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Entropic Variable Boosting for Explainability & Interpretability
in Machine Learning

François Bachoc, Fabrice Gamboa, Jean-Michel Loubes and Laurent Risser

Institut de Mathématiques de Toulouse

Abstract

In this paper, we present a new explainability for-
malism to make clear the impact of each variable
on the predictions given by black-box decision rules.
Our method consists in evaluating the decision rules
on test samples generated in such a way that each
variable is stressed incrementally while preserving
the original distribution of the machine learning
problem. We then propose a new computation-
ally efficient algorithm to stress the variables, which
only reweights the reference observations and pre-
dictions. This makes our methodology scalable to
large datasets. Results obtained on standard machine
learning datasets are presented and discussed.

1 Introduction

Machine learning algorithms build predictive models
which are nowadays used for a large variety of tasks.
They have become extremely popular in various ap-
plications such as finance, insurance risk, health-care,
recommendation systems as well as industrial appli-
cations of all kinds including predictive maintenance,
defect detection or industrial liability. Such algo-
rithms are designed to assist human experts by giv-
ing access to valuable predictions and even tend to
replace human decisions in many fields, achieving an
extremely good performance.

The performance of machine learning models is
usually quantified in terms of predictive accuracy.
In many cases, the decision rules learned by ma-
chine learning models indeed minimize a prediction
error measured on a pre-defined set of labeled exam-
ples, denoted the learning sample. The labels of new
data are then predicted based on the learned decision

rules.
Over the last decades, the complexity of such al-

gorithms has grown, going from simple and inter-
pretable prediction models based on regression rules
to very complex models such as random forest, gra-
dient boosting and models using deep neural net-
works. Such models are designed to maximize the
accuracy of their predictions at the expense of the
interpretability of the decision rule. Little is also
known about how the information is processed in or-
der to obtain a prediction, which explains why such
models are widely considered as black-box models.

This lack of interpretability gives rise to several
issues. When an empirical risk is minimized, the ef-
ficiency of a machine learning procedure highly de-
pends on the nature of the optimization problem (e.g.
convexity and unimodality). Challenging optimiza-
tion problems may lead to decision rules that are un-
stable or highly dependent on the optimization pro-
cedure. Another subtle, though critical, issue is also
that the optimal decision rules learned by a machine
learning algorithm highly depend on the properties
of the learning sample. If a learning sample presents
a bias or unwanted trends, then the decision rules
learned by the machine learning algorithm will repro-
duce the bias or trends, even if there is no intention of
doing so. These flaws or misbehaviors will therefore
be propagated in future predictions. This lack of
explainability and the dangers that machine learning
algorithms convey explain that many users express a
lack of trust in these algorithms. The European Par-
liament even adopted a law called GDPR (General
Data Protection Regulation) to protect citizens from
decisions made without the possibility of explaining
why they were taken, introducing a right for explana-
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tion in the civil code. We believe that a solution is not
to abandon black-box models which have yet proven
to be useful in many cases, but rather to improve
the interpretability of machine learning algorithms.
Hence, building intelligible models is nowadays an
important research direction in data science.

Different methods have been proposed to make un-
derstandable the reasons leading to a prediction, each
author using a different notion of explainability and
interpretability of a decision rule. We mention early
works by [12] for recommender systems, [5] for neural
networks [9], or [16] for generalized additive models.
Another generic solution has been described in [1]
and [4] focused on medical applications. Recently,
a special attention has also been given to deep neu-
ral systems. We refer for instance to [17], [20] and
references therein. Clues for real-world applications
are given in [11] and [19] recently proposed to locally
mimic a black-box model and then to give a feature
importance analysis of the variables at the core of
the prediction rule. In [15], a discussion was recently
opened to refine the discourse on interpretability. In
[13] the authors finally proposed a strategy to under-
stand black-box models, as we do, but in a parametric
setting.

