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There is a huge gap between the speeds of modern caches and main memories, and therefore cache misses

account for a considerable loss of efficiency in programs. The predominant technique to address this issue

has been Data Packing: data elements that are frequently accessed within time proximity are packed into the

same cache block, thereby minimizing accesses to the main memory. We consider the algorithmic problem of

Data Packing on a two-level memory system. Given a reference sequence R of accesses to data elements, the

task is to partition the elements into cache blocks such that the number of cache misses on R is minimized.

The problem is notoriously difficult: it is NP-hard even when the cache has size 1, and is hard to approximate

for any cache size larger than 4. Therefore, all existing techniques for Data Packing are based on heuristics

and lack theoretical guarantees.

In this work, we present the first positive theoretical results for Data Packing, along with new and stronger

negative results. We consider the problem under the lens of the underlying access hypergraphs, which are

hypergraphs of affinities between the data elements, where the order of an access hypergraph corresponds to

the size of the affinity group. We study the problem parameterized by the treewidth of access hypergraphs,

which is a standard notion in graph theory to measure the closeness of a graph to a tree. Our main results

are as follows: we show there is a number q∗ depending on the cache parameters such that (a) if the access

hypergraph of order q∗ has constant treewidth, then there is a linear-time algorithm for Data Packing; (b) the

Data Packing problem remains NP-hard even if the access hypergraph of order q∗ − 1 has constant treewidth.
Thus, we establish a fine-grained dichotomy depending on a single parameter, namely, the highest order

among access hypegraphs that have constant treewidth; and establish the optimal value q∗ of this parameter.

Finally, we present an experimental evaluation of a prototype implementation of our algorithm. Our results

demonstrate that, in practice, access hypergraphs of many commonly-used algorithms have small treewidth.

We compare our approach with several state-of-the-art heuristic-based algorithms and show that our algorithm

leads to significantly fewer cache-misses.

Additional Key Words and Phrases: compilers, data packing, cache management, parameterized algorithms,

data locality

1 INTRODUCTION
We consider the problem of Data Packing over a two-level memory system consisting of a small

cache and a large main memory. Given a reference sequence of memory accesses to data elements,

the goal is to organize the data elements into blocks in order to minimize cache misses. Intuitively,

putting contemporaneously-accessed elements in the same block reduces the number of cache

misses, but existing heuristic-based results do not present any theoretical guarantees. In this paper,

we consider this problem from a theoretical perspective and establish its complexity by presenting

exact algorithms and stronger hardness results. We also complement our theoretical results with

an experimental evaluation.
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Cache Management. Consider a memory system with an associative cache and a main memory.

Data items are stored in the main memory and organized into sets of a small size, which are called

blocks (or pages). All data items have the same size and all blocks can hold the same number of data

items. The cache has a small capacity and can hold a few blocks at any given time. Whenever a

program needs to access a data element, its corresponding block must be present in the cache before

the access can happen. Therefore, if the block is not already in the cache, it will be copied into the

cache from the main memory, potentially by evicting another block. This copying process is called

a cache miss, and given the considerably slower speed of the main memory, cache misses are very

time-consuming and lead to significant overhead [Wulf and McKee 1995]. Therefore, the problem of

cache management, i.e., minimizing the number of cache misses, is of great importance in compilers

and operating systems. Cache management can naturally be divided in two parts [Calder et al.

1998]: (i) deciding on how to replace the blocks in the cache, i.e. which block to evict when the

cache is full and a miss occurs and (ii) deciding on the placement scheme of the data items inside

blocks. These problems are respectively called Paging (or choosing a replacement policy) [Sleator
and Tarjan 1985] and Data Packing [Lavaee 2016; Thabit 1982].

Paging (Replacement Policy). In paging, given a data placement scheme that divides the data

items into blocks and a so-called reference sequence of accesses to data elements, the problem is to

choose a block to be evicted each time a cache miss occurs. The goal is to do this in a way that

minimizes the total number of cache misses over the reference sequence [Panagiotou and Souza

2006]. An algorithm that chooses the block to be evicted is called a replacement policy. Common

replacement policies include FIFO, which evicts the oldest block in the cache, and LRU, which evicts

the least recently used block [Borodin et al. 1995; Lavaee 2016]. Note that both FIFO and LRU can

also be applied in the online setting, i.e., when the algorithm does not know the entire sequence

in advance and can only observe accesses as they are made. In the offline case, where the entire

reference sequence is given in the beginning, the optimal replacement policy is to evict the block

whose first use is furthest in the future [Borodin et al. 1995]. This is called the optimal offline policy
(OOP). We primarily focus on LRU as the replacement policy, because it is the one that is most

commonly used in practice [Zhong et al. 2004].

Data Packing. The other aspect of cache management, which is the focus of this paper, is Data

Packing [Thabit 1982]. Consider a cache with a capacity ofm blocks, where each block can store

p data items
∗
. Given a reference sequence R of length N of accesses to n distinct data items and

a replacement policy, Data Packing asks for the optimal placement of data items into blocks in

order to minimize the number of cache misses. The parametersm and p are considered to be small

constants, and the complexity is studied wrt n and N which are large. Data Packing is an extremely

hard problem and is known to be hard to approximate within any non-trivial factor, i.e., any factor

significantly less than N , unless P=NP [Lavaee 2016].

Relevance of Data Packing in Programming Languages. Data Packing is an important tech-

nique for performance optimization during compilation and has been widely studied by the pro-

gramming languages community (See [Calder et al. 1998; Ding and Kennedy 1999; Lavaee 2016;

Petrank and Rawitz 2002; Zhang et al. 2006; Zhong et al. 2004]). The key relevance is two-fold:

• Limit studies: To test the performance of a compiler for data placement, various inputs can be

generated as benchmarks, and the baseline comparison of the performance can be performed

against an optimal algorithm [Petrank and Rawitz 2002]. Hence, an optimal data packing

algorithm is necessary as the baseline.

∗
This necessarily means that there is a limit on the size of data items and a large item should be broken into smaller

parts, each of which is considered a distinct data item.
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• Profiling: Programs usually have similar memory-access behaviors over different inputs [Pe-

trank and Rawitz 2002]. Hence, an effective approximate approach for the online cache

management problem is to consider several representative inputs, then run an optimal offline

algorithm for profiling, and then synthesize an answer to the online problem from optimal

offline solutions [Calder et al. 1998; Petrank and Rawitz 2002].

Previous theoretical results on data packing have all been negative (hardness) results.

Heuristics and Affinity. Given the hardness of cache management and Data Packing, the research

in this area has been mostly focused on developing heuristics. The intuition behind many of these

heuristics is to exploit the underlying affinities between data elements or blocks by trying to place

elements that are commonly accessed together in the same block or evicting the block that is less

frequently accessed in conjunction with the rest of the blocks in the cache [Calder et al. 1998;

Ding and Kennedy 1999; Ding and Kandemir 2014; Han and Tseng 2006; Zhong et al. 2004]. Some

approaches, such as [Zhang et al. 2006], provide more sophisticated heuristics and construct a

hierarchy of affinities. However, none of the existing heuristics provide any theoretical guarantees.

Access Graphs. The concept of access graph [Borodin et al. 1995] has been introduced to model

the affinities between data elements or blocks. An access graph is simply a graph in which there

is a vertex corresponding to every data item and two vertices are connected by an edge if their

respective items appear consecutively in the reference sequence. Access graphs might be weighted

to model how many times every pair of elements have appeared consecutively. Similar structures

and extensions of access graphs to access hypergraphs have been introduced in [Lavaee 2016;

Thabit 1982] where they are called proximity (hyper)graphs. Moreover, most of the heuristic-based

approaches also consider variants of the notion of access graphs.

Cache Misses vs Cache Hits. We consider the Data Packing problem, which asks to minimize

the cache misses. Its natural dual problem is to maximize cache hits. While the two problems are

equivalent in case of exact algorithms, an approximation algorithm for maximum cache hits does

not necessarily lead to an approximation for minimum cache misses [Lavaee 2016]. For example, if in

an access sequence of length N we have N −
√
N cache hits and

√
N cache misses, an approximation

of N −
√
N hits can lead to an arbitrarily bad approximation of

√
N cache misses. In practice, cache

misses occur much less frequently than cache hits, but contribute significantly to the overhead.

Thus, approximation of cache misses is more important than approximation of cache hits, and the

Data Packing problem is defined in terms of cache misses.

Previous Results on Cache Management. To the best of our knowledge, all theoretical results

on minimizing cache misses are negative or hardness results. We summarize some of the main

results in this area. Given a reference sequence R of length N and a cache with a capacity ofm
blocks, the following results have been shown:

(i) In [Petrank and Rawitz 2002], the authors considered the problem of Cache-conscious Data

Placement, which is a somewhat different formulation of cache-miss minimization and is

intuitively similar and related to Data Packing. In Cache-conscious Data Placement, a cache

consists ofm lines, each capable of holding up to p data items at any given time. The problem

is to assign each data item d to a cache line ld . When the program wants to access the data

item d , it should be present in cache line ld , otherwise a cache miss occurs and d is copied to

ld , potentially by evicting another data item from ld . Given an eviction strategy, the goal is to

assign data items to cache lines in a manner that minimizes cache misses. In [Petrank and

Rawitz 2002] it was shown that the problem is NP-hard and unless P=NP, it cannot even be

approximated within a factor of O(N 1−ϵ ).
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(ii) In the same paper, it was shown that any algorithm that does not process the entire sequence,

but instead relies on pairwise affinity information on data items, such as the access graph,

cannot find a solution within a factor ofm − 3 from the optimal, even with unbounded time.

(iii) In [Lavaee 2016], the author showed that Data Packing is NP-hard for any cache size and hard

to approximate within a factor of O(N 1−ϵ ) unless P = NP.

Given these hardness results, Data Packing is usually handled by heuristic-based algorithms that do

not provide any theoretical guarantee. The only positive theoretical result deals with approximating

maximum cache hits:

(iv) In [Lavaee 2016] it was established that the dual problem of Data Packing with the goal of

maximizing cache hits, instead of minimizing cache misses, is approximable within a constant

factor. However, this does not approximate the optimal number of cache misses.

Exploiting Structural Properties. Data Packing is a notoriously difficult computational problem.

In dealing with this problem, a direction that has not been pursued is to exploit structural properties

of the access graphs. In many cases, structural properties of graphs help in obtaining efficient

parametrized algorithms for computationally-hard problems. Specifically, a well-studied structural

property in graph theory, which is frequently applied to computationally-hard graph problems, is

the notion of treewidth. We present this notion below.

Treewidth. Treewidth [Robertson and Seymour 1984] is a well-known and extensively-studied

parameter in graph theory. The treewidth of a graph is a measure of how tree-like the graph is.

Specifically, trees and forests are the only graphs with a treewidth of 1. The importance of treewidth

in algorithm design stems from the fact that many NP-hard graph problems (e.g., Vertex Cover and

Hamiltonian Cycle) can be solved in polynomial time if the input graphs have constant treewidth

and moreover, many other graph problems can be solved in a lower complexity [Abboud et al.

2016; Bodlaender 1997; Chatterjee et al. 2018; Cygan et al. 2015; Fomin et al. 2017; Robertson and

Seymour 1986]. The formal definition of treewidth is presented in the next section.

Treewidth in Program Analysis. Many important families of graphs that arise commonly in

algorithm design are shown to have constant treewidth, e.g., series-parallel and outer-planar

graphs [Bodlaender 1998]. Perhaps the most important example in program analysis is that the

control-flow graphs of structured goto-free programs in many languages such as Pascal and C++

have constant treewidth [Thorup 1998]. The same result was also shown experimentally for most

Java programs [Gustedt et al. 2002]. This led to algorithmic advances in verification and program

analysis [Chatterjee et al. 2015a]. Moreover, treewidth has also been exploited to obtain faster

algorithms for static analysis of recursive state machines [Chatterjee et al. 2015b] and concurrent

systems [Chatterjee et al. 2016, 2017].

Treewidth in Data Packing. In this work we show that Data Packing can be reduced to a graph

problem. In many cases when a graph arises from a structured process, the treewidth of the graph

is not very large [Bodlaender 1998]. For Data Packing, the access graphs arise from structured

program accessing data from a well-defined data structure. Thus, it is natural to study the problem

of Data Packing in terms of the treewidth property of the arising graphs, as we do in this work.

