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Abstract

Computation Fluid Dynamics (CFD) simulation has become a routine design tool for i) predicting
accurately the thermal performances of electronics set ups and devices such as cooling system and ii)
optimizing configurations. Although CFD simulations using discretization methods such as finite volume
or finite element can be performed at different scales, from component/board levels to larger system,
these classical discretization techniques can prove to be too costly and time consuming, especially in the
case of optimization purposes where similar systems, with different design parameters have to be solved
sequentially. The design parameters can be of geometric nature or related to the boundary conditions.
This motivates our interest on model reduction and particularly on reduced basis methods. As is well
documented in the literature, the offline/online implementation of the standard RB method (a Galerkin
approach within the reduced basis space) requires to modify the original CFD calculation code, which for
a commercial one may be problematic even impossible. For this reason, we have proposed in a previous
paper, with an application to a simple scalar convection diffusion problem, an alternative non-intrusive
reduced basis approach (NIRB) based on a two-grid finite element discretization. Here also the process
is two stages: offline, the construction of the reduced basis is performed on a fine mesh; online a new
configuration is simulated using a coarse mesh. While such a coarse solution, can be computed quickly
enough to be used in a rapid decision process, it is generally not accurate enough for practical use.
In order to retrieve accuracy, we first project every such coarse solution into the reduced space, and
then further improve them via a rectification technique. The purpose of this paper is to generalize the
approach to a CFD configuration.

Keywords : Non-intrusive method; Reduced basis method; Parametric studies; Heat transfer; CFD.

1. Introduction

During the past fifty years electronic devices and systems kept becoming smaller and smaller, this
growing need for miniaturization led to an increasing high heat production. To avoid any possible failure
or malfunction of electronics devices and ensure their reliability, it is essential to maintain the temper-
ature of the electronic components below an acceptable upper limit. Cooling of electronic systems is
consequently essential in controlling the component temperature and avoiding any hot spot. Designing
cooling systems for miniaturized electronics devices presents difficult challenges to mechanical engineers
and analysts. Average while, computational modeling is gaining popularity, particularly Computation
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Fluid Dynamics (CFD) modeling which has become a routine design tool for predicting accurately ther-
mal performance of electronics cooling system. Although CFD modeling can be used at different scales,
from component/board levels to larger system, classical discretization techniques such as finite volume
or finite element methods can prove to be limited by memory space and long calculation times, which
can be problematic. Inexpensive and accurate computational tools to predict the fluid flow and heat
transfer can be very useful, specially when thermal analysis is done at the end of the design process
where time constraints are greatest, hence our focus on model reduction and particularly to reduced
basis methods (see [9, 14, 17, 19]).
Reduced basis method exploits the parametric structure of the governing PDEs to construct rapidly,
convergent and computationally efficient approximations. Previous work on the reduced basis method
in numerical fluid dynamics has been carried out by [12, 16, 20] and more particularly for the Navier-
Stokes equations [7, 18, 23, 27, 28] which requires treatment of non-linearity and non-affine parametric
dependence. More recent works with turbulent flows can be found in [2, 26]. Let σ be a set of parameters
associated to our physical system, these methods rely on the fact that when the parameters vary, the
manifold of solutions is often of small (Kolmogorov) dimension. In this instance, there exists a set of N

particular values of σ taken in D (the parameter space) from which one can build a basis. This basis,
called reduced basis, is made of the solutions u(σ1), · · · , u(σN ) and can approach any solution u(σ),
σ ∈ D. Thus, when the σi are well chosen5, the size of the reduced basis is much smaller compared to
the number of degrees of freedom of the problem discretized by a classical method (finite element, finite
volume, or other). The standard reduced basis method is a Galerkin approach within the reduced basis
approximation space, thus the reduced basis approximation of the “truth” solution is obtained by the
resolution of a small dimensional linear system. One of the keys of this technique is the decomposition of
the computational work into offline/online stages. However, the decomposition of the matrices into of-
fline/online pieces requires modifying the calculation code, leading to an intrusive procedure. Examples
of the standard reduced basis method applied to heat transfer problems can be found in [8, 21, 24, 25].
In some situation — with a commercial CFD code for example – it is not possible to perform all the
offline computations required to have a inexpensive and fast online stage. For this reason, we proposed
to use an less intrusive reduced basis method, introduced in [3, 4], where coarse triangulations are used
to compute coarse approximation during the online stage. Recently, other non-intrusive Reduced Order
Methods (ROM) for fluid dynamics have been proposed [5, 29], those ROM are based on proper orthog-
onal decomposition and Radial Basis function (RBF) to compute the coefficients of the reduced model.

