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I. INTRODUCTION

When many random and weakly nonlinear dispersive waves propagate and interact with one another, several statistically stationary states are theoretically predicted such as weak wave turbulence, statistical equilibrium, or integrable turbulence. Weak wave turbulence describes an ensemble of nonlinear waves undergoing resonant interactions. These energy transfers between spatial and temporal scales lead generally to a cascade of wave energy from a large (forcing) scale, up to a small (eventually dissipative) one. This phenomenon occurs in various situations ranging from spin waves in solids, internal or surface waves in oceanography up to plasma waves in astrophysics (for reviews, see [START_REF] Falcon | Laboratory experiments on wave turbulence[END_REF][START_REF] Zakharov | Kolmogorov Spectra of Turbulence I: Wave Turbulence[END_REF][START_REF] Nazarenko | Wave Turbulence[END_REF][START_REF] Newell | Wave turbulence[END_REF]). The theory of weak wave turbulence, developed in the 1960s [START_REF] Hasselmann | On the non-linear energy transfer in a gravity-wave spectrum Part 1. General theory[END_REF][START_REF] Benney | The propagation of non-linear wave envelopes[END_REF][START_REF] Zakharov | Energy spectrum for stochastic oscillations of the surface of liquid[END_REF], leads to analytical predictions on the wave energy spectrum in a stationary state, and has since been applied in almost all domains of physics involving waves [START_REF] Zakharov | Kolmogorov Spectra of Turbulence I: Wave Turbulence[END_REF][START_REF] Nazarenko | Wave Turbulence[END_REF]. In the past decade, an important experimental effort has been devoted to test the domain of validity of weak turbulence theory on different wave systems (e.g. hydrodynamics, optics, hydro-elastic or elastic waves) [START_REF]Advances in wave turbulence[END_REF]. In the absence of an inverse cascade, it also predicts the equipartition of energy at scales larger than the forcing one, which has been recently observed experimentally [START_REF] Michel | Observation of thermal equilibrium in capillary wave turbulence[END_REF].

The theory of integrable turbulence combines the above statistical approach together with the property of integrability of an equation showing soliton solutions [e.g. Korteweg-de Vries equation (KdVE) or nonlinear Schrödinger equation (NLSE)] [START_REF] Zakharov | Kinetic equations for solitons[END_REF][START_REF] Zakharov | Turbulence in integrable systems[END_REF]. Even though no dissipation or forcing term is part of such equations, random initial conditions generally do not relax toward thermal equilibrium [START_REF] Randoux | Nonlinear random optical waves: Integrable turbulence, rogue waves and intermittency[END_REF]. Instead, the emergence and the dynamics of a large number of nonlinear coherent structures (such as solitons or breathers) from the incoherent waves forms a statistical state, called integrable turbulence. It has been encountered in various situations ranging from plasma waves [START_REF] Kingsep | Spectra of Strong Langmuir Turbulence[END_REF] to optical waves [START_REF] Schwache | Properties of an optical soliton gas[END_REF][START_REF] Randoux | Intermittency in integrable turbulence[END_REF][START_REF] Toenger | Emergent rogue wave structures and statistics in spontaneous modulation instability[END_REF][START_REF] Walczak | Optical rogue waves in integrable turbulence[END_REF][START_REF] Suret | Single-shot observation of optical rogue waves in integrable turbulence using time microscopy[END_REF]. This state is different from the wave turbulence one, since no resonant wave interaction occurs, and no constant flux of a conserved quantity cascades through the scales [START_REF] Zakharov | Turbulence in integrable systems[END_REF].

In the context of surface waves on a fluid, KdVE describes unidirectional long waves in shallow water, whereas NLSE describes unidirectional nonlinear wave packets of arbitrary depth (although the nature of the solutions in the shallow and deep water limits strongly differs, see e.g. [START_REF] Chabchoub | Experimental Observation of Dark Solitons on the Surface of Water[END_REF]). In the shallow water regime, beyond numerical confirmations [START_REF] Osborne | Behavior of solitons in random-function solutions of the periodic Korteweg-de Vries equation[END_REF], direct experimental verifications of integrable turbulence have been performed recently in field experiments [START_REF] Osborne | Soliton basis states in shallow-water ocean surface waves[END_REF][START_REF] Costa | Soliton Turbulence in Shallow Water Ocean Surface Waves[END_REF] and in the laboratory [START_REF] Perrard | Capillary solitons on a levitated medium[END_REF][START_REF] Hassaini | Transition from weak wave turbulence to soliton gas[END_REF]. For deep water gravity waves, the development of modulational instability is predicted to generate a state intermediate between weak turbulence and the superposition of weakly interacting solitons [START_REF] Zakharov | Turbulence in integrable systems[END_REF].

The statistic of such state have been the subject of several experiments, in which the waves are forced with noise. Non Gaussian statistics of the wave height were observed to emerge from such a random forcing [START_REF] Onorato | Observation of strongly non-Gaussian statistics for random sea surface gravity waves in wave flume experiments[END_REF][START_REF] Shemer | An experimental study of spatial evolution of statistical parameters in a unidirectional narrowbanded random wavefield[END_REF][START_REF] Shemer | Applicability of envelope model equations for simulation of narrow-spectrum unidirectional random wave field evolution: Experimental validation[END_REF][START_REF] Shemer | Effect of the initial spectrum on the spatial evolution of statistics of unidirectional nonlinear random waves[END_REF][START_REF] Koussaifi | Spontaneous emergence of rogue waves in partially coherent waves: a quantitative experimental comparison between hydrodynamics and optics[END_REF] as predicted theoretically from NLSE with random initial conditions [START_REF] Janssen | Nonlinear Four-Wave Interactions and Freak Waves[END_REF]. Direct numerical simulations of random waves with NLSE have been also reported [START_REF] Onorato | Freak Waves in Random Oceanic Sea States[END_REF][START_REF] Dysthe | Evolution of a narrow-band spectrum of random surface gravity waves[END_REF]. Time series from field measurements in the ocean were compared to NLSE to search for solitons and their possible link with extreme wave appearance [START_REF] Slunyaev | Nonlinear analysis and simulations of measured freak wave time series[END_REF]. The highest waves that may appear in a chaotic wave field, called rogue waves, are indeed a question of intense debate [START_REF] Onorato | Observation of strongly non-Gaussian statistics for random sea surface gravity waves in wave flume experiments[END_REF][START_REF] Onorato | Freak Waves in Random Oceanic Sea States[END_REF][START_REF] Slunyaev | Nonlinear analysis and simulations of measured freak wave time series[END_REF][START_REF] Soto-Crespo | Integrable turbulence and rogue waves: Breathers or solitons?[END_REF][START_REF] Osborne | Nonlinear Fourier analysis of deep-water, random surface waves: Theoretical formulation and experimental observations of rogue waves[END_REF][START_REF] Islas | Predicting rogue waves in random oceanic sea states[END_REF]. Although all of these experimental studies were not explicitly compared against the predictions of integrable turbulence, NLSE roughly captures the reported wave statistics of unidirectional random waves. However, neither the identification of the coherent structures involved in the integrable turbulence regime, nor the deviation of real systems from these predictions, have been experimentally studied. Such deviations should be more easily highlighted in hydrodynamics than in nonlinear optics, since more approximations are needed to reduce the dynamics to NLSE.