Our Contributions. Our contributions include (a) polynomial algorithms for Data Packing in

constant treewidth access (hyper)graphs, (b) stronger hardness results, and (c) experimental results

demonstrating that our approach leads to considerably fewer cache misses in comparison with

previously-known heuristic-based approaches. Concretely, consider that the cache has sizem, every

block can hold p data items and the reference sequence is of length N with n distinct items. We

consider the access hypergraph of order q, where each vertex of the graph is a data item, and an

edge connects a set of q distinct data items if they appear contiguously in the reference sequence.

We show that the Data Packing problem can be reduced to a graph partitioning problem of the
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Fig. 1. The complexity of Data Packing for p ≥ 3. Herem is the cache size and q is the highest order for which
the access hypergraph has constant treewidth. For a formal definition of order see Section 2.1. Theorem 2.1
was established in [Lavaee 2016]. The rest of the picture is filled by this paper. Our results are shown in bold.

access (hyper)graph and we study whether the constant treewidth property can be exploited for

polynomial-time algorithms. Our main results, assuming constantm and p, are as follows:
(1) Results on Access Graphs.We first consider q = 2. Note that order-2 access hypergraphs are

basically access graphs. We establish the following results:

• Linear-time algorithm. We present a linear-time algorithm for Data Packing when the

access graph is of constant treewidth andm = 1 (Theorem 3.1).

• Hardness of the exact problem. The Data Packing problem remains NP-hard form ≥ 2 and

p ≥ 3 even if the underlying access graph is a tree (which has treewidth 1) (Theorem 3.2).

• Hardness of approximation. Unless P=NP, for anym ≥ 6,p ≥ 2 and any constant ϵ > 0,

the Data Packing problem is hard to approximate within a factor of O(N 1−ϵ ) even if the

underlying access graph is a tree (Theorem 3.2).

(2) Results on Access Hypergraphs.We define access hypergraphs of higher orders and consider

their treewidth. Let q∗ = (m−1)p+2. Note that q∗ depends only on the cache parameters, and

not on n or N . We consider the access hypergraph of order q∗. Intuitively, every edge of this

access hypergraph contains all the necessary historical cache data for determining whether a

miss occurs at a corresponding memory access. Formally, we establish the following results:

• Linear-time algorithm. We present a linear-time algorithm for Data Packing when the

access hypergraph of order q∗ has constant treewidth (Theorem 4.1).

• Hardness of the exact problem. Form ≥ 2 and p ≥ 3, the Data Packing problem remains

NP-hard even if the access hypergraph of order q∗−1 has constant treewidth (Theorem 4.2).

• Hardness of approximation. Unless P=NP, form ≥ 6 and p ≥ 2 and any constant ϵ > 0, the

Data Packing problem is hard to approximate within a factor of O(N 1−ϵ ) even if the access

hypergraph of order q∗ − 4p − 1 has constant treewidth (Theorem 4.3).

Note that while constant treewidth has been exploited to obtain polynomial-time algorithms

for NP-complete graph problems such as Vertex Cover and Hamiltonian Cycle, we show that

for Data Packing the constant treewidth property does not always help, and the problem

remains hard even when the access hypergraph of order q∗ − 1 has constant treewidth.

Our hardness result and linear-time algorithm present a sharp boundary (or fine-grained

dichotomy) that shows when the treewidth can be exploited. Concretely, the hardness of
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the Data Packing problem can be captured by a single parameter, namely, the highest order

amongst access hypergraphs that have constant treewidth. We establish the optimal value q∗

of this parameter which is the necessary and sufficient condition for existence of efficient

parameterized algorithms that exploit treewidth.

(3) Experimental results. We present an experimental evaluation of a prototype implementation

of our algorithm on a variety of benchmarks from linear algebra, sorting algorithms, dy-

namic programming, recursive algorithms, string matching, computational geometry and

algorithms on tree data-structures. Our results show that the access hypergraphs of most of

the benchmarks have small treewidth. We compare our approach with several state-of-the-

art heuristic-based algorithms. The experimental results show that on average our optimal

algorithms obtain 15-30% imporvement over the previous heuristic-based approaches.

Novelty and Significance. In this paper, we define a novel and rich structural property of programs,

i.e. access hypergraphs and their treewidth, and show that it can be exploited to obtain faster

algorithms for Data Packing. We present the first positive theoretical results for Data Packing, i.e.,

for cache-miss minimization. We also enrich the complexity landscape as shown in Figure 1. Only

the results of Theorem 2.1 were known before, and all other results (which are shown in bold) are

established in the present work.

2 PRELIMINARIES
2.1 Data Packing
In this section, we define the problem of data packing and fix our notation. We also present several

previously-known results. The problem was first studied in [Thabit 1982]. Here, we present an

adaptation of its definition as formalized in [Lavaee 2016].

Notation. We use Z to denote the set of integers and N to denote the set of positive integers. Let

G = (V ,E) be a (hyper)graph, and X ⊆ V , then we denote by G[X ], the induced subgraph of G
over X , i.e.G[X ] = (X , {e ∈ E | e ⊆ X }). Given two (hyper)graphs G1 = (V1,E1) and G2 = (V2,E2),
we define their union and intersection in the natural way, i.e. G1 ∪ G2 = (V1 ∪ V2,E1 ∪ E2) and
G1∩G2 = (V1∩V2,E1∩E2). If F is a family of sets, we write ∪F (resp. ∩F ) to denote ∪A∈FA (resp.

∩A∈FA). Given two functions f ,д : A → Z, equality and summation are defined in a pointwise

manner, i.e. f ≡ д ⇔ ∀a ∈ A; f (a) = д(a) and for any a ∈ A, we have (f + д)(a) = f (a) + д(a).
Given a function f : A→ B and a subset A′ ⊆ A, we use f |A′ to denote the restriction of f to A′.
This restriction is a function of the form f |A′ : A

′→ B that agrees with f on every point in A′. For
a set X , we write P(X ) to denote the power set of X , i.e., the set of all subsets of X .

Data Placement Schemes. Given a set D of size n of data items and a positive integer p, a data
placement scheme σ is a partitioning of D into blocks of size at most p. We call p the packing factor.
It is often useful to think of σ as an equivalence relation on D whose equivalence classes are the

blocks. Hence, following the usual notation, we write xσy to denote that x and y are in the same

block, [x]σ to denote the block of σ that contains the data element x and D/σ to denote the set of

blocks or equivalence classes of σ .

Replacement Policies. Given a set D of n data items, a cache of sizem, a data placement scheme

σ , and a sequence R ∈ DN
of accesses to data items, a replacement policy is a function that decides

which block must be evicted from the cache at each time. Formally, a replacement policy is a

function π : {0, 1, 2, . . . ,N } → P(D/σ ) that assigns to each time point i , the set of blocks that are
present in the cache right after the access R[i]. Any such policy must satisfy the following:

• π (0) = ∅, i.e. the cache must be empty at the beginning;

• For all 1 ≤ i ≤ N , |π (i)| ≤ m, i.e. there are at mostm blocks in the cache at each time;
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• For all 1 ≤ i ≤ N , |π (i) \ π (i − 1)| ≤ 1 and |π (i − 1) \ π (i)| ≤ 1, i.e. at most one block can be

added to the cache and at most one block can be evicted at each step;

• For all 1 ≤ i ≤ N , R[i] ∈ ∪π (i), i.e. the block containing an access R[i] must be in the cache

right after that access.

Remark 2.1. Note that the replacement policy only matters when the cache has a size of at least 2.
When the cache has unit size, there is always a unique choice for the block that must be evicted.

Cache Misses. Given a data placement scheme σ and a replacement policy π as above, the number

of cache misses caused by σ and π over R is defined as the number of times a new block is loaded

into the cache. Formally, misses(σ ,π ) = | {i | 1 ≤ i ≤ N ,π (i) \ π (i − 1) , ∅} |.

The LRU Policy. Due to its popularity, we assume throughout this paper that the replacement

policy is LRU, i.e. the Least-Recently-Used block is always evicted from the cache. However, most

of our results carry over to First-In-First-Out (FIFO) and the Optimal Offline Policy (OOP), as well.

Recall that FIFO evicts the oldest block in the cache and OOP evicts the block that is going to be

used furthest in the future.

The Data Packing Optimization Problem. Consider a memory subsystem that consists of n
distinct data elements and a fully-associative cache with a capacity ofm blocks and a packing factor

of p. Given a sequence R of length N of references to data elements, the Data Packing problem

asks for a data placement scheme σ that minimizes the number of cache misses incurred by the

reference sequence R, using LRU as the replacement policy. We denote an instance of the Data

Packing problem by I = (n,m,p,R).

Parameters. In the sequel, we consider the parametersm and p to be small constants and try to

find polynomial algorithms in terms of N and n.
We now define the concepts of access graph and access hypergraph. Various similar notions

have been defined in the past, and are sometimes called affinity graphs or proximity graphs. These

hypergraphs will later serve as a basis for reducing the Data Packing problem to a graph problem.

Access Graph. Given a sequence R of length N of accesses to data elements from a set D of

size n, the access graph of R is a simple graph GR = (V ,E) in which V consists of n vertices, each

corresponding to one of the data elements inD, and there is an edge between two distinct vertices iff
their corresponding data elements appear consecutively somewhere in R. More formally, {u,v} ∈ E
iff u , v and there exists an index i , such that {R[i],R[i + 1]} = {u,v}.

Intuitively, one can think of the graph GR as the structure on data elements that is respected by

the access sequence R, in the sense that R can only go from a vertex in GR to one of its neighbors.

Moreover, GR is the sparsest graph over which R is a (non-simple) path.

Example 2.1. Consider the access sequence R =< a,b, c,a,b,b,d,b,d, e, c,b, f >. There are 6 data
elements in this sequence and its access graph GR is shown in Figure 2. Note that R is a path on this
graph and every edge appears somewhere along R, hence no subgraph of GR has the same property.

a

b

c

d

e

f

Fig. 2. The access graph GR of R =< a,b, c,a,b,b,d,b,d, e, c,b, f >
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We now extend the concept of access graphs to higher order affinity relations between data

items, resulting in access hypergraphs.

Hypergraphs andOrderedHypergraphs.A hypergraphG = (V ,E) consists of a setV of vertices

and a multiset E of hyperedges. Each hyperedge e ∈ E is in turn a subset of the vertices of G. An
ordered hypergraph G = (V ,E) consists of a set V of vertices and a set E of ordered hyperedges.

Each ordered hyperedge e ∈ E is a sequence of distinct vertices of G, i.e. a hyperedge together with
an order on its vertices. Intuitively, hypergraphs are natural extensions of graphs, where each edge

can connect more than two vertices. Given a hypergraph G, its primal graph Gp
is a graph on

the same set V of vertices, where two vertices u and v are connected by an edge iff there exists a

hyperedge e ∈ E containing both u and v . We shall simply refer to hypergraphs and hyperedges as

graphs and edges when there is no fear of confusion.

Access Hypergraph. Given a natural number q and an access sequence R as above, the access

hypergraph G
q
R = (V ,E) is a hypergraph defined as follows:

• There are n vertices in V , each corresponding to one data element;

• For each data access R[i], there is a corresponding hyperedge ei in E. The hyperedge ei
consists of R[i] and the q − 1 distinct data elements that are accessed right before R[i]. If
there are less than q − 1 such elements, ei will include all of them. Concretely, ei is defined as
follows: ei := {R[j] | j ≤ i ∧ |{R[j],R[j + 1], . . . ,R[i]}| ≤ q}.

We call q the order of the access hypergraph. It is easy to verify that removing repeated edges from

the access hypergraph G2

R leads to the access graph GR .

Example 2.2. Consider the access sequence R =< a,b, c,a,b,b,d,b,d, e, c,b, f >. Letting q = 3,
the corresponding access hypergraphG3

R of order 3 consists of the following hyperedges (sometimes
there are multiple copies of the same hyperedge, as shown below. We consider these to be distinct
hyperedges): {a}, {a,b}, {a,b, c} × 4, {a,b,d} × 3, {b,d, e}, {c,d, e}, {b, c, e}, {b, c, f }. Figure 3 shows
the segments of the sequence that correspond to edges in G3

R .

a, b, c, a, b, b, d, b, d, e, c, b, f

Fig. 3. Segments of R corresponding to edges in the hypergraph G3

R

Ordered Access Hypergraphs. Given an access sequence R as above, the ordered access hyper-

graph Ĝ
q
R is defined similarly to G

q
R , except that each hyperedge is ordered in the natural way,

i.e. in the order of appearance of its corresponding data elements in R. Formally, for every access

R[i], there is a corresponding ordered hyperedge ei in Ĝ
q
R . The ordered hyperedge ei is a sequence

< v1,v2, . . . ,vl > of vertices of Ĝ
q
R such that vl = R[i], vl−1 is the first distinct data element

accessed before R[i], vl−2 is the second distinct element, etc. Moreover, l is the maximum between

q and the number of distinct elements accessed up until R[i].