Inspired by sensitivity analysis of computer code
experiments [14], we propose in this paper a sensitiv-
ity analysis strategy for machine learning algorithms.
In the field of computer code experiments sensitiv-
ity analysis is an active research topic. In this con-
text, sensitivity analysis allows to rank the relative
importance of the input variables involved in an ab-
stract input-output relationship modeling the com-
puter code under study. The much popular way to
perform this analysis relies on the so-called Sobol’
indices built on second order moments, as developed
for instance in the pioneering work of [21]. Note that
this index is related to the Mean Decrease in Ac-
curacy (MDA) score produced by the random forest
algorithm [10].

In this paper, we use the idea developed in [14]
consisting in reweighing the observations by stress-
ing the mean of one of the explanatory variables.
Then, we quantify the stress impact through vari-
ations of a pre-defined quality index. We apply this

method to machine learning methods in order to
understand the effect of each variable after having
learned black-box decision rules that are potentially
complex. As mentioned earlier, a learned relation
between the input variables X1, . . . , Xp and the pre-
diction fn(X1, . . . , Xp) is not necessarily clear. For
linear rules such as regression type prediction rules
(e.g. regression, logit regression, linear SVM) or de-
cision trees, there is an interpretation that enables
to explain individually the effect of each variable. In
most cases, the rules are however too complex and
cannot be understood directly. For instance, Random
Forests methods, boosted algorithms or deep learn-
ing algorithms are black-box strategies for which the
role played by each variable is not clear. We refer to
[22] for a description of all these methods.

Our conception of the notion of interpretability for
machine learning algorithms is the ability to quantify
the specific influence of each variable on the predic-
tions. In order to make understandable how a black-
box rule is constructed, our goal is therefore to quan-
tify the particular effect of each of the p covariates.
To achieve this, we study particular variations of each
test variable Xj in order to understand how the pre-
dictions are impacted by such changes. By studying
the effect of different modifications of each variable on
the predictions, we quantify the effect and the causal-
ity of each variable with respect to the decision rule.

The main difficulty related to such modifications
is to create test data (Xi, Yi), i = 1, . . . , n from the
original test sample, with the constraint that the dis-
tribution of the new data is as close as possible to
the underlying data distribution. The goal of this
constraint is to ensure that the created test data cor-
respond to realistic observations and do not create
artificial outliers such that the PAC learning frame-
work [23] still holds. In addition to propose our
explainability formalism, our second main contribu-
tion is then to define an algorithm to generate such
datasets, with the least modification of the distribu-
tion function. This algorithm is based on an informa-
tion theory framework using entropy projection with
Kullback-Leibler information as developed in [6, 7]
for instance. This method has the key advantages
that it quickly reweights the original datasets and
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that it does not require to compute new predictions
using the transformed test data. It therefore enables
fast computations of the output distributions by only
reweighing the empirical criteria.

The paper falls into the following parts. The pro-
posed data reweighting method to perturb the origi-
nal sample is explained in Section 2. Section 3 recasts
the notions of interpretability for machine learning
using perturbed data. In particular, we construct in-
dicators explaining decision rules for three different
cases: 2-class classification, multi-class classification
and the regression case. Section 4 finally presents
applications on real datasets out of [8].

2 Optimal perturbation of dis-
tributions under moment
constraints

In order to experience and to explore the behavior
of a predictive model, a natural idea is to study its
response to stressed inputs. Given a probability dis-
tribution Q on an abstract measurable polish space
(E,B(E)) and ε in a neighborhood of 0, there are
many ways to create a perturbed probability mea-
sure Qε close to Q. A natural way to build such Qε
is to stress the mean value of a given variable. That
is, to consider a Q-integrable real random variable Φ
defined on (E,B(E)) and to enforce its mean value to
deviate a little bit from the original mean value while
the distribution of the whole random variables re-
mains close to Q. Then, an information theory point
of view leads to the use of the Kullback-Leibler infor-
mation to perform this task.

