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Abstract 

Monitoring in real-time and autonomously the health state of aeronautic structures is 

referred to as Structural Health Monitoring (SHM) and is a process decomposed in four 

steps: damage detection, localization, classification, and quantification. The structure 

under study is here a complex aeronautic nacelle and the focus is put on the localization 

step of the SHM process. The fact that SHM data are naturally three-way tensors is here 

investigated for this purpose. It is demonstrated that under classical assumptions 

regarding wave propagation, the canonical polyadic decomposition of rank 2 of the tensor 

built from the phase of the difference signals between a healthy and damaged states 

provides direct access to the distances between the piezoelectric elements and the damage. 

This property is used here to propose an original and robust tensor-based damage 

localization algorithm. This algorithm is successfully validated on experimental data 

coming from the aeronautic nacelle equipped with 30 mounted piezoelectric elements. 

1. Introduction
Monitoring in real-time and autonomously the health state of structures is of high

interest in the industry, and more specifically in the aeronautic and civil engineering 

applications fields. Such a process is referred to as Structural Health Monitoring (SHM) 

[1, 2]. To achieve this goal, structures become “smart” in the sense that they are equipped 

with sensors, actuators, and artificial intelligence that allow them to state autonomously 

regarding their own health. One can compare smart structures with the human body 

which, thanks to its various senses and nerves, is able to assess if it has been hurt, where 

it has been hurt, and to estimate how severe it is. Following this analogy, the SHM process 

is classically decomposed into four steps: damage detection, localization, classification, 

and quantification [3]. 

The structure under study is here a composite complex aeronautic nacelle excited by 

means of Lamb waves. To deploy SHM to such structure, it is equipped with piezoelectric 

elements that can be used both as sensors and actuators. Each element is actuated one by 

one using a tone burst at high frequency, produces a Lamb wave that propagates 

throughout the structure, and the resulting Lamb wave is finally measured by the other 

piezoelectric elements acting as sensors. If a structure equipped with 𝑁 piezoelectric 

elements and for which acquisition is performed over K samples is considered, one 

naturally ends up with a tensor 𝑴 ∈ ℝ𝑁×𝑁×𝐾 at the end of the SHM process. To monitor

the possible apparition of damage, measurements are first performed in a reference state 

to get a reference tensor 𝑹. Then, during the life cycle of the structure measurements at 

unknown states are performed and provides the tensor 𝑼. The tensor 𝛅 that corresponds 

to the difference between 𝑹 and 𝑼 is the basis of the detection, localization, classification, 

and quantification steps of SHM. 

The three-dimensional nature of the difference tensor 𝜹 ∈ ℝ𝑁×𝑁×𝐾 allows for the use

of specific analysis tools [4, 5, 6]. Even if during the last decade, tensors analysis have 

been widely applied for signal processing purposes [4, 5, 6], they have found relatively 

https://creativecommons.org/licenses/by-nc/4.0/


few applications in SHM and reported applications mainly focused on the detection step. 

For example: damage detection based on tensors in a civil engineering context [7, 8], 

tensor-based damage detection for non-destructive evaluation of composite structures 

using ultrasounds [9], or application of tensors for denoising purposes in composite plates 

monitored by ultrasonic waves [10]. Thus, to the knowledge of the authors, the 

advantages of tensors for damage localization by means of Lamb waves in composite 

plates has never been investigated. 

The focus is thus put in this paper on the localization step of the SHM process. 

Classical methods for damage localization by means of Lamb waves in composite plates 

are usually based on a path by path analysis of data [11, 12, 13] (i.e. on only one row of 

the tensor 𝜹 ∈ ℝ𝑁×𝑁×𝐾). Typically, the time-of-flight for each path “actuator-sensor” is

extracted, and then using knowledge of the wave propagation speed and by means of 

triangulation the damage localization is estimated [11, 12, 13]. These methods thus 

process each path independently and then integrate all the information together to form a 

localization map from which damage localization is inferred. As SHM data are three-way, 

highly redundant, and correlated, a vector-based one-way approach as depicted above 

cannot capture all these relationships and correlations together. The tensors thus appear 

as a very promising tool able to improve damage localization by means of Lamb waves 

in composite plates. The paper is organized as follows: a tensor-based damage 

localization algorithm is detailed in Section 2 and then validated experimentally in 

Section 3. A conclusion and a discussion are then drawn in Section 4. 