Example 2.3. Consider the access sequence R =< a,b, c,a,b,b,d,b,d, e, c,b, f >. The access
hypergraphG3

R was shown in Example 2.2. We now construct the ordered hyperedges of Ĝ3

R . Intuitively,
we start from any access R[i] in R and go back until we see 3 different data elements. These data
elements will form the ordered hyperedge ei corresponding to R[i]. This is illustrated in Figure 4. Note
that the elements in an ordered hyperedge ei are ordered by their last access time before or at R[i],
e.g. see the hyeperedge < a,d,b > in Figure 4.

Proceedings of the ACM on Programming Languages, Vol. 1, No. POPL, Article 1. Publication date: January 2019.



Efficient Parameterized Algorithms for Data Packing 1:9

a, b, c, a, b, b, d, b, d, e, c, b, f
<a>

<a, b>
<a, b, c>

<b, c, a>
<c, a, b>
<c, a, b>

<a, b, d>
<a, d, b>

<a, b, d>

<b, d, e>
<d, e, c>

<e, c, b>
<c, b, f>

R:

Fig. 4. Ordered Hyperedges of G and the segments in R to which they correspond

2.2 Tree Decompositions and Treewidth
In parameterized complexity, treewidth is one of the most widely-used parameters for graph

problems. It is a measure of how “tree-like” a given graph is. In this section, we provide a quick

overview of tree decompositions and treewidth. For an in-depth treatment see [Cygan et al. 2015].

Tree Decomposition. Given a (hyper)graph G = (V ,E), a tree decomposition of G is a pair

(T , {Xt | t ∈ T }) where T is a tree and each node t of T is associated with a subset Xt ⊆ V of

vertices of G, such that the following conditions are met:

(i) Every vertex appears in some Xt , i.e. ∪t ∈TXt = V ;

(ii) Every (hyper)edge appears in some Xt , i.e. ∀e ∈ E ∃Xt e ⊆ Xt ;

(iii) For every vertex v ∈ V , the setTv = {t ∈ T |v ∈ Xt } of all nodes of the treeT that contain v in

their corresponding Xt , forms a connected subtree of T .
It is evident from the definition that (T , {Xt }) is a tree decomposition of a hypergraph G iff it is

a tree decomposition of its primal graph Gp
. To avoid confusion, we reserve the word “vertex” for

vertices of G and use the word “node” for vertices of T . Moreover, we call each Xt a “bag”.

Treewidth. The width of a tree decomposition (T , {Xt }) is the size of its largest bag minus 1,

i.e.mint ∈T |Xt | - 1. The treewidth of a graphG is the smallest width among all tree decompositions

of G and is denoted tw(G).

Example 2.4. Figure 5 shows the graphGR (as in Figure 2) and a tree decomposition ofGR . This tree
decomposition has a width of 2 and is an optimal tree decomposition. Hence, the treewidth of GR is 2.

a

b

c

d

e

f {a,b, c}

{b, c,d} {b, f }

{c,d, e}

Fig. 5. A graph GR (left) and one of its optimal tree decompositions (T , {Xt }) (right).

To simplify the algorithms that exploit tree decompositions, we now define the notions of labeling

and nice tree decomposition.

Nice Tree Decompositions. A nice tree decomposition [Cygan et al. 2015] of a (hyper)graphG is

a tree decomposition (T , {Xt }) in which a specific node is designated as the root and every node

t ∈ T is “labeled” by a subgraph Gt of G, such that the following rules are obeyed:

(1) If t is a leaf in T , then Xt = ∅ and Gt = (∅, ∅).
(2) Otherwise, t satisfies one of the following cases:
• Join Node. The node t has two children, t1 and t2, Xt = Xt1 = Xt2 and Gt = Gt1 ∪Gt2 .
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• Introduce Vertex Node. The node t has a single child t1 and Xt = Xt1 ∪ {v} for some vertex

v < Xt1 . In this case, we say that t introduces v . Moreover,Gt = Gt1 ∪ {v}, i.e.Gt is defined

as the graph resulting from adding v as an isolated vertex to Gt1 .

• Introduce Edge Node. Similar to the previous case, t has a single child t1. This time, Xt = Xt1 ,

but Gt is defined as the graph resulting from adding a new edge e toGt1 . All vertices of e
must be present in Xt . We say that t introduces e .
• Forget Vertex Node. The node t has a single child t1 and Xt = Xt1 \ {v} for some vertex

v ∈ Xt1 . We say that t forgets v . Moreover, Gt = Gt1 .

(3) Each edge is introduced exactly once.

Intuitively, the label graph Gt is the subgraph of G consisting of all the vertices and edges that are

introduced in the subtree of T rooted at t .

Remark 2.2. Note that in our (ordered) hypergraphs in this paper, we might have multiple copies
of the same (ordered) hyperedge. We treat these as distinct edges and require that each of them be
introduced separately in nice tree decompositions.

Remark 2.3. The notion of label graphsGt is solely defined for theoretical purposes and used in our
proofs of correctness. In practice, our implementation avoids the overhead of constructing Gt ’s.

Example 2.5. Figure 6 shows a nice tree decomposition of the graph G of Figure 2. In each node t of
the tree, its label subgraph Gt is illustrated and the vertices of the bag Xt are shown in red. Intuitively,
a nice tree decomposition constructs the graph in small increments and the bag Xt contains the vertices
that can participate in the incremental change.

Fig. 6. A nice tree decomposition of the graph in Figure 2. The leftmost node is the root. The graph Gt is
illustrated in each node t . The vertices of the bags Xt are shown in red.

2.3 Existing Results
We now formally present known results regarding Data Packing and Tree Decompositions that

will be used in the sequel.

The Hardness of Data Packing. Note that we are considering the problem of minimizing cache

misses, not that of maximizing cache hits. While the two problems are equivalent in terms of exact

algorithms, approximating the minimal number of cache misses is much harder than approximating

the maximal number of cache hits. The latter problem admits a polynomial-time constant-factor

approximation [Lavaee 2016]. In contrast, the following theorem shows that the former problem is

hard to even approximate.

Theorem 2.1 ([Lavaee 2016]). Assuming either LRU, FIFO or OOP as the replacement policy, we
have the following hardness results:
• For anym and any p ≥ 3, Data Packing is NP-hard.
• Unless P=NP, for anym ≥ 5, p ≥ 2 and any constant ϵ > 0, there is no polynomial algorithm
that can approximate the Data Packing problem within a factor of O(N 1−ϵ ).
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We now turn to tree decompositions. What makes tree decompositions a very useful tool is the

fact that one can perform bottom-up dynamic programming on them in a manner similar to trees.

This is due to an property of tree decompositions, called the separation lemma.

Separators. Given a (hyper)graph G = (V ,E), and two sets of vertices A,B ⊆ V , we say that the

pair (A,B) is a separation ofG if A∪ B = V and no (hyper)edge in E contains vertices of both A \ B
and B \A. We call A ∩ B the separator corresponding to the separation (A,B) and the order of the

separation (A,B) is the size of its separator |A ∩ B |.

Lemma 2.1 (Separation Lemma, [Bodlaender 1988; Cygan et al. 2015]). Let (T , {Xt }) be a tree
decomposition of G, where G is a graph or a hypergraph, and let {a,b} be an edge of T . By removing
the edge {a,b}, T breaks into two connected components Ta and Tb , respectively containing a and b.
Let A =

⋃
t ∈Ta Xt and B =

⋃
t ∈Tb Xt . Then (A,B) is a separation of G with separator Xa ∩ Xb .

In our algorithms in the rest of this paper, we assume that whenever a (hyper)graph G of

constant treewidth appears as an input to an algorithm, the input also contains an optimal nice

tree decomposition (T , {Xt }) ofG . This is justified by the following two lemmas that show one can

obtain (T , {Xt }) from G in linear time.

Lemma 2.2 ([Bodlaender 1996] ). There is an algorithm that given a (hyper)graph G = (V ,E)
and a constant k , decides in linear time whether G has treewidth at most k and if so, produces a tree
decomposition of G with optimal width and O(k · |V |) nodes.

Lemma 2.3 ([Cygan et al. 2015]). There is a linear-time algorithm that given a graph G = (V ,E)
and a tree decomposition (T , {Xt }) of G of width k with O(k · |V |) nodes, produces a nice tree
decomposition (T ′, {Xt ′}) ofG with the same width k andO(k · |V |) nodes. This algorithm can also be
applied ifG is a hypergraph, in which case the output tree decomposition (T ′, {Xt ′}) will have width k
and O(k · |V | + |E |) nodes.

3 DATA PACKING ON CONSTANT-TREEWIDTH ACCESS GRAPHS
We now consider the problem of Data Packing when parameterized by the treewidth of the

underlying access graph. In Section 3.1, we provide a linear-time algorithm whenm = 1 and the

access graph has constant treewidth. Note that this problem is NP-hard for general access graphs,

as demonstrated by Theorem 2.1. Then, in Section 3.2 we show that form ≥ 2 the problem remains

NP-hard and hard-to-approximate even when the access graph is a tree, i.e. has treewidth 1.

3.1 Algorithm form = 1 and Constant-treewidth Access Graph
We are given a Data Packing instance I = (n, 1,p,R), its access graphGR and a nice tree decomposi-

tion (T ,Xt ) of the access graph with width k and O(n · k) nodes. We first reduce the problem of

Data Packing to a graph problem overGR and then provide a linear-time fixed-parameter algorithm

for solving the graph problem. We start by defining the minimum-weight p-partitioning problem.

p-partitionings. Given an integer p > 0 and a graph G = (V ,E), a p-partitioning of G is a

partitioningψ of the set V of vertices such that each partition set has a size of at most p. In other

words, a p-partitioning of G is a data placement scheme where the vertices of G are the data

elements and p is the packing factor.

Cross Edges. Given a p-partitioningψ of the graph G = (V ,E), an edge e = {u,v} ∈ E is called a

cross edge if its two endpoints are in different partition sets, i.e. if [u]ψ , [v]ψ .

Minimum-weightp-partitioning.Given a simple graphG = (V ,E), a weight functionw : E → N
and a positive integer p, the minimum-weight p-partitioning problem asks for a p-partitioning ofG
in which the total weight of cross edges is minimized.
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a

b

c

d

e

f
2 1

3
1

1
2

1

Fig. 7. An optimal 2-partitioning

Reduction of Data Packing to Minimum-weight p-partitioning. We now reduce the Data

Packing problem to minimum-weight p-partitioning. Given an instance I = (n, 1,p,R) of Data
Packing, we consider the access graphGR = (V ,E) and define the weight functionwR : E → N as

wR ({u,v}) := |{i | {R[i],R[i + 1]} = {u,v}}|. Informally, the weight of an edge is the number of

times its two endpoints have appeared consecutively in R. The reduction is now complete.

Lemma 3.1. The optimal number of cache misses in a Data Packing instance I = (n, 1,p,R) is 1 plus
the total weight of cross edges in a minimum-weight p-partitioning of GR with weight functionwR .

Proof. Every p-partitioning ψ of GR is a data placement scheme for I and vice versa. Given

thatm = 1, the replacement policy does not matter (Remark 2.1) and a cache miss occurs each

time R accesses a new block. If we consider R as a path on GR , a cache miss occurs at the very

beginning and then each time this path goes from one equivalence class ofψ to another. Therefore,

the number of cache misses ofψ is 1 plus the total weight of cross edges inψ . □

Example 3.1. Consider the access sequence R =< a,b, c,a,b,b,d,b,d, e, c,b, f > of Example 2.1
and the Data Packing instance I = (6, 1, 2,R), i.e. each block can store up to 2 data elements. Figure 7
shows the graph GR in which every edge is weighted by the number of times it is traversed in R. An
optimal 2-partitioning of GR is shown in which vertices of the same color are in the same partition.
The total weight of cross edges in this partitioning is 7. The corresponding data placement scheme is
{{a, c}, {b,d}, {e}, { f }} which leads to 8 cache misses on R. The cache misses are underlined.