During the online computation, for any given (untrained) parameter an interpolation approach using

RBF as interpolation functions is used to estimate the coefficients of the POD decomposition. As in

our method we use coarse triangulations to compute coefficients of the RB decomposition and then

further improve them via a rectification technique, keeping a physical meaning to the approach.
The aim of this paper is to provide tests to validate and generalize our method for heat transfer problems.
In Section 2, we provide a brief introduction to reduced basis methods and the methodology of the non-
intrusive reduced basis method. In Section 3, we give a brief description of simple models of cooling
devices; we formulate the physical system, the governing equations and boundary conditions. In Section
4, we discuss our numerical experimentations and present the results and conclusions.

5A classical and efficient approach to choose the σi is the greedy method [1, 11].
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2. Methodology

Let us consider the nonlinear parametrized PDEs describing our physical system, over a bounded
domain Ω ⊂ R

d, d = 2 or 3. In these governing equations, θ represent the temperature, ui the
components of the velocity vector field u in the xi-directions , p the pressure and σ is a set of np

parameters related to physical properties or boundary conditions. We denote by D ⊂ R
np the set of

parameters.
We now introduce the variational formulation of our parametrized PDEs :

{

for a given σ ∈ D, find (θ,u, p) ≡ (θ(σ),u(σ), p(σ)) ∈ X × Y × Q such that
F(θ,u, p ;T,v, q; σ) = (0,0, 0)t, ∀ (T,v, q) ∈ X × Y × Q,

(1)

where F is a functional with the appropriate properties, X, Y and Q are appropriate functional spaces.
Let {Th}h be a family of regular triangulation of Ω, we denote by Xh, Yh and Qh finite element approx-
imation subspaces of respectively X, Y and Q over Th. The discrete velocity space Yh and the discrete
pressure space Qh are chosen in order to satisfy the inf-sup condition [6, 13, 22].
The finite element discretization of (1) is as follows :

{

for a given σ ∈ D, find (θh,uh, ph) ≡ (θh(σ),uh(σ), ph(σ)) ∈ Xh × Yh × Qh such that
F(θh,uh, ph ;T,v, q; σ) = (0,0, 0)t, ∀ (T,v, q) ∈ Xh × Yh × Qh,

(2)

For significantly fine meshes Th and adequately chosen discretization spaces Xh, Yh and Qh, the con-
forming finite element solution (θh,uh, ph), solution to (2), is accurate enough to be considered as a good
approximation of the exact solution, named “truth solutions”. However, because of the high dimension
of the associated discretization spaces, solving the finite element problem (2) with different values of σ

can prove to be too costly and time consuming.
The idea of reduced basis methods is to provide an economical and accurate approximation to the“truth”
approximation (θh,uh, ph) by using approximation spaces made up of few suitable samples of solutions
to the parametrized PDEs. This relies on the fact that when the parameters vary, the set of solutions is
often of small Kolmogorov width, thus implying that the manifold of all solutions can be approximated
within a (small) finite space of well-chosen solutions to the parametrized problem (2). In that case,
there exists a set of parameters SN = (σ1, σ2, · · · , σN ) ∈ DN such that for any σ ∈ D, the truth
solution can be approximated by a linear combination of the particular solutions associated to σi ∈ SN .
To distinguish each physical component (temperature, velocity and pressure), we add superscripts θ, u
or p in our notation, for example we denote by (σθ

1, σθ
2, , · · · , σθ

Nθ) the set of parameters — with size N θ

— used to generate the reduced basis approximation space associated to the temperature component
of the solution. For each physical component, we introduce the associated reduced basis approximation
spaces as

XN
h = span{θh(σ

θ
i ), 1 ≤ i ≤ N θ} = span{φθ

i , 1 ≤ i ≤ N θ},

Y N
h = span{uh(σ

u

i ), 1 ≤ i ≤ Nu} = span{φu

i , 1 ≤ i ≤ Nu},

QN
h = span{ph(σ

p
i ), 1 ≤ i ≤ Np} = span{φ

p
i , 1 ≤ i ≤ Np},

where the
(

φθ
i

)

i
∈ Xh, (φ

u

i )i ∈ Yh, (φ
p
i )i ∈ Qh are H1-orthonormal basis sets (obtained respectively

from
(

θh(σ
θ
i )

)

i
, (uh(σ

u

i ))i and (ph(σ
p
i ))i by a orthogonalization process), called reduced basis functions.