2. Tensor based damage localization
2.1. A simple physical model of Lamb wave propagation

Wave propagation within structures can be as a first approximation thought as a very

simple physical phenomenon: waves propagate with a velocity 𝑣 in all directions around 

their excitation point and are attenuated with an attenuation factor 𝛼(𝑑) ∈ ℝ+ that is

distance dependent. Then, in the absence of damage, a wave 𝑠(𝑡) is sent by the 

piezoelectric element 𝑛 and the elements {𝑚 ∈ 1: 𝑁, 𝑚 ≠ 𝑛} receives the signals: 

𝑠𝑛𝑚
𝑅 (𝑡) = 𝛼(𝑑𝑛𝑚)𝑠 (𝑡 −

𝑑𝑛𝑚𝑓𝑠

𝑣
) Eq. 1

where 𝑑𝑛𝑚 denotes the distance between the elements 𝑛 and 𝑚, 𝑡 the sampled time and 

𝑓𝑠 the sampling frequency. It is important to notice here that isotropy is assumed whereas 

it may not be perfectly the case in practice. 

Let’s now introduce a damage at position 𝐷 within this structure. When the wave emitted 

by the element 𝑛 hit the damage, it is reflected, and a new wave is reemitted within the 

structure. As a first approximation, one can assume that damage acts as a secondary wave 

source that reemits any incoming wave in all directions with a reflection coefficient 𝛽 ∈
ℝ+. The signal received by the element 𝑚 is then:

𝑠𝑛𝑚
𝑈 (𝑡) = 𝑠𝑛𝑚

𝑅 (𝑡) + 𝛽𝛼(𝑑𝑛𝐷)𝛼(𝑑𝐷𝑚)𝑠 (𝑡 −
𝑓𝑠(𝑑𝑛𝐷 + 𝑑𝐷𝑚)

𝑣
) Eq. 2 

If the focus is now put on the difference signal, one has: 

𝛿𝑛𝑚(𝑡) = 𝑠𝑛𝑚
𝑈 (𝑡) − 𝑠𝑛𝑚

𝑅 (𝑡) = 𝛽𝛼(𝑑𝑛𝐷)𝛼(𝑑𝐷𝑚)𝑠 (𝑡 −
𝑓𝑠(𝑑𝑛𝐷 + 𝑑𝐷𝑚)

𝑣
) Eq. 3 

It is then possible to take the Fourier transform of this signal and one ends up with the 

following transfer function: 



𝐻𝑛𝑚𝑘 =
Δ𝑛𝑚(𝑘 − 𝑘0)

𝑆(𝑘 − 𝑘0)
 = 𝛽𝛼(𝑑𝑛𝐷)𝛼(𝑑𝐷𝑚)𝑒𝑥𝑝 (−𝑖2𝜋𝑓𝑠(𝑘 − 𝑘0) (

𝑑𝑛𝐷 + 𝑑𝐷𝑚

𝐾𝑣
)) Eq. 4 

where 𝑆(𝑘 − 𝑘0) denotes the Fourier transform of the input signal 𝑠(𝑡), Δ𝑛𝑚(𝑘 − 𝑘0) the

Fourier transform of the difference signal 𝛿𝑛𝑚(𝑡), and 𝐾 the total number of samples. 𝑘0

and 𝑘𝑀 stands for the frequency indexes over which the phase analysis starts and stops. 

𝐻𝑛𝑚𝑘 is thus the 𝑘-th coefficient of the Fourier transform for the difference signal on the 

path “actuator 𝑛 – sensor 𝑚” It is then possible to compute the phase of each element: 

Φ𝑛𝑚𝑘 = 𝜙[H𝑛𝑚𝑘] = −2𝜋𝑓𝑠(𝑘 − 𝑘0) (
𝑑𝑛𝐷 + 𝑑𝐷𝑚

𝐾𝑣
) Eq. 5 

The tensor 𝚽 ∈ ℝ𝑁×𝑁×𝐾 containing the coefficients Φ𝑛𝑚𝑘 can be interpreted as a three-

way tensor [4, 5, 6]. 