Wewill provide an algorithm for solving the Minimum-weight p-partitioning problem on a graph

G using an optimal nice tree decomposition of G. Our algorithm employs a bottom-up dynamic

programming technique. We first need several basic concepts to define the algorithm.

States over a Set of Vertices. Given a graph G = (V ,E), a natural number p and a subset A ⊆ V
of vertices, a state over A is a pair s = (φ, sz) such that (i) φ is a partitioning of A in which every

equivalence class has a size of at most p, and (ii) sz is a size enlargement function sz : A/φ →
{0, . . . ,p − 1} that maps each equivalence class [v]φ to a number which is at most p − |[v]φ |.
Intuitively, the idea is to take A to be one of the bags in the tree decomposition and later extend a

state over A to a p-partitioning ofG by adding the vertices inV \A. So, a state over A partitions the

vertices of A into sets of size at most p and for each partition [v]φ fixes the exact number sz([v]φ )
of vertices from V \A that should be added to [v]φ . We denote the set of all states over A by SA,p
or simply SA when p is clear from the context.

Realization.We say that a p-partitioningψ realizes the state s = (φ, sz) overA, if (i) the restriction
ofψ toA is equal to φ, i.e.ψ |A = φ and (ii) for all verticesv ∈ A, sz([v]φ ) = |[v]ψ | − |[v]φ |. Intuitively,
ψ realizes s if (i)ψ partitions the vertices in A in the same manner as φ and (ii) if a partition [v]ψ of

ψ intersects A, then [v]ψ contains as many vertices from outside of A as fixed by sz.

Example 3.2. Figure 8 shows all 14 possible states over the set A = {a,b, c} of vertices with p = 2.
In each case, each row denotes one partition set and hence the order of rows and the order of squares in
a row does not matter. Empty squares correspond to the possibility of extension of the set, as defined
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Fig. 8. All possible states over A = {a,b, c} with p = 2

a c

b d

e

f

→

a c

b d

e

f

Fig. 9. Two compatible states over A = {a,b, c} and A′ = {d, e, f }

by sz. The optimal 2-partitioning ψ presented in Figure 7 realizes the highlighted state in Figure 8,
becauseψ puts a and c in the same partition and puts b in a partition of size 2, whose other member, d ,
comes from outside the set {a,b, c}.

Compatibility.We say that two states s and s ′, respectively over the sets A and A′, are compatible

if there exists a p-partitioning that realizes both of them. We write s ⇆ s ′ to show compatibility.

Example 3.3. Intuitively, two states are compatible if they can fit into each other. Figure 9 shows
the states realized by the 2-partitioning of Figure 7 above over the sets A = {a,b, c} and A′ = {d, e, f }
and how they can be fitted together to create the entire 2-partitioning.

Algorithm 1. We are now ready to describe our algorithm in detail. Given a graph G, a weight
functionw and an optimal nice tree decomposition T of G, our algorithm performs a bottom-up

dynamic programming on T . This is broken into three steps.

Step 0: Initialization. We define several variables at each node of our tree T . These variables are
meant to be computed in a bottom-up manner. Concretely, for every t ∈ T and every state s over
the bag Xt , we define a variable dp[t , s] and initialize it to +∞.

Invariant. Formally, our algorithm satisfies the following invariant for every dp variable right

after the end of its computation:

dp[t , s] = The minimum total weight of cross edges over all p-partitionings of Gt that realize s .

Intuitively, we are considering the states over the bag Xt and extending them by adding vertices

that were introduced in the subtree of t in T .

Step 1: Computation of dp. The algorithm starts from the bottom of the treeT and computes the

dp variables bottom up, i.e. with an order such that for every node t ∈ T the dp variables at its

children are computed before the dp variables of t . For every node t ∈ T and state s = (φ, sz) ∈ SXt ,

we show how dp[t , s] is computed based on the type of the node t :

(1.1) if t is a Leaf: dp[t , s] = 0;

(1.2) if t is a Join node with children t1 and t2:

dp[t , s] = min

sz1+sz2≡sz
dp[t1, (φ, sz1)] + dp[t2, (φ, sz2)];
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Note that the summation and equality above are pointwise.

(1.3) if t is an Introduce Vertex node, introducing v , with a single child t1:

dp[t , s] = dp[t1, (φ |Xt
1

, sz |Xt
1

)];

(1.4) if t is an Introduce Edge node, introducing e , with a single child t1:

dp[t , s] = dp[t1, s] +w(e,φ),

wherew(e,φ) is equal tow(e) if e is a cross edge in φ and zero otherwise;

(1.5) if t is a Forget Vertex node, forgetting v , with a single child t1:

dp[t , s] = min

s ′∈SXt
1

∧s ′⇆s
dp[t1, s

′].

Recall that⇆ denotes compatibility.

Step 2: Computing the Output. The algorithm computes the output, i.e. the optimal weight of a

p-partitioning, using the values stored at dp variables. If r is the root node of T , then the algorithm

outputs the following value: mins ∈SXr dp[r , s].
This concludes Algorithm 1. We now prove the correctness of our algorithm.

Lemma 3.2. Algorithm 1 correctly computes the total weight of cross edges in a minimum-weight
p-partitioning.

Proof. We prove this lemma in two steps. First, we show that the invariant defined above

holds after computing dp[t , s] assuming that it was satisfied for all dp variables in the children of t
(Correctness of Step 1). Then, assuming that the invariant holds for dp variables at the root, we
show that the output is the total weight of an optimal p-partitioning (Correctness of Step 2).

Intuitively, the invariant says that if we only consider the graph Gt , i.e. the part of G that was

introduced in the subtree of T rooted at t , and those p-partitionings ofGt that realize the state s ,
then dp[t , s] holds the minimum total weight of cross edges among these p-partitionings.

Correctness of Step 1. As in the algorithm, we break this part into several cases:

(1.1) Computations at Leaves. The node t is a leaf in T , hence Gt is the empty graph and Xt is the

empty set. Therefore, SXt contains a single trivial state s∅ and we have dp[t , s∅] = 0 because

the total weight of cross edges in an empty graph is zero.

(1.2) Computations at Join Nodes. The node t is a join node with children t1 and t2. We want to

compute dp[t , s] where s = (φ, sz). Therefore, we only consider those p-partitionings that
realize s . Given that Xt = Xt1 = Xt2 , φ imposes itself on both Xt1 and Xt2 . However, each

partition in φ must be extended by a number of vertices as defined by sz. These vertices

must come from either Gt1 or Gt2 and must not already be present in Xt . According to the

separation lemma (Lemma 2.1), the only vertices that are in bothGt1 andGt2 are precisely those

of Xt . Hence, each new vertex comes either from Gt1 or Gt2 but not from both. Therefore, we

should minimize our total cross edge weights wrt dp variables of the form dp[t1, (φ, sz1)] and
dp[t2, (φ, sz2)]where sz1+sz2 ≡ sz. The function sz1 defines the number of vertices that should

be added from Gt1 − Xt to each partition of φ and sz2 does the same for Gt2 − Xt . Formally, if

we let w(φ) be the total weight of cross edges caused by φ in Gt1 ∩Gt2 = Gt1 [Xt ] ∩Gt2 [Xt ],

then we should let:

dp[t , s] = dp[t , (φ, sz)] = min

sz1+sz2≡sz
dp[t1, (φ, sz1)] + dp[t2, (φ, sz2)] −w(φ).

The reason we are subtractingw(φ) at the end is that the weights of its corresponding edges

are taken into account twice, i.e. once in each of dp[t1, (φ, sz1)] and dp[t2, (φ, sz2)].
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We now show it is always the case thatw(φ) = 0. If an edge contributes tow(φ), then it must

be present in both Gt1 and Gt2 . However, by property (3) of a nice tree-decomposition, each

edge is introduced exactly once. Hence, Gt1 and Gt2 do not share any edges and w(φ) = 0.

Therefore, by setting dp[t , s] = dp[t , (φ, sz)] = minsz1+sz2≡sz dp[t1, (φ, sz1)] + dp[t2, (φ, sz2)],
we satisfy the invariant.

t

t1 t2

Fig. 10. In a join node t , Gt1 and Gt2 do not share any edges and their shared vertices are in Xt .

(1.3) Computations at Introduce Vertex Nodes. The node t is an introduce vertex node. So, it has

a single child t1 and Xt = Xt1 ∪ {v} for some v < Xt1 . We know that the vertex v cannot

possibly appear in Gt1 because every vertex appears in a connected subtree of T and v < Xt1 .

Hence, Gt is obtained by adding v as an isolated vertex to Gt1 . Again, we want to compute

dp[t , s] and should hence only consider the p-partitionings that realize s . Given that Xt1 ⊂ Xt ,

s imposes a unique compatible state on Xt1 . Moreover, Gt has no new edges in comparison

with Gt1 , so the total weight of cross edges should only be computed in Gt1 . Hence, we let

dp[t , s] = dp[t , (φ, sz)] = dp[t1, (φ |Xt
1

, sz |Xt
1

)].

Intuitively, this is equivalent to removing v from its partition and then computing the dp in t1.

t

t1

Fig. 11. In an introduce vertex node t , the newly introduced vertex is isolated and there are no new edges.

(1.4) Computations at Introduce Edge Nodes. The node t has a single child t1 and Xt = Xt1 . Moreover,

the only difference between Gt and Gt1 is in a single edge e . When computing dp[t , s], the
state s forces itself on Xt1 = Xt . Hence we should let dp[t , s] = dp[t1, s]+w(e, s), wherew(e, s)
is the contribution of the edge e to the total weight of cross edges in s . It is zero if the two

sides of e are put in the same partition set by s and is equal tow(e) otherwise.

t

t1

Fig. 12. A new edge is introduced in the node t . The states are only dependent on vertices and hence are the
same over Xt and Xt1 . However, we have to account for the weight of the new edge.

(1.5) Computations at Forget Vertex Nodes. In this case the node t has a single child t1 and Xt =

Xt1 \ {v} for somev ∈ Xt1 . However,Gt = Gt1 . Hence, when computing dp[t , s], it is sufficient
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to take the minimum among the values of dp variables of all states s ′ over Xt1 that are

compatible with s . More precisely, we let dp[t , s] = mins ′∈SXt
1

∧s ′⇆s dp[t1, s
′].

t

t1

Fig. 13. When a vertex v is forgotten by t , we have Gt = Gt1 , but Xt = Xt1 \ {v}.

Correctness of Step 2. Given that r is the root node of T , we have Gr = G. Since every p-
partitioning ofG realizes some state over Xr , it follows that the optimal weight of a p-partitioning
is mins ∈SXr dp[r , s]. This concludes the proof.

□

Remark 3.1. Algorithm 1 computes the total weight of cross edges in a minimum-weight p-
partitioning. As is common with dynamic programming algorithms, an optimalp-partitioning itself can
be obtained by keeping track of the choices made during the computation of dp variables, i.e. keeping
track of the cases that led to the minimal values in each computation.

We now establish the complexity of our approach and present the main theorem of this section.

Number of States. For a fixed p, letCp
k denote the number of different possible states over a set of

size k , i.e. C
p
k := |S {1,2, ...,k } |. We write Ck instead of C

p
k when p can be inferred from the context.

Appendix A establishes bounds on the value of Ck . Note that this value only depends on p and k .

Theorem 3.1. Given a Data Packing instance I = (n, 1,p,R) as input, where n is the number of
distinct data elements, p is the packing factor, R is the reference sequence with a length of N and the
cache has unit size, the Data Packing problem, i.e. finding the minimal number of cache misses, can be
solved in linear time, i.e. in time O(N + n · k2 · Ck · p

k ), when the underlying access graph GR has
treewidth k − 1.

Proof. Given a Data Packing instance I = (n, 1,p,R), we first apply the reduction of Lemma 3.1

which takes O(N ). We then use Algorithm 1 to solve the resulting minimum-weight p-partitioning
problem. The correctness of this algorithm was established in Lemma 3.2. The only remaining

part is to find the runtime of Algorithm 1. Note that the time spent for computing a nice tree

decomposition, as in Lemmas 2.2 and 2.3 are linear and dominated by the rest of our runtime.

The algorithm needs values of dp variables for all nodes of the tree decomposition which are at

most O(n · k). We obtain upper-bounds for the runtime of our algorithm on each type of node:

• Leaves. There is a single state at each leaf and its dp is zero. Hence we spendO(1) at each leaf.