The standard reduced basis method consists in a Galerkin approach within the low dimensional spaces
XN

h , Y N
h and QN

h .
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{

for a given σ ∈ D, find (θN
h ,uN

h , pN
h ) ∈ XN

h × Y N
h × QN

h such that
F(θN

h ,uN
h , pN

h ;T,v, q; σ) = (0,0, 0)t, ∀ (T,v, q) ∈ XN
h × Y N

h × QN
h .

(3)

Note that, in order to ensure stable, good approximation of the pressure, supremizer-enrichment of the
velocity reduced basis space may be performed, see for example [6, 13, 22]6.
One of the key ingredients of the method is the decomposition of the computational work into offline and
online stages. During the offline stage the reduced basis functions are computed — providing the above
defined spaces XN

h , Y N
h , QN

h — as well as all parameter-independent quantities. This is an expensive
stage that is done only once, whereas parameter-dependent quantities are computed during the online
stage together with the resolution to (3). Considering that the dimension of the reduced basis space is
quite smaller compared to the finite element one, solving the reduced problem (3) is much less expensive
than the “truth” finite element problem (2).

The construction of the associated discrete system to be solved is thus classically the corner stone
of the global process. Indeed, since the construction of the reduced discrete system associated to the
variational form F(θN

h ,uN
h , pN

h ;T, v, q; σ) has to be done for each new value of σ, to perform efficiently
the online stage, one has to be able to isolate the parametric contributions. Thus, all σ-independent
quantities, high dimensional matrices and vectors used in the construction of the reduced discrete system
are computed only once and saved during the offline stage. This part of the offline stage requires entering
and modifying the simulation code used to compute the truth finite element approximations, leading
to an intrusive method, which can be problematic. When the simulation code is locked and used as a
black box — which is often the case in the industrial framework — the parametric decomposition is
not possible, which prevent us from building each new reduced discrete system quickly for a new value
of σ. This take away the benefit of the reduced basis method, thus to overcome it, we propose to use
an alternative method, less intrusive, where coarse triangulations are used to compute finite element
solutions during the online stage. These “coarse” approximations are projected into the reduced basis
approximation spaces XN

h , Y N
h , QN

h , and then improve via a rectification technique introduced in [3, 4].
All these improvements after the coarse approximation is computed can be done in a different, more
versatile code than the one used to do the simulation.
Let {TH}H be a family of “coarse” regular triangulation of Ω, such that H >> h, we denote by XH , YH

and QH the coarse finite element spaces associated to this mesh, and (θH ,uH , pH) the “coarse” finite el-
ement approximation. Since the computation of the “coarse” finite element approximation, for H >> h

is less expensive than the “truth” approximation, using the simulation code — during the online stage
— with the mesh size H (chosen adequately) to construct a reduced solution is still cheap enough.

In order to understand our non-intrusive reduced basis method, let us indicate that the idea of standard
reduced basis methods (3) is to compute an inexpensive and accurate approximation of the projection
of the solution (θh(σ),uh(σ), ph(σ)) on XN

h × Y N
h × QN

h , by evaluating the coefficients appearing in the

decomposition of θN
h (σ), u

N
h (σ) and pN

h (σ) in the basis
(

φθ
i

)

i
, (φu

i )i and (φ
p
i )i.

The best linear combination – measured in H1-norm – of the reduced basis functions is provided by
the H1-orthogonal projection
In our method, an alternative linear combination of the reduced basis functions has been chosen, using

6However, in our context, we are not much interested here in the precise value of the pressure that is (only) a Lagrange
multiplier to the divergence free condition), thus using the fact that the reduced velocity space is composed of divergence
free functions the pressure does not even appear in the reduced set of equations (3), if no supremizer for the pressure space
is added to XN

h .
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the optimal coefficients {β
θ,h
j (σ)}1≤j≤Nθ

and {β
u,h
j (σ)}1≤j≤Nu

involved in the L2-orthogonal projection

of θh(σ) on XN
h and uh(σ) on Y N

h . As shown in [3, 4], these coefficients, defined as follows

β
θ,h
i (σ) =

(

θh(σ), φθ
i

)

