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Abstract: This paper is devoted to tackling constrained multi-objective optimisation under
uncertainty problems. A Surrogate-Assisted Bounding-Box approach (SABBa) is formulated here
to deal with robustness and reliability measures, which can be computed with tunable and refinable
fidelity.
A Bounding-Box is defined as a multi-dimensional product of intervals centred on the estimated
objectives and constraints that contains the true underlying values. The fidelity of these estimations
can be tuned throughout the optimisation so as to reach high accuracy only on promising designs,
which allows quick convergence toward the optimal area. In SABBa, this approach is supplemented
with a Surrogate-Assisting (SA) strategy, which is very useful to reduce the overall computational
cost. The adaptive refinement within the Bounding-Box approach is based on the computation of
a Pareto Optimal Probability (POP) for each box.
We first assess the proposed method on several analytical uncertainty-based optimisation test-
cases with respect to an a priori metamodel approach in terms of a probabilistic modified Hausdorff
distance to the true Pareto optimal set. The method is then applied to two engineering applications:
the design of two-bar truss in structural mechanics and the design of a thermal protection system
for atmospheric reentry.
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Le framework SABBa appliqué à l’optimisation contrainte
multi-objectif sous incertitudes

Résumé : Ce travail se concentre sur les problèmes d’optimisation sous incertitudes multi-
objectif. Le framework SABBa (Surrogate-Assisted Bounding-Box approach) est proposé pour
traiter les mesures de robustesse et de fiabilité, qui peuvent être calculées avec une fidélité
adaptable et raffinable.

Une Boîte conservative est définie comme un produit multi-dimensionnel d’intervalles centrés
sur les objectifs et contraintes estimés, de manière à contenir leur valeur réelle. La fidélité de
ces estimations peut être ajustée au fur et à mesure du processus d’optimisation de manière à
atteindre des estimations haute-fidélité uniquement sur les individus les plus prometteurs. Dans
SABBa, cette approche est couplée à une stratégie d’assistance par modèle de substitution, qui
permet de réduire le coût global du processus d’optimisation. Nous proposons de guider le
raffinement adaptatif des Boîtes conservatives par le calcul de la probabilité pour chaque boîte
d’être Pareto-optimale.

La méthode proposée est d’abord appliquée à plusieurs cas-tests analytiques et comparée à un
approche par modèle de substitution a priori. Un indicateur par distance de Hausdorff modifiée
probabiliste est proposée pour comparer les différentes stratégies. SABBa est ensuite appliqué
sur deux cas ingénierie : une structure à deux poutres et un système de protection thermique
ablatif pour réentrée atmosphérique.

Mots-clés : Optimisation multi-objectif, Optimisation sous incertitudes, Boîte d’erreur con-
servative, Front de Pareto imprécis, Assistance par modèle de substitution
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1 Introduction

The topic of optimisation under uncertainty is of particular interest for companies nowadays as
(i) the always increasing computational power now allows for multiple runs and reanalysis of
simulations and (ii) robustness, reliability and cost optimality are critical factors for assessing
the quality of a product and the efficiency of a company. In this context, two main areas are of
primary interest: Robust Optimisation (RO) and Reliability-Based Optimisation (RBO). One of
the central issues in conducting such analysis is the computational cost of attaining a prescribed
level of accuracy. Most of the time, these optimisations are performed on numerical simulations,
with run times ranging from minutes to weeks. This prohibits direct simulation-based methods
such as nested Monte Carlo Simulations (MCS), performing a full Uncertainty Propagation (UP)
at each optimisation iteration.

Contributions to reliability-based optimisation mostly rely on the computation of failure
probability, such as the First-Order Reliability Method (FORM), and the Performance Measure
Approach (PMA) [1, 2]. Other decoupled approaches are based on local approximations of
the failure probability and the associated gradient to perform line search optimisation, as in
[3], based on Subset Simulation (SS) computations, or in [4], supplemented by a stabilisation
strategy. The idea of using a surrogate model to tackle the computational cost limitation has
been extensively used with Neural Networks [5], Polynomial Chaos Expansion (PCE) [6] and
PCE-Kriging metamodels [7]. Finally, in [8], a Stepwise Uncertainty Reduction (SUR) strategy
for failure probability estimation is proposed, based on the volume of the excursion set. Other
approaches to mention are Ref. [9] and [10], based on “safety factor” constraints and Extreme
Value Distribution (EVD) respectively.

In literature, there are also several contributions to the topic of Robust Optimisation, in
particular applied to structural optimisation and Topological Optimisation (TO). Taguchi’s ro-
bustness paradigm provides a typical RO formulation. It aims at maximising the performance
(or mean performance) whilst minimising the associated variance. Refs. [11, 12, 13, 14] are
examples of this paradigm for RTO problems. To perform mean performance optimisation, Ref.
[15] introduces the Stochastic Subset Optimisation (SSO), which is then supplemented by a lo-
cal optimisation through Simultaneous Perturbation Stochastic Approximation (SPSA). SPSA
was also used in [16], coupled with an adaptive Importance Sampling (IS) strategy. Worst-case
optimisation has been performed with monotonic assumptions in [17] and [18]. Surrogate-based
methodologies are also massively exploited in the area of Robust Optimisation, for example with
PCE [6], and kriging [19]. A general discussion over the use of metamodels in the context of
uncertainty-based optimisation is proposed in [20]. It shows that such methods yield promising
results, notably the kriging or Gaussian Process (GP) surrogate models [21, 22, 23]. Some works
take full advantage of the nature of Gaussian processes. In [24], the projection of a GP surrogate
model is conducted analytically to perform mean performance optimisation. Optimisation in
the design space is then performed through Bayesian Optimisation (BO). In [25], they exploit
the ability of Gaussian process modelling to deal with heterogeneous noises in the observations.
Finally, [26] uses conditional simulations in the context of multi-objective optimisation to sample
possible Pareto optima. More generally, there have been extensions of GP-based optimisation
(BO or Efficient Global Optimisation, EGO) to stochastic or noisy black-box evaluations, for ex-
ample, with Sequential Kriging Optimisation (SKO) [27], and with the concept of Noisy Expected
Improvement [28].

In several contributions [29, 30, 31], the authors introduced the concept of Bounding-Boxes
and revisited the Pareto dominance rules. These concepts have been generalised in [32] to tackle
noisy estimations with tunable fidelity, and supplemented by a Surrogate-Assisting strategy to
obtain the parsimonious Surrogate-Assisted Bounding-Box approach (SABBa) framework. The
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4 Rivier, Congedo

main contribution of the present paper is the extension of SABBa to the problem of optimisation
under uncertainty, where both probabilistic objectives (RO) and probabilistic constraints (RBO)
must be tackled. To this extent, we propose a Constrained Boxed Pareto Dominance rule to deal
with estimated constraints. Parsimony is improved through the choice of GP surrogate models,
allowing for natural computations of conservative errors and refinement criteria. In addition, the
Pareto Optimal Probability (POP) is computed for each box to focus the refinements on boxes
that are non-dominated with high probability. All numerical details for practical implementation
and quantitative comparisons are given in the following. We show that the direct Double Loop
approach, where a full Uncertainty Propagation (UP) is performed at each optimisation iteration,
is extremely expensive and not competitive with respect to the so-called A Priori MetaModel
(APMM) strategy. Hence, we systematically compare SABBa to the latest.

We depict a general uncertainty-based optimisation problem in Section 2, with some classical
robustness and reliability measures. Then, we introduce the concept of Bounding-Boxes and
Pareto Optimal Probability (POP) in Section 3. We extend the existing concepts from [29, 30, 31,
32] to constrained optimisation problems. The global algorithm is depicted in Section 4 alongside
computational insights for measure estimation. Three variants of SABBa are quantitatively
compared in Section 5 on analytical test-case and the most efficient approach is applied on two
engineering applications in Section 6. Some conclusions and perspectives are drawn in Section 7.

2 Uncertainty-based optimisation: problem formulation
The objective of this section is to formulate a general expression for an Optimisation under
Uncertainty problem including both Robust and Reliability-Based Optimisation (RO and RBO).

A deterministic constrained multi-objective optimisation problem can be described as follows:

minimise/maximise: f (x) ,

satisfying: g (x) ≤ 0,

by changing: x ∈ X ,

where the m1 objective functions are collected in a vector f ∈ Rm1 , the m2 constraint functions
in g ∈ Rm2 and x ∈ X are the n design variables included in the design domain X ⊂ Rn.