• Join Nodes. At a join node t , there are at mostCk states and for each state s = (φ, sz) we have
to look into the states corresponding to every possible size enlargement function sz1 ≤ sz. As
in the proof of Lemma A.2, there are at most pk such functions. Creating each corresponding

state takes O(k). Hence, we spend O(k ·Ck · p
k ) at each join node.

• Introduce Vertex Nodes. At a node t , there are Ck states and we spend O(k) computing the

unique corresponding state over Xt1 . Thus, each introduce vertex node takes O(k ·Ck ).

• Introduce Edge Nodes. This case is similar to the previous one and takes O(k ·Ck ).

• Forget Vertex Nodes. At a node t , there areCk states and for each of them we have to look into

all its compatible states over Xt1 . Note that such compatible states can be obtained either by

putting the vertex v in its own partition set, which can have any size between 1 and p, or
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by adding it to the partition set of another vertex in Xt . Hence, there are at most p + k such

states and the total processing time of a forget vertex node is O(k · (p + k) ·Ck ).

Note that the runtime for join nodes dominates the rest. Given that there are O(n · k) nodes in
total, the whole computation takesO(n · k2 ·Ck ·p

k ) time. Finally, the algorithm spendsO(Ck ) time

computing the final result using the dp values at the root. □

Remark 3.2. By exploiting treewidth, we provided a linear-time algorithm for finding the exact
solution to the Data Packing problem whenm = 1. Note that in the general case, i.e. without considering
parameterization by treewidth, this problem is NP-hard as mentioned in Theorem 2.1.

Remark 3.3. We assumed LRU as the replacement policy. However, given that the replacement
policy does not matter when the cache has unit size (Remark 2.1), our algorithm is applicable to any
replacement policy, including FIFO and OOP.

3.2 Hardness of Data Packing on Trees
In this section, we provide a reduction from the general problem of Data Packing to the special

case where the access graph is a tree, i.e. has treewidth 1. This reduction leads to hardness results

that enhance those of [Lavaee 2016] by showing that the problem remains hard even on trees. This

indicates that although considering constant treewidth access graphs led to efficient algorithms for

the case ofm = 1, constant treewidth access graphs alone are not sufficient form ≥ 2.

Theorem 3.2 (Hardness of Data Packing on Trees). Given a Data Packing instance I =
(n,m,p,R), we have the following hardness results:
• Hardness of the Exact Problem. For anym ≥ 2 and any p ≥ 3, Data Packing is NP-hard even if
the underlying access graph GR is a tree.
• Hardness of Approximation. Unless P=NP, for anym ≥ 6,p ≥ 2 and any constant ϵ > 0, there
is no polynomial approximation algorithm for the Data Packing problem with an approximation
factor of O(N 1−ϵ ) even if the access graph GR is a tree.

Proof. We provide a linear-time reduction that transforms a Data Packing instance I =
(n,m,p,R) to another instance I ′ = (n + (m + 1)p,m + 1,p,R′) such that the access graph GR′

is a tree. Both hardness results can then be obtained by applying this reduction to the hardness

results of Section 2.1. Given I , we introduce (m + 1)p new data elements d1,d2, . . . ,d(m+1)p . Let X
be the sequence d1,d2, . . . ,d(m+1)p ,d(m+1)p−1, . . . ,d1.We form the sequence R′ as follows:

d1,R[1],d1,R[2],d1, . . . ,d1,R[N ],d1,X ,X , . . . ,X︸        ︷︷        ︸
2N+m+2 times

,

i.e. we take R and add d1 at its beginning, end and between every two elements of it, then we

concatenate the result with 2N +m + 2 copies of X . We let I ′ = (n + (m + 1)p,m + 1,p,R′). Note
that the cache in I ′ has one spot more than the cache of I .

By construction,GR′ is a tree, because it consists of a path d1, . . . ,d(m+1)p and every other vertex

of the graph is only connected to d1. We now show that the optimal number of cache misses in I ′ is
exactlym + 1 plus the optimal number of cache misses in I .

Let σ be an optimal data placement scheme for I ′, then σ must necessarily put the di ’s in exactly

m + 1 blocks, otherwise each X in the sequence R′ will lead to at least one cache miss for a total of

at least 2N +m + 2. On the other hand, putting the di ’s inm + 1 blocks leads to at most 2N +m + 1
cache misses, even if all accesses before theX ’s are missed. In particular, σ does not put any element

of R in the same block as d1. Therefore, σ first leads to a cache miss on the first access to d1, then
keeps d1 in the cache forever. Hence, σ fills one spot of the cache with the block of d1 and hasm
spots left for scheduling R. Finally, σ loads the otherm blocks that contain some di ’s but not d1.
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Hence, the number of cache misses caused by σ is 1 (for the first d1) plus the optimal number of

misses in I plusm (for the X ’s). □

Remark 3.4. As mentioned before, we are considering the LRU replacement policy in this paper.
However, the reduction above works for the OOP replacement policy as well. Hence, the hardness results
are established for both policies.

4 DATA PACKING ON CONSTANT-TREEWIDTH ACCESS HYPERGRAPHS
In this section, we exploit constant treewidth of higher-order access hypergraphs for solving Data

Packing. Section 4.1 extends our linear-time algorithm to everym, when the access hypergraph of

order q∗ := (m − 1)p + 2 has constant treewidth. As indicated by Theorem 2.1, this problem is hard

to even approximate in the general case. In Section 4.2 we argue that q∗ is the optimal order for

exploiting treewidth in the sense that the problem remains NP-hard even if the access hypergraph

of order q∗ − 1 has constant treewidth. This also leads to a new hardness-of-approximation result.

4.1 Algorithm for Constant-treewidth Access Hypergraph
In this section we extend the algorithm of Section 3.1 to any cache size m, provided that the

hypergraph G
q∗

R is of constant treewidth, where q∗ = (m − 1)p + 2. Note that Theorem 3.2 implies

such an extension cannot be made if we only consider constant-treewidth GR .

Intuition on Cache Misses. The main intuition behind our algorithm is the following: given an

instance I = (n,m,p,R) and a data placement scheme σ for I , we can deduce whether an access

R[i] leads to a cache miss by looking at only the (m − 1)p + 1 = q∗ − 1 previous accesses to distinct
data elements. We now formalize this intuition.

Previous Access of a Block. Consider a Data Packing instance I = (n,m,p,R), a data placement

scheme σ for I and an access R[i]. Let B := [R[i]]σ be the block of σ containing R[i]. We define

prevσ (i) as the index of the previous access to B or 0 if no such access exists, i.e. prevσ (i) :=
max{j < i | j = 0 ∨ [R[j]]σ = [R[i]]σ }.

Lemma 4.1. Given a data placement scheme σ for I , an access R[i] leads to a cache miss if and
only if prevσ (i) = 0 or there are at leastm distinct blocks of σ whose elements appear in the range
R[prevσ (i) + 1] . . .R[i − 1].

Proof. We are assuming LRU as the replacement policy and the cache starts empty. If prevσ (i) =
0, then R[i] is the first access to its block and will definitely lead to a cache miss. We now consider

the case where prevσ (i) , 0. Let j := prevσ (i) and assume that B := [R[i]]σ = [R[j]]σ is the block

containing R[i] and R[j]. By definition, none of the elements R[j + 1], . . . ,R[i − 1] belong to B. If
there are at most m − 1 blocks between R[j + 1] and R[i − 1], then R[i] cannot lead to a cache

miss. This is because right after the access R[j], the block B is present in the cache and is the most

recently used block of the cache. Hence, in order for it to be evicted, at leastm other blocks must

be accessed. On the other hand, if there are at leastm blocks between R[j + 1] and R[i − 1], then
all of these blocks will be loaded into the cache and hence B will be evicted before the access R[i]
leading to an eventual cache miss on R[i]. □

Corollary 4.1. Given a data placement scheme σ , an access R[i] and the q∗ − 1 distinct elements
that were accessed before R[i] (or all of the previous distinct elements if there is less than q∗ − 1 of
them) in the order of their last access time, one can deduce whether R[i] leads to a cache miss.

Proof. If R[prevσ (i)] is one of these previous elements, then we can simply check whether at

leastm different blocks appear between R[prevσ (i)] and R[i]. Otherwise, either R[i] is the first
access to its block or all the q∗ − 1 elements are appearing between R[prevσ (i)] and R[i]. In the

Proceedings of the ACM on Programming Languages, Vol. 1, No. POPL, Article 1. Publication date: January 2019.



Efficient Parameterized Algorithms for Data Packing 1:19

first case R[i] leads to a cache miss. In the second case, by pigeonhole principle, there are at leastm
blocks between the two elements R[prevσ (i)] and R[i] and hence there is a cache miss at R[i]. □

Remark 4.1. Note that the previous access to the block containing R[i] might be an access to R[i]
itself. Hence, R[i] might itself appear in the q∗ − 1 distinct elements that were accessed before R[i].

As in Section 3.1, we are going to reduce Data Packing to a graph problem and then exploit

treewidth to obtain a linear-time algorithm. Corollary 4.1 suggests that in order to detect cache

misses, one only needs to consider the ordered access hypergraph of order q∗ = (m − 1)p + 2,

i.e. Ĝ
q∗

R . However, in order to address the corner case mentioned in Remark 4.1, we define an ordered

hypergraph G by a slight change to the edges of Ĝ
q∗

R and then reduce Data Packing to a graph

problem over G.
The Ordered HypergraphG.We define the ordered hypergraphG as having the same vertices

and edges as the ordered access hypergraph Ĝ
q∗

R , except in the following case:

• Given an access R[i] to a data element d , let R[j] be the last access before R[i] to the same data

elementd . If there are at mostq∗ distinct data elements accessed in the rangeR[j+1] . . .R[i−1],
then the edge ei corresponding to R[i], will also contain R[j] (in its natural position according

to the order of vertices in ei ).

Example 4.1. Consider the access sequence R =< d, c,a,b, c > and letm = p = 2. Hence, we have
q∗ = (m − 1)p + 2 = 4. In the graph Ĝq∗

R the edge corresponding to the second c is e5 =< d,a,b, c >.
However, there are less than q∗ distinct data elements appearing between the two accesses to c , i.e. there
are only two such elements, namely, a and b. Hence, in G , the previous access to c appears in this edge
as well. Therefore, in G, the edge e5 is of the form e5 =< d, c,a,b, c >.

The intuition behind the way G is defined comes from Corollary 4.1 and Remark 4.1. The idea is

to have the edge ei contain all the data necessary to decide whether a cache-miss will happen at

the access R[i]. We now formalize this concept.

Missed Edges. Given an ordered hyperedge ei ofG and a data placement scheme σ , we can deduce

whether a cache miss happens at R[i] using Corollary 4.1, because the edge ei contains an ordered

list of at least (m − 1)p + 1 = q∗ − 1 distinct data elements that were accessed right before R[i]. We

say that an ordered hyperedge ei is missed in σ , if the corresponding R[i] is a cache miss.

Identifying Missed Edges. Consider the data placement scheme σ as a p-partitioning of vertices

of G . Based on Lemma 4.1 and Corollary 4.1, an ordered hyperedge ei =< v1, . . . ,vl > is missed iff

the sequence of vertices < vl ,vl−1, . . . ,v1 > in G visits at leastm distinct partitions before getting

back to the partition [vl ]σ or if it never comes back. Note that this determination can be done in

O(m · p) and only depends on the p-partitioning of {v1, . . . ,vl }.
We now define our graph problem as follows:

Minimum-miss p-partitioning. Given a hypergraph G = (V ,E) with ordered hyperedges, parti-

tion V into sets of size at most p in a manner that minimizes the number of missed edges.

As a direct result of the previous discussion, we have the following lemma:

Lemma 4.2. The optimal number of cache misses in a Data Packing instance I = (n,m,p,R) is equal
to the optimal number of missed edges in a p-partitioning of G.

Proof. Any data placement scheme σ for I is also a p-partitioning of G. As shown above, σ
misses an edge ei in G iff it causes a cache miss at R[i] in I . Hence, the number of cache misses

caused by σ in I is equal to the number of missed edges caused by σ in G. □
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States over a Set of Vertices.We define states in the exact same manner as in Section 3.1, i.e. a

state over a set A of vertices is a pair s = (φ, sz) consisting of an equivalence relation φ and a size

enlargement function sz. The concepts of realization and compatibility are also defined similarly.