L2
, and β

u,h
j (σ) =

(

uh(σ), φu

j

)

L2
with 1 ≤ i ≤ N θ and 1 ≤ j ≤ Nu,

(4)
are still good enough but require the knowledge of the fine solution intervening respectively in the
decomposition of θh(σ) and uh(σ). The non-intrusive reduced basis method aims at computing a cheap,
yet accurate enough approximation of these coefficients by using

β
θ,H
i (σ) =

(

θH(σ), φθ
i

)

L2
, and β

u,H
j (σ) =

(

uH(σ), φu

j

)

L2
with 1 ≤ i ≤ N θ and 1 ≤ j ≤ Nu,

(5)
as substitutes. While “coarse” finite element approximations (θH(σ),uH(σ)) can be computed quickly
enough to be used in model reduction techniques, they may not be accurate enough for practical use.
We have proven in [3, 4] on a simpler example that this first NIRB approximation provides some
improvement in the accuracy with respect to the coarse solution. To further improve the accuracy of
this technique we have also proposed to perform a simple “rectification” that allows to ensure that, for
the set of parameters SNθ ≡ {σθ

i }i, 1≤i≤Nθ , (and resp. SNu ≡ {σu

i }i, 1≤i≤Nu) used in the construction of

the reduced basis, the method returns exactly θh(σ
θ
i ) (and resp. uh(σ

u

i )). Indeed, contrarily to θh(σ)
and uh(σ) that we don’t want to compute for a large number of values of σ, the set {θh(σ

θ
i )}i, 1≤i≤Nθ

and {uh(σ
Nu

i )}i, 1≤i≤Nu have actually already been computed to build the reduced basis spaces. It is
thus desirable that the non-intrusive reduced basis approach provides these truth solutions. To do so,
we need to identify the matrices Rθ,N ∈ R

Nθ×Nθ and Ru,N ∈ R
Nu×Nu such that :

Nθ
∑

j=1

R
θ,N
ij β

θ,H
j (σθ

k) = β
θ,h
i (σθ

k), ∀ 1 ≤ i ≤ Nθ, ∀σθ
k ∈ SNθ ,

Nu
∑

j=1

R
u,N
ij β

u,H
j (σu

k ) = β
u,h
i (σu

k ), ∀ 1 ≤ i ≤ Nu, ∀σu

k ∈ SNu .

So that for each new value of σ, we can replace the β
θ,H
i (σ) and β

u,H
i (σ) coefficients by respectively

β
θH,h

i (σ) =
Nθ
∑

j=1

R
θ,N
ij β

θ,H
j (σ)

and

β
uH,h

i (σ) =
Nu
∑

j=1

R
u,N
ij β

u,H
j (σ),

to eventually build an improved non-intrusive reduced basis approximation



































θN
H,h =

Nθ
∑

i,j=1

R
θ,N
ij β

θ,H
j (σ)φ

θ,N
i

uN
H,h =

Nu
∑

i,j=1

R
u,N
ij β

u,H
j (σ)φ

u,N
i .

(6)
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In our previous work, we took the matrix Rθ,N equal to

Rθ,N =









β
θ,h
1
(σθ

1) · · · β
θ,h
1
(σθ

Nθ
)

...
...

...

β
θ,h
Nθ
(σθ

1) · · · β
θ,h
Nθ
(σθ

Nθ
)









×









β
θ,H
1
(σθ

1) · · · β
θ,H
1
(σθ

Nθ
)

...
...

...

β
θ,H
Nθ
(σθ

1) · · · β
θ,H
Nθ
(σθ

Nθ
)









−1

(7)

and the matrix Ru,N is equal to

Ru,N =









β
u,h
1
(σu

1 ) · · · β
u,h
1
(σu

Nu

)
...

...
...

β
u,h
Nu

(σu

1 ) · · · β
u,h
Nu

(σu

Nu

)









×









β
u,H
1

(σu

1 ) · · · β
u,H
1

(σu

Nu

)
...

...
...