In the presence of uncertain parameters ξ (e.g. environmental, material or geometrical pa-
rameters), the objective and constraint functions depend on both x and ξ. Hence, f(x, ξ) and
g(x, ξ) must be replaced with robustness and reliability measures, ρf (x) and ρg(x) respec-
tively. These allow the formulation of a general uncertainty-based constrained multi-objective
optimisation problem, as follows:

minimise/maximise: ρf (x),

satisfying: ρg(x) ≤ 0,

by changing: x ∈ X ,

with ρf ∈ Rm1 and ρg ∈ Rm2 .
Many formulations are possible for ρf and ρg. The following are tackled in this paper:

Expectation: ρf (x) = Eξ[f(x, ξ)],

Variance: ρf (x) = Vξ[f(x, ξ)],

Min/Max: ρf (x) = min
ξ

[f(x, ξ)] or max
ξ

[f(x, ξ)],

Quantile: ρf (x) = qpξ[f(x, ξ)], p ∈ [0, 1],

and the same for ρg. Note that any other measure could also be treated similarly in the following.

Inria



SABBa for constrained multi-objective optimisation under uncertainty 5

Remark For conciseness, ρf and ρg are gathered in a vector ρ,

∀x ∈ X , ρ(x) =

(
ρf (x)
ρg(x)

)
.

The main issue here is the accurate computation of these quantities. In this work, we ap-
proximate statistical measures through Monte Carlo Simulations (MCS) on surrogate models. To
improve the accuracy of these approximations, one can increase the training set used for building
the surrogate.

Hence, the uncertainty-based optimisation problem reduces to a constrained multi-objective
optimisation problem with tunable fidelity computations for all objectives and constraints. The
concept of tunable fidelity in the unconstrained case has been introduced in [32] for multi-
objective optimisation problems. Next section illustrates the concept of Bounding-Boxes and
their applicability to constrained problems.

3 Bounding-Boxes
In this section, we introduce the concept of Bounding-Box. Notations and the Boxed Pareto
dominance (introduced in [32]) are recalled. The extension to constrained optimisation problems
is then illustrated in Section 3.1.2. Finally, the concept of Pareto Optimal Probability is presented
in Section 4.1 alongside computational insights.

3.1 Bounding-Box definition
A m-dimensional box is defined as follows, with a ∈ Rm the center and r ∈ Rm the positive
half-width vector:

B(a, r) =
{
b ∈ Rm | b ∈ [a− r,a+ r]

}
∈ ℘(Rm),

where ℘(Rm) is the power set of Rm.
The Bounding-Box approach consists in approximating an unknown value, here statistical

measures ρ, by a conservative box containing the true values. More precisely, the unknown ρ is
approximated by ρ̃l, l being the fidelity of the approximation. The exact approximation error
εl = ρ − ρ̃l is conservatively approximated by εl ≥ |εl|. Hence it comes that ρ ∈ B(ρ̃l, εl) (see
Fig. 1).

3.1.1 Boxed Pareto Dominance

To perform multi-objective optimisation, the Pareto dominance rules are usually exploited to as-
sess dominance (�), strict dominance (��) or indifference (∼) between designs. In the Bounding-
Box context, for comparing two boxes

(
B(a, r),B(b, r′)

)
∈ ℘(Rm)2, the Boxed Pareto dominance

is defined as follows:

• B(a, r) dominates B(b, r′) in the Boxed Pareto dominance sense:

B(a, r) �
B
B(b, r′) ⇐⇒ ∀j ∈ J1,mK, ±aj + rj ≤ ±bj − r′j and

∃j ∈ J1,mK, ±aj + rj < ±bj − r′j ;

• B(a, r) strictly dominates B(b, r′) in the Boxed Pareto dominance sense:

B(a, r) ��
B
B(b, r′) ⇐⇒ ∀j ∈ J1,mK, ±aj + rj < ±bj − r′j ;

RR n° 9214



6 Rivier, Congedo

ρ
εl1

εl2

εl1

εl2

ρ̃l

B
(
ρ̃l, εl

)

Figure 1: Bounding-Box approximation

• B(a, r) and B(b, r′) are indifferent in the Boxed Pareto dominance sense:

B(a, r) ∼
B
B(b, r′) ⇐⇒ B(a, r) �

B
B(b, r′) and B(b, r′) �

B
B(a, r).

∀j ∈ J1,mK, the symbol ± (implicitly ±j) indicates the goal in the jth dimension:

± =

{
+ for minimisation
− for maximisation.

Intuitively, B(a, r) dominates B(b, r′) if the worst outcome of B(a, r) dominates in the clas-
sical sense the best outcome of B(b, r′). An example is given hereafter in Fig. 2. In the case
of bi-minimisation, the dominance are the following: B1 ∼

B
B2, B1 ∼

B
B3, B1 ∼

B
B4, B2 ∼

B
B3,

B2 ��
B
B4, B3 ∼

B
B4. Hence, only B1, B2 and B3 are non-dominated.

3.1.2 Constrained Boxed Pareto dominance

The Boxed Pareto dominance allows comparing boxes in a multi-objective optimisation context.
For dealing with robust objectives as well as reliability-based constraints, the Pareto dominance
should take into account constraint violation. To this extent, a Constrained Pareto dominance
�c is first proposed, where again � refers to the classical Pareto dominance.

Let us assume that elements to compare are in Rm and m = m1 +m2 with dimensions 1 to
m1 being the objective dimensions (subject to minimisation or maximisation) and the m2 latest
being the constraint dimensions (assumed as lower or upper bounds). We also introduce the
vector aD, with D a set of indices, which is the projection of a on the associated dimensions.
Formally, aD is defined as:

aD =
∑
d∈D

aded,

with ek the unit vector in the k-th direction.
In the multi-objective constrained problem, vector aJ1,m1K represents the objective values

and aJm1+1,mK the constraint values. Without loss of generality, these m2 constraints can be
considered of the form:

∀j ∈ Jm1 + 1,mK, ±aj ≤ 0,

Inria
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Figure 2: Boxed Pareto Dominance: Comparison of 4 boxes, best and worst outcomes in green
and red, respectively.

where

± =

{
+ for upper bounds
− for lower bounds.

The admissible and failure sets are then defined as follows:

A =
{
a ∈ Rm | ∀j ∈ Jm1 + 1,mK, ±aj ≤ 0

}
,

F =
{
a ∈ Rm | ∃j ∈ Jm1 + 1,mK, ±aj > 0

}
.

Contrarily to the classical Pareto dominance, the Constrained Pareto dominance compares
boxes from the coupled objective/constraint spaces. The dominance rule when comparing two
designs classically (without boxes) is defined as follows

a �c b ⇐⇒ aJ1,m1K � bJ1,m1K and a ∈ A or b ∈ F
a ��c b ⇐⇒ aJ1,m1K �� bJ1,m1K and a ∈ A or b ∈ F
a ∼c b ⇐⇒ a �c b and b �c a

where the admissible set A contains the points satisfying all constraints while any point of the
failure set F disrespects at least one constraint. Note that in the deterministic case, A = F{,
where the superscript ·{ stands for complement. This relation would not hold in the context of
boxed objectives and constraints, as shown in the following.

When comparing boxes of Rm, the admissible AB and failure FB sets contain the boxes that
lie entirely in A and F respectively:

AB =
{
B ∈ ℘(Rm) | ∀a ∈ B, a ∈ A

}
FB =

{
B ∈ ℘(Rm) | ∀a ∈ B, a ∈ F

}
RR n° 9214



8 Rivier, Congedo

Hence, in the general case, AB 6= F{
B. A more computationally friendly formulation is the

following, using again the best and worst outcomes:

AB =
{
B(a, r) ∈ ℘(Rm) | ∀j ∈ Jm1 + 1,mK, ±aj + rj ≤ 0

}
,

FB =
{
B(a, r) ∈ ℘(Rm) | ∃j ∈ Jm1 + 1,mK, ±aj − rj > 0

}
.

The Boxed Constrained Pareto dominance is then defined as follows:

B(a, r) �c
B
B(b, r′) ⇐⇒ B(a, r)J1,m1K �

B
B(b, r′)J1,m1K and B(a, r) ∈ AB or

B(b, r′) ∈ FB,
B(a, r) ��c

B
B(b, r′) ⇐⇒ B(a, r)J1,m1K ��

B
B(b, r′)J1,m1K and B(a, r) ∈ AB or

B(b, r′) ∈ FB,
B(a, r) ∼c

B
B(b, r′) ⇐⇒ B(a, r) �c

B
B(b, r′) and B(b, r′) �c

B
B(a, r),

with the notation B(a, r)J1,m1K = B(aJ1,m1K, rJ1,m1K).
With this Pareto dominance rule, two boxes in FB will mutually dominate each other. Such a

behaviour is desired to make sure that any box of the boxed failure set is completely dominated,
regardless of the performance of the other boxes. This will be exploited in the next section,
where the Pareto Optimal Probability of each box is computed.