Algorithm2.Wenow provide a linear-time algorithm for solving theMinimum-Missp-partitioning
problem, assuming that the hypergraph G has constant treewidth. The algorithm is an extension

of the one provided in Section 3.1. In the following, we let (T , {Xt |t ∈ T }) be an optimal nice tree

decomposition of G. Our algorithm performs a bottom-up dynamic programming on T .

Step 0: Initialization.We define several variables at each node of the treeT . Concretely, for every
node t ∈ T and every state s over Xt , we define a variable dp[s, t], initially holding a value of +∞.

Invariant. The most different aspect of our algorithm compared to Section 3.1 is the invariant.

Formally, we require our algorithm to satisfy the following invariant for every dp variable right
after the end of its computation:

dp[t , s] := The minimum number of missed edges over all p-partitionings of Gt that realize s .

Step 1: Computation of dp. The dp variables are computed in a bottom-up manner. Given a node

t ∈ T and a state s = (φ, sz) ∈ SXt , we show how dp[s, t] is computed in terms of the dp variables
at the children of t . This computation depends on the type of the node t .
(1.1) if t is a Leaf: dp[t , s] = 0;

(1.2) if t is a Join node with children t1 and t2:

dp[t , s] = min

sz1+sz2≡sz
dp[t1, (φ, sz1)] + dp[t2, (φ, sz2)];

(1.3) if t is an Introduce Vertex node, introducing v , with a single child t1:

dp[t , s] = dp[t1, (φ |Xt
1

, sz |Xt
1

)];

(1.4) if t is an Introduce Edge node, introducing e , with a single child t1:

dp[t , s] = dp[t1, s] +

{
1 missed_edge(e,φ)
0 otherwise

;

(1.5) if t is a Forget Vertex node, forgetting v , with a single child t1:

dp[t , s] = min

s1∈SXt
1

∧s1⇆s
dp[t1, s1].

Recall that⇆ denotes compatibility of states.

Step 2: Computing the Output. The algorithm computes the output, i.e. the minimum number

of missed edges in a p-partitioning of G, using the values of dp variables at the root node r of T .
Formally, the output is mins ∈SXr dp[r , s].
This concludes Algorithm 2. While most of the computations are similar to Algorithm 1, the

argument for correctness of Algorithm 2 and its runtime are rather different. We first prove the

correctness of our approach and then establish its time complexity.

Lemma 4.3. Algorithm 2 correctly computes the total number of missed edges in a Minimum-Miss
p-partitioning.

Proof. Our proof heavily depends on the invariant defined above. Intuitively, the invariant says

that dp[t , s] must be filled with the minimum number of edges that are missed in a p-partitiong
realizing s , over the subgraph Gt of G, which consists of all the vertices and hyperedges that are

introduced below t in T . We prove the lemma in two steps. First, we prove that the invariant is

satisfied after computing dp[t , s], assuming that it were satisfied for all dp variables in the children
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of t (Correctness of Step 1). Then, we prove that assuming the invariant holds for dp variables at
the root node r of T , the algorithm computes the right output (Correcntess of Step 2).

Correctness of Step 1. We break the proof into several cases:

(1.1) Computations at Leaves. The node t is a leaf in T . So Gt is the empty graph and hence there

are no missed edges in Gt . Moreover, there is exactly one state over Xt , i.e. the trivial state s∅.
Hence, we should let dp[t , s∅] = 0.

(1.2) Computations at Join Nodes. A join node t has two children t1 and t2 with Xt = Xt1 = Xt2 .

When computing the value of dp[t , s] for a state s = (φ, sz), we only have to consider those

states over Xt1 and Xt2 that are compatible with s . However, Xt1 = Xt2 = Xt , hence the

partitioning φ is also imposed on Xt1 and Xt2 . The function sz specifies how many new

vertices must be added to each partition of φ from Gt1 and Gt2 . Note that by the separation

lemma (Lemma 2.1), the only vertices that belongs to bothGt1 andGt2 are already included in

Xt , hence no new vertex can be in both. Therefore, we have to look into dp variables of the
form dp[t1, (φ, sz1)], dp[t2, (φ, sz2)] where sz1 + sz2 ≡ sz. Concretely, we should let:

dp[t , s] = dp[t , (φ, sz)] = min

sz1+sz2≡sz
dp[t1, (φ, sz1)] + dp[t2, (φ, sz2)].

Note that the two graphs Gt1 and Gt2 do not share any edges as argued in Lemma 3.2.

(1.3) Computations at Introduce Vertex Nodes. In this case, t is a node, with a single child t1, that
introduces the vertex v . Then v < Gt1 and Gt = Gt1 ∪ {v}, i.e. Gt is obtained by adding

v to Gt1 as an isolated vertex. Given that Gt has no new edges in comparison with Gt1 ,

it follows that the missed edges in Gt are precisely those that were missed in Gt1 . Also,

Xt = Xt1 ∪ {v} and so given a state s = (φ, sz) over Xt , there is only one compatible state

over Xt1 , i.e. s1 = (φ |Xt
1

, sz |Xt
1

). Therefore, we must let dp[t , s] = dp[t1, s1].
(1.4) Computations at Introduce Edge Nodes. The node t has one child t1, Xt = Xt1 and Gt =

Gt1 ∪ {e}, where e is the newly introduced hyperedge. Note that, by property (2) of nice tree

decompositions, all vertices of e must appear in Xt . So φ gives us enough information to

know whether e is a missed edge. Also, given that Xt1 = Xt , the state s forces itself on Xt1
and therefore, letting

dp[t , s] = dp[t1, s] +

{
1 missed_edge(e,φ)
0 otherwise

.

preserves the invariant.

(1.5) Computations at Forget Vertex Nodes. This case is handled in the exact same manner as in

Section 3.1. Given that Gt = Gt1 and Xt ⊂ Xt1 , the value of dp[t , s] should be set to the

minimum value of dp[t1, s1] over all states s1 that are compatible with s . Formally,

dp[t , s] = min

s1∈SXt
1

∧s1⇆s
dp[t1, s1].

Correctness of Step 2. Let r be the root node of T , then Gr = G and every p-partitioning of G
realizes exactly one state over Xr . Hence, the minimum number of missed edges in the entire graph

G is mins ∈SXr dp[r , s].
□

Remark 4.2. Algorithm 2 computes the optimal number of missed edges in a p-partitioning of G.
As is common in dynamic programming approaches, an optimal p-partitioning itself can be obtained
by keeping track of the choices that led to minimum values during the computation of dp variables.

We conclude this section by establishing the complexity of Algorithm 2.
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Theorem 4.1. Given a Data Packing instance I = (n,m,p,R) as input, where n is the number of
distinct data items, p is the packing factor, R is the reference sequence with a length of N and the cache
has a capacity ofm blocks, the Data Packing problem, i.e. finding the minimal number of cache misses,
can be solved in linear time, i.e. in time O(n · k2 ·Ck · p

k + N ·Ck · (k +m · p)), when the underlying
access hypergraph Gq∗

R has treewidth k − 1.

Proof. Creating the ordered hypergraph G and the reduction from Data Packing to Minimum-

Miss p-partitioning using Lemma 4.2 takes linear time, i.e. O(N ·m · p). Note that G is obtained

by ordering the vertices of G
q∗

R and then adding duplicated vertices to some of the edges, hence

tw(G) = tw(G
q∗

R ). As before, the optimal tree decomposition (T , {Xt }) can be computed in linear

time by Lemmas 2.2 and 2.3. Since there are N hyperedges in G, the tree T will have O(n · k + N )
nodes, where N of them are introduce edge nodes and O(n · k) of them are of the other types.

The times spent at leaves, join nodes, introduce vertex nodes and forget vertex nodes are exactly

the same as those established in Theorem 3.1. In an introduce edge node, the algorithm has to

compute Ck different dp values, each taking time O(k +m · p) due to the call to the missed_edge

subprocedure. Hence, processing each introduce edge node takesO(Ck · (k +m · p)). Therefore, the
total time spent on computing dp values is O(n · k2 ·Ck · p

k · +N ·Ck · (k +m · p)). Finally, it takes
O(Ck ) time to compute the final answer using dp variables at the root node. □

Remark 4.3. The runtime above is linear in n and N , given that Ck is bounded by a function of p
and k (see Appendix A for bounds on Ck ). Hence, by exploiting the treewidth of G, we were able to
obtain an exact linear-time algorithm for Data Packing. Note that by Theorem 2.1, the general problem,
i.e. without parameterization by treewidth, is hard to even approximate.

Remark 4.4. Note that every hyperedge of the access hypergraph Gq∗

R connects q∗ distinct vertices.
Hence, the treewidth of this access hypergraph is at least q∗ − 1 = (m − 1)p + 1. Bothm and p are
assumed to be constants. However, this dependency means that the algorithm cannot scale to caches of
large size or large packing factor.

4.2 Hardness of Data Packing on Constant-treewidth Access Hypergraphs
In Section 3.2, we showed that Data Packing is hard even if the access graph GR is a tree, i.e. even

if G2

R has treewidth 1. Section 4.1 provided a linear-time algorithm for Data Packing when G
q∗

R has

constant treewidth. This naturally leads to the question whether q∗ = (m − 1)p + 2 is the optimal

order for exploiting treewidth. Note that this is a well-posed problem because for every i , the primal

graph of Gi
R is a subgraph of the primal graph of Gi+1

R and hence tw(Gi
R ) ≤ tw(Gi+1

R ). Formally,

the question is whether there exists a polynomial algorithm for Data Packing assuming that the

hypergraph G
q∗−1
R has constant treewidth. In this section, we show that this problem is NP-hard

and hence, unless P=NP, there is no such algorithm and q∗ is the optimal order. We then show that

for a slightly smaller order, i.e. q∗ − 4p − 1 = (m− 5)p + 1, the problem becomes hard to approximate.

Theorem 4.2 (Hardness of Data Packing in Constant Treewidth). Given a Data Packing
instance I = (n,m,p,R), for any cache sizem ≥ 2 and any packing factor p ≥ 3, Data Packing is
NP-hard even if the underlying access hypergraph Gq∗−1

R has constant treewidth.

Proof. By Theorem 2.1, we know that Data Packing is NP-hard for any p ≥ 3 andm = 1. We

use this problem to obtain our reduction. Formally, for everym, we provide a linear-time reduction

that transforms the Data Packing instance I = (n, 1,p,R) to a new instance I ′ = (n′,m,p,R′) such

that the access hypergraph G
q∗−1
R′ is of constant treewidth.
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X

X ∪ Y X ∪ Z X ∪ {R[1]} X ∪ {R[2]} . . . X ∪ {R[N ]}

Fig. 14. A tree decomposition of Gq∗−1
R′ with constant widthmp − 1.

Given a positive integerm and an instance I as above, we introduce (m + 1)p new data elements

d1,d2, . . . ,d(m+1)p . We then define three sequences X , Y and Z as follows:

X := d1,d2, . . . ,d(m−1)p , Y := d(m−1)p+1,d(m−1)p+2, . . . ,dmp , Z := dmp+1,dmp+2, . . . ,d(m+1)p ,

and construct the reference sequence R′ as:

R′ := X ,R[1],X ,R[2],X , . . . ,X ,R[N ],X ,Y ,X ,Y , . . . ,X ,Y︸                   ︷︷                   ︸
a times

,X ,Z ,X ,Z , . . . ,X ,Z︸                   ︷︷                   ︸
b times

,

i.e. R′ is obtained by adding X before every element of R and then appending the result with a
copies of X ,Y and b copies of X ,Z . The instance I is then reduced to I ′ = (n + (m + 1)p,m,p,R′).
Our goal is to set the right values for a and b in a way that forces any optimal data packing

scheme σ to put X in exactly m − 1 blocks. We set a := N (m − 1)p + N + 2m + 1 and b :=

N (m − 1)p + N + amp +m + 1. Using these parameters, every optimal data packing scheme σ has

to put X ∪ Z in exactlym blocks. This is because using more thanm blocks for them leads to at

least b misses in the last part of the sequence R′, while putting them in exactlym blocks can cause

a maximum of N (m − 1)p + N + amp +m = b − 1 misses overall, i.e. even if every access up until

the end of the last Y leads to a miss. Given that σ puts X ∪Z in exactlym blocks, we also infer that

σ causes at mostm misses over the b repetitions of X ,Z .
We now prove that σ has to put X ∪ Y in exactlym blocks. The reasoning is similar. If σ puts

X ∪ Y in more thanm blocks, it causes at least a cache misses, but if it puts them in exactlym
blocks the number of cache misses is at most N (m − 1)p + N + 2m = a − 1, i.e. even if every access

up until R[N ] is missed and σ missesm times over the repetitions of X ,Z . Given that X ∪ Z and

X ∪ Y are both put intom blocks, it follows that σ puts X in exactlym − 1 blocks.
We claim that the optimal number of cache misses in I ′ ism + 1 plus the optimal number of

cache misses in I . To see this, we track the behavior of σ over the access sequence R′. First, the
m − 1 blocks of X are loaded into the cache causingm − 1 cache misses. These remain in the cache

forever because of the way X is repeated in R′. Therefore, σ has filledm − 1 spots of the cache with
X and has only 1 spot for handling the R[i]’s. This leads to exactly as many cache misses as in the

optimal solution to I . Finally, σ causes two more cache misses, one on the first access to Y and the

other one on the first access to Z . Therefore, the optimal number of cache misses in I ′ is equal to
the optimal number of cache misses in I plusm + 1. The reduction is now complete.