Here, we study experimentally the propagation of an unidirectional deep water carrier wave stochastically modulated in phase. Waves of narrow spectral bandwidth are generated at one end of the tank, and the evolution of the statistical properties of the wave field is measured along the propagation. The range of parameters and the design of the experiment are set to observe solitons governed by NLSE, the linear (dispersive) and nonlinear time scales of propagation being controllable experimentally and chosen of the same order of magnitude. We show that a spontaneous formation of coherent localized structures, such as solitons and extreme events, occurs from the initial incoherent waves. We characterize the emergence, the property and the dynamics of these solitons and extreme events immersed in a sea of smaller stochastic waves. Such a coexistence between erratic waves and coherent structures is expected from NLSE integrable turbulence [START_REF] Zakharov | Turbulence in integrable systems[END_REF], and has been reported in optics [START_REF] Suret | Single-shot observation of optical rogue waves in integrable turbulence using time microscopy[END_REF]. After one and a half nonlinear length scale of propagation, we observe a heavy-tailed (distance independent) distribution of the wave field statistics, as expected by integrable turbulence, and the emergence of extreme events. The experimental wave spectrum is then found to follow a frequency power-law with an exponent -4.5 ± 0.5, and we show that this feature traces back to the strong steepening of the waves. This power law spectrum, as well as the occurrence of highly asymmetrical extreme events, are not described by NLSE but comes from the specific features of hydrodynamics waves. For instance, the spectrum exponent is probably related to the random modulation of the harmonics (bound waves) of the wave field.

The article is organized as follows. We first recall some theoretical results of 1D NLSE for deep water waves. Then, we give estimates of the typical propagation time scales of the problem. We describe the experimental setup, then the experimental results, before discussing our results with respect to the integrable turbulence theory.

II. 1D NONLINEAR SCHRÖDINGER EQUATION FOR DEEP WATER WAVES

In a deep water regime (kh ≫ 1), the dispersion relation of linear gravity waves reads

ω lin (k) = gk , (1) 
with the fluid depth, h, the acceleration of gravity, g, the wavenumber, k = 2π/λ, the angular frequency, ω = 2πf , the frequency, f , and wavelength, λ, of the wave. Assume a linear monochromatic wave of wavenumber k 0 , and angular frequency ω 0 ≡ ω lin (k 0 ). Its phase velocity, c = ω 0 /k 0 = g/k 0 thus increases as the square root of its wavelength, the group velocity being c g = dω 0 /dk 0 = c/2. When the wave amplitude a is not much smaller than λ, nonlinear terms in the Euler equations have to be taken into account. The dispersion relation of a progressive periodic wave (the so-called Stokes wave), then reads [START_REF] Whitham | Linear and Nonlinear Waves[END_REF] 

ω(k) = ω lin (k) 1 + k 2 a 2 2 + O(k 4 a 4 ) . (2) 
Consider a 1D nonlinear wave train with a complex envelope A slowly varying in time T and space X with respect to the carrier wave (ω 0 , k 0 ), i.e.

η(x, t) = 1 2 A(X, T )e i(ω0t-k0x) + c.c. • (3) 
Here, X = ǫx and T = ǫt where ǫ ≪ 1 is a dimensionless parameter enforcing the slow space and time modulation, and c.c. denotes the complex conjugate. The small parameter ǫ is chosen to also be the steepness of the carrier, i.e. ǫ = k 0 A. Substituting a by A in the dispersion relation of the Stokes wave leads to Now, expanding Eq. ( 4) into Taylor series expansion about k 0 , and about the initial amplitude A 0 ≡ A(0, 0) = 0 leads to [38] 

ω(k) = ω lin (k) 1 + k 2 |A| 2 2 • (4) 
ω(k, |A| 2 ) -ω 0 = ∂ω ∂k k0 (k -k 0 ) + 1 2 ∂ 2 ω ∂k 2 k0 (k -k 0 ) 2 + ∂ω ∂|A| 2 |A0| 2 (|A| 2 -|A 0 | 2 ) • (5) 
Using the notations, Ω = ω -ω 0 and K = k -k 0 , the dispersion relation of the modulated wave reads

Ω(K, |A| 2 ) = c g K + P K 2 -Q|A| 2 , (6) 
valid in the vicinity of ω 0 and k 0 , with c g ≡ ∂ω/∂k| k=k0 , P ≡ ∂ 2 ω/2∂k 2 | k=k0 , and Q ≡ -∂ω/∂|A| 2 | A0=0 . All these parameters are known using the nonlinear dispersion relation of Eq. ( 4). Following [38], we use the properties of the Fourier transforms for the envelope (K = -iǫ∂/∂X ; Ω = -iǫ∂/∂T ), substitute these relationships in Eq. ( 6), and apply the resulting operator to A. At order O(ǫ 2 ) in dispersive and nonlinear terms, the wave train envelope A is then governed by NLSE [START_REF] Benney | The propagation of nonlinear waves envelope[END_REF][START_REF] Zakharov | Stability of periodic waves of finite amplitude on the surface of a deep fluid[END_REF] 

i ∂A ∂t + c g ∂A ∂x -P ∂ 2 A ∂x 2 -Q|A| 2 A = 0 , (7) 
with c g = ω 0 /(2k 0 ) the group velocity of the wave packet, P = -ω 0 /(8k 2 0 ) the dispersive parameter, and Q = -ω 0 k 2 0 /2 the nonlinear one. Note that the variables X and T have been put in lower case in Eq. [START_REF] Zakharov | Energy spectrum for stochastic oscillations of the surface of liquid[END_REF] for easier reading thereafter. This equation is integrable, and an inverse scattering transform (IST) can solve Eq. ( 7) [START_REF] Zakharov | Stability of periodic waves of finite amplitude on the surface of a deep fluid[END_REF].

In the deep water regime, the product of the dispersive and nonlinear term, P Q, is always positive. This regime, called focusing or anormal regime in optics, selects a type of solutions of Eq. [START_REF] Zakharov | Energy spectrum for stochastic oscillations of the surface of liquid[END_REF]. The latter admits envelope soliton solution (sech-shaped pulse), spatially localized, and the corresponding wave profile is of the form [38,[START_REF] Zakharov | Exact theory of two-dimensional self-focusing and one dimensional self-modulation of waves in nonlinear media[END_REF] 

η sol (x, t) = A sol sech √ 2k 2 0 A sol (x -c g t) × cos ω 0 1 + k 2 0 A 2 sol 4 t -k 0 x • (8) 
A sol being the maximum of the envelope soliton. Its full width at half maximum (FWHW) is then

L sol = √ 2 arcsech(1/2)/(A sol k 2 0 ). (9) 
This envelope soliton is shown in Fig. 1(left). It was first observed in deep water [START_REF] Yuen | Nonlinear deep water waves: Theory and experiment[END_REF] and then in nonlinear electrical transmission lines [START_REF] Yagi | Experimental studies on modulation instability by using nonlinear transmission lines[END_REF]. Since then, others soliton solutions of the focusing NLSE, localized in both the space and time domains, have been derived [START_REF] Chabchoub | The hydrodynamic Nonlinear Schrödinger equation: Space and time[END_REF] (such as the Peregrine soliton [START_REF] Peregrine | Water waves, nonlinear Schrödinger equations and their solutions[END_REF], Kuznetsov-Ma breathers [START_REF] Kuznetsov | Solitons in a parametrically unstable plasma[END_REF][START_REF] Ma | The perturbed plane-wave solutions of the cubic Schrödinger equation[END_REF] and Akmediev breathers [START_REF] Akhmediev | Generation of periodic trains of picosecond pulses in an optical fiber: Exact solutions[END_REF][START_REF] Akhmediev | Exact solutions of the first order of nonlinear Schrödinger equation[END_REF]) and observed experimentally [START_REF] Chabchoub | Rogue wave observation in a water wave tank[END_REF][START_REF] Slunyaev | Simulations and experiments of short intense envelope solitons of surface water waves[END_REF]. For instance, the Peregrine soliton reads [START_REF] Chabchoub | Rogue wave observation in a water wave tank[END_REF] 