In the general case, for a box to be dominated, the non-constrained Boxed Pareto Dominance
must be fulfilled in the objective dimensions and the dominant box must lie entirely in the
admissible set. An example is given in Fig. 3 with a constrained mono-objective minimisation.
Here, B1 ∈ FB, B2 ∈ F{

B ∩ A{
B, B3 ∈ AB and B4 ∈ AB. The dominance are then as follows:

B1 ≺≺c
B
B2, B1 ≺≺c

B
B3, B1 ≺≺c

B
B4, B2 ∼c

B
B3, B2 ∼c

B
B4, B3 ��c

B
B4. Only B2 and B3 are

non-dominated. B1 is dominated by being entirely in the failure set and B4 is dominated by
B3 ∈ AB in the classical Boxed Pareto Dominance sense in 1D.

3.2 Pareto Optimal Probability
In the above, dominance rules allow to discriminate dominated boxes from non-dominated ones.
This rule is exploited in [31, 32] to refine only non-dominated boxes. To discriminate in a more
rigorous way between non-dominated boxes, we propose to compute for each Bounding-Box its
probability of being non-dominated. Such a computation is based on the assumption that the
true robustness and reliability measures ρ in Figure 1 can be modelled with an aleatory variable
following a uniform distribution within the Bounding Box B(ρ̃l, εl). The problem relapses to
computing the Pareto Optimal Probability of aleatory variables with known uniform distribu-
tions.

With Ball a given set of boxes
{
Bi
}
i
, the exact POP computation follows the formula below:

POPtrue(Bi) = P{Zk}k

[
∩

Bj∈Ball
j 6=i

Zj �c Zi
]
, (1)

where for all k, Zk ∼ U
(
Bk
)
. As assumed earlier, the realisations Zk are drawn uniformly within

the set Bk.
Note however that this POP computation yields a combinatorial complexity that profoundly

limits its calculation in closed form and would require Monte-Carlo approximation. Moreover,
the returned score is sometimes not consistent in the presence of clusters of boxes in the objective

Inria
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Figure 3: Constrained Boxed Pareto Dominance: Comparison of 4 boxes, best and worst out-
comes in green and red, respectively.

and constraint space. For this reason, we propose two approximations of the POP, that will be
quantitatively compared.

Ref. [29] proposes the use of a box probabilistic ranking as the fitness function for ESPEA
(Estimated Strengh Pareto Evolutionary Algorithm). The score of a given box is computed by
averaging the one-to-one domination probability with respect to all other boxes. Such an idea is
used here, replacing the domination probability with the POP, as follows:

POPav(Bi) =
1

N − 1

∑
Bj∈Ball

j 6=i

PZj ,Zi

[
Zj �c Zi

]
, (2)

with the same definition of Zk as above and where N is the total number of boxes in Ball.
The explicit details for computing the above expression are given in A. Since we compute each

probability between only two boxes, the computational burden is very low. However, clustered
boxes still yield inconsistent scores, as will be shown in the following.

A second metric, denoted as POPmin, is defined as follows, with Bnd the set of non-dominated
designs (using the Constrained Boxed Pareto dominance):

POPmin(Bi) = min
Bj∈Bnd

j 6=i

(
PZj ,Zi

[
Zj �c Zi

])
. (3)

This approximation, yields a good relative ranking between boxes and is efficiently com-
putable. It also shows robust behaviour when dealing with clustered boxes.

These three metrics i.e. POPtrue, POPav and POPmin are compared on three examples to
illustrate the challenges associated with the POP computation. Each example is constituted of
a given set of boxes and an optimisation problem: (1) a bi-minimization problem with highly
clustered boxes (Figures 4), (2) a bi-minimization problem (Figure 5 (a)) and (3) a constrained

RR n° 9214



10 Rivier, Congedo

mono-objective minimization problem (Figure 5 (b)). The computed values of POP are reported
in Table 1.

2 3 4 5 6 7 8
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n)

objective 1 (minimisation)

B1
B2

B3,B4,B5,B6

Figure 4: Example 1, with boxes B3 to B6 superimposed. Best and worst outcomes in green and
red respectively. Associated POPs in Table 1.

Figure 4 illustrates the example 1 with clustered boxes (B3 to B6). Geometrically, all these
boxes are equally close to the Pareto front, whereas box B is sensibly less efficient than B1,
hence further from the Pareto front. However, one can see in Table 1 that POPtrue and POPav
yield higher values of POP for box B2 than for boxes B3 to B6. POPav and POPmin are easily
computable, but the former can lead to unintuitive probabilities for strictly dominated boxes.
This is notably the case for box B6 in Example 2 and box B4 in Example 3, as shown again in
Table 1.

Example 1 Example 2 Example 3
POPtrue POPav POPmin POPtrue POPav POPmin POPtrue POPav POPmin

B1 0.898 0.98 0.898 1.0 1.0 1.0 0.0 0.0 0.0
B2 0.538 0.908 0.538 0.902 0.98 0.912 0.254 0.279 0.254
B3 0.521 0.85 0.75 0.39 0.828 0.419 0.724 0.943 0.746
B4 0.521 0.85 0.75 0.621 0.924 0.622 0.0 0.628 0.0
B5 0.521 0.85 0.75 0.017 0.508 0.07 0.022 0.483 0.031
B6 0.521 0.85 0.75 0.0 0.735 0.0 0.0 0.0 0.0

Table 1: POPs comparison on examples 1 to 3 (Figs. 6 and 7)

For its simplicity, interpretability and very low computational burden, POPmin will be used
in the following.

4 SABBa framework
The objective of SABBa is to lower the computational cost of estimating the Pareto front by
adaptively allocating the fidelity l(x) for computing the robustness and reliability measures ρ̃l

Inria
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Figure 5: (a) Example 2 with a bi-minimization problem ; (b) Example 3 with a constrained
mono-objective minimization. Best and worst outcomes in green and red respectively. Associated
POPs in Table 1 .

associated to a design x. The unconstrained version of this framework is developed in [32] and
relies on the coupling between the Bounding-Box approach presented above and a Surrogate-
Assisting (SA) model built on the objectives in order to bypass function evaluations, notably
toward the end of the optimisation. SABBa can be coupled to any optimisation algorithm
and surrogate model for the SA strategy. This feature allows the approach to be very readily
applicable and to benefit from new optimisation or metamodelling techniques. In this paper, the
chosen optimisation algorithm is NOMAD [33] for its reliable management of multiple objectives
and constraints within a derivative-free framework (version 3.6.2). All surrogate models are
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handled with Gaussian Processes (using the python Gaussian Process package GPy [34] version
1.8.5).

In the following, we provide the global algorithm and the necessary numerical ingredients for
the implementation. Specifically, Section 4.1 presents extensively the structure and algorithm of
the framework, Section 4.2 deals with the computation and refinement of the Bounding-Boxes
and Section 4.3 proposes a quality indicator for quantitative comparison on analytical test-cases.

4.1 Algorithm

The framework follows the structure depicted in Figure 6. The optimiser manages the design
space exploration with the aim of computing an accurate approximation of the Pareto front. We
illustrate now the typical sequence of operations within an iteration of the algorithm. Let us
assume to have evaluated so far

{
xi,ρ

l(xi)
}
i
for all the designs belonging to a set called Xc

(which includes each design evaluated by means of the Bounding-Box approach) and that the SA
model ρtSA and associate error εtSA have been computed on these estimations. The algorithm
features the following operation for each optimisation iteration, i.e. for a given design x:

• If the SA model yields accurate prediction on this design, meaning εtSA(x) ≤ s1, the
robustness and reliability measures returned by the surrogate ρSA(x) are given to the
optimiser;

• Else, the measures must be computed and the design x is added to the set Xc. To this
extent, f(x, ξ) and g(x, ξ) are computed for some values of ξ in order to build the surrogate
models f̂(x, ·) and ĝ(x, ·). This allows to estimate empirically, with a fidelity l mainly
determined by the number of ξ samples, the robustness and reliability measures ρl(x) =(
ρlf (x),ρlg(x)

)
at very low cost. The Gaussian Process surrogate models also permit to

compute an approximation εl(x) of the associated error. The fidelity l at x can then be
improved by increasing the size of the training data

{
ξi,f(x, ξi), g(x, ξi)

}
on which the

surrogates f̂(x, ·) and ĝ(x, ·) are built.

In the case of designs estimated simultaneously, such as for the initial Design of Experiments
(DoE) or for a generation in evolutionary algorithms, we propose to guide the refinements with
the Pareto Optimal Probability (POP) of the estimated boxes, which is the probability of being
not dominated. This refinement is performed until each box is either dominated, or has reached
an estimated error εl below a user-defined threshold s2. POP computation is presented in section
3.2.

Optimisation
process

Bounding-Box
approach

Surrogate-
assisting model

ρt
SA(x) ; εtSA(x)

Update

X t ; Xc =
{
x | εtSA(x) > s1

}
ρ̂(x) = ρ̃l(x)

ε̂(x) = εl(x)

ρ̂(x) = ρt
SA(x)

ε̂(x) = εtSA(x)

ρ̃l(x) ; εl(x)
Dominated or

εl(x) ≤ s2

∀x /∈ Xc

∀x ∈ Xc

Refinement: l(x∗) + +

x∗ = argmaxPOP (x)

t+ +

Figure 6: Structure of the SABBa framework
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SABBa for constrained multi-objective optimisation under uncertainty 13

The strategy presented above and pictured in Figure 6 is made explicit in Algorithm 1. The
tunable parameters are listed below and the Bounding-Box computational details are given in
the following section.