β
u,H
Nu

(σu

1 ) · · · β
u,H
Nu

(σu

Nu

)









−1

. (8)

However when Nθ is large (and resp. Nu), we have observed that the rectification process is less
robust when the matrix Rθ,N (and resp . Ru,N ) is calculated according to (7) (and resp.(8)).
The challenge is to find an easy way to compute the rectification matrices while retaining good approx-
imation. We use an approach based on a regularized least-square method. For 1 ≤ i ≤ N , we introduce:

- the vectors Rθ,N
i ∈ R

Nθ and Ru,N
i ∈ R

Nu respectively defined by

{Rθ,N
i }j = R

θ,N
ij and {Ru,N

i }j = R
u,N
ij , ∀1 ≤ j ≤ N,

- the vectors Bθ,N
i ∈ R

Nθ and Bu,N
i ∈ R

Nu respectively defined by

(Bθ,N
i )k = β

θ,h
i (σθ

k), ∀σθ
k ∈ SNθ

and

(Bu,N
i )k = β

u,h
i (σu

k ), ∀σu

k ∈ SNu .

- the matrices Hθ,N ∈ R
Nθ×Nθ and Hu,N ∈ R

Nu×Nu respectively defined by

Hθ,N =









β
θ,H
1
(σθ

1) · · · β
θ,H
Nθ
(σθ

1)
...

...
...

β
θ,H
1
(σθ

Nθ
) · · · β

θ,H
Nθ
(σθ

Nθ
)









and Hu,N =









β
u,H
1

(σu

1 ) · · · β
u,H
Nu

(σu

1 )
...

...
...

β
u,H
1

(σu

Nu

) · · · β
u,H
Nu

(σu

Nu

)









Our rectification approach consists in looking for the vectors R
θ,N
i and R

u,N
i which respectively

minimize the cost functions

C
θ,N
i = ‖Hθ,N Rθ,N

i − Bθ,N
i ‖22 + λ‖Rθ,N

i ‖22, for 1 ≤ i ≤ N (9)

and

C
u,N
i = ‖Hu,N Ru,N

i − Bu,N
i ‖22 + λ‖Ru,N

i ‖22, for 1 ≤ i ≤ N, (10)

where λ is a regularization term and ‖ · ‖2 stand for the Euclidian ℓ2-norm.
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3. Application to heat transfer and CFD problems

One of the most prominent industrial applications of heat transfer problems is the cooling and
thermal control of electronic devices and circuitry. Cooling systems are generally divided into two
categories: passive (rely on the thermo-dynamics of conduction and convection to complete the heat
transfer process) and active (require an external powered device as fans or pumps). In these paper we
choose to study the heat transfer due to natural convection in a heated cavity and heat transfer inside
a simple cooling system for electronics components.

3.1. The governing equations

The fluid is supposed incompressible and driven by external forces – the gravity acting on the mass.
The governing equations are the stationary Navier-Stokes equations, in the Cartesian coordinates they
are given by :

• Continuity equation :
∇ · u = 0 (11)

• Time independent momentum equation :

ρ

(

u · ∇u

)

− µ∆u+∇p = ρg (12)

• Time independent thermal energy equation :

ρ Cp

(

u · ∇θ

)

− k∆θ = 0 (13)

ρ density Cp heat capacity

k thermal conductivity µ dynamic viscosity

κ thermal diffusivity (= k
ρCp

) ν kinematic viscosity (= µ
ρ
)

Table 1: Nomenclature of fluid’s properties

Considering a reference state in which the density ρref and the pressure pref are so that ∇pref = ρref g

and writing p = pref + p̃ and ρ = ρref + ρ̃, equation (12) becomes

(

1 + ρ̃
ρref

) (

u · ∇u

)

+ 1

ρref
∇p̃ − νref ∆u = ρ̃

ρref
g , with νref =

µ

ρref
,

and equation (13) becomes

(

1 + ρ̃
ρref

) (

u · ∇θ

)

− κref ∆θ = 0, with κref =
k

ρref Cp
,

7



We place ourselves within the Boussinesq approximation7 for steady state, with

ρ̃ = ρref β (θ − θref),

where β is the volumetric coefficient of the thermal expansion and θref some reference temperature
for which ρref = ρ, here we took θref = 295 Kelvin’s degrees. By applying this approximation, the
momentum equation (12) becomes :

u · ∇u+
1

ρref
∇p̃ − νref ∆u = β(θ − θref)g, (14)

and the thermal energy equation (13) becomes

−κref∆θ + u · ∇θ = 0. (15)