η p (x, t) = ℜ A p exp - ik 2 0 A 2 p ω 0 t 2 1 - 4(1 -ik 2 0 A 2 p ω 0 t) 1 + [2 √ 2k 2 0 A p (x -c g t)] 2 + k 4 0 A 4 p ω 2 0 t 2 exp [i(k 0 x -ω 0 t)] , (10) 
A p being the maximum of the Peregrine soliton. Its maximum amplification, which occurs at x = 0 and t = 0, is a factor of 3 higher than the background carrier wave. Its dynamics was first reported in nonlinear fibers [START_REF] Kibler | The Peregrine soliton in nonlinear fibre optics[END_REF], then in water wave tanks [START_REF] Chabchoub | Rogue wave observation in a water wave tank[END_REF] and plasmas [START_REF] Bailung | Observation of Peregrine Solitons in a Multicomponent Plasma with Negative Ions[END_REF]. Moreover, Eq. ( 7) also admits constant envelope solutions which correspond to uniform sinusoidal wave train solution of constant amplitude a 0 with the leading order correction to the angular frequency introduced in Eq. (2),

η(x, t) = a 0 cos ω 0 1 + k 2 0 a 2 0 2 t -k 0 x , (11) 
which may be modulationnally unstable if

Ω 2 = (K 2 -2a 2 0 Q/P )P 2 K 2 < 0, that is for 0 < |K| < |K c | ≡ a 0 2Q/P = 2 √ 2a 0 k 2 0 .
The maximum growth rate of the instability is achieved when ∂Ω 2 /∂K = 0, that is for [38]. The growth rate σ = -Ω 2 is maximum for σ m = a 2 0 Q = ω 0 (a 0 k 0 ) 2 /2. Fig. 1(right) shows the theoretical growth rate of the instability σ/σ m vs. K/K m . In frequency space, with the use of the group velocity, the instability occurs for 0 < Ω < √ 2ω 0 a 0 k 0 [START_REF]K = cg = ω0/(2k0), one uses Ω/ω0 = K/(2k0) in the condition for modulation[END_REF]. The quasi-plane wave instability with respect to slowly modulating perturbation is due to the interplay between nonlinearity and dispersion. It has been first discovered by Lighthill [START_REF] Lighthill | Contribution to the theory of waves in nonlinear dispersive systems[END_REF], and called modulation instability, but it is often referred to as the Benjamin-Feir instability since it was Benjamin and Feir who first applied it to surface waves in the limit of vanishing steepness (a 0 k 0 → 0) [START_REF] Benjamin | The disintegration of wave trains on deep water. Part 1 Theory[END_REF]. Several experiments performed in deep water have successfully verified this instability prediction [START_REF] Benjamin | The disintegration of wave trains on deep water. Part 1 Theory[END_REF][START_REF] Lake | Nonlinear deep water waves:theory and experiment. 2. Evolution of a continuous wave train[END_REF][START_REF] Longuet-Higgins | Modulation of the amplitude of steep wind waves[END_REF][START_REF] Melville | The instability and breaking of deep-water waves[END_REF][START_REF] Su | Evolution of groups of gravity waves with moderate to high steepness[END_REF]. In the Fourier space, the modulation instability consists of a pair of sideband components growing around the angular frequency of the carrier wave ω 0 .

K m = a 0 Q/P = K c / √ 2 = 2a 0 k 2 0
Let us now introduce the linear and nonlinear propagation time scales. Balancing the first and last terms of Eq. ( 7), the nonlinear timescale reads

T nl = 1 QA 2 0 = 2 ω 0 ǫ 2 , ( 12 
)
where ǫ ≡ k 0 |A 0 | corresponds to the steepness of the carrier. Balancing the first and third terms of Eq. ( 7), the linear or dispersive timescale reads

T lin = ∆L 2 2P = 4 k 2 0 ∆k 2 ω 0 , ( 13 
)
where ∆L is the typical size of a modulation (i.e. the half-width of a Gaussian envelope at an amplitude of |A 0 |/ √ e), ∆k = 1/∆L thus stands for the typical spectral bandwidth of the modulation. The factor 1/2 in Eq. ( 13) comes from the dispersion-induced spreading of a Gaussian pulse governed by Eq. ( 7) with Q = 0 [START_REF]For a Gaussian pulse[END_REF]. Using Eqs. ( 12) and ( 13), the ratio of both times thus reads

T lin T nl = 2ǫ 2 (∆k/k 0 ) 2 • ( 14 
)
This ratio gives the degree of nonlinearity of the wave propagation. It is also related to the Benjamin-Feir index (BFI) of the modulation instability defined as BF I k ≡ 2ǫ/(∆k/k 0 ) for random waves of narrow spectral bandwidth [START_REF] Chabchoub | The nonlinear Schrödinger equation and the propagation of weakly nonlinear waves in optical fibres and on the water surface[END_REF].

It quantifies the ratio between the wave steepness to the normalized spectral width of the initial condition. When BFI k > 1/ √ 2, the modulation instability at the most unstable wavenumber occurs. Indeed, in this case, one has ∆k < 2 √ 2A 0 k 2 0 as found above for a monochromatic wave. In the frequency space, the BFI reads BF I ω = ǫ/(∆ω/ω 0 ) [63], and the instability occurs for BFI ω > 1/ √ 2, that is ∆ω < 2ω 0 A 0 k 0 . For narrow spectral bandwidth processes and from Eq. ( 3), the relation between the random surface elevation, η, and its envelope is

|A| 2 = 2 η 2 ≡ 2σ 2
η , with σ η the rms value of η(t), and • an average over time. This leads to the use of ǫ = √ 2ǫ η in the above definitions of BFI, as used in experiments [START_REF] Onorato | Observation of strongly non-Gaussian statistics for random sea surface gravity waves in wave flume experiments[END_REF][START_REF] Janssen | Nonlinear Four-Wave Interactions and Freak Waves[END_REF], with ǫ η ≡ k 0 σ η the initial steepness.

The characteristic length scales of the problem are related to the typical time scales by the group velocity:

L lin = c g T lin = 2k 0 /∆k 2 and L nl = c g T nl = 1/(k 0 ǫ 2 ).
Finally, note that the typical timescale of the carrier modulation is related to the nonlinear timescale of the problem. Indeed, one has Ω m = 1/T nl , with Ω m the modulation frequency at the maximum growth rate of the modulation instability. The corresponding wavenumber K m is also related to the inverse of the width of the envelope soliton of Eq. ( 8).

III. EXPERIMENTAL SET UP

The experimental setup is shown in Fig. 2 and is similar to the one described in Ref. [START_REF] Bonnefoy | Observation of resonant interactions among surface gravity waves[END_REF]. Experiments are carried out in a large-scale wave basin ( the basin is a wavemaker made of 48 independently controlled flaps, whereas an absorbing sloping beach strongly reduces wave reflections at the opposite end. We mechanically generate a 1D monochromatic carrier wave randomly modulated in phase and in amplitude. The carrier frequency is set to f 0 = 0.9 Hz corresponding, using Eq. ( 1), to a wavelength of λ 0 = 1.9 m in a deep water regime (k 0 h ≈ 16). The period of the carrier, T 0 = 1/f 0 , is 1.1 s. The modulation of this carrier is slow compared to T 0 , i.e. of narrow frequency spectral bandwidth ∆f (with ∆f /f 0 < 0.26). More precisely, the wavemaker is driven to reproduce the wave profile η(x = 0, t) = η 0 (t) in front of it (x = 0) with the prescribed wave steepness using the Fourier modes