To begin with, let us recall the definition of the
Kulback-Leibler information (also called mutual en-
tropy). If P is a probability measure on (E,B(E)),
then the Kullback-Leibler information KL(P,Q) is
defined as
∫
E

log
dP

dQ
dP , if P � Q and log dP

dQ ∈ L
1(P ),

+∞, otherwise.

Our information theory based trick to perform a
stressed probability of the inputs of the learning sys-

tem consists in minimizing KL(P,Q) over the prob-
ability measures P that satisfy∫

E

Φ(x) dP (x) = φ(ε),

where φ is a given continuous function on a neighbor-
hood of 0 with φ(0) =

∫
E

Φ(x) dQ(x). In other words,
we consider the following optimization problem

(P )Φ,φ,ε : inf KL(P,Q), P ∈ PΦ,φ,ε,

where PΦ,φ,ε is the set of probability measures on
(E,B(E)) such that∫

E

Φ(x) dP (x) = φ(ε).

Hence φ(ε) represents the average amount of defor-
mation, that has to be incorporated in the initial dis-
tribution Q without modifying too much the initial
distribution so that the KL distance between the ini-
tial and the warped distribution remains small.

We also set Qε := arg infP∈PΦ,φ,ε
KL(P,Q) when-

ever it exists. The following theorem due to Csiszár
in [6] and [7] explains the solution of the previous
optimization problem.

Theorem 2.1. Assume that PΦ,φ,ε contains a prob-
ability measure that is mutually absolutely continu-
ous with respect to Q. Then, Qε exists and is unique.
Furthermore,

Qε =
expλεΦ

Z(λε)
Q. (1)

Here, Z(λ) :=
∫
E
eλΦ(x) dQ(x), (λ ∈ R), and λε is

the unique minimizer of the strictly convex function

H(λ) := logZ(λ)− λφ(ε), (λ ∈ R).

We will mainly put in action the previous theorem in
the following frame of discrete distributions.

Definition 2.2. Let x1, . . . , xn be two by two distinct
real numbers and let m = (1/n)

∑
i=1,...,n xi. Let ε ∈

R be so that mini=1,...,n xi < m+ ε < maxi=1,...,n xi.
Let

ψx1,...,xn(τ) = log

 1

n

n∑
j=1

exp(τxj)

 .
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Let τ(m + ε) be the unique minimizer of the strictly
convex function

Hm+ε(τ) = ψx1,...,xn(τ)− τ(m+ ε).

Then, let λ
(x1,...,xn),ε
1 , . . . , λ

(x1,...,xn),ε
n be defined by,

for i = 1, . . . , n

λ
(x1,...,xn),ε
i = exp

(
τ(m+ε)xi−ψx1,...,xn(τ(m+ε))

)
.

In the following, we let X = (X1, . . . , Xp) ∈ Rp
be an input variable, Y ∈ R be the corresponding
label and Ŷ = fn(X) be the predicted label, with
fn : Rp → R being the black-box model. We con-
sider a test base (X1, Ŷ1, Y1, . . . , XN , ŶN , YN ) with

again Ŷi = fn(Xi). We let QN = 1
N

∑N
i=1 δXi,Ŷi,Yi

be the original (unperturbed) distribution of the test
base. Using Theorem 2.1, we modify the empirical
distribution of the test sample as follows:

Definition 2.3. For i0 ∈ {1, . . . , p}, let mi0 =

(1/N)
∑N
i=1(Xi)

i0 . Let α ∈ (0, 1/2) and let
qi0,α and qi0,1−α be the α and 1 − α quantiles of
{(X1)i0 , . . . , (XN )i0}. Assume that α is small enough
so that qi0,α < mi0 < qi0,1−α. For τ ∈ [−1, 0], let
εi0,τ = τ(mi0 − qi0,α). For τ ∈ [0, 1], let εi0,τ =
τ(qi0,1−α −mi0). Finally define

λ
(i0,τ)
i = λ

((X1)i0 ,...,(XN )i0 ),εi0,τ
i

Theorem 2.4. Let

QN,i0,τ =
1

N

N∑
i=1

λ
(i0,τ)
i δXi,Ŷi,Yi .