2.2. Canonical polyadic decomposition of the phase tensor 

The idea is now to be able to make a structure popping out of the tensor 𝚽 defined in 

Eq. 5. From tensors literature, it is well known that tensors can be decomposed using the 

Canonical Polyadic Decomposition (CPD) up to a rank 𝑅 [4, 5, 6]. Such a decomposition 

consists in finding a triplet (𝒂 ∈ ℝ𝑁×𝑅 , 𝒃 ∈ ℝ𝑁×𝑅 , 𝒄 ∈ ℝ𝐾×𝑅) that allows for a more

compact representation of a given tensor (see Fig. 1).

Fig. 1: Schematic representation of the CPD of the tensor 𝚽 

According to the notations of Fig. 1, the CPD of the phase tensor 𝚽 defined in Eq. 5 can 

be expressed as: 

Φ𝑛𝑚𝑘 = − ∑ 𝑎𝑛𝑟𝑏𝑚𝑟

𝑅

𝑟=1

𝑐𝑘𝑟Φ𝑛𝑚𝑘 Eq. 6

What is interesting here is that by analyzing Eq. 5 and by exploiting the fact that ∀ 𝑖 ∈
[1, 𝑁] 𝑑𝑖𝐷 = 𝑑𝐷𝑖, the tensor 𝚽 can be exactly expressed as a tensor of rank 𝑅 = 2 by

choosing: 

𝒂 = [
𝑑1𝐷 1
… …

𝑑𝑁𝐷 1
] 𝒃 = [

1 𝑑1𝐷

… …
1 𝑑𝑁𝐷

] 𝒄 =
2𝜋𝑓𝑠

𝐾𝑣
[

(𝑘0 − 𝑘0) (𝑘0 − 𝑘0)
… …

(𝑘𝑀 − 𝑘0) (𝑘𝑀 − 𝑘0)
] Eq. 7 

By looking in more detail at this tensor decomposition, it is particularly striking 

to notice that 𝒂 and 𝒃 both theoretically provide direct access to {𝑑𝑖𝐷}𝑖∈[1,𝑁] that are the

distances between each piezoelectric element and the damage position. On the knowledge 

of these distances, damage localization is thus theoretically possible. Furthermore, 𝒄 is 

parametrized by 𝑣 the wave velocity within the material and by the signal processing 

parameters 𝑓𝑠 and 𝐾 and is thus relatively easy to estimate. 



In summary, it is demonstrated that the CPD of rank 𝑅 = 2 of the phase of the difference 

signals between a healthy and damaged states potentially provides direct access to all 

the distances between the piezoelectric elements and the damage, which could allow for 

damage localization. 

2.3. Managing unicity of CPD 

Unfortunately, even if very efficient numerical tools are available to compute a CPD 

for a given tensor [14], such a decomposition is not unique. The issue is that here not only 

a decomposition is sought, but a decomposition that can be physically interpreted 

according to Eq. 7. It is however possible here to exploit the powerful property that the 

CPD is unique up to a scaling and a permutation of its terms. This guarantees that a 

decomposition of arbitrary choice can always be found. Therefore, a meaningful way to 

descale a numerically obtained CPD, or to obtain a unique one that makes sense 

physically is needed. 

Mathematically, for the phase tensor 𝚽, once a first decomposition (𝒂, 𝒃, 𝒄) has been 

numerically obtained, what is needed is to find {𝜆𝐴1, 𝜆𝐴2, 𝜆𝐵1, 𝜆𝐵2, 𝜆𝐶1, 𝜆𝐶2} such that: 

[
𝑑1𝐷 1
… …

𝑑𝑁𝐷 1
] =  𝒂 [

𝜆𝐴1 0
0 𝜆𝐴2

]  =  [
𝛼1 𝛽
… …

𝛼𝑁 𝛽
] [

𝜆𝐴1 0
0 𝜆𝐴2

] Eq. 8 

[
1 𝑑1𝐷

… …
1 𝑑𝑁𝐷

] =  𝒃 [
𝜆𝐵1 0

0 𝜆𝐵2
] =  [

𝛾 𝛿1

… …
𝛾 𝛿𝑁

] [
𝜆𝐵1 0

0 𝜆𝐵2
] Eq. 9 

2𝜋𝑓𝑠

𝑣𝐾
[

𝑘0 − 𝑘0 𝑘0 − 𝑘0

… …
𝑘𝑀 − 𝑘0 𝑘𝑀 − 𝑘0

] = 𝒄 [
𝜆𝐶1 0
0 𝜆𝐶2

] =  [

𝜇1 𝜖1

… …
𝜇𝐾 𝜖𝐾

] [
𝜆𝐶1 0
0 𝜆𝐶2

] Eq. 10 

satisfying the followings constraints [5]: 