η 0 (t) = N n=1 a n cos(2πf n t + φ n ) ( 15 
)
where f n = n/θ is the frequency of the nth Fourier mode and φ n is a phase chosen randomly from a uniform distribution in the interval [0; 2π]. The fundamental period of the Fourier series is θ = 2048 s and N is the number of wave components. The Fourier mode amplitude spectrum a n is chosen to be a narrow-banded Gaussian spectrum centered on f 0 given by

a n = A exp - 1 2 f n -f 0 ∆f /(2 √ 2 ln 2) 2 ( 16 
)
where ∆f is the full width of this spectrum at half maximum and A a scale factor. The latter is adjusted so the standard deviation wave elevation η 0 (t) is ǫ η /( √ 2k 0 ). The control parameters are the initial carrier wave steepness ǫ η ∈ [0.08, 0.14] and the bandwidth ∆f ∈ [0.047, 0.24] Hz that are varied in these ranges. A linear frame supports an array of 12 resistive wave probes at distance x from the wavemaker with x = 3.4, 5.2, 7, 8.9, 10.7, 12.6, 14.5, 16.3, 18.2, 20.1, 24.9, to 29.8 m, respectively. Their vertical resolution is approximately 0.1 mm and their frequency resolution is close to 20 Hz, the sampling frequency being 250 Hz. A few additional probes are also present normal to the basin length to check that the wave field presents no significant evolution along the transverse direction. The surface elevation, η(t), is recorded at each probe during T = 2000 s. We checked that the computed wave spectrum has converged statistically by computing it over the first and the second half of the signal duration T . Note also that T is much greater than the autocorrelation time of the noise, T ≫ (∆f ) -1 . Typically, the wave amplitudes are of the order of few cm. Viscous dissipation is weak at these frequencies, the main damping mechanism being the beach, which absorbs more than 90% of the incident energy. In a first approximation, our experimental setup can be thus considered satisfying the conservative hypothesis of NLSE. Note that the NLSE hypothesis of slow time modulation is also verified experimentally (0.05 ≤ ∆f /f 0 ≤ 0.26).

IV. TIME SCALE ESTIMATIONS

Before describing the results, let us compute some typical time scales of this experiment. Consider first the parameters involved in the NLS Eq. ( 7): The group velocity is c g = ω 0 /(2k 0 ) = 0.87 m/s, the dispersive parameter is P = -0.06 Hz m 2 , and the nonlinear one is Q = -30 Hz/m 2 . Second, we estimate the dispersive and nonlinear propagation times. Using Eq. ( 12), and ǫ = √ 2ǫ η , the nonlinear propagation time reads

T nl = 1/(ω 0 ǫ 2 η ) ∈ [9, 27.6] s, (17) 
corresponding to a nonlinear length of L nl ∈ [7.8, 24] m. Using Eq. ( 13), ∆ω/ω 0 = ∆k/(2k 0 ), and ∆ω = 2π∆f , the dispersive time scale reads

T lin = ω 0 /(∆ω) 2 ∈ [2.5, 64.6] s, (18) 
corresponding to a dispersive length of L lin ∈ [2.2, 56] m. Both L nl and L lin fit the length of the basin. Note that, for a fixed carrier wave frequency ω 0 , varying the initial wave steepness ǫ η modifies T nl , whereas varying the spectral bandwidth ∆ω ≡ 2π∆f modifies T lin . Using Eq. ( 14), the propagation time ratio is inferred as T lin /T nl = ǫ 2 η /(∆ω/ω 0 ) 2 . In the following, we define the square root of this quantity as the parameter quantifying the nonlinearityto-dispersion ratio,

τ ≡ T lin /T nl = ǫ η /(∆ω/ω 0 ) • (19) 
The nonlinearity (ǫ η ) and dispersion (∆ω/ω 0 ) are controllable parameters in this experiment. To observe coherent structures such as solitons governed by NLSE, nonlinear and dispersive effects have to be balanced (i.e. τ ∼ 1). The parameter ranges are thus similar, as evidenced by the values of τ ∈ [0.3, 2.6].

Since τ = BF I ω / √ 2, the modulation instability, at the most unstable wavenumber, occurs for a pure monochromatic wave when τ > 1/2. The instability occurs when ∆f < 2f 0 ǫ η ∈ [0.14, 0.25] Hz. Note that the amplitude of the most unstable perturbation grows, during its propagation over a distance L, at most by a factor exp[(ω 0 ǫ η ) 2 2L/g] ≃ 3 [START_REF] Benjamin | The disintegration of wave trains on deep water. Part 1 Theory[END_REF][START_REF] Melville | The instability and breaking of deep-water waves[END_REF]. Finally, balancing directly the dispersive and nonlinear terms (i.e. third and fourth ones) in Eq. ( 7) leads to the typical length L sol of envelope solitons [65]

L sol = √ 2 arcsech (1/2) k 0 ǫ η , (20) 
as found in Eq. ( 9), L sol being the full width at half maximum of a sech pulse. 

ǫη T lin (s) T nl (s) τ L lin (m) L nl (m) L sol (m) Lmax L nl ω 0 (∆ω) 2 1 ω 0 ǫ 2 η ǫη (∆ω/ω 0 ) g 2(∆ω) 2 1 2k 0 ǫ 2 η 1.

V. EXPERIMENTAL RESULTS

We generate unidirectional sinusoidal waves (of frequency f 0 ) subject to a slow and random phase modulation of the carrier (∆f /f 0 < 0.26). Figure 3 shows the temporal evolutions of the wave height, η(t), recorded by the probes located at different distances x from the wavemaker. Close to the wavemaker, the signal η(t) is reminiscent from the forcing one standing for propagating wave packets of gentle amplitudes. As the distance increases, two main observations are reported. First, fronts of some wave packets steepen strongly leading to extreme events of large amplitude in the signal (see top curve in Fig. 3). To quantify this strong steepening of the wave front, we arbitrary define an event to be extreme when its local slope |dη/dt| > 4σ dη/dt , with σ dη/dt ≡ (dη/dt) 2 the rms value of the wave slope (see §V B). During their propagation, other wave packets develop into solitons and then propagate with no deformation (see two top curves). These pulses are found to be well described by the envelope soliton profile of Eq. ( 8) with no fitting parameter (once its maximum amplitude is fixed) -see superimposed dashed lines in Fig. 3. Finally, other wave packets in the signal spread gently during their propagation due to dispersion. All these wave packets propagate with the linear group velocity c g (see red dashed line), the nonlinear correction being less than 1% for this chosen wave steepness in Fig. 3. In Fig. 4(left), we report all the experimental runs on a phase diagram showing the coexistence of stochastic waves with envelope solitons or/and extreme events as a function of the nonlinearityto-dispersion ratio τ and the dimensionless distance x/L nl . The emergence of extreme events occurs after roughly one nonlinear length scale of propagation. Envelope solitons arise only in an area where nonlinearity and dispersion are weak (but finite), and of the same order of magnitude as expected from NLSE. Indeed, when the steepness is too weak, or the modulation spectral width too large, no solitons are observed. Note that, according to the value of ǫ η , the last probe is located in this diagram at different values of x/L nl since L nl depends on ǫ η . Superimposed symbols, for the same set of parameters, mean that different coherent structures coexist in a same time series. Two nearby symbols obtained for two different sets of parameters, mean that different behaviors are detected in the two corresponding time series. For τ > 1.5, extreme events are no longer observed since the spectral width is too small to significantly modulate the carrier wave [not shown in Fig. 4(left)]. Note also that after 3L nl of propagation few spilling breakers occur in time series (less than 10% of extreme events). Thus, when nonlinearity and dispersion are weak and of the same order, we observe a superposition of many interacting coherent structures such as solitons and extreme events within a sea of random wave packets. We characterize below in detail these coherent structures. 

A. Solitons

A typical profile of a soliton within the signal η(t) is shown in Fig. 4(right) for the same experimental parameters as in Fig. 3. Its profile is found in good agreement with the envelope soliton profile of Eq. ( 8) with no fitting parameter (once its maximum amplitude is given). These solitons are observed with almost no deformation at least over two or three consecutive probes. To automatically detect the presence of envelope solitons within the temporal signal, we use a Hilbert transform and a thresholding method. The local maxima of the signal envelope are then detected and compared with the theoretical soliton profile, the fit being considered as successful when the correlation is better than 80%. The widths L sol of the solitons detected within a single temporal signal are shown in Fig. 5(left) as a function of their maximum amplitude A sol . We found that the taller the soliton is, the narrower it is ; the data being well described by the NLSE prediction of Eq. ( 9) with no fitting parameter.