It remains to show that G
q∗−1
R′ = G

(m−1)p+1
R′ has constant treewidth. Figure 14 shows a tree

decomposition of this graph with widthmp − 1. Therefore, tw(G
q∗−1
R′ ) ≤ mp − 1 = O(1).

□

We now turn to the hardness of approximation. We provide a reduction that follows the same

intuition as in the previous theorem.

Theorem 4.3 (Hardness of Approximating Data Packing in Constant Treewidth). Given
a Data Packing instance I = (n,m,p,R), for any cache sizem ≥ 6, any packing factor p ≥ 2 and any
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constant ϵ > 0, unless P=NP, Data Packing cannot be approximated within a factor ofO(N 1−ϵ ) even if
the underlying access hypergraph Gq∗−4p−1

R = G
(m−5)p+1
R has constant treewidth. Here, N is the length

of the reference sequence R.

Proof. We know from Theorem 2.1 that for m = 5, and p ≥ 2, it is hard to approximate

Data Packing within a factor of O(N 1−ϵ ). We reduce this problem to Data Packing on a constant-

treewidth G
(m−5)p+1
R . Formally, for everym ≥ 6, we provide a linear-time reduction from every

instance I = (n, 5,p,R) to an instance I ′ = (n′,m,p,R′) such that G
(m−5)p+1
R′ has constant treewidth.

The reduction and the argument for its correctness are similar to those of Theorem 4.2. Given an

instance I as above, we introduce (m + 5)p new data elements d1,d2, . . . ,d(m+5)p . We then define

the following four sequences in a manner similar to Theorem 4.2:

X := d1,d2, . . . ,d(m−5)p , Y := d(m−5)p+1,d(m−5)p+2, . . . ,dmp , Z := dmp+1,dmp+2, . . . ,d(m+5)p ;

R′ := X ,R[1],X ,R[2], . . . ,X ,R[N ],X ,Y ,X ,Y , . . . ,X ,Y︸                   ︷︷                   ︸
a times

,X ,Z ,X ,Z , . . . ,X ,Z︸                   ︷︷                   ︸
b times

,

where a = N (m − 5)p + N + 2m + 1 and b = N (m − 5)p + N + amp +m + 1. The reduction is then

from I = (n, 5,p,R) to I ′ = (n + (m + 5)p,m,p,R′). It is straightforward to check that every optimal

data placement scheme σ has to put each of X ∪ Y and X ∪ Z in exactlym blocks. Hence, it has to

put X in exactlym − 5 blocks. Therefore, the optimal number of cache misses in I ′ ism − 5 (for
loading the first X ) plus the optimal number of cache misses in I plus 10 (5 misses for loading

the first Y and 5 for the first Z ). Finally, the same tree decomposition as in Figure 14, shows that

tw(G
(m−5)p+1
R′ ) ≤ mp − 1 = O(1). □

5 IMPLEMENTATION AND EXPERIMENTAL EVALUATION
Implementation and Machine. We implemented our approach (i.e. Algorithms 1 and 2) in C++.

We used a Java library called LibTW [van Dijk et al. 2006] to obtain the tree decompositions. All

results are obtained using an Intel Xeon E5-1650v3 3.5GHz processor running 64-bit Debian 8.

Benchmarks. We used a variety of classical algorithms to generate the access sequences R for the

Data Packing problem. For each classical algorithm, we generated random inputs of various sizes,

which in turn led to random access sequences of varying lengths. We included algorithms from

the following categories in our benchmark set: (i) linear algebra algorithms, (ii) sorting algorithms,

(iii) dynamic programming, (iv) recursive algorithms, (v) string matching algorithms, (vi) com-

putational geometry algorithms, (vii) algorithms on trees and (viii) algorithms on sorted arrays.

For a complete list of the classical algorithms we used to generate benchmarks, see Appendix C.

We implemented these classical algorithms in C++ and obtained reference sequences from their

traces. Moreover, each generated sequence R was executed for all 1 ≤ m ≤ 5 and 2 ≤ p ≤ 5. We did

excluded p = 1, because Data Packing is trivial in this case, i.e., each data item forms its own block.

Treewidth of Benchmarks. We observed that in many cases, by increasing the length of the

access sequence R, the treewidth of the access graphGR and the access hypergraphG
q∗

R first slowly

increase and then stabilize at a small value. Generally, we observe this phenomenon when the

underlying data structure has small treewidth, which is the case in many real-world programs and

most of our benchmarks. Figure 15 shows some of our benchmark algorithms, together with the

treewidth of the resulting access (hyper)graphs of order q∗. The benchmark at the bottom-right

corner of Figure 15, i.e., finding the Closest Pair among a given set of points in the plane, is an

example of a real-world algorithm that does not have small treewidth. Hence, while programs

might not necessarily have access hypergraphs with small treewidth, programs that access lists or

tree-like data structures tend to have this property and our algorithm can be applied to them.
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Fig. 15. Treewidth of the hypergraph Gq∗

R wrt the length N of the access sequence R generated from several
classical algorithms. We have slightly offset the lines in order to make sure all of them remain visible.

Previous Approaches. We implemented several different state-of-the-art heuristic-based algo-

rithms for data placement. These include CCDP [Calder et al. 1998], CPACK [Ding and Kennedy

1999], CPACK+, GPART+, CApRI+
†
[Ding and Kandemir 2014] and two methods based on affin-

ity hierarchies, namely the k-Distance method of [Zhong et al. 2004] and the Sampling method

of [Zhang et al. 2006]. We apply the latter algorithm with a sampling rate of 1, i.e., the highest

possible sampling rate, to obtain the minimal number of cache misses it can produce. To be able to

compare the algorithms, we also implemented a virtual cache system to simulate and count the

number of misses caused by each approach.

Running Time. Note that the Data Packing formulation as considered in the literature [Lavaee

2016; Thabit 1982] is an offline problem, and these algorithms run once, but the output data

placement schemes can lead to a reduction of cache-miss overheads every time the instance is

run. Thus the main goal is to obtain optimal results within reasonable time limit. We set a runtime

limit of 5 minutes per instance for each of the algorithms. In cases where only a single heuristic

fails to terminate within 5 minutes, we report the result of the best-performing heuristic instead.

This ensures we do not unfairly report too many misses for a heuristic. With the time limit above,

our algorithm produces results on 2726 instances, and in most of these cases, the previous known

optimal algorithm, i.e., an exhaustive search, does not terminate even in a day.

Experimental Results. Our experimental results over all instances are illustrated in Figure 16.

Each row of Figure 16 shows a comparison between our algorithm and a number of heuristics. The

x-axis denotes the optimal number of cache misses and the y-axis the number of cache misses

incurred by the heuristic algorithm. Therefore, our algorithms’ results correspond to the y = x
line, and, as expected, all heuristic-based results are above or on this line, i.e., they lead to more

†
The + in the names of these algorithms comes from applying the CApRI method which takes a data placement scheme

created by a previous heuristic as its input and attempts to optimize it and produce a better data placement scheme. CApRI+

is the result of applying CApRI to an initial data placement scheme with unary blocks. For more information, see [Ding and

Kandemir 2014].
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Fig. 16. Experimental Results over all instances. In each plot, the x-axis is the optimal number of cache misses,
i.e., the number of cache misses incurred by our algorithm, and the y-axis is the number of cache misses
incurred by the heuristic-based algorithm. Each dot corresponds to a single instance. Each row begins with a
plot of all instances at the left and then zooms into areas with a high density of points (center and right).

cache misses than optimal. To give a better view of the results, each row starts with a full plot of

all the instances (on the left) and then zooms into the areas with a high density of points (which

correspond to the instances that led to relatively few cache misses). In this figure, we did not include

the points corresponding to heuristics that timed out, e.g., Sampling timed out on several larger

instances, therefore there are few blue points in the leftmost plot of the second row of Figure 16.

We found that in total, our algorithm reduces the number of cache misses by between 15% (over

Sampling) to 31% (over k-Distance). We also found that our algorithm is effective on every category

of benchmarks. These results are illustrated in Figure 17.

6 DISCUSSION AND CONCLUSION
We discuss some aspects of our results and conclude with some open directions.

Remark 6.1. Note that while in our algorithms, we focused on LRU as the replacement policy,
our results also extend to FIFO and OOP. In particular our first linear-time algorithm (Algorithm 1,
Theorem 3.1) applies to all replacement policies, and our second linear-time algorithm (Algorithm 2,
Theorem 4.1) applies both to LRU and FIFO, with minor modifications.
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Ours 100 100 100 100 100 100 100 100 100

CCDP 129.12 114.65 113.24 128.57 115.04 135.27 136.16 136.8 122.1

CPACK 138.77 106.95 110.62 124.02 114.4 140.31 123.04 127.75 124.61

CPACK+/GPART+/CApRI+ 139.07 148.78 121.9 139.13 101.87 135.01 117.38 136.08 119.78

Sampling 106.28 152.71 118.95 175.78 115.4 128.06 142 154.69 115.2

k-Distance 146.32 170.54 122.88 167.49 114.55 131.12 143.15 161.18 131.23
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Fig. 17. Summary of Results by Benchmark Category. In each case we report the number of cache misses
incurred by an algorithm as a percentage of the optimal number of cache misses. The optimal total number
of cache misses over all the instances was 145544. See Appendix C for all the numbers. We observe that there
is no best heuristic that works better than others in all cases. Each heuristic-based algorithm works best on
some specific categories of benchmarks. Our algorithm significantly outperforms the heuristics in all cases,
and especially more so in benchmarks from Recursion, Computational Geometry and Sorted Arrays.

Remark 6.2. We studied if the treewidth property of access hypergraphs can be exploited for efficient
algorithms for Data Packing. We showed a fine-grained dichotomy, i.e., we established an optimal
value q∗ of the order of the access hypergraphs, such that (a) if the access hypergraph of order q∗

has constant treewidth, then Data Packing admits a linear-time algorithm; and (b) even if the access
hypergraph of order q∗ − 1 has constant treewidth, in general, the Data Packing problem remains NP-
hard. Moreover, we showed a hardness-of-approximation result that holds even if the access hypergraph
of order q∗ − 4p − 1 has constant treewidth. These results are summarized in Figure 1 on Page 5.

Remark 6.3. While we studied the treewidth property of access hypergraphs from a theoretical
perspective, in the experimental results we observed that in practice, many real-world algorithms
exhibit the desired property, i.e., the access hypergraphs of the required order have small treewidth.
Thus the usefulness of parameterization by the treewidth property is also validated experimentally.

Concluding Remarks. In this work, we presented the first positive theoretical results and efficient

parameterized algorithms for Data Packing. There are several directions of future work. First,

whether other structural properties of access hypergraphs can be exploited for efficient algorithms

is an interesting direction. Second, studying the extension of the Data Packing problem for multi-

level caches and algorithms for them is another interesting direction. Third, while we provided

linear-time algorithms for data packing in constant treewidth, their runtime dependency on constant

factorsm, p and the treewidth are non-polynomial. Improving this aspect of the runtime is another

interesting direction of future work. Finally, studying the Data Packing problem in an online setting

where the access sequence is not known in advance is a very challenging direction to pursue.
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A BOUNDS ON THE NUMBER OF STATES
In this section, assuming a packing factor of p, we establish bounds on the number Ck of states

over the set {1, 2, . . . ,k} of k vertices. We present two different bounds as lemmas:

Lemma A.1. Ck ≤
(p+k−1)!
(p−1)! = O

(
ep−k · kk+0.5 ·

(
p+k
p−1

)p−1)
.

