate the concomitant anti­tumour 
immune response[223­227]. Indeed, various pre­clinical 
mouse models of subcutaneous tumours (melanoma, 
lung cancer, sarcoma) have suggested that specific 
crosstalk between bacteria and immune cells may affect 
responses to anticancer chemotherapies[223­227]. In terms 
of CRC in particular, the efficacy of oxaliplatin, which is a 
drug routinely used for CRC treatment, has been shown 
to be strongly reinforced by gut microbiota in mice 
that were transplanted with MC38 colorectal syngeneic 
tumours, due to myeloid cells with increased anti­tumour 
functions[224]. In addition, it has been described that the 
gut microbiota contributes to anti­tumour functions of 

adoptively transferred T cells in several models, including 
colorectal tumours implanted in mice[225,228,229]. This 
suggests that the patients’ microbiota should also be 
taken into account in future clinical studies involving 
infusion of autologous anticancer T cells.

Immune checkpoint therapies are often used in as­
sociation with chemotherapies and can also be positively 
or negatively impacted by the gut microbiota in terms 
of toxicity[230­233] and therapeutic effect, as shown for 
anti­CTLA­4[231,233], anti­PD­L1[234] and anti­PD­1[235­237] 
antibodies. Interestingly, three clinical investigations 
demonstrated that the gut microbiota can be used 
to predict responder and non­responder patients to 
PD­1/PDL­1 immunotherapies in several solid epithelial 
tumours[235­237]. In terms of CRC, many studies have 
shown the capacity of the gut microbiota to modulate 
tumour­infiltrating myeloid cell[238­240] and T cell re­
sponses[241­244], while improvement in immunotherapy 
efficacy by the microbiota is mediated precisely by these 
immune pathways in solid human epithelial tumours 
(e.g., melanoma)[235­237]. Moreover, in a subcutaneous 
CRC mouse model, a positive impact of some microbial 
species on anti­CTLA­4 immunotherapy was observed[233]. 
Given the severe colitis observed in some patients 
receiving immunotherapies (e.g., antibodies to CTLA4 
and PD­L1) and the role of gut microbes in colitis, it is 
possible that the gut microbiota influences this toxicity. 

Table 1  Fecal metabolic profiling studies in colorectal cancer

Matrix Cohort Study observations Analytical method Ref.

Aqueous dispersion 
of stools

111 CRC, 412 healthy 
controls

Potential to detect colorectal neoplasia One-dimensional 1H 
magnetic resonance 

spectroscopy

 [205]

Fecal water extract 21 CRC
11 healthy controls

Reproducible and effective method for detecting colorectal cancer markers.
(↘) SCFA (acetate, butyrate) appears to be the most effective marker in CRC.

NMR [206]

Lyophilized human 
faeces

11 CRC
10 healthy controls

(↘) butyric acid, linoleic acid, glycerol, 
(↘) secondary bile acid associated with (↘) Ruminococcus spp., 

(↗) leucine, valine, acetic acid, valeric acid, isobutyric acid, isovaleric acid,
(↗) A. muciniphila associated with (↗) proline, serine, threonine

GC-MS [193]

Lyophilized human 
faeces

11 CRC, 10 healthy 
controls

(↘) fructose, linoleic acid, and nicotinic acid in CRC stools. GC/TOF-MS [208]

Volatile organic 
compounds in 
the headspace of 
lyophilized stool 
samples

40 CRC, 60 advanced 
adenomas, 

57 healthy controls

Discrimination of fecal VOC profiles of patients with adenomas and CRC. Electronic nose [209]

Lyophilized human 
faeces

48 CRC, 
102 healthy controls

41 metabolites significantly associated with CRC (↘) xenobiotics (↘) heme, 
peptides/amino acids, vitamins, co-factors,  other CRC associated molecules.

HPLC-GC/MS-MS [207]

Human faeces 31 CRC, 
31 controls with 
positive FOBT

Discrimination of CRC samples with better specificity and sensitivity than 
FOBT. 

(↘)  ammonia, sulfides, acetaldehyde

SIFT-MS [210]

Lyophilized human 
faeces

42 CRC, 
89 healthy controls

Microbe-metabolite correlation in CRC: (↗) Clostridia, Lachnospiraceae, 
p-aminobenzoate and conjugated linoleate.