QN,i0,τ is solution of the minimization program
minν : ν 7→ KL(ν,QN ) under the constraint that

Eν(Xi0) = mi0 + εi0,τ .

This theorem enables to reweight the observations
of each variable so that its mean increases or de-
creases. In Definition 2.3, τ indicates a change of
mean proportional to the range of empirical values
of the variable i0. More precisely, τ = 0 yields no
change of mean, τ = −1 changes the mean from mi0

to the (small) quantile qi0,α and τ = 1 changes the
mean from mi0 to the (large) quantile qi0,1−α.

Proof. The proof follows directly from Theorem 2.1
with Φ(X, Ŷ , Y ) = Xi0 and ϕ(ε) = mi0 + ε, applied
with ε = εi0,τ . �

Hence we have defined a strategy to resample the
data in order to stress individually each variable while
keeping as much as possible the original distribution.
Note that the generation of the new warped sample
does not involve the creation of new (Xi, Ŷi, Yi) but
only fast computations of weights λi’s. This makes
it possible to deal with very large databases with-
out computing new values for new observations. We
can thus highlight the effect of every variable in the
decision rule as follows.

3 Explainable models using
perturbed distributional en-
tries

A machine learning algorithm aims to find the link
between two random variables X and Y with distri-
bution Qobs. X ∈ E stands for the covariates and
Y ∈ Y has to be predicted. Let ` be a loss function
quantifying how a predictor is close enough to the
variable to be predicted. Then the goal of machine
learning is to build a rule f such that `(f(X), Y ) is
small for all observations that are similar to the ob-
servations at hand. In the framework of statistical
learning, we assume that we have at hand a learning
sample DL = {(Xi,L, Yi,L) i = 1, . . . , n} drawn from
an unknown distribution Qobs which is approximated
using its empirical version QL

obs,n = 1
n

∑n
i=1 δ(Xi,Yi).

Let fn be a decision rule calibrated to minimize
criteria that depend on the empirical loss function
EQL

obs,n
`(fn(X), Y ) = 1

n

∑n
i=1 `(fn(Xi,L), Yi,L) and

possibly other terms designed to prevent overfitting
of the data. The algorithm is designed to perform
on every similar data and its accuracy is assessed on
test samples DT = {(Xi, Yi) i = 1, . . . , N} drawn
by using the same distribution Qobs and the empir-
ical distribution Qobs,N . To quantify the change of
each variable we will change the test set according to
Theorem 2.4 by changing the mean of each variable
i0 ∈ {1, . . . , p} and generating training setsDi0,τ with
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empirical distribution Qobs,N,i0,τ for different values
of τ . We point out that this procedure amounts to
change weights associated to the variables, the pre-
dictions and the true outputs (Xi, fn(Xi), Yi). Hence
we do not monitor changes with respect to particular
individuals’ decisions, since the data do not change,
but the changes in the global behavior of the algo-
rithm.

In particular, we consider how the perturbations in
the distribution of fn(DT ) impact the indicators that
are meaningful with respect to the behavior of the al-
gorithm such as the error rates including global error,
false positive but also the changes with respect to the
proportion of quantities predicted and their variabil-
ity. Such changes are studied for each variable and
for different amounts of perturbation, which enables
to stress the importance of each variable and the par-
ticular bias it induces.