{
𝜆𝐴1𝜆𝐵1𝜆𝐶1 = 1
𝜆𝐴2𝜆𝐵2𝜆𝐶2 = 1

Eq. 11 

By analyzing the above equations, it can be easily seen that these coefficients can be 

estimated as: 

𝜆𝐴2 = 1/𝛽 𝜆𝐶1 = 𝑚𝑒𝑎𝑛 [
2𝜋𝑓𝑠(𝑘 − 𝑘0)

𝐾𝑣𝜇𝑘
] 𝜆𝐴1 =

1

𝜆𝐵1𝜆𝐶1

𝜆𝐵1 = 1/𝛾 𝜆𝐶2 = 𝑚𝑒𝑎𝑛 [
2𝜋𝑓𝑠(𝑘 − 𝑘0)

𝐾𝑣𝜖𝑘
] 𝜆𝐵2 =

1

𝜆𝐴2𝜆𝐶2

Eq. 12 

It is important here to notice that to go back from an arbitrary numerical CPD to 

a CPD that is physically relevant, the knowledge of the velocity 𝑣 is needed. This 

descaling factor, i.e. the velocity of Lamb waves within the material is here indeed 

necessary to convert a time-domain information (extracted from phase here) to a distance 

information as done in any classical localization algorithm [12, 13, 11]. However, the 

Lamb wave velocity 𝑣 can be very easily estimated from experimental data in the 

reference state by computing the times of arrivals of the first wave packets and making 

use of the known distances between piezoelectric elements. 

In summary, it is shown here that starting from a numerical CPD of the phase tensor and 

using knowledge on the velocity 𝑣 of Lamb waves within the material under study derived 

from input experimental data, it is possible to access to two estimates of the distances 

between all the piezoelectric elements and the damage {𝑑𝑖𝐷
𝑎 }𝑖∈[1,𝑁] and {𝑑𝑖𝐷

𝑏 }
𝑖∈[1,𝑁]

.



Even if theoretically ∀𝑖 ∈ [1, 𝑁] 𝑑𝑖𝐷
𝑎 = 𝑑𝑖𝐷

𝑏 , this may not be the case in practice due to

several factors (experimental noise, numerical issues, …) and it has thus been chosen to 

introduce and to keep the two notations. 

2.4. Damage localization imaging 

The last step of the damage localization algorithm consists now in drawing a map able 

to highlight the most probable damage localization from the two sets of distances 

{𝑑𝑖𝐷
𝑎 }𝑖∈[1,𝑁] and {𝑑𝑖𝐷

𝑏 }
𝑖∈[1,𝑁]

 estimated previously. Let’s consider a structure under study

over which coordinates of a current point 𝑃 can be defined. It is then possible to compute 

for any current point on the structure the distances {𝑑𝑖𝑃}𝑖∈[1,𝑁] between this current point

and the 𝑁 piezoelectric elements. The point of the structure that will most probably be 

the damage location should thus in theory satisfy: 

∀𝑖 ∈ [1, 𝑁]   𝑑𝑖𝑃 = 𝑑𝑖𝐷
𝑎 = 𝑑𝑖𝐷

𝑏 Eq. 13 

Consequently, a very intuitive damage localization index (DLI) can be defined as: 

DLI(𝑃) =  
1

∑ (2𝑑𝑖𝑃 − 𝑑𝑖𝐷
𝑎 − 𝑑𝑖𝐷

𝑏 )
2𝑁

𝑖=1

Eq. 14 

Finally, the damage imaging algorithm simply consists in plotting DLI(𝑃) over the 

structure and in searching for its maximum value. One can notice that the choice done 

here is arbitrary and that other potentially more optimal choices could have been made 

(minimizing the sum of squares, separate optimization procedures using 𝑑𝑖𝐷
𝑎  and 𝑑𝑖𝐷

𝑏 , …).

2.5. Algorithm overview 

Fig. 2: Overview of the damage localization algorithm 

The damage localization algorithm proposed here can thus be summarized as follows: 

- Step 1: Compute the difference tensor 𝜹 between a reference and an unknown 

state. 