(↗) Fusobacterium, Porphyromonas, p-hydroxy-benzaldehyde, and palmitoyl-
sphingomyelin.

HPLC-GC/MS-MS [211]

Human faeces 13 CRC Discrimination of CRC samples with 7 metabolites: 
alphahydroxyisovalerate, isovalerate, N1-methyl-2-pyridine-5-carboxamide, 

7-ketodeoxycholate, deoxycholate, valerate, and tryptophylglycine

UPLC-MS/MS; 
GC/MS

[165]

CRC: Colorectal cancer; CT: Computed tomography; gFOBT: Guaiac fecal occult blood test; NMR: Nuclear magnetic resonance; MS: Mass spectrometry; 
GC-MS: Gas chromatography coupled with MS; LC-MS: Liquid chromatography coupled with MS; UPLC: Ultra-performance liquid chromatography; 
HPLC: High-performance liquid chromatography; TOF: Time of flight; VOC: Volatile organic compounds; SIFT-MS: Selected ion flow tube MS.
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Investigations are thus needed to elucidate the potential 
role of the microbiota on immunotherapy efficacy and 
toxicity in preclinical models and patients. Gut microbiota 
profiling of CRC patients might be useful in the future to 
predict treatment responses and/or side effects of cancer 
chemotherapies and immunotherapies. All these data 
could lead to “personalized medicine 2.0” that is being 
developed in an ongoing study investigating the impact 
of the intestinal microbiome on treatment responses and 
the toxicity of capecitabine or TAS­102 chemotherapies 
in patients with metastatic and/or irresectable CRC[245]. 

Perioperative antibiotic prophylaxis strategies tar­
geting the gut microbiota are widely used in colorectal 
surgery. The aim of such approaches is to prevent both 
surgical site and wound infections, protecting against 
potential contamination by the microorganisms that 
are spread from surgically induced alterations of the 
intestinal epithelial barrier. However, these antibiotic 
prophylaxis strategies may also impair the beneficial 
impact of the gut microbiota on intestinal immune 
function and healing (for review[246]). Few studies 
have investigated the impact that bowel preparation 
prior to colorectal surgery may have on the mucosa­
associated and luminal colonic microbiota[247]. After the 
suppression of beneficial bacteria, the host may lose 
its colonization resistance to pathogens and may have 
decreased local stimulation of systemic immunity and the 
healing process[248,249]. After surgery, if the commensal 
microbiota does not repopulate the tract, the situation 
can lead to the development of pathogenic bacteria 
such as C. difficile[250]. Moreover, data from animal 
and human studies have suggested that some of the 
bacteria present at the anastomotic site may respond 
to surgical stress by activating virulence pathways, 
which results in alterations in the healing process. An 
investigation of the faecal microbiota of patients before 
and after colorectal surgery for CRC revealed that 
Enterococcus faecalis and Pseudomonas aeruginosa 
were the dominant pathogens present postoperatively 
in the stools, with a several log­fold increase during the 
postoperative recovery period[251]. Postoperative sepsis 
(e.g., anastomotic leakage, perianastomotic abscess) 
is the most feared complication after colorectal surgery 
and is responsible for potentially deadly complications 
and significant alterations in the patient’s quality of life. 
The critical role of the intestinal microbiome in sepsis 
has been illustrated by studies on germ­free animals, 
which demonstrated improved survival in these animals 
compared with conventional animals[252]. Therefore, 
the restoration and/or maintenance of a microbiota 
favouring intestinal healing and preventing surgical site 
infections after colorectal surgery could be a promising 
approach for the development of new therapeutic strat­
egies, thus targeting the gut microbiota to improve 
surgical outcomes. Moreover, the parallel development of 
tools, such as the “personalized microbiota composition 
analysis”, to be performed pre­ and postoperatively 
to evaluate the clinical relevance of gut microbiota 
modulation to positively influence the clinical outcomes 

and to optimize the perioperative strategies appears 
promising.