Algorithm 1 Algorithm overview
1: Loop over values of s1 and s2
2: t = 0
3: Initialise Xc empty
4: while Optimisation running do
5: t+ +
6: Read new designs X t
7: for each x ∈ X t do
8: if εtSA(x) ≤ s1 then
9: Return ρtSA(x) to the optimiser

10: else
11: Add x in Xc
12: Compute a first approximation ρ̃0(x) of ρ
13: end if
14: end for
15: while Xr =

{
x ∈ XP̃B ∩ Xc | ε

l(x) > s2
}
is non-empty do

16: Find x∗ = argmax
x∈Xr

POP (x)

17: l(x∗) + +
18: Compute f(x∗, ξ) and g(x∗, ξ) at some ξ
19: Update ρ̃l(x∗) and εl(x∗)
20: end while
21: Update ρtSA and εtSA with the new ρ̃l(x) and εl(x) values
22: Return ρ̃l(x) to the optimiser
23: end while

XP̃B contains all designs which associated boxes are non-dominated and Xc refers to the
designs which measures have not been returned by the SA model. Hence, the boxes in Xr are all
estimated without the SA model and both non-dominated and not refined up to s2.

Remark We consider to loop over finer and finer values of s1 and s2. This allows more accurate
intermediate results and slightly cheaper overall convergence. Practically, vectors of thresholds
can be specified by the user.

The algorithm relies on a quite small set of parameters, namely:

• The predefined sequence of pair of thresholds (s1, s2);

• The number of function evaluations Nfirst for the first approximations ρ̃0 and Nnew the
number of additional evaluations for refinement;

• The number of designs N at each optimisation iteration and Ninit at the first iteration.
The optimiser may impose these parameters.

4.2 Bounding-Boxes computation and refinement
To compute the boxes, robustness and reliability measures must be estimated, and the associ-
ated error must be quantified. In particular, we focus in this paper on the following measures:
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14 Rivier, Congedo

Expectation, variance, minimum, maximum and quantile. The values returned to the optimiser
are denoted by ρ̂(x) and ε̂(x). As shown in Fig. 6 and Alg. 1, they can be computed with
tunable fidelity using the Bounding-Box approach or can be computed on the SA model. These
two computations are presented in details in the following sections.

Note that we make use of Gaussian Processes as surrogate models, giving both a predic-
tive value and an associated predictive variance. Box widths are then computed based on this
variance, relaxing the conservative assumption to a ±3σ paradigm. Practically, with σ2(z) the
predictive variance of a GP surrogate model, an error can be computed as:

ε(z) = 3σ(z).

Although this does not imply ε(z) ≥ |ε(z)|, with ε the true error of the surrogate, the probability
of dissatisfying the conservative assumption is P

[
ε(z) < |ε(z)|

]
< 0.3%.

4.2.1 Computed boxes

For each design x where the SA model is not exploited, the boxes must be directly computed
from samples of f and g in the uncertain space. This corresponds to lines 9 to 15 in Algorithm 1.
Gaussian Processes are used to approximate f(x, ·) and g(x, ·). Two approaches are considered:

• Separated Spaces: A GP is built in Ξ at a given x using a set of samples
{
f(x, ξi), g(x, ξi)

}
i
.

This directly corresponds to f̂(x, ·) and ĝ(x, ·).

• Coupled Space: A GP is built in X × Ξ using a set of samples
{
f(xi, ξi), g(xi, ξi)

}
i
. This

gives approximations f̂ and ĝ of f and g. At a given x, the cuts f̂(x, ·) and ĝ(x, ·) can be
returned.

Remark While the Separated Spaces (SS) approach builds a GP in a space of lower dimension
(Card(Ξ)) than the Coupled Space (CS) approach (Card(X × Ξ)), thus easing the surrogate
modelling task, it does not use surrounding samples in the design space and restarts from scratch
at each new design point x. These strategies will be compared on analytical test-cases in Section
5.

Both SS and CS approaches allow having predictive models f̂(x, ·) and ĝ(x, ·), that will be
written f̂x and ĝx, and their predictive variance σf (x, ·) and σg(x, ·). The fidelity l of these
models, used to compute ρ̃l(x) and εl(x), refers to the number of training data. This level
of fidelity is implicit in the following equations. The ±3σ paradigm provides the box widths,
denoted as εfx = 3σf (x, ·) and εgx = 3σg(x, ·). For each output measure, indexed by k,
the classical empirical estimators are exploited for the computation of ρ̂k(x) = ρ̃lk(x) and the
associated width ε̂k(x) is given in Eq. (4) for fx (the same can be written for gx):

ε̂k(x) = εlk(x) =



Eξ
[
εfx(ξ)

]
for expectation

Eξ
[(
εµ(x) + εfx(ξ)

)2
+ 2
∣∣f̂x(ξ)− µ̃(x)

∣∣(εµ(x) + εfx(ξ)
)]

for variance
max

(∣∣m̃(x)−minξ[f̂
−
x (ξ)]

∣∣, ∣∣m̃(x)−minξ[f̂
+
x (ξ)]

∣∣) for minimum
max

(∣∣M̃(x)−maxξ[f̂
−
x (ξ)]

∣∣, ∣∣M̃(x)−maxξ[f̂
+
x (ξ)]

∣∣) for maximum
max

(∣∣q̃p(x)− qpξ[f̂
−
x (ξ)]

∣∣, ∣∣q̃p(x)− qpξ[f̂
+
x (ξ)]

∣∣) for quantile
(4)

where f̂+
x (ξ) = f̂x(ξ) + εfx(ξ) and f̂−x (ξ) = f̂x(ξ) − εfx(ξ). In practice, the expected values

above are approximated by means of Monte Carlo Sampling (MCS) on surrogate model at very
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SABBa for constrained multi-objective optimisation under uncertainty 15

low cost. A formal justification of these box sizes is given in B.

We also provide guidance for refining the surrogate model f̂x(ξ). While one could rely on
a space-filling paradigm, geometrically filling the widest hole in the sampling, we choose here
to use GP-based refinement criteria. A partial criterion is first computed for each statistical
measure, with the following formulas:

ck(ξ) =



εfx(ξ)p(ξ) for expectation
εfx(ξ)p(ξ) for variance[
m̃− f̂−x (ξ)

2εfx(ξ)

]
+

for minimum[
f̂+
x (ξ)− M̃
2εfx(ξ)

]
+

for maximum[
q̃p − f̂−x (ξ)

2εfx(ξ)

]
+

[
f̂+
x (ξ)− q̃p

2εfx(ξ)

]
+

p(ξ) for quantile

(5)

with the same definition of f̂+
x (ξ) and f̂−x (ξ) as before and where

[
·
]
+

= max(0, ·). Note that we
heuristically choose here to multiply the criteria for the mean, variance and quantile measures
by the input Probability Density Function (PDF) p(ξ) in order to put more weight on the most
likely area. Justifications for these formulas are provided in C. These partial criteria are then
scalarised into the final refinement criterion through the following weighted sum:

c(ξ) =

m∑
k=1

wk c̄k(ξ) (6)

with c̄k(ξ) the normalised partial criteria, m the number of measures and wk the weights. The
normalised partial criteria are computed as follows:

c̄k(ξ) =

ck(ξ)−min
ξ

[ck(ξ)]

max
ξ

[ck(ξ)]−min
ξ

[ck(ξ)]
∈ [0, 1].

We propose here to compute the weights as the ratio between the conservative error εk and
the target accuracy. In this manner, any partial criterion associated with high error compared
to the target accuracy will profoundly influence the final criterion. Practically, to emphasise this
behaviour, the dependence to the conservative error is chosen quadratic:

wk =

(
ε̃k
s2k

)2

.

Note that in the case of multi-point refinement, we conduct a greedy sequential approach by
assuming that previous refinements are performed, fixing the predictive values of the GP surro-
gate model and recomputing the predictive variance to obtain the updated refinement criterion.
We can then perform Black-box evaluations in parallel on these points. This approach allows
performing multi-point refinement efficiently without the need of any clustering heuristic. How-
ever, this strategy makes a lot of assumptions and may not yield optimal results when performing
many refinements in parallel.
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4.2.2 SA-based boxes

When the SA model error is low enough, below s1 in all output dimension, the predictive value
of the SA model is directly returned to the optimiser. As stated previously, the SA model is a
Gaussian Process, which gives access to the predictive variance in order to compute box widths.

The SA model is built on the previously computed boxes to return an approximation ρSA of
ρ in X . Because this model is built on the previously computed boxes and evolves throughout
the optimisation steps, the SA model is referred as ρtSA, with t the optimisation step.