- Step 2: Compute the phase of the Fourier transform for the difference signal on 

the path “actuator 𝑛 – sensor 𝑚” and build the tensor 𝚽 on this basis (see Sec. 

2.1). 

- Step 3: Compute the CPD of rank 𝑅 = 2 of the tensor 𝚽 (see Sec. 2.2). 



- Step 4: Estimate Lamb wave velocity 𝑣 to descale the previous numerically 

obtained CPD and extract damage to piezoelectric elements distances estimates 

{𝑑𝑖𝐷
𝑎 }𝑖∈[1,𝑁] and {𝑑𝑖𝐷

𝑏 }
𝑖∈[1,𝑁]

 (see Sec. 2.3).

- Step 5: Compute the damage localization index and draw a damage localization 

map in order to estimate the most probable damage localization (see Sec. 2.4). 

3. Experimental results
3.1. Experimental setup

The geometrically complex aeronautics structure under study consists here in the 

fan cowl part of a nacelle of an Airbus A380. This structure is 1.5 m in height for a semi 

circumference of 4 m and is made of composite monolithic carbon epoxy material. It has 

been equipped with 30 piezoelectric elements manufactured by NOLIAC (diameter of 

25 mm) and possesses many stiffeners delimiting various areas; as shown in Figure 3. 

This part is particularly challenging because it contains several stiffeners. The damage is 

simulated using two 35 mm Neodymium magnets placed on both faces of the structure at 

the position indicated by the yellow “X”. 

Figure 3: Fan cowl of an A380 Nacelle made of composite materials and equipped with 30 

piezoelectric elements and possessing many stiffeners. Damage position is indicated with the 

yellow “X”. 

The excitation signal sent to the PZT element is a “5 cycles burst” with a central 

frequency of 𝑓0 = 200 kHz and with an amplitude of 10 V. This signal has been chosen 

here to maximize the propagation of the 𝑆0 mode [11, 12]. In each phase of the

experimental procedure, one PZT is selected as the actuator and the other act as sensors. 

All the PZTs act sequentially as actuators. Resulting signals are then simultaneously 

recorded by the others piezoelectric element and consist of 1500 data points sampled at 

1 MHz. The Lamb wave propagation speed within the material is estimated around 5200 

m/s for the 𝑆0 mode. Signals were acquired 10 times in both the healthy (reference) and 

damaged (unknown) states. 

As pre-processing steps, the measured signals are first denoised by means of a discrete 

wavelet transform up to the order 4 using the “db40” wavelet. Those signals are then 

filtered around their center frequency 𝑓0 using a continuous wavelet transformation based 

on “morlet” wavelets and with a scale resolution equals to 20. The diaphonic part present 

in the measured signals (i.e. the copy of the input signals that appears on the measured 

signal due to electromagnetic coupling in wires) has been previously eliminated based on 



the knowledge of the geometrical positions of the PZT and of the estimated waves 

propagation speed 𝑣 in the material. 

3.2. CPD of the phase tensor in practice 

To build the tensors 𝚽 and 𝑨 (see Sec. 2.1), the matrix 𝜹 containing the differences 

of signals between the healthy and damaged states have been built. To remove undesirable 

reflections from the differences signals, only the first wave packets have been retained in 

the difference signals. In Figure 4 [Left], the resulting normalized pre-processed 

difference signals are plotted in blue as well as the corresponding input signals (in red). 

From this figure it can be seen that the simplified underlying hypothesis leading to Eq. 3 

is well satisfied after the pre-processing steps (denoising and first wave packet isolation): 

indeed, the difference signals contain a single reflection that arrive to sensor with variable 

delays. It should also be noted that in practice due to the data acquisition system being 

used, the piezoelectric elements can be considered either as actuators or as sensors, but 

not as both. Thus, nothing is measured on the “diagonal” part of the tensor (i.e. when 

𝑛 = 𝑚, see the diagonal of Figure 4). In practice the matrices 𝜹 and 𝚽 are thus only 

partially known. 

Figure 4: [Left] Example of input signals (red) and of pre-processed difference signals (blue) for 

several “actuator-sensor” paths. Amplitudes have been normalized. [Right] Part of the phase 

tensor 𝚽 for several “actuator-sensor” paths. Phase is plotted in the range [0.9𝑓0, 1.1𝑓0] with

𝑓0 = 200 kHz.