Figure 5(right) shows the number N sol of detected envelope solitons as a function of the dimensionless distance x/L nl for different nonlinearity-to-dispersion ratios τ . Regardless this value, N sol is found to increase with the distance showing thus that solitons are not present within the forcing, but emerge from the evolutions of wave packets during their propagation. Less solitons are detected as τ increases since the wave steepness ǫ η has to be weak enough for NLSE to be valid. Note that 10 solitons are typically detected within a temporal signal, corresponding thus to a cumulated duration of 4% of the latter.

Another type of solitonic structure may appear in our time series. Indeed, Fig. 6(right) shows a pulse with a profile in good agreement with the Peregrine soliton of Eq. ( 10), both for its phase and envelope, with no fitting parameter (once its maximum amplitude is given). Although occurring much rarely than the envelope soliton in our time series, this structure similar to a Peregrine breather can be observed on a single probe emerging spontaneously from the noisy background. This structure, localized in time and space, is naturally not visible close to the wavemaker [see Fig. 6(left)]. Once it has been observed [see Fig. 6(right)], its amplitude recorded at the next probe decreases significantly. A signature of the Peregrine soliton is the π-jump of its phase across the zero amplitude domains separating the "wings" and the central lobe of the Peregrine soliton [START_REF] Tikan | Universality of the Peregrine soliton in the focusing dynamics of the cubic nonlinear Schrödinger equation[END_REF]. We indeed report in Fig. 6(right) this characteristic π-phase jump at times where the amplitude falls to zero. As far as we know, this striking signature of the Peregrine soliton was reported only in optics [START_REF] Tikan | Universality of the Peregrine soliton in the focusing dynamics of the cubic nonlinear Schrödinger equation[END_REF], but not for water waves. In hydrodynamics, the Peregrine breather was observed when the wavemaker is forced by deterministic initial conditions (i.e. injecting the asymptotic Peregrine solution [START_REF] Chabchoub | Rogue wave observation in a water wave tank[END_REF][START_REF] Shemer | Peregrine breather revisited[END_REF][START_REF] Dong | Experimental investigation of Peregrine breather of gravity waves on finite water depth[END_REF] that can be perturbated by an applied wind [START_REF] Chabchoub | Experiments on wind-perturbed rogue wave hydrodynamics using the Peregrine breather model[END_REF]), by a periodic forcing (Stokes wave field) randomly noised [START_REF] Chabchoub | Experiments on spontaneous modulation instability in hydrodynamics[END_REF], or with a forcing consisting in the Peregrine solution embedded in a stochastic wave field [START_REF] Chabchoub | Tracking breather dynamics in irregular sea state conditions[END_REF]. To our knowledge, the emergence of a Peregrine soliton occurring from a fully stochastic forcing, as observed here, has been only reported in optics [START_REF] Walczak | Optical rogue waves in integrable turbulence[END_REF][START_REF] Suret | Single-shot observation of optical rogue waves in integrable turbulence using time microscopy[END_REF]. It is clear that further detailed investigations are needed to fully characterize this emerging localized structure, e.g. performing nonlinear spectral analysis [START_REF] Randoux | Nonlinear spectral analysis of Peregrine solitons observed in optics and in hydrodynamic experiments[END_REF], and to track it in a longer basin to reach a statistical quantification of its evolution and occurrences.

In the future, a local IST processing will be applied to our time series to precisely identify and classify the different types of coherent structures [START_REF] Randoux | Inverse scattering transform analysis of rogue waves using local periodization procedure[END_REF]. Note that other methods could be applied to find hierarchic solutions of NLSE such as the direct method (Hirota method), the Bäcklund transformations or the Darboux transformations [START_REF] Infeld | Nonlinear Waves, Solitons and Chaos[END_REF][START_REF] Akhmediev | Rogue waves and rational solutions of the nonlinear Schrödinger equation[END_REF].

Let us now have a look at the temporal evolution of the wave height, recorded at the first and the last probes, in the reference frame moving with the group velocity c g . Close to the wavemaker [Fig. 7(left)], the wave amplitude is slowly modulated leading to wave trains of erratic amplitudes and widths. Far from the wavemaker, three steep events of large amplitude have emerged (see dashed arrows) as well as two envelope solitons (see solid arrows) well described by the prediction of Eq. ( 8).

B. Extreme events

We characterize now the extreme events detected above. By zooming in on such a structure as in Fig. 8(left), one observes a very steep gravity wave front of very high amplitude [more than 6σ η here]. This very steep propagative pulse followed by a slow decrease of the envelope, is thus highly asymmetrical with respect to time. This observation is magnified by superimposing on the same figure the wave local slope dη/dt [computed from the differential of η(t)]. It shows an intense and short peak occurring on the forward face of the wave close to the maximum. After the main peak, a radiative tail follows over typically 5 to 10 periods. These steep events are found to occur randomly in the signal and have erratic amplitudes (see below). The short oscillations of very small amplitudes visible on the wave slope signal is an experimental artifact due to the probe mechanical resonance (∼ 20 Hz) after the passage of the front. Finally, note that for high enough wave steepnesses (ǫ η ≥ 0.12), less than 10% of extreme events corresponds to the early stage of gentle spilling breakers (formation of a bulge in the profile on the forward face of the wave) [START_REF] Duncan | Gentle spilling breakers: crest profile evolution[END_REF][START_REF] Falcon | On the origin of intermittency in wave turbulence[END_REF]. However, most of the results presented here are related to the dynamics of wave train steepening and solitons, for which dispersion and nonlinearity are of the same order of magnitude and weak enough to be described by NLSE.

In order to quantify the number of extreme events, we arbitrary choose a criterion on the local wave slope, |dη/dt| > 4σ dη/dt , instead of the usual one on the amplitude (4σ η or twice the significant wave height). Indeed, we want to characterize quantitatively the extreme events with very steep fronts, such as the one in Fig. 7(left), that contribute significantly to the high frequency part of the wave spectrum (see below). Note that 100% of these detected events have an amplitude larger than 3σ η , and 70 to 85% (depending on the forcing parameters) larger than 4σ η . As shown in the inset of Fig. 8(right), peaks of very high amplitudes occur randomly in the wave slope signal, most of them being larger than ±4σ dη/dt . Typically, the cumulated duration of these extreme events is 10% of the signal duration. The number N e of extreme events detected with this thresholding method is shown in Fig. 8(right) as a function of the distance for different nonlinearity-to-dispersion ratio, τ . N e is found to increase from zero with the distance showing thus that these extreme events results form the steepening and merging of the wave trains during their propagation. N e is also found to be independent on τ within our range, when rescaling the propagating distance, x, by the nonlinear length scale, L nl , based on NLSE. The onset of occurrence of such steep coherent structures seems thus to be well described by NLSE. Moreover, N e increases linearly with this rescaled distance once the wave field propagated more than roughly one nonlinear propagation length scale. Finally, we checked that same qualitative results are found when varying the above thresholding criterion in the range (±3σ dη/dt ,±6σ dη/dt ).

C. Wave spectrum

When dispersive and nonlinear effects are of the same order of magnitude, the above experimental results show the presence of solitons (solutions of the NLSE), emerging from the initial random forcing conditions, as well as strong steepening of some wave train fronts, both coherent structures occurring randomly in the incoherent wave field. To quantify the spectral content of such an erratic signal η(t) as displayed in the top inset of Fig. 9, we compute its timefrequency spectrum S η (f, t). To wit, a short-time Fourier transform of η(t) is computed by fast-Fourier transforms of overlapping windowed signal segments (using the Spectrogram function from Matlab software). The wave spectrum is thus reached at each time over a short time interval. The wave spectrum as a function of time and frequency is shown in Fig. 9. As expected, its main contributions are related to the random forcing band near f 0 and its corresponding harmonics (nf 0 with n = 2 and 3). More interesting is the spectral signature of extreme events. Each intense peak within the wave signal gives a continuous high frequency contribution to the spectrum. Some of these similarities are emphasized by solid lines in Fig. 9. Extreme events thus contain high frequencies due to their steep profile.