3.2. Application 1 : Natural convection in a 2D cavity

Figure 1: Geometry for a differentially heated square cavity

In this first example we investigate the case of a flow enclosed in a two-dimensional (x, z) differentially
heated square cavity (see Figure 1). The left wall is maintained at the hot temperature Th, the right
one at the cold temperature Tc = Tref whereas the walls at top and bottom are adiabatic.
The governing equations (11),(15) and (14) are made dimensionless by introducing ∆θ = Th − Tc

(the temperature difference), L (the distance between region of high temperature and region of low

temperature), the Grashof number Gr =
gβ∆θL2

ν2
(the ratio between the buoyant forces and viscous

forces acting on the fluid) and the Prandtl number Pr =
ν

κ
(the ratio between the kinematic viscosity

and the thermal diffusivity). The following dimensionless quantities are introduced:

X =
x

L
, Z =

z

L
, U =

u√
gβ∆θL

, P =
p̃

gβ∆θLρref

, Θ =
θ − Tc

Th − Tc

7Boussinesq approximation states that the thermo-physical properties of the fluid (ρ, µ, Cp and k) are assumed to

be constant and independent of temperature except in the gravity term. Hence the variation of the density
ρ̃

ρref

due to

changes in the temperature can be neglected except in the gravity term.
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The dimensionless velocity U = (ux, uz), the dimensionless temperature θ, the pressure p of the fluid
satisfy the following equations :











































































− 1√
Gr
∆U+U · ∇U+∇P = (0, 1)T Θ in Ω,

∇ · U = 0 in Ω,

U = 0 on ∂Ω,

− 1

Pr
√

Gr
∆Θ+U · ∇Θ = 0 in Ω,

Θ = 0 on Γc,

Θ = 1 on Γh,
∂Θ

∂n
= 0 on Γa.

(16)

The varying parameters of this example are the Grashof number Gr ∈ [103, 106] and the Prandtl number
Pr ∈ [0.5, 1].

3.3. Application 2 : Cooling system of electronic devices

In this second example we are interested by the variation of the temperature in a simplified system
that is inspired by a suggested cooling system for electronic device (a small box with two electronic
components).

Figure 2: Geometry of the simplified cooling system for electronic devices
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The model is a two dimensional square where the cooling air enters the box at the Γin
b boundary and flows

around the two electronic components. Those two components produce heat energy at the boundary
Γoutc , and due to a convection phenomenon the heat energy is carried out by the fluid flow through the
box to finally exits from the boundary Γout

b (see Figure 2).

On the inflow section Γin
b a Poiseuille’s velocity profile vin = vb

(

f(x)
0

)

is imposed, where vb is the

velocity magnitude and f(x) a parabolic function. On the outflow section Γout
b , homogenous Neumann

condition is imposed. For the flow passing through the electronic components, we have chosen to model
the interaction by non homogenous Dirichlet condition vc imposed to the second component of the
velocity on the inflow Γin

c and similarly on the outflow sections Γout
c .

We impose a temperature of θb on the inflow section Γin
b and a temperature of θc on the outflow section

Γout
c , whereas the walls Γwall, the outflow section Γout

b and the inflow section Γin
c are all adiabatic.

The velocity u = (ux, uz), the temperature θ, the pressure p of the fluid satisfy the following equations
:































































































































∇ · u = 0,

u.∇u+
1

ρref

∇p̃ − νref∆u = β(θ − θref)g,

u · ∇θ − κref ∆θ = 0,

u = vin on Γin
b

∂u

∂n
= 0 on Γout

b

u = 0 on Γwall

uz = −vc , ux = 0 on Γout
c

uz = −vc ,
∂ux

∂n
= 0 on Γin

c

θ = θb on Γin
b ,

θ = θc on Γout
c ,

∂θ

∂n
= 0 on ∂Ω \ {Γout

c ∪ Γin
b }.

(17)

The varying parameters are the velocities vb ∈ [0.5; 2], vc ∈ [0.1; 0.4] (in mm/s), the imposed
temperatures θb ∈ [288; 292] and θc ∈ [295; 315] (in Kelvin). For simplicity we will also denoted by
σ = (vb, θb, vc, θc) the set of parameters.

4. Numerical results

The blackbox software to compute the pressure, velocity