The phase and amplitude are then computed from the discrete Fourier transform of 

these signals. As input signals are band limited around their central frequency 𝑓0, only the 

phase and amplitude in the range [0.9𝑓0, 1.1𝑓0] is considered here. The phases, which are 

parts of the phase tensor 𝚽 are plotted in Figure 4 [Right]. From this figure as expected 

from Eq. 5, the phases decrease linearly with the frequency and the slopes of these phases 

are different.  

The next step consists in computing first numerical CPDs of the phase and amplitude 

tensors. These CPDs are computed using the TensorLab toolbox running in a Matlab 

environment [14]. Obtaining a numerical CPD is nothing else than solving an 

optimization problem satisfying some constraints associated with the particular form of 

the decomposition being sought. Thus, initial values of the triplets (𝒂 ∈ ℝ𝑁×𝑅 , 𝒃 ∈
ℝ𝑁×𝑅 , 𝒄 ∈ ℝ𝐾×𝑅) must be provided to the optimization algorithm before running it. Here

𝒄 is initialized according to Eq. 7 as information regarding Lamb waves velocity 𝑣 has 



been previously estimated. The matrices 𝒂 and 𝒃 are initialized by considering that an 

initial guess localization for the damage is the barycenter of all the positions of the 

piezoelectric elements. The CPDs are then obtained through a nonlinear least squares 

algorithm. Once the two numerical CPDs are obtained, they are descaled to allow for their 

physical interpretation as explained in Sec. 2.3. At that moment it is then possible to 

access to two estimates of the distances between all the piezoelectric elements and the 

damage {𝑑𝑖𝐷
𝑎 }𝑖∈[1,𝑁], and {𝑑𝑖𝐷

𝑏 }
𝑖∈[1,𝑁]

(see Sec. 2.3) and to compute the damage

localization index defined by Eq. 14 for all points 𝑀 in the area of interest where the 

damage could be located. As for each case under study 10 repetitions in the healthy and 

damaged states are available, the damage localization index is computed 100 times. 

3.3. Localization results 

Figure 5: Obtained localization results for the different damage localization indexes and for the 

full structure under study. 

Localization results are provided in Figure 5. On this figure, the damage localization 

index is plotted for the case under study as well as the positions of the different 

piezoelectric elements. In addition to the resulting damage localization maps, the position 

of the actual damage as well as the position of the best estimation and of the median 

estimation provided by the algorithm are provided. Furthermore, the associated “Best 

errors” and “Median errors’ are reported in the title and are both around 27 cm. The 

median estimated localization for each case under study lies relatively close to the actual 

damage position when considering the overall structure dimension. It can also be seen 

that the damage localization maps provided by the damage localization index graphically 

indicate the correct area and that the best localization results are really close to the actual 

damage position. Thus, the relative localization error (i.e. the localization error divided 

by the larger portion of the structure expressed in %) is ≃ 6 − 7% for the case being 

considered. Another noticeable point with respect to the proposed algorithm is that it takes 

as inputs directly the signals measured by all the piezoelectric elements without any 

additional preprocessing or selection steps. This makes the algorithm relatively robust in 

the present case. 

4. CONCLUSION
Monitoring in real-time and autonomously the health state of aeronautic structures is

referred to as Structural Health Monitoring (SHM) and is a process decomposed in four 

steps: damage detection, localization, classification, and quantification. Structure under 

study was here a complex aeronautic nacelle and the focus was put on the localization 

step of the SHM process. The fact that SHM data are naturally three-way tensors has been 

investigated for this purpose. It is demonstrated in this paper that under classical 

assumptions regarding wave propagation, the canonical polyadic decomposition of rank 



2 of the tensor built from the phase of the difference signals between a healthy and 

damaged states provides direct access to the distances between the piezoelectric elements 

and the damage. This property is used here to propose an original and robust tensor-based 

damage localization algorithm. This algorithm is successfully validated on experimental 

data coming from the structure under study. Thanks to the tensor formalism this algorithm 

appears to be very robust when integrating all the information together in the localization 

process through the canonical polyadic decomposition. Future work will now focus on a 

methodological comparison between this tensor-based algorithm and classical algorithms 

thanks to numerical simulations and experimental data. 
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