Figure 10(left) shows the spectra averaged over time of a wave field recorded at the first probe, close to the wavemaker, and also at the last probe far from the wavemaker [see insets of Fig. 10(left)]. Here again, close to the wavemaker, a discrete spectrum with main contributions related to the forcing domain near f 0 and its corresponding harmonics (nf 0 visible up to n = 5). Far from the wavemaker, the high frequency components of the spectrum, as well as frequency domains between successive harmonics, have strongly increased to the detriment of harmonics amplitudes. It thus leads to a monotonic spectrum that is found to decrease as a frequency power law of the form f -4.5 . Extreme events emerging during the propagation [see top inset of Fig. 10(left)] thus populate the high frequencies of the spectrum. Consequently, far enough from the wavemaker (x/L nl > 1.5), nonlinear effects are sufficient to generate extreme events (resulting from the front steepening) that significantly contribute to the building of the high frequency part of the spectrum. Indeed, steep extreme events are known to be rich in harmonics. In the low-frequency part, the spectrum develops a visible asymmetry and a broadening of the main peak near f 0 with the propagation distance, as also observed in Ref. [START_REF] Shemer | An experimental study of spatial evolution of statistical parameters in a unidirectional narrowbanded random wavefield[END_REF]. Indeed, the width W of the main peak increases linearly with the distance x as shown in the inset of Fig. 10(right). These data roughly collapse on a single curve by plotting the dimensionless width W/∆f vs. the dimensionless distance x/L nl [see Fig. 10(right)]. This broadening is known to be well described by NLSE contrary to the asymmetry that is captured by a higher (fourth) order extension of the NLSE (Dysthe model) to account for finite spectrum width [START_REF] Shemer | Applicability of envelope model equations for simulation of narrow-spectrum unidirectional random wave field evolution: Experimental validation[END_REF].

Let us now further characterize the high-frequency part of the spectrum. A frequency-power law spectrum ∼ f α is observed regardless the values of our parameters (ǫ η and ∆f ) except for a too slow modulation (∆f ≤ 0.05). The evolution of the spectrum exponent α with the distance for different τ ratios is shown in Fig. 11(left). α is found to be independent of τ in this range of parameters, when rescaling the propagating distance, x, by the nonlinear length scale, L nl , based on NLSE. At short distances, random steepening of wave trains and solitons have not enough time to emerge in the wave field and the high frequency part of the spectrum is very steep in order to connect the noise level. When the wave field propagates over more than one and a half nonlinear propagation length scale (x/L nl > 1.5), the exponent is roughly found to be constant near α ≃ -4.2 as a result of the wave steepening as underlined above. Note that this power-law spectrum could be also ascribed as a signature of 1D gravity wave turbulence phenomenon. Indeed, the prediction of 1D unidirectional gravity wave turbulence is α = -9/2 [START_REF] Zakharov | One-dimensional wave turbulence[END_REF][START_REF] Dyachenko | Five-wave interaction on the surface of deep fluid[END_REF][START_REF] Connaughton | Dimensional analysis and weak turbulence[END_REF]. However, the use of a beach as an efficient damping mechanism inhibits the occurrence of resonant interactions driven by reflected waves. Moreover, the carrier wave propagates during roughly 40 periods until it reach the beach which is too short to develop nonlinear interactions required by wave turbulence. Besides, the high-frequency part of the experimental spectrum has been shown above to be a consequence of the strong steepening of wave trains that are not taken into account neither by weak turbulence, nor by NLSE. Indeed, the numerical spectrum of 1D random wave field described by NLSE is exponential near the carrier frequency and display peaks near its harmonics [START_REF] Shemer | Applicability of envelope model equations for simulation of narrow-spectrum unidirectional random wave field evolution: Experimental validation[END_REF].

Here, the 1D random wave field have a continuous power-law spectrum. The detected extreme events resulting from strong wave steepening carry intrinsically numerous harmonics. The observed power-law scaling thus arises probably from the slowly random frequency modulation of the harmonics (bound waves) of the wave field, that is known to generate continuous power-law spectrum between f -5 and f -4 [START_REF] Michel | Self-similar gravity wave spectra resulting from the modulation of bound waves[END_REF]. In a limit case, if the extreme events tend to display very sharp wave-crests (cusps), and are assumed to propagate without deformation (i.e. ω ∼ k), the spectrum of such singularities is predicted to scale as f -4 [START_REF] Kuznetsov | Turbulence spectra generated by singularities[END_REF], not far from the experimental results. Finally, the exponent α is shown in Fig. 11(right) as a function of the forcing strength (the initial wave steepness ǫ η ). α is found to be roughly constant, -5 < α < 4, with respect to ǫ η within the experimental estimation accuracy, showing thus its independence from ǫ η for our range. To sum up, this power-law spectrum not described by NLSE arises probably from the random modulation of the harmonics (bound waves) of the carrier wave.

D. Wave field statistics

The statistical properties of wave fields in integrable turbulence governed by focusing NLSE have been experimentally studied recently in optics, and show the emergence of heavy-tailed statistics [START_REF] Randoux | Nonlinear random optical waves: Integrable turbulence, rogue waves and intermittency[END_REF][START_REF] Walczak | Optical rogue waves in integrable turbulence[END_REF][START_REF] Suret | Single-shot observation of optical rogue waves in integrable turbulence using time microscopy[END_REF]. In hydrodynamics, non Gaussian wave statistics have been observed experimentally during the propagation of unidirectional gravity waves forced with random initial conditions in a deep water regime [START_REF] Onorato | Observation of strongly non-Gaussian statistics for random sea surface gravity waves in wave flume experiments[END_REF][START_REF] Shemer | An experimental study of spatial evolution of statistical parameters in a unidirectional narrowbanded random wavefield[END_REF][START_REF] Shemer | Applicability of envelope model equations for simulation of narrow-spectrum unidirectional random wave field evolution: Experimental validation[END_REF][START_REF] Shemer | Effect of the initial spectrum on the spatial evolution of statistics of unidirectional nonlinear random waves[END_REF][START_REF] Koussaifi | Spontaneous emergence of rogue waves in partially coherent waves: a quantitative experimental comparison between hydrodynamics and optics[END_REF] as predicted theoretically by using NLSE with random initial forcing [START_REF] Janssen | Nonlinear Four-Wave Interactions and Freak Waves[END_REF]. However, it has not been related to the integrable turbulence in the hydrodynamics case. Here, we discuss the wave field statistics obtained in our experiment.

Figure 12 shows the typical probability density function (PDF) of normalized wave height, η/σ η , recorded at the first and last probes. Close to the wavemaker, the PDF is found to be asymmetric since large crests are more probable than deep troughs as a consequence of the nonlinear effects that are well described by Tayfun distribution (first nonlinear correction to a Gaussian) [START_REF] Tayfun | Narrow-band nonlinear sea waves[END_REF] (see dashed lines). This PDF asymmetry is routinely observed in laboratory experiments [START_REF] Onorato | Observation of strongly non-Gaussian statistics for random sea surface gravity waves in wave flume experiments[END_REF][START_REF] Falcon | Observation of gravity-capillary wave turbulence[END_REF] and in oceanography [START_REF] Forristall | Wave crest distributions: Observations and second-order theory[END_REF]. Far from the wavemaker, the PDF departs from the Tayfun distribution near 3σ η meaning that high amplitude events are more probable. Such heavy-tailed distribution has also been already reported experimentally [START_REF] Hassaini | Transition from weak wave turbulence to soliton gas[END_REF][START_REF] Onorato | Observation of strongly non-Gaussian statistics for random sea surface gravity waves in wave flume experiments[END_REF][START_REF] Shemer | An experimental study of spatial evolution of statistical parameters in a unidirectional narrowbanded random wavefield[END_REF][START_REF] Shemer | Applicability of envelope model equations for simulation of narrow-spectrum unidirectional random wave field evolution: Experimental validation[END_REF][START_REF] Shemer | Effect of the initial spectrum on the spatial evolution of statistics of unidirectional nonlinear random waves[END_REF] and could be related to rogue wave formation in ocean [START_REF] Onorato | Observation of strongly non-Gaussian statistics for random sea surface gravity waves in wave flume experiments[END_REF][START_REF] Onorato | Freak Waves in Random Oceanic Sea States[END_REF][START_REF] Slunyaev | Nonlinear analysis and simulations of measured freak wave time series[END_REF][START_REF] Soto-Crespo | Integrable turbulence and rogue waves: Breathers or solitons?[END_REF][START_REF] Osborne | Nonlinear Fourier analysis of deep-water, random surface waves: Theoretical formulation and experimental observations of rogue waves[END_REF][START_REF] Islas | Predicting rogue waves in random oceanic sea states[END_REF].