In practice, the available data for constructing this model are boxes of different sizes. These
boxes can be considered as noisy evaluations of ρ at different x, with heterogeneous noises. Using
again the ±3σ paradigm, these different noises can be translated into heterogeneous variances

σ2
i =

(εl(xi)
3

)2
with xi the designs at which boxes were computed using the direct approach

described in 4.2.1. This allows to make use of heteroscedastic Gaussian Processes, which naturally
take into account heterogeneous noise variances, under the gaussianity assumption. The measure
estimations ρ̂ and associated error ε̂ at a new design x are computed as follows:

ρ̂(x) = ρSA(x) = kT∗ (K + ∆)−1ρ̃l

ε̂(x) = 3σSA(x) = 3
(
k∗∗ − kT∗ (K + ∆)−1k∗

)
. (7)

The superscript t is not explicitly written as the above predictor is updated at each optimisation
step. Here, K = K

(
{xi}i, {xi}i

)
represents the autocovariance matrix between training points,

k∗∗ = k
(
x,x

)
at the new design and k∗ = k

(
x, {xi}i

)
the covariance vector between x and

training points. The diagonal matrix ∆ = diag
({
σ2
i

}
i

)
represents the heterogeneous gaussian

noises presented previously. More details on GP surrogate models can be found in [35].

4.3 Quality indicator
Assessing and comparing the performances of the method requires the computation of a quanti-
tative quality indicator. To this extent, the Hausdorff distance is a classical choice for computing
the closeness of the found optimal set to the true one. In practice, the modified Hausdorff dis-
tance proposed in [36] captures the similarities more efficiently. With Bounding-Boxes, there
is no Pareto Optimal set but rather a set of non-dominated designs, each of them having a
Pareto Optimal Probability. The approximated Pareto front P̃ and Pareto optima XP̃ are hence
aleatory. We propose to compute the expected value of the modified Hausdorff distance with
respect to the realisations of XP̃ .

The deterministic modified Hausdorff distance d′H is given as follows:

d′H(A,B) = max
(
d′1(A,B), d′1(B,A)

)
,

d′1 =
1

N

∑
a∈A

d2(a,B),

d2(a,B) = min
b∈B

[‖a− b‖2].

Under the box independence and uniformity assumptions, as in Section 3.2 we have ∀x,

ρ(x) ∼ U
(
B
(
ρ̂(x), ε̂(x)

))
,

where ρ̂(x) and ε̂(x) are the values returned to the optimiser in Figure 6. The proposed expected
modified Hausdorff distance reads:

QB = EXP̃
[
d′H(XP ,XP̃)

]
. (8)
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where a realisation of XP̃ corresponds to a realisation of ρ(x) for all x and the computation of
the classical Pareto optima.

In the next section, the SABBa framework for optimisation under uncertainty problems is
applied to analytical test-cases to assess its performance against classical approaches. The quality
of the optimisation outputs is quantified using the quantitative indicator presented above.

5 Analytical comparisons

We apply here SABBa to two analytical test-cases. The first analytical test-case is low-dimensional
and deals with a Taguchi multi-objective robustness formulation (mean optimisation and vari-
ance minimisation). The second test-case features a higher number of dimensions and consists
in a mean optimisation under quantile constraint.

We systematically compare the performance of the proposed framework to an A Priori Meta-
Model (APMM) strategy. In the latest, we build a surrogate model of the output in the Coupled
Space (CS) before the optimisation process. A Double Loop, performing an Uncertainty Propa-
gation at each optimisation iteration, can then be conducted on the surrogate at a very low cost.
The overall computational cost of building this surrogate model is here chosen a priori and can
be adapted to the available budget, with a substantial impact on the accuracy of the results.

We show in the first test-case the performance of the direct Double Loop approach with
respect to the APMM strategy. The former performs NUP evaluations for measure computation
at Nopt designs, explored by the optimiser. It is shown to be extremely inefficient.

We compare here three variants of SABBa, denoted as follows:

• SA-SS: when using the Surrogate-Assisting strategy and Separated-Spaces models for mea-
sures computation;

• SA-CS: when using the Surrogate-Assisting strategy and a Coupled-Space model for mea-
sures computation.

• CS: when using the Coupled-Space model without the Surrogate-Assisting strategy;

Among the above variants, one can expect SA-CS to give better results than SA-SS and CS,
taking advantage of both the low-dimensional Surrogate-Assisting model and the coupled space
correlation to speed up box refinement.

Ten runs are performed for each strategy to capture both the mean convergence curve and
the associated variability, represented as a translucent band around the mean. The log distance
is assumed to show a Gaussian distribution over the repeated runs, implying a log-normal dis-
tribution over the actual distance. Note that a high variability of the convergence curves reveals
a lack of reliability of the associated approaches.
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5.1 Test-case 1: Unconstrained Taguchi optimisation

This problem is a bi-objective robust optimisation proposed in [31]. There are two design vari-
ables x and one uncertain parameter ξ, and the problem reads:

minimise: ρf (x) =

(
µ(x)
σ2(x)

)
where: µ(x) = Eξ[f(x, ξ)]

σ2(x) = Vξ[f(x, ξ)]

with: f(x, ξ) = ξ − x1ξ5 + cos(2πx2ξ) + 5

ξ ∼ U([0, 1])

by changing: (x1, x2) ∈ [1, 2]2 (9)

The Pareto front associated with this problem is discontinuous, and the optimal set in the
design space is the union of a segment and a point (see Fig. 7).

(a) (b)

Figure 7: Test-case 1: a) Discretisation of the design space in red and Pareto optimal sets in
black. b) Image of the discretised points in the objective (µ,σ2) space.

The Double Loop and A Priori MetaModel strategies are quantitatively compared in Figure
8. Each Uncertainty Propagation within the Double Loop is performed up to a relative accuracy
of 5%. A very slow convergence of the Double Loop approach is observed.

For this first test-case, we consider two different surrogate-modelling capabilities. The aim
is to illustrate SABBa performance both when the surrogate is able to represent the underlying
functions accurately and when it shows poor efficiency. This highly impacts the quality of the
APMM f̂ , the Surrogate-Assisting model ρSA(x) and the separated or Coupled-Space models
f̂(x, ·).

5.1.1 With high-quality surrogate model

The unconstrained Taguchi optimisation problem is first solved using high-quality metamod-
elling approaches. Practically, we build a heterogeneous GP surrogate model with a classical
RBF kernel (also called squared-exponential, exponential quadratic or Gaussian), and Auto-
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Figure 8: Test-case 1: Cost comparison between the A Priori MetaModel and Double loop
approach.

matic Relevance Determination (ARD):

k(x,x′) = σ2 exp

(
− r2l

2

)

with rl =

√√√√ m∑
i=1

(
xi − x′i
li

)2

We recall that the kernel function gives the covariance matrix in Equation (7).
This model requires m+ 1 hyperparameters {σ2, l1, . . . , lm} to be optimised but captures the

characteristic lengthscale associated with each input dimension.
The convergence curve of the indicator defined in Equation (8) is plotted in Figure 9. Figures

9(a) and 9(b) show a very reduced variability of SABBa compared to the APMM strategy.
However, only SA-CS (purple curve in Fig. 9(b)) shows a significant improvement for the mean
convergence.

Note that here, the thresholds s1 and s2 are sequentially refined five times. To alleviate
the tuning of these thresholds, SABBa can deal with normalised thresholds s̄1 and s̄2. At each
iteration, the range hi covered in the ith-dimension is updated, namely,

∀i, hi = max
x

[ρi(x)]−min
x

[ρi(x)],

and the thresholds s̄1 and s̄2 are given in percentage of h. Here, s̄1 and s̄2 are both sequentially
taken as 50%, 40%, 30%, 20%, 10% and 5% in all dimensions. The chosen parameters of SABBa
are as follows: Ninit = 10, N = 1 (sequential optimiser), Nfirst = 5 and Nnew = 1 (sequential
refinement).

Figure 9 pictures the convergence curves of the APMM strategy and the three studied SABBa
variants (SA-CS, SA-SS and CS). The mean curves are mostly comparable, with a slight advan-
tage for SA-CS. However, the associated variability is much smaller when using any SABBa
variant with respect to the APMM strategy. The indicator is assumed to follow a normal distri-
bution in log scale, hence to be log-normal. The high variance associated to the APMM strategy
coupled with the heavy tail of the log-normal distribution makes the approach very unreliable.
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Figure 9: Test-case 1-a: Cost comparison between APMM and three SABBa variants.

We picture this risk in Figure 10, where the worst result out of ten repeated runs of SA-CS and
the APMM strategy are plotted. These outputs correspond to Neval ≈ 100.

In these figures, optimal designs returned by SABBa are plotted in greyscale. This refers to
the Pareto Optimal Probability (POP) of each design, ranging continuously from 0 (white) to 1
(black).