Hence explainability in this paper has to be under-
stood in a general framework. We try to determine
the global effect of each variable in the learning rule
and how a particular variation of each variable af-
fects the accuracy of the prediction, enabling to un-
derstand how the algorithm evolves when a charac-
teristic of the observations is modified. Our frame-
work is closely related to what is done in computer
code experiment when dealing with sensitivity anal-
ysis. More precisely, in [14] a reweighing method has
been proposed and studied. The method allows to
measure the effect on a probability of failure of a
perturbation performed on an input distribution

We point out that this point of view is different
from previous works where the importance of each
variable was considered. Sparse models (see for in-
stance in [3] for general introduction on the impor-
tance of sparsity) enable to identify few important
variables. Importance indicators have also been de-
veloped in machine learning to detect which variables
play a key role in the algorithm. For instance impor-
tance of variables is often computed using feature im-
portance or Gini indices (see in [18] or [22]). Yet such
indexes are computed without investigating the par-
ticular effects of each variable and without explaining
its particular role in the decision process. We now

detail three particular cases encountered in machine
learning: two-class classification, multi-class classifi-
cation and the regression case.

3.1 The case of binary classification

Consider the case of a classification in two cases,
i.e where Yi, fn(Xi) belong to {0, 1} for all i =
1 . . . , N . This case corresponds to the two-case clas-
sification problem for which the usual loss function is
`(Y, f(X)) = 1 {Y 6= f(X)} . We suggest to consider
the following indicators for the perturbed distribu-

tions 1
N

∑N
i=1 λ

(i0,τ)
i δ(Yi,Ŷi,Yi).

Understanding the classification rule in this case
corresponds first to monitor the evolution of the error
rate. So the first index is the error rate

ERi0,τ =
1

N

N∑
i=1

λ
(i0,τ)
i 1 {fn(Xi) 6= Yi} .

We suggest to plot ERi0,τ as a function of τ for
τ ∈ [−1, 1] for each i0 ∈ {1, . . . , p}. The case τ = 0
provides the baseline of the algorithm performance
without perturbation of the learning sample. Here,
we highlight the variables which produce most con-
fusion in the error so for which the variability among
the two predicted class is the most important, ham-
pering the prediction error rate.
Then, we can consider more precisely the error term
since it can be decomposed into the true and the false
positive rate. So consider the false positive rate

FPRi0,τ =
1
N

∑N
i=1 λ

(i0,τ)
i 1 {Yi 6= 1}

1
N

∑N
i=1 λ

(i0,τ)
i 1 {fn(Xi) = 1}

.

and the true positive rate

TPRi0,τ =
1
N

∑N
i=1 λ

(i0,τ)
i 1 {fn(Xi) = 1}

1
N

∑N
i=1 λ

(i0,τ)
i 1 {Yi = 1}

.

A ROC curve corresponding to perturbations of the
variable i0 can then be obtained by plotting pairs
(FPRi0,τ ,TPRi0,τ ) for a large number of values of
τ ∈ [−1, 1]. We then obtain the evolution of both
errors when τ evolves, for a sharper analysis of the
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evolution of the error.

Finally, the influence of each variable on the predic-
tion may be quantified by computing the proportion
of predicted observations with label equal to one

P1i0,τ =
1

N

N∑
i=1

λ
(i0,τ)
i fn(Xi)

that we suggest to plot similarly as ERi0,τ . The ob-
tained figure provides a way to understand the par-
ticular influence of the variables and their variations
to obtain a given decision Y = 1, whatever the verac-
ity of the prediction but pointing out which variable
should be modified and in which sense in order to
change a given decision.

Remark. The case where the labels are taken as
{−1, 1} and for which the loss function is the hinge
loss can be tackled in a similar way with the corre-
sponding changes in previous definitions.

3.2 The case of multi-class classifica-
tion

Consider now the case of a classification into k dif-
ferent categories. In this case Yi, fn(Xi) belong to
{1, . . . , k} for all i = 1 . . . , N where k ∈ N is fixed.
In this case, the error rate ERi0,τ can be defined and
plotted as in the binary classification case.
The evolution, with respect to τ , of the number
of individuals predicted to belong to a given class
must be here expressed for all classes. Hence, for all
j ∈ {1, . . . , k}, we suggest to consider the proportion
of j criterion

Pji0,τ =
1

N

N∑
i=1

λ
(i0,τ)
i 1 {fn(Xi) = j} ,

which denotes the proportion of individuals assigned
to the j-class. For all j = 1, . . . , k, these quantities
Pji0,τ can be plotted similarly as P1i0,τ .
These criteria are the natural generalization of the
indicators defined for the two-class classification.