In optics, the statistics of the power fluctuations of light are measured (i.e. the square of the wave envelope) instead of the wave displacement. To be able to compare with these results, we compute the Hilbert transform of η(t) to obtain the envelope A(t). Note that if the statistics of random independent fluctuations, saying η(t), follows a normal law, then an exponential (Rayleigh) distribution results for the wave envelope A(t) = |η(t)| or for the "power" A 2 [START_REF] Evans | Statistical distributions[END_REF]. The PDF of the square of the wave envelope, A 2 / A 2 is plotted in Fig. 13(left) at different propagation distances.

• stands for a temporal average. As the wave field moves away from the wavemaker, the PDFs evolve from an exponential distribution (plotted in dashed-line) to a heavy-tailed distribution. For instance, power fluctuations 10 times greater than the mean power have a probability, far from the wavemaker, 30 times greater than the one close to the wavemaker. More precisely, we find that for x/L nl > 1.6, the wave system reaches a statistical stationary state in which the PDF no longer changes with distance [see top two curves in Fig. 13(left)], the power spectrum of waves being also independent of the distance [see Fig. 11(left)]. Similar results for the distance independent PDF have been observed in experiments with optics fibers governed by the focusing NLSE of Eq. ( 7) as well as in numerical simulations of this equation in the context of integrable turbulence [START_REF] Randoux | Nonlinear random optical waves: Integrable turbulence, rogue waves and intermittency[END_REF][START_REF] Walczak | Optical rogue waves in integrable turbulence[END_REF][START_REF] Suret | Single-shot observation of optical rogue waves in integrable turbulence using time microscopy[END_REF]. This statistical stationary state is stated to be determined by the interaction of coherent nonlinear structures [START_REF] Randoux | Nonlinear random optical waves: Integrable turbulence, rogue waves and intermittency[END_REF]. However, the mechanisms in integrable turbulence that lead to the establishment of this stationary state with such statistical properties independent of distance (or time) are an open question.

We compute now the skewness, S ≡ η 3 / η 2 3/2 , and the kurtosis, K ≡ η 4 / η 2 2 , of the wave height statistics quantifying its asymmetry and its flatness, respectively. For a Gaussian distribution, one has S = 0 and K = 3. At small distance, S is non-zero confirming the asymmetry observed on the PDFs. This asymmetry S ≃ 0.3 is found to be roughly constant regardless of the propagation distance, x and the nonlinearity-to-dispersion ratio, τ . Figure 13(right) shows the Kurtosis as a function of the dimensionless distance, x/L nl , for different modulation bandwidths ∆f (i.e. different τ ) at fixed initial steepness ǫ η . Consistently with the PDF observations, K is found to increase with the distance regardless the forcing parameters [either increasing ∆f or ǫ η (not shown here) keeping the other one constant]. Similar observations have been done in [START_REF] Onorato | Observation of strongly non-Gaussian statistics for random sea surface gravity waves in wave flume experiments[END_REF]. K increases strongly once one nonlinear propagation distance is reached. This is consistent with the fact that, during the wave propagation, more and more coherent structures (such as strong steepening of the wave trains) are generated [see Fig. 8(right)] and interact with the residual random wave field. However, when the nonlinearity-to-dispersion ratio τ is of the order of 0.5-0.6 (a value for which solitons and extreme events coexist [see Fig. 4(left)]), a beginning of saturation of K is observed with distance for x/L nl > 2 [see top curves in Fig. 13(right)]. This regime in which statistical properties of waves become independent on the distance is consistent with the above PDFs observations, and is also in agreement with experiments performed in a much longer basin showing that NLSE reproduces well this Kurtosis behavior [START_REF] Shemer | An experimental study of spatial evolution of statistical parameters in a unidirectional narrowbanded random wavefield[END_REF][START_REF] Shemer | Applicability of envelope model equations for simulation of narrow-spectrum unidirectional random wave field evolution: Experimental validation[END_REF][START_REF] Koussaifi | Spontaneous emergence of rogue waves in partially coherent waves: a quantitative experimental comparison between hydrodynamics and optics[END_REF]. Most efficient initial conditions of the random wave field to form a sea state with numerous and intense (i.e. large K) is thus for a weak enough (but finite) dispersion (i.e. dimensionless spectral width) of the order of twice the nonlinearity (steepness) of the wave field.

VI. CONCLUSION

In nonlinear physics, when nonlinearity is comparable to or exceeds dispersion, different structures may appear, such as conservative (like solitons) or dissipative structures resulting of finite-time singularity of the nondissipative equations (like shocks, wavebreaking) [START_REF] Falkovitch | Lecture course for the Warwick Summer School[END_REF]. Identifying such structures and the role they play in determining different stationary statistical states remains to be investigated in most turbulent systems.