(a) (b)

Figure 10: Worst optimisation results: (a) SABBa SA-CS, 93 evaluations , QB = 1.29 × 10−2.
(b) APMM, 100 evaluations , QB = 1.91× 10−1.
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5.1.2 With a low-quality surrogate model

In the following, the same optimisation problem is solved using a low-quality surrogate model in
both SABBa and the APMM strategy. Contrarily to the previous formulation, we build a homo-
geneous GP surrogate model with only one lengthscale, that has to account for all dimensions.
Practically,

k(x,x′) = σ2 exp

(
− r2l

2

)

with rl =
1

l

√√√√ m∑
i=1

(
xi − x′i

)2

Only two hyperparameters {σ2, l} must be optimized. However, this model will notably fail
when the characteristic lengths of the function in the different dimensions are very disparate. This
test-case aims at simulating problems where the coupled space behaviour is hard to model. This
would naturally arise when the number of dimensions is significant. Hence, one can expect the
SA strategy to yield a significant cost improvement through low-dimensional measures surrogate
modelling.

Such improvement is indeed revealed in Figure 11. The use of the SA strategy has two
consequences: (i) non-Surrogate-Assisted approaches (APMM and SABBa CS) show poor per-
formance compared to the other strategies and (ii) the gap between SA-CS and SA-SS is much
narrower. Indeed, here, they both rely for the most part on the low-dimensional SA model.

Figure 11: Test-case 1-b: Cost comparison between APMM and three SABBa variants.

As previously, the worst optimisation outputs are plotted for SABBa SA-CS and the APMM
approach. In Figure 12, SABBa shows much higher consistency and accuracy compared to
APMM.

The use of coupled space surrogate models and Surrogate-Assisting strategy have shown to
bring an significant cost reduction for the SABBa SA-CS framework. It performs better in
average than the APMM strategy and shows far greater consistency and robustness.
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(a) (b)

Figure 12: Worst optimisation results: (a) SABBa CS-REU-G, 196 evaluations , QB = 1.23 ×
10−2. (b) APMM, 200 evaluations , QB = 7.94× 10−1.

5.2 Test-case 2: Quantile-constrained mean performance optimisation
We propose this second test-case to assess the performance of SABBa in a higher dimensional
case and in the presence of a reliability-based constraint (derived from the Six-Hump Camel
function). The objective is a robustness measure derived from a simplified Rosenbrock function.
We consider here four design variables and three uncertain parameters. The problem is stated
as follows:

minimise: ρf (x) = µ(x)

satisfying: ρg(x) = q95%(x) ≤ 1

where: µ(x) = Eξ[f(x, ξ)]

q95%(x) = q95%ξ [g(x, ξ)]

with: f(x, ξ) =

3∑
i=1

[(
1− xi

)
+ 3

(
1 +

arctan
(
5(ξi − 0.5)

)
2

)(
xi+1 − x2i

)2]
g(x, ξ) =

(
4− 2.1x21 +

x41
3

)
x21 + x1x2 +

(
− 4 + 4x22

)
x22

+
cos(2πξ1)− sin(π2 ξ1)− ξ1 −

(
cos(2π0.05)− sin(π2 0.05)− 0.05

)
5

ξ ∼ U([0, 1]3)

by changing: x ∈ [−0.2, 1.2]4 (10)

One can note that the robustness measure reduces to the classical formulation of the 4D
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Rosenbrock function and the reliability measures to the Six-Hump Camel function. Analytically,
it holds that:

µ(x) =

3∑
i=1

[(
1− xi

)
+ 3
(
xi+1 − x2i

)2]
,

q95%(x) =

(
4− 2.1x21 +

x41
3

)
x21 + x1x2 +

(
− 4 + 4x22

)
x22. (11)

The optimum of this deterministic problem is found at x∗ ≈ (0.7033, 0.7035, 0.6212, 0.3859)
with q95%(x∗) = 1 and µ(x∗) ≈ 0.4981.

For this test case, both s̄1 and s̄2 are sequentially taken as 50%, 40%, 30%, 20%, 10%, 5%,
3%, 2%, 1% and 0.5%. As for the other parameters, Ninit = 10, N = 1 (sequential optimiser),
Nfirst = 5 and Nnew = 1 (sequential refinement).

Figure 13 shows a slight mean improvement when using SA-CS compared to the APMM
strategy. The variability of the output is also halved with all SABBa variants, which is critical
for real-world applications. Note that the plateau that is reached by the SA-CS curve is actually
a plotting artefact. All runs have different final number of evaluations, and we considered the
indicator QB constant when the optimum is reached. Therefore, the average of these curves
tends to flatten at the end.

Figure 13: Test-case 2: Cost comparison between APMM and three SABBa variants.

As done before, we plot the worst optimisation outputs in Figures 14. They are depicted in
parallel coordinates plots, with a POPmin greyscale. Each efficient individual is represented by a
grey curve and the true optimum is in red. This comparison reveals again the high unreliability
of the APMM strategy with respect to the SABBa framework.

6 Physical applications

6.1 Two-bar truss
The two-bar truss optimization problem is notably illustrated in Refs. [37] and [20]. The
uncertainty-based optimization problem is formulated as follows (with a schematic represen-
tation in Figure 15(a)):
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(a) (b)

(c)

Figure 14: Worst optimisation results: (a) APMM, 150 evaluations, QB = 1.0× 100. (b) SABBa
CS-REU-G, 161 evaluations, QB = 1.12× 10−1. (c) APMM, 200 evaluations, QB = 3.24× 10−1.

minimise: ρf (x) = V (x)

satisfying: ρg(x) =

(
q1(x)
q2(x)

)
≤
(
smax

0

)
where: q1(x) = q0.999[s(x, ξ)]

q2(x) = q0.999[s(x, ξ)− scrit(x, ξ)]

with: ξ ∼ N
((

150000
210000

)
,

(
300002 0

0 210002

))
by changing: x ∈ [20, 80]× [800, 1200]× [700, 800]× [2, 3] (12)

In the above, the design variables are: (x1) the diameter of the cross section d, (x2) the
bar length L, (x3) the structure half-width B and (x4) the thickness of the cross section T .
The uncertain parameters refer to (ξ1) the external force F and (ξ2) the elastic modulus E.
The objective is to minimize the total volume V (x) = 2πx1x2x4 × 10−6 while verifying that

the probability of s(x, ξ) =
x2ξ1

2πx1x4
√
x22 − x23

exceeding smax = 400 N.mm−2 and scrit(x, ξ) =

π2ξ2(x21 + x24)

8x22
are both below 0.001.

The problem is represented in Fig. 15(b), where the objective value (V (x), to be minimized)
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is plotted in the constraints space with a color scale. The abscissa and ordinate directions refer
to the constraints q1(x) and q2(x) ; the associated thresholds are drawn with red lines. The
admissible set is in the lower left quadrangle (q1 < 400 N.mm−2 and q2 < 0 N.mm−2) and one
may note that the objective is nearly constant on the limit q1 = 400 N.mm−2.

(a) (b)

Figure 15: (a) Schematic representation of the two bars, with bar section above (from [37]). (b)
Representation in the objective/constraints space, constraints in abscissa and ordinate, objective
in color.

This optimisation has been solved with the SA-CS variant. The thresholds s1 and s2 are
sequentially reduced up to 0.5% of the total ranges. A set of 6 non-dominated designs is returned,
with different Pareto Optimal Probabilities (POP). This is reported in Figure 16, where the
optimal designs are drawn in the output space with POP greyscale (black: 1; white: 0). Figure
16(a) shows the deterministic objective values associated to each non-dominated design ; the
ordinate only avoids overlapping points for better readability. Figure 16(b) shows the boxes in
the constraints space q1 and q2. One can note that the boxes associated to the highest POP are
located mostly in the admissible space (q1 ≤ 400 N.mm−2). This optimisation was performed
with 65 function evaluations, which is very inexpensive with respect to the accuracy of the
output.

The design associated to the highest POP is x∗ = (63.292, 1021.4, 701.25, 2.0812). We can
verify that Pξ[s(x∗, ξ) ≥ smax] ' 1.2 × 10−3 and Pξ[s(x∗, ξ) ≥ scrit(x

∗, ξ)] ≤ 1.0 × 10−4. The
first quantile constraint is not perfectly satisfied. This is due to (i) the associated box not being
entirely in the admissible space, (ii) the final accuracy not being very sharp and (iii) the quantile
computation being performed with simple Monte Carlo, hence with high variance. A dedicated
technique for accurate quantile computation would be required to avoid adding estimation noise,
that is not taken into account here.

While the objective and q1 values are well captured (optimal and close to constraint limit),
the q2 seems not to have a significant impact. To verify this, the optimisation is solved two more
times. The results are plotted in Figure 17.

As expected, while similar optimal values for V and q1 are found, the associated values of q2
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(a) (b)

Figure 16: Optimisation output with POP greyscale in (a) objective space (optimum in red) and
(b) constraints space (constraint limit in black).