Limitations of microbial markers and future challenges 
and directions 
The complexity of the microbiome turns the need for 
microbial marker­based diagnosis techniques into 
a real challenge. Numerous studies have reported 
associations between microbial markers, such as F. 
nucleatum, or colibactin­producing E. coli, and CRC, but 
to date, there is no universal microbial marker defined 
for CRC detection. Several limitations should be taken 
into consideration for the future development of new 
tests. First, the very high variability of the microbiota 
composition between individuals due to sex, age, diet, 
lifestyle, genetic background, medication use, ethnicity, 
or geographical location make finding a universal 
microbial marker almost impossible. Antibiotic therapy 
greatly influences the expression of microbial markers 
and is a critical limitation to microbial marker use. 
Moreover, standardization in terms sample collection and 
storage, RNA or metabolite extraction, sample analysis, 
and data processing is essential to compare studies. 
If studies that screen for microbiota composition use 
the same method of 16S rRNA sequencing, the use 
of metabolomics technologies will require exhaustive 
standardization between studies. Stary et al[253] shared 
a very interesting and detailed list of recommendations 
for using microbial markers for CRC screening. (1) Any 
studies should be prepared carefully, taking into account 
the recommendations and limitations of techniques 
published previously. (2) Validation of CRC screening 
markers on specific populations should be encouraged 
because differences in the gut microbiome are observed 
in different geographical locations or in different racial/
ethnic groups. (3) Whenever possible, conventional 
culture should be used to confirm the findings from 
sequencing studies. Particularly, the candidate marker 
status of species or genes revealed by molecular tech­
niques should be confirmed or refuted by culture and vice 
versa. Systematic high­throughput culturomics should be 
developed because cultivation represents an approach 
that is economical. (4) Screening techniques for CRC 
risk should evaluate all the known candidate markers, 
combining particular species, genotoxin production and 
possibly further strain characteristics whenever relevant. 
And (5) the potential for practical detection should 
always be considered. For example, tumour screening, 
which requires colonoscopy, is costly, uncomfortable for 
patient and is the gold standard tool for CRC screening. 
Faecal samples are better non­invasive specimens 
for developing these microbial­associated­markers. 
However, faeces are likely to contain a large number 
of microbial species unrelated to the disease site, 
which may introduce noise in the detection of potential 
biomarkers of the disease. Because some bacteria that 
are associated with CRC, such as F. nucleatum, are 
indigenous to the human oral cavity, analysing the oral 
microbiome may be an alternative screening method 
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for CRC. Saliva is a biological fluid that may be suitable 
for biomarker detection. The oral microbial compositions 
may theoretically reflect the oral and general health 
status. Flemer et al[254] found that several oral taxa (such 
as Streptococcus and Prevotella spp.) were differentially 
abundant in CRC patients versus controls. Moreover, they 
developed a classification model based on the oral swab 
microbiota that distinguished individuals with CRC or 
polyps from controls (sensitivity: 53% CRC, 67% polyps; 
specificity: 96%). Importantly, when data from both the 
faecal and oral swab microbiota were considered in this 
model, the sensitivity increased to 76% for CRC and 
88% for polyps. In addition to Stary’s recommendations, 
we showed that microbial markers might be different 
depending on the tumour CRC phenotype[157]. Moreover, 
a deeper understanding of the gut microbiota structure 
and function may help to identify several bacteria that 
when combined may provide a real CRC­associated 
microbial signature. 

Finally, the therapeutic efficacy of anticancer drugs 
could also be improved by active modulation of the 
gut microbiota through the use of probiotics, prebiotics 
or specific inhibitors. This perspective is supported by 
the fact that immunotherapy resistance observed in 
germ­free mice, in antibiotic­treated mice, and in those 
that have previously received faecal microbiota trans­
plantation (FMT) from non­responder patients, can 
be reversed by FMT from responder patients[233,235­237]. 
Moreover, it has been highlighted that specific bacterial 
species, such as Lactobacillus johnsonii[226], Enterococcus 
hirae[223,226] Barnesiella intestinihominis[223], Akkermansia 
muciniphila[237], Bacteroides[233] and Bifidobacterium[234,236] 
species, are beneficial in this context, which may lead the 
way to innovative “oncobiotics” strategies that combine 
anticancer and microbiota­targeting agents.

CONCLUSION 
In this review, we discuss both predictive and prognostic 
microbial­associated markers identified in CRC. The 
faecal­associated microbiota may be dynamically linked 
to colon cancer, which, in turn, may offer evidence 
for microflora­associated diagnostic, preventive, and 
prognostic approaches for CRC. However, it is clear that 
additional clinical studies are necessary to validate these 
parameters to improve the diagnosis and therapeutic 
management of CRC.
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