Here, we report the experimental observation of a new statistical state for unidirectional propagation of gravity waves in a deep water regime where coherent structures coexist with smaller stochastic waves. Such a state is predicted theoretically by NLSE integrable turbulence [START_REF] Zakharov | Turbulence in integrable systems[END_REF], but had never been observed so far in this context. The nonlinearity (ǫ η ) and dispersion (∆ω/ω 0 ) are controllable in our experiment, and are chosen similar to be able to observe solitons governed by NLSE. The nonlinearity-to-dispersion ratio, τ ≡ ǫ η /(∆ω/ω 0 ) is varied from 0.3 to 2.6. We have characterized the emergence, the property and the evolution of these nonlinear coherent structures (solitons and extreme events) within the incoherent wave background. The emergence of extreme events resulting from the strong steepening of wave train fronts occurs after roughly one nonlinear length scale of propagation (estimated from NLSE). Envelope solitons and Peregrine solitons are also observed emerging from the stochastic background. Solitons arise when nonlinearity and dispersion are weak (but finite), and of the same order of magnitude, as expected from NLSE. The numbers of envelope solitons and extreme events are found to increase all along the propagation. When the nonlinear distance of propagation is reached, the wave spectrum is found to scale at high frequencies as ω -4.5±0.5 . This scaling is robust regardless of the variation of our parameter ranges. Although, this spectrum scaling could be compatible with the prediction of 1D gravity wave turbulence in ω -9/2 [78-80], the transfer mechanism towards small scales is not due to wave interactions, but is shown in the spectrogram to be ascribed to the strong wave steepening leading to the presence of extreme events. Since the latter carry numerous harmonics, this power-law scaling arises probably from the slowly random frequency modulation of the harmonics (bound waves) of the wave field that is known to generate continuous power-law spectrum between ω -5 and ω -4 [START_REF] Michel | Self-similar gravity wave spectra resulting from the modulation of bound waves[END_REF]. In a limit case, if these extreme events tend towards 1D singular coherent structures, their spectrum is predicted to scale as ω -4 [START_REF] Kuznetsov | Turbulence spectra generated by singularities[END_REF]. The wave field statistics is also reported revealing a heavy-tailed distribution that becomes independent of the distance after few nonlinear length scales of propagation. To sum up, most of these observations are compatible with the integrable turbulence theory for NLSE, but some deviations are also observed (power-law spectrum) related to the strong asymmetrical extreme events that exist in hydrodynamics. This hydrodynamics system is thus a good candidate to question the departure from the integrable turbulence theory in real systems (e.g. how the coherent structures close to integrability are deformed by bound waves). In the future, we plan to apply a local IST processing to identify and classify the different type of coherent structures in our time series, and their respective contributions to integrable turbulence [START_REF] Randoux | Inverse scattering transform analysis of rogue waves using local periodization procedure[END_REF].
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 1 FIG.1. Left: Theoretical envelope soliton η sol (t) of Eq. (8) with f0 = 0.9 Hz, x = 10 m and A sol = 5 cm. Red solid line shows the envelope of the solution. Right: dimensionless growth rate of the Benjamin-Feir instablility, σ/σm, versus dimensionless wavenumber K/Km. Unstable modes are found below the solid line.
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 2 FIG.2. Sketch of a vertical section of the wave basin facility at Ecole Centrale de Nantes and locations of the resistive probes.
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 3 FIG.3. Experimental evolution along the basin length, x, of the wave height η(t) recorded at different probe locations (from bottom to top: x = 0, 3.4, 7, 12.6, 16.3, 20.1, 24.9, and 29.8 m). τ = 0.44 (ǫη = 0.08 and ∆f = 0.16 Hz). Dashed (red) lines have a slope corresponding to the group velocity cg. Dashed (black) line on top of the two upper curves: theoretical shape of the envelope soliton of Eq. (8).
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 4 FIG.[START_REF] Newell | Wave turbulence[END_REF]. Phase diagram of stochastic waves (white area) coexisting with envelope solitons (violet area) or/and extreme events (orange area) as a function of the nonlinearity-to-dispersion ratio τ and the dimensionless distance x/L nl . Each performed run is displayed by a symbol corresponding to the observation of (▽) only stochastic waves, (•) envelope solitons and (×) extreme events coexisting with stochastic waves. ( ) indicates the coexistence with few spilling breakers (less than 10%) in time series. Right: Typical envelope soliton detected at x = 29.8 m (zoom in of a part of the top curve in Fig.3), τ =0.44 (ǫη = 0.08, ∆f = 0.16 Hz). (-) Detected envelope. (--) Theoretical shape of NLS envelope soliton from Eq. (8).

FIG. 5 .

 5 FIG. 5. Left: Full width (at half maximum) of detected solitons as a function of their maximum amplitude, A sol . x = 29.8 m. τ =0.55 (ǫη = 0.1, ∆f = 0.16 Hz). (-) Theoretical prediction from Eq. (9) with no fitting parameter. Right: Number of detected solitons as a function of the dimensionless distance x/L nl for different ratios τ = ( ) 0.30 (ǫη = 0.08, ∆f = 0.24 Hz), (▽) 0.44 (ǫη = 0.08, ∆f = 0.16 Hz), (•) 0.55 (ǫη = 0.1, ∆f = 0.16 Hz), and (×) 0.65 (ǫη = 0.12, ∆f = 0.16 Hz).
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 6 FIG.6. Left: Wave height signal recorded close to the wavemaker at the first probe (x = 3.4 m). τ = 0.3 (ǫη = 0.08, ∆f = 0.24 Hz). Top: Rescaled phase φ/π of the signal. Right: Same part of the signal recorded at the second last probe (x = 24.9 m) showing a structure similar to a Peregrine soliton. Theoretical temporal profile (--) and envelope (-) of a Peregrine soliton from Eq. (10) with f0 = 0.9 Hz, x = 0, and k0Ap = ǫη. Top: (-) Rescaled phase of the signal showing a π-jump at times where the envelope falls to zero as predicted (--) by Eq.[START_REF] Zakharov | Kinetic equations for solitons[END_REF].
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 7 FIG. 7. Left: Wave height signal recorded close to the wavemaker at the first probe (x = 3.4 m). τ = 0.55 (ǫη = 0.1, ∆f = 0.16 Hz). Right: Same part of the signal recorded at the last probe (x = 29.8 m) showing coexistence of envelope solitons (see full arrows) and extreme events (see dashed arrows). (--) Theoretical shape of soliton from Eq. (8).
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 8 FIG.8. Left: A typical extreme event as function of time at x = 29.8 m. Wavefront is the left-hand side. Normalized wave height, η(t)/ση is on the left-hand side axis, and normalized wave local slope, (dη/dt)/σ η is on the right-hand side axis. τ = 0.44 (ǫη = 0.08, ∆f = 0.16 Hz). ση = 2.1 cm. Right: Number Ne of extreme events detected as a function of the dimensionless distance, x/L nl , for different ratios τ (same symbols as in Fig.5). Inset: typical temporal signal of the wave local slope for τ = 0.65 (ǫη = 0.12, ∆f = 0.16 Hz) at x = 29.8 m. Solid lines correspond to ±4σ dη/dt .
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 9 FIG. 9. Top: Temporal wave height signal for τ =0.44 (ǫη = 0.08, ∆f = 0.16 Hz). x = 29.8 m. Bottom: Time-frequency spectrum Sη(f, t) of the corresponding wave height η(t). Color bar is a logarithmic scale of the spectrum amplitude. Large amplitude events of the wave signal correspond to maxima of spectrum at high frequencies (see solid lines).
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 10 FIG. 10. Left: Power spectrum density of η(t) recorded close [x = 3.4 m (blue)] and far [x = 29.8 m (red)] from the wavemaker. Dashed lines have slopes α = -6.4 (blue) and α = -4.5 (red). τ = 0.44. Vertical dashed lines correspond to theoretical satellites of the Benjamin-Feir instability, ±cgKc/(2π) ≃ ±0.1 Hz. Insets show the corresponding temporal wave height signals close (bottom) and far (top) from the wavemaker. Right: Dimensionless width, W/∆f , of the main peak of the spectrum (at one hundredth of its maximum amplitude) as a function of x/L nl . ∆f = (•) 0.1, (×) 0.07, (▽) 0.04, and ( ) 0.02 Hz. ǫη = (blue) 0.08, (red) 0.1, (green) 0.12, (black) 0.14. Inset: Unrescaled curve, W vs. x. Same symbols as in the main figure.
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 11 FIG.11. Left: Exponent α of the wave spectrum in f α as a function of dimensionless distance x/L nl for different ratios τ (same symbols as in Fig.5). Right: Exponent α as a function of the wave steepness for different modulation bandwidth ∆f = 0.09 (•), 0.16 (△) 0.24 (⊳) Hz at x/L nl > 1.2. Dashed lines show the 1D wave turbulent prediction -9/2.

FIG. 12 .FIG. 13 .

 1213 FIG. 12. Probability density function (PDF) of normalized wave height, η/ση, recorded at the first (left) and last (right) probe (x = 3.4 m and x = 29.8 m, respectively). τ =0.55 (ǫη = 0.1, ∆f = 0.16 Hz). Solid lines display a Gaussian of zero mean and unit standard deviation. Dashed lines show a Tayfun distribution for a wave steepness of 0.1.

  This leads to solitons of typical length of 5 meters (L sol ∈ [4, 7.2] m) and duration of 5 seconds (T sol = L sol /c g ∈ [4.6, 8.3] s). Solitons have thus typically 4 to 8 carrier periods. The distance between the first and last probes in the basin is L max = 26.5 m. It is thus possible to follow such structures on propagation distances up to roughly 7 times its size, at best. To sum up, TableIshows the different scales of the problem for parameter sets used in the experiments.

TABLE I

 I 

. Theoretical time and length scales for three different ǫη at fixed ∆f = 0.05 Hz. Carrier wave: T0 = 1.1 s, λ0 = 1.9 m.
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