Proof. Obviously, C1 = p. We prove that Ck ≤ (p + k − 1) · Ck−1 and the desired inequality

follows by a simple induction.

Consider a state s = (φ, sz) over {1, 2, . . . ,k}. Either k is in a singleton partition in s or it is put
together with some other elements of {1, 2, . . . ,k − 1}. In the former case, removing k leads to a

state s ′ over {1, 2, . . . ,k − 1} that is compatible with s . In the latter, removing k and incrementing

sz([k]φ ) leads to a similarly compatible s ′. Therefore, each state s over {1, 2, . . . ,k} can be obtained

by taking a state s ′ over {1, 2, . . . ,k − 1} and adding k to it either (i) as a separate partition with

any sz value, or (ii) inside another partition that has an sz value of at least 1 and decrementing its

sz value. Given a state s ′, there are p ways of doing (i), corresponding to the different values that

can be assigned to sz({k}), and at most k − 1 ways of doing (ii), because there are at most k − 1
partitions in s ′. Hence,

Ck ≤ (p + k − 1) ·Ck−1 ≤ (p + k − 1) ·
(p + k − 2)!

(p − 1)!
=
(p + k − 1)!

(p − 1)!
.

For the last part, we have
(p+k−1)!
(p−1)! =

(p+k−1
p−1

)
· k!. It is well-known that

(n
r

)
≤

( e ·n
r

)r
for

all n ≥ r > 0 and hence

(p+k−1
p−1

)
≤

(
e ·(p+k−1)

p−1

)p−1
. By Stirling’s approximation we have

k! ∼
√
2πk ·

(
k
e

)k
. Combining the two and ignoring the constants, we get the desired result:

(p+k−1)!
(p−1)! = O

(
ep−k · kk+0.5 ·

(
p+k
p−1

)p−1)
. □

Lemma A.2. Ck ≤

(
0.792·p ·k
ln(k+1)

)k
= O

(
(0.792 · p · k)k

)
.

Proof. Let Bk be the k-th Bell number, i.e. the number of different partitions of {1, 2, . . . ,k}.
Given a partition φ, we can form the enlargement function sz in at most pk ways, i.e. there are

at most k partitions and we have at most p choices for the sz value of each partition. Hence,

Ck ≤ pk · Bk . Finally, in [Berend and Tassa 2010], it was established that Bk ≤
(
0.792·k
ln(k+1)

)k
. The

desired result follows. □

Corollary A.1. We have the following upperbounds on the runtime of Algorithm 1:

O

(
N + n · kk+2.5 · pk · ep−k ·

(
p + k

p − 1

)p−1)
,

and
O

(
N + n · kk+2 · p2k · (0.792)k

)
.

Proof. The bounds above can be obtained by applying Lemmas A.1 and A.2 toCk in Theorem 3.1.

□

B PSEUDOCODES
In this section, we provide simple pseudocodes of the algorithms described above.
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Algorithm 1: Computing the total weight of cross edges in an optimal p-partitioning

1 function Main (G,T ,w,p);
Input :A graph G = (V ,E), a nice tree-decomposition T of G, a weight function

w : E → N and a positive integer p.
Output :Total weight of cross-edges in an optimal p-partitioning of G wrtw .

2 initialize dp[, ];
3 r ← T .root ;

4 compute_dp(r );

5 return mins ∈SXr dp[r , s];

6 function compute_dp (t);

Input :A node t of the tree-decomposition T
Result :Fills in dp[t , s] for all s ∈ St

7 forall t ′ ∈ t .children do
8 compute_dp(t ′);

9 if t is a leaf then
10 dp[t , s∅] ← 0;

11 else if t is a join node then
12 t1← t .children[1];

13 t2← t .children[2];

14 forall s = (φ, sz) ∈ SXt do
15 dp[t , s] ← minsz1+sz2≡sz dp[t1, (φ, sz1)] + dp[t2, (φ, sz2)];

16 else if t is an introduce vertex node then
17 t1← t .children[1];

18 forall s = (φ, sz) ∈ SXt do
19 dp[t , s] ← dp[t1, (φ |Xt

1

, sz |Xt
1

)];

20 else if t is an introduce edge node, introducing e = (u,v) then
21 t1← t .children[1];

22 forall s = (φ, sz) ∈ SXt do
23 dp[t , s] ← dp[t1, s];

24 if [u]φ , [v]φ then
25 dp[t , s] ← dp[t , s] +w(e)

26 else if t is a forget vertex node, forgetting v then
27 t1← t .children[1];

28 forall s = (φ, sz) ∈ SXt do
29 dp[t , s] ← ∞;

30 for i ← 0 to p − 1 do
31 φ ′ = φ ∪ {{v}};

32 sz ′ = sz ∪ {({v}, i)};

33 dp[t , s] = min{dp[t , s], dp[t1, (φ
′, sz ′)]};

34 forall Y ∈ φ do
35 if |Y | < p ∧ sz(Y ) ≥ 1 then
36 φ ′ = φ ∪ {Y ∪ {v}} \ {Y };

37 sz ′ = sz ∪ {(Y ∪ {v}, sz(Y ) − 1)} \ {(Y , sz(Y )};

38 dp[t , s] = min{dp[t , s], dp[t1, (φ
′, sz ′)]};
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Algorithm 2: Computing the number of missed edges in an optimal p-partitioning

1 function Main (G,T ,p);
Input :A hypergraph G = (V ,E) with ordered hyperedges, a nice tree-decomposition T of

G and a positive integer p.
Output :The minimum number of missed hyperedges in a p-partitioning of G

2 initialize dp[, ];
3 r ← T .root ;

4 compute_dp(r );

5 return mins ∈SXr dp[r , s];

6 function compute_dp (t);

Input :A node t of the tree-decomposition T
Result :Fills in dp[t , s] for all s ∈ St

7 forall t ′ ∈ t .children do
8 compute_dp(t ′);

9 if t is a leaf then
10 dp[t , s∅] ← 0;

11 else if t is a join node then
12 t1← t .children[1];

13 t2← t .children[2];

14 forall s = (φ, sz) ∈ SXt do
15 dp[t , s] ← minsz1+sz2≡sz dp[t1, (φ, sz1)] + dp[t2, (φ, sz2)];

16 else if t is an introduce vertex node then
17 t1← t .children[1];

18 forall s = (φ, sz) ∈ SXt do
19 dp[t , s] ← dp[t1, (φ |Xt

1

, sz |Xt
1

)];

20 else if t is an introduce edge node, introducing e = (u,v) then
21 t1← t .children[1];

22 forall s = (φ, sz) ∈ SXt do
23 dp[t , s] ← dp[t1, s];

24 if missed_edge(e,φ) then
25 dp[t , s] ← dp[t , s] + 1

26 else if t is a forget vertex node, forgetting v then
27 t1← t .children[1];

28 forall s = (φ, sz) ∈ SXt do
29 dp[t , s] ← ∞;

30 for i ← 0 to p − 1 do
31 φ ′ = φ ∪ {{v}};

32 sz ′ = sz ∪ {({v}, i)};

33 dp[t , s] = min{dp[t , s], dp[t1, (φ
′, sz ′)]};

34 forall Y ∈ φ do
35 if |Y | < p ∧ sz(Y ) ≥ 1 then
36 φ ′ = φ ∪ {Y ∪ {v}} \ {Y };

37 sz ′ = sz ∪ {(Y ∪ {v}, sz(Y ) − 1)} \ {(Y , sz(Y )};

38 dp[t , s] = min{dp[t , s], dp[t1, (φ
′, sz ′)]};
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Algorithm 3: Checking if an ordered hyperedge is missed

1 function missed_edge (e,σ );

Input :An ordered hyperedge e =< v1, . . . ,vq > and a p-partitioning σ
Output :Whether e is missed in σ

2 B ← [vq]σ ;

3 VisitedBlocks ← ∅;

4 for i ← q − 1 downto 1 do
5 if |VisitedBlocks | < m ∧ [vi ]σ = B then
6 return false;
7 else
8 VisitedBlocks ← VisitedBlocks ∪ {[vi ]σ };

9 return true;

C DETAILS OF EXPERIMENTAL RESULTS
C.1 Benchmark Programs
We used the following programs for generating the access sequences for our experiments:

• Linear Algebra:

(1) Various types of Multiplications (between scalars, vectors and matrices)

(2) Gram-Schmidt Orthonormalization process

• Sorting:

(1) Bubble Sort

(2) Insertion Sort

(3) Merge Sort

(4) Quick Sort

(5) Heap Sort

• Dynamic Programming:

(1) Computing Fibonacci numbers

(2) Computing the binomial coefficient

(n
r

)
using Pascal’s identity

(3) Finding the Longest Common Subsequence of two sequences

(4) The Knapsack problem

• Recursion:

(1) Computing Fibonacci numbers

(2) Computing the binomial coefficient

(n
r

)
using Pascal’s identity

• String Matching:

(1) Naïve String Matching

(2) Rabin-Karp Hashing

(3) Knuth-Morris-Pratt Algorithm (KMP)

• Computational Geometry:

(1) Finding the Closest Pair of a set of points in the plane

(2) Gift Wrapping (Jarvis march) algorithm for finding the Convex Hull of a set of 2D points

• Algorithms on Trees:

(1) Random Insertions and Searches in a Binary Search Tree

(2) Random Insertions in a Heap

(3) Random Merges in a Disjoint-set Data Structure

(4) Traversals (pre-order, in-order, post-order) of a random Tree
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• Sorted Array Algorithms:

(1) Random Binary Searches on a Sorted Array

(2) Merging two Sorted Arrays

C.2 Detailed Tables of Cache Misses
Figure 17 provided a comparison between our algorithms and heuristic-based algorithms. In each

case, the percentage of cache misses wrt the optimal number of cache misses was reported. Here,

we provide detailed tables that contain the concrete number of cache misses for each category, and

also the number of benchmarks (#) and the total length of the reference sequences (

∑
N ) in the

category.

Category Total

# 2726∑
N 247432

Algorithm Ours CCDP CPACK CPACK+/GPART+/CApRI+ Sampling k-Distance
Cache Misses 145544 177703 181360 174329 167665 191000

% of Optimal 100.00 122.10 124.61 119.78 115.20 131.23

Category Linear Algebra

# 303∑
N 87669

Algorithm Ours CCDP CPACK CPACK+/GPART+/CApRI+ Sampling k-Distance
Cache Misses 57056 73669 79175 79347 60637 83487

% of Optimal 100.00 129.12 138.77 139.07 106.28 146.32

Category Sorting

# 210∑
N 19690

Algorithm Ours CCDP CPACK CPACK+/GPART+/CApRI+ Sampling k-Distance
Cache Misses 4688 5375 5014 6975 7159 7995

% of Optimal 100.00 114.65 106.95 148.78 152.71 170.54

Category Dynamic Programming

# 163∑
N 2157

Algorithm Ours CCDP CPACK CPACK+/GPART+/CApRI+ Sampling k-Distance
Cache Misses 612 693 677 746 728 752

% of Optimal 100.00 113.24 110.62 121.90 118.95 122.88

Category Recursion

# 100∑
N 2543

Algorithm Ours CCDP CPACK CPACK+/GPART+/CApRI+ Sampling k-Distance
Cache Misses 483 621 599 672 849 809

% of Optimal 100.00 128.57 124.02 139.13 175.78 167.49
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Category String Matching

# 674∑
N 97572

Algorithm Ours CCDP CPACK CPACK+/GPART+/CApRI+ Sampling k-Distance
Cache Misses 72296 83171 82705 73650 83428 82817

% of Optimal 100.00 115.04 114.40 101.87 115.40 114.55

Category Computational Geometry

# 130∑
N 11393

Algorithm Ours CCDP CPACK CPACK+/GPART+/CApRI+ Sampling k-Distance
Cache Misses 1568 2121 2200 2117 2008 2056

% of Optimal 100.00 135.27 140.31 135.01 128.06 131.12

Category Trees

# 956∑
N 20265

Algorithm Ours CCDP CPACK CPACK+/GPART+/CApRI+ Sampling k-Distance
Cache Misses 6466 8804 7956 7590 9182 9256

% of Optimal 100.00 136.16 123.04 117.38 142.00 143.15

Category Sorted Arrays

# 190∑
N 6143

Algorithm Ours CCDP CPACK CPACK+/GPART+/CApRI+ Sampling k-Distance
Cache Misses 2375 3249 3034 3232 3674 3828

% of Optimal 100.00 136.80 127.75 136.08 154.69 161.18
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