3.3 The case of continuous regression

Consider now the case of a real valued regression
where Yi, fn(Xi) ∈ R for i = 1 . . . , N . In order to
understand the effects of each variable, first we con-
sider, the mean criterion

Mi0,τ =
1

N

N∑
i=1

λ
(i0,τ)
i fn(Xi),

which will indicate how a change in the variable will
modify the output of the learned regression. Second
the variance criterion

Vi0,τ =
1

N

N∑
i=1

λ
(i0,τ)
i (fn(Xi)−Mi0,τ )

2

is meant to study the stability of the regression with
respect to the perturbation of the variables. Finally
the root mean square error (RMSE) criterion

RMSEi0,τ =

√√√√ 1

N

N∑
i=1

λ
(i0,τ)
i (fn(Xi)− Yi)2

is analogous to the classification error criterion since
it enables to detect possibly misleading variable or
confusing variables when learning the regression.
For each i0 ∈ {1, . . . , p}, these three criteria can be
plotted as a function of τ for τ ∈ [−1, 1].

4 Use Case of interpretability
through resampling

4.1 Two class classification

To illustrate the performance of the procedure we
propose, we consider the Adult Income dataset. It
contains 29.825 instances consisting in the values of
14 attributes, 6 numeric and 8 categorical, and a cat-
egorization of each person as having an income of
more or less than 50, 000$ per year. This attribute
will be the target variable Y that has to be predicted.
Hence this variable is either Y = 1 corresponding to
a high income or Y = 0 corresponding to a low in-
come.
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We train three different classifiers (Logit Regression,
XGboost and Random Forest1) in order to predict
this label.
Then we perform the sensivity analysis by comput-
ing the analysis described in Section 3 and providing
different indicators. This analysis is performed for
50 different random choices of the learning and test
samples, which enables to provide a confidence inter-
val for each indicator, and also to assess the stability
of the classifiers.

For all classifiers, we present in Fig. 1 (Left) the
role played by each variable in the decision. This plot
highlights the role played by the variable education
number. The more educated, the higher the income
will be and inversely. The two variables LcapitalGain
and LcapitalLoss are also testimonial of high incomes
since people with large income have more money on
their bank account or may easily contract debts but
the contrary is not true. It is worth pointing out the
role played by the age variable which appears clearly
in the figure: young people have smaller income but
increasing the age is not enough to increase the in-
come.
We then present in Fig. 1 (Center) the evolution of
the classification error when all variables are shifted
according to τ , increasing or decreasing. The three
models enable to select the same couple of variables
that are important for the accuracy of the prediction
when they increase: education number and numbers
of hours worked pro week. The latter makes the pre-
diction task the most difficult when it increases. In-
deed, people working a large number of hours per
week may not always increase their income since it re-
lies on different factors but people with high income
also work a large number of weekly hours. Hence
these two variables play an important role in the pre-
diction and their changes impact the prediction error.
Finally, the evolution of the False Positive Rate and
True Positive Rate is presented in Fig. 1 (Right).

4.2 Multiclass classification

We now consider the Iris dataset which serves as a
toy example for many methods. This dataset is com-

1R command glm and packages xgboost and ranger.

posed of 150 observations with 4 variables used to
predict a label into three categories: setosa, versi-
color, virginica. To predict the labels, we used an Ex-
treme Gradient Boosting model and a Random Forest
classifier (in Fig. 2). We first present for both models
the Classification error. Then the two other subfig-
ures show the effects of increasing or decreasing the
4 parameters, i.e the width or the length of the sepal
or petal is shown for all classes. We recover the well
known result that the width of the sepal is the main
parameter which enables to differentiate the class Se-
tosa while the differentiation between the two other
remaining classes is less obvious.