(a) (b)

Figure 17: Optimisation output with POP greyscale in (a) objective space (optimum in red) and
(b) constraints space (constraint limit in black).

vary dramatically. Specifically, the optimal V (in L) is in the ±10−2 L range around the true
optimum while the total spanned range is of 1.6 L. Similarly, optimal q1 varies of less than 10
N.mm−2 over the total range of more than 2500 N.mm−2. However, q2 ranges approximately
from -850 N.mm−2 to -150 N.mm−2. This is far from negligible, as it can be seen in Figure 18
and validates the observation that V seemed nearly constant on the q1 constraint limit.

Note that in all three runs, designs associated to an objective value below the optimum have
boxes that lay partially in the failure region q1 > 400 N.mm−2. Such an objective value cannot
be reached while satisfying the constraints, which reveals that the true q1 value are indeed over
400 N.mm−2.

These two additional runs were performed with 72 and 65 function evaluations. Finer thresh-
olds and additional evaluations would be required in order to find a unique global optimum on
the q1 = 400 N.mm−2 line. However, up to the chosen 0.5% threshold, the optimum has been
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Figure 18: Found optima from the three runs (in black) in the constraints space, with objective
value in color.

well captured at a very low cost.

6.2 Design of a Thermal Protection System

The SABBa framework is then applied to the design of a thermal protection system for a re-entry
vehicle. This test-case deals with 12 dimensions and aims at minimising the mean mass density
under worst-case temperature constraint.

We study the re-entry of Stardust, that was the first mission using a low-density carbon-
phenolic ablator in 2006. Stardust was the fastest man-made object re-entering the earth atmo-
sphere, at a velocity of 12.7 km/s. Surface total pressure and heat flux were computed from
hypersonic computational fluid dynamics (CFD) simulations. In accordance with the state-of-
the-art design approach, we assume that the problem is locally mono-dimensional. The anal-
ysis is performed using the properties of the Theoretical Ablative Composite for Open Testing
(TACOT). Its composition and properties are comparable to PICA ; nominal TACOT properties
are available in the open literature. Volume-wise, TACOT is made of 10% of carbon fibers, 10%
of phenolic resin, and is 80% porous. The thickness of the ablative material is two inches and
adiabatic conditions are used at the bondline.

The physical model used here is a generic heat and mass transfer model for porous media that
is presented in [38]. The model is implemented in the Porous material Analysis Toolbox (PATO),
distributed Open Source. First-order implicit finite-volume schemes in time and space were used
for the simulations. The mono-dimensional problem was meshed with 300 finite-volume cells
with a logarithmic refinement of parameter 0.2 towards the surface. In this study, we used an
equilibrium chemistry model. We study the material response at the stagnation point, which
reaches the highest temperature during the reentry. Figure 19 illustrates the typical evolution of
the temperature inside the material and at the heated surface.
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Figure 19: Surface and in-depth temperatures obtained with nominal parameters.

Formally, the optimisation problems reads as follows:

minimise: ρf (x) = µ(x)

satisfying: ρg(x) = M(x) ≤ 473.15

where: µ(x) = Eξ[σ(x, ξ)]

M(x) = max
ξ

[Tb(x, ξ)]

with: ξ ∼ U(Ξ)

by changing: x ∈ [0.01, 0.1]× [3.5, 7] (13)

with x1 the resin volume fraction (originally 10%) an x2 the overall width of the system (originally
7.21 cm). We observe in Figure 19 that with initial parameters, the bottom temperature stays
merely constant during the whole reentry. Hence, the search space is centred on lower x1 and x2
values.

In this test-case, Ξ is of dimension 12 and all uncertainties are assumed uniform. The choice of
the uncertain parameters relies on a sensitivity analysis performed on this test-case in a previous
paper [39]. Here, retained uncertain parameters are: 1) Density and volume fraction of the
fibrous preform (5% uncertainty each); 2) Density and volume fraction of the phenolic resin (5%
uncertainty each); 3) Thermal properties of the charred material: heat capacity, conductivity and
emissivity (5% uncertainty each); 4) Oxygen fraction in the pyrolysis gases (10% uncertainty);
5) Pyrolysis reaction activation energy (10% uncertainty); 6) Overall width of the system (0.1
cm uncertainty). Both design parameters are also affected by an uncertainty (±0.005 for x1 and
±0.1 for x2).
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Each function evaluation requires the 1D simulation of heat transfer and shield ablation. This
takes approximately 10 minutes to compute on a 2.90 GHz processor. An acceptable global cost
should remain within a day, or equivalently below 100 to 150 evaluations.

(a) (b)

Figure 20: Outputs of the SABBa framework in (a) the input space, (b) the objective/constraint
space.

The three Pareto optimal designs found by SABBa are plotted in Figure 20. The design
x∗ ≈ (4.43 × 10−2, 4.25) has the highest Pareto Optimal Probability (POP), of approximately
65%. It corresponds to the middle box in Fig. 20(b), where ρf must be minimised and the
admissible set is below the constraint threshold ρg = 473.15 K. These optima were found using
again the SABBa framework with Coupled-space model (SA-CS) for a computational cost of
only 40 function evaluations. In Figure 21, we have reported the performances of all the designs
evaluated during the optimization. They are plotted in blue when dominated, in red when
entirely in failure zone and in green when non-dominated.

Among the three optimal designs depicted in Figure 20, only the right one lies entirely in the
admissible set. Using the notations from Section 3.1.2, this box belongs to AB. Hence, contrarily
to the two other optimal designs, it can dominate other boxes. In Figure 21, it can be observed
that this design dominates all the blue boxes, that are not entirely in the failure zone but are
strictly worse in the objective dimension. Contrarily, the red boxes belong to FB and lie entirely
in the failure zone. Hence, they are all considered dominated. This behavior explains why only
three designs are kept, as shown in Figure 20. One can note that the tunable fidelity has been
well exploited by the Bounding-Box approach in Figure 21, where extreme boxes (on the very
left or very right) are estimated with very wide uncertainty.

Figure 22 provides a visualisation of the final SA model. In particular, we plot the SA mean
surface density ρSAf

(x), wherever the constraint ρSAg (x) ≤ 473.15 k is satisfied. One can see
that (i) the optima plotted in Figure 20 are coherent with this SA model, and (ii) the objective
value ρSAf

(x) seems merely constant on the constraint limit. The final accuracy is imposed at
1%, which may not be enough to discriminate designs on the constraint limit. The above found
x∗ ≈ (4.43×10−2, 4.25) is returned by SABBa but the whole frontier from (0.01, 5.1) to (0.07, 4)
is of high interest.
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(a) (b)

Figure 21: All constructed boxes, depicted in blue when dominated, in red when entirely in
failure zone and in green when non-dominated. (a) Full view, (b) zoomed-in view.

Figure 22: Final SA model, representing ρSAf
(x) where the constraint ρSAg (x) ≤ 473.15 K is

satisfied.

7 Conclusions

In this work, we present an efficient framework, SABBa, for constrained optimisation under
uncertainty problems. It handles most classical robustness and reliability measures, such as
the Taguchi (mean and variance) robust optimisation or the quantile constrained optimisation
problems. The parsimony of SABBa relies on several features presented in this paper. The
Bounding-Box measures approximations is used to compare designs in a tunable fidelity context.
It permits to compute the Pareto Optimal Probability (POP) associated to each design to perform
a rigorous ranking among them. Gaussian Process (GP) surrogate models are exploited both
for measure estimation and Surrogate-Assisting strategy, and allows to tract the estimation
variability throughout the framework.
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We have assessed the performance of the framework on both analytical and applicative test
cases. We have systematically compared SABBa to the A Priori MetaModel strategy. To this
extent, we have formulated a specific indicator based on a modified Hausdorff distance. Overall,
SABBa shows both a faster convergence rate and a dramatic increase in the robustness of the
optimisation process.

It has been successfully applied to a low-quantile reliability-based structural optimisation
with six dimensions in the coupled space. The accuracy is very satisfactory, with an associated
computational cost of less than 70 evaluations. A 12-dimensional Thermal Protection System
(TPS) design with worst-case constraints has also been performed with only 40 evaluations.

This approach remains very general and broadly applicable to any optimisation process with
statistics-based objectives and constraints. It shows very good parsimony, which is of primary
importance for real world applications, where black-box evaluations can take several days to run.
Most importantly, the optimiser is not imposed by the approach, allowing for easy coupling to
any existing deterministic process.

Several steps in this work remain improvable. We used local refinement criteria, which are
cheaper but less efficient than integral criteria. The use of GP surrogate models also limits the
number of manageable input dimensions. Surrogate modelling on over few dozens of dimensions
would require specific techniques such as feature selection or kernel adaptation. Likewise, in order
to efficiently deal with very low probability constraints (e.g. 1×10−7), one should couple SABBa
to a dedicated tool for low quantile computation. Following actions could be the application of
SABBa to other costly engineering cases, the inclusion of Value at Risk and Conditional Value
at Risk (VaR and CVaR) measures, the definition of non-uniform boxes and the development of
a specific Bayesian Optimisation technique for SABBa.