4.3 Regression case

We use now our strategy on the Boston Housing
dataset. These data deal with houses prices in
Boston. It contains 506 observations with 13 vari-
ables that should be used to predict the price of the
house to be sold. When considering an optimized
Random Forest algorithm, the importance calculated
as described in [2], enables to select the 5 most impor-
tant variables as follows: lstat (15227), rm (14852),
dis (2413), crim (2144) and nox (2042).

Our analysis goes further than this score. Indeed,
if these variables are shown to play an important role,
their impact on the predictions is made understand-
able with our methodology. In particular we point
out the non linear influence of the variables depend-
ing whether they increase or decrease, as shown in
Fig. 3. For instance the size of a house (with vari-
able code rm for the average number of rooms) is
an important factor that makes the price increase
while smaller houses are not always the cheapest since
sellers find other arguments than size in such cases.
Other variables show more linear influence such as
age for instance.
Other criteria could be studied looking at the gradi-
ent of the functions plotted in Fig. 3 to identify, in
the presence of a large number of variables, few vari-
ables that have the largest impact with respect to a
chosen criterion.
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Figure 1: Results of Section 4.1 on the Adult income dataset. (Left) Portion of predicted ones (High Income)
with respect to the explanatory variable perturbation τ . (Center) Classification Error in the Adult income
dataset with respect to τ . (Left-Center) There is no perturbation if τ = 0, and larger or lower values
of τ indicate that larger or lower values of the explanatory variable receive more weight, respectively. The
dashed lines represent the 10% and 90% quantiles of the indicators, over the randomly sampled test and
learning bases. The plain lines represent the medians. Here, the analysis of the predictions highlights the
importance of the age and LcapitalGain variables. Large values of the explanatory variable hoursWeek also
yield a difficult classification. (Right) Evolution of Roc Curves in the Adult income dataset. As for the
classification errors, we observe that large values of the variable hoursWeek make the classification difficult.
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Figure 2: Evaluation of the classification error and the prediction with respect to the explanatory variable
perturbation τ , on the Iris dataset (Section 4.2). The quantity τ and the plain/dashed lines have the same
signification as in Fig. 1. (Top) XGBoost Model. The sepal width enables to differenciate the Setosa class.
(Bottom) Random Forest Model. The sepal width again enables to differenciate the Setosa class.
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Figure 3: Results obtained on the Boston Housing dataset (Section 4.3) with respect to the explanatory
variable perturbation τ . The quantity τ and the plain/dashed lines have the same signification as in Fig. 1.

5 Conlusion and Future Work

Explainability is a difficult task and has many inter-
pretations. In this work we focused on the analysis
of the variables importance and their impact on a
decision rule. When building a surface response in
computer code experiments, the prediction algorithm
is applied to new entries to explore its possible out-
comes. In the machine learning framework the issue
is quite different since the test input variables must
follow the distribution of the learning sample. There-
fore, evaluating the decision rule at all possible points
does not make any sense. Hence we have proposed
an information theory procedure to obtain pertur-
bations of the original variables without loosing the
information conveyed by the initial distribution. The
proposed solution amounts to resample the observa-
tion points of the testing sample, leading to very fast
computations and to the construction of new indices
that enable to understand the weight and the direc-
tion played by each variable. This method must be
restricted to large datasets since we only explore the
observations we have already that should be in a suf-
ficiently large number.
This resampling method is presented here in view of
the explainability of a machine learning algorithm.
Yet it will be used in future work for a robust analy-
sis of an algorithm since the resampled observations

can be seen as stressed input variables and the pro-
duced indices as stability indices that highlight the
resiliency of the decision to contamination of the ob-
servations.
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