A POP computational details

The set of boxes B =
{
Bi
}
i
is given, with Bi = B

(
ai, ri

)
. Every Zi ∼ U

(
Bi
)
is of dimension

m = m1 +m2 where m1 is the number of objectives and m2 the number of constraints. Hence,
ZiJ1,m1K = Zif are the objectives values and ZiJm1+1,mK = Zig the constraints values. The
probability in Equation (2) is computed as follows, using the independence assumptions between
boxes and between dimensions:

PZj ,Zi

[
Zj �c Zi

]
= 1− PZj ,Zi

[
Zj �c Zi

]
= 1−

(
PZig

[
Zig � 0

]
(14)

+ PZig

[
Zig ≤ 0

]
PZjg

[
Zjg ≤ 0

]
PZjf

,Zif

[
Zjf � Zif

])
= PZig

[
Zig ≤ 0

](
1− PZjg

[
Zjg ≤ 0

]
PZjf

,Zif

[
Zjf � Zif

])
where

PZig

[
Zig ≤ 0

]
=

m∏
k=m1+1

max
(

0,min
(

1,
−B−ik
2rik

))
=

m∏
k=m1+1

[−B−ik
2rik

]1
0

,

and
[
·
]1
0
means that values are taken between 0 and 1. The lower bound of the box is written

as B−i = ai − ri. The second probability involved in the last line of Equation (14) is computed
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as follows:

PZjf
,Zif

[
Zjf � Zif

]
=

m1∏
k=1

PZjk
,Zik

[
Zjk ≤ Zik

]
=

m1∏
k=1

([
L1k

2rjk

]1
0

+

[
L2k

2rjk

]1
0

(
1

2

[
L2k

2rjk

]1
0

+

[
L3k

2rjk

]1
0

))
,

where

L1k = B−ik − B
−
jk
,

L2k = min(B+ik ,B
+
jk

)−max(B−ik ,B
−
jk

),

L3k = B+ik − B
+
jk
.

In the above, B+i = ai + ri is the upper bound of the box.
In each dimension, L1k can be interpreted as the portion of Bj dominating Bi, L3k the portion

of Bi dominated by Bj and L2k the overlapping area. We depict these lengths in Fig. 23. Note
that these values can be negative and that the computation is not symmetric between Bj and
Bi.

Bjk
Bik

L1k L2k L3k

Figure 23: Computational details

B Justification for box sizes

Some developments are given here to explain the choice of the conservative error in Equation (4)
associated with measure approximations.

The expectation approximation conservative error εµ is quite straightforward:∣∣εµ(x)
∣∣ =

∣∣µ(x)− µ̃(x)
∣∣ =

∣∣Eξ[f(x, ξ)]− Eξ[f̂x(ξ)]
∣∣

=
∣∣Eξ[f̂x(ξ) + εfx(ξ)]− Eξ[f̂x(ξ)]

∣∣
=
∣∣Eξ[εfx(ξ)]

∣∣
≤ Eξ[εfx(ξ)]

= εµ(x)

with µ(x) the true statistical moment on f at a given x and µ̃(x) the approximated one,
computed on the surrogate model f̂x. The true error εfx is defined from f(x, ξ) = f̂x(ξ)+εfx(ξ)
and is conservatively approximated by εfx(ξ) ≥ |εfx(ξ)|.
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The same can be conducted for the variance measure, with a bit more risks of overestimation:∣∣εσ2(x)
∣∣ =

∣∣σ2(x)− σ̃2(x)
∣∣ =

∣∣Eξ[(f(x, ξ)− µ(x))2]− Eξ[(f̂x(ξ)− µ̃(x))2]
∣∣

=
∣∣Eξ[(f̂x(ξ)− µ̃(x) + εfx(ξ)− εµ(x))2]− Eξ[(f̂x(ξ)− µ̃(x))2]

∣∣
=
∣∣Eξ[(εfx(ξ)− εµ(x))2 + 2(f̂x(ξ)− µ̃(x))(εfx(ξ)− εµ(x))]

∣∣
≤ Eξ[(εfx(ξ) + εµ(x))2 + 2|f̂x(ξ)− µ̃(x)|(εfx(ξ) + εµ(x))]

= εσ2(x)

The conservative error associated with the expectation approximation could also be explained
based on the monotonicity of the expectation operator. We write f ≥ g ⇐⇒ ∀x, f(x) ≥ g(x).
By definition f(x, ·) ∈ [f̂x − εfx , f̂x + εfx ]. The monotonicity of the expectation operator then
gives Eξ[f(x, ξ)] ∈

[
Eξ[f̂x(ξ) − εfx(ξ)],Eξ[f̂x(ξ) + εfx(ξ)]

]
, or equivalently µ(x) ∈

[
µ̃(x) −

Eξ[εfx(ξ)], µ̃(x) + Eξ[εfx(ξ)]
]
, thus giving the conservative error found in the above εµ(x) =

Eξ[εfx(ξ)].
By defining f̂+

x (ξ) = f̂x(ξ) + εfx(ξ) and f̂−x (ξ) = f̂x(ξ) − εfx(ξ), the monotonicity of the
minimum, maximum and quantile operators can also be exploited to obtain conservative error
approximations. For the case of the minimum operator, with m̃ = min

ξ
[f̂x(ξ)],

m(x) = min
ξ

[f(x, ξ)] ∈
[

min
ξ

[f̂−x (ξ)],min
ξ

[f̂+
x (ξ)]

]
=
[
m̃(x)−

∣∣m̃(x)−min
ξ

[f̂−x (ξ)]
∣∣, m̃(x) +

∣∣m̃(x)−min
ξ

[f̂+
x (ξ)]

∣∣]
∈
[
m̃(x)− εmin(x), m̃(x) + εmin(x)

]
where εmin(x) = max

(∣∣m̃(x)−min
ξ

[f̂−x (ξ)]
∣∣, ∣∣m̃(x)−min

ξ
[f̂+
x (ξ)]

∣∣).
The same idea can be followed for the maximum and quantile approximations, resulting in

the following errors:

εmax(x) = max
(∣∣M̃(x)−max

ξ
[f̂−x (ξ)]

∣∣, ∣∣M̃(x)−max
ξ

[f̂+
x (ξ)]

∣∣)
εqp(x) = max

(∣∣q̃p(x)− qpξ[f̂
−
x (ξ)]

∣∣, ∣∣q̃p(x)− qpξ[f̂
+
x (ξ)]

∣∣)
C Justification for refinement criteria
The chosen partial criteria for GP model refinement given in Equation (5) are also explained in
the following.

Both the expectation and variance are global measures over the whole domain. For this
reason, it has been chosen to iteratively add a point at the maximum predictive conservative
error, to converge the model on the entire space. This strategy is usually called Maximum Mean
Square Predictive Error or MMSPE. Note that the partial criteria are multiplied by the input
pdf to weight the predictive error according to the probability of occurrence. Thus, the final
partial criteria are:

cµ(ξ) = εfx(ξ)p(ξ)

cσ2(ξ) = εfx(ξ)p(ξ)

The minimum (resp maximum) measure partial criteria is simply the probability of exceeding
the current minimal (resp. maximal) value m̃ (resp. M̃). This is performed with an assumption

RR n° 9214



34 Rivier, Congedo

of uniform distribution with the conservative error box. Hence, the criteria can be written as
such:

cmin(ξ) =

[
m̃− f̂−x (ξ)

2εfx(ξ)

]
+

cmax(ξ) =

[
f̂+
x (ξ)− M̃
2εfx(ξ)

]
+

where f̂+
x (ξ) = f̂x(ξ) + εfx(ξ) and f̂−x (ξ) = f̂x(ξ)− εfx(ξ) and with

[
·
]
+

= max(0, ·) referring
to the value if positive, 0 either.

Finally, for the case of the quantile measure, it has been chosen to compute the product of
the aforementioned probability of exceeding the quantile value, multiplied by the input density:

cqp(ξ) =

[
q̃p − f̂−x (ξ)

2εfx(ξ)

]
+

[
f̂+
x (ξ)− q̃p

2εfx(ξ)

]
+

p(ξ)

This product is maximised on the hyperplane f̂x = qp. Multiplying the criteria by p(ξ)
puts more weight according to the probability of occurrence. The spread may not be optimal,
but the optimisation of the criteria being performed on a fixed sampling, the tightening of the
conservative error is very likely to decrease the value of the criterion in the surrounding area
because samples are very unlikely to be localised exactly on the isoline of the function.

We can note that the chosen criteria are far from being optimal. However, these choices give
a fast determination of the refinement point, and the number of samples is usually low enough
so that the choice of the training point is not of significant importance compared to the quality
of the metamodelling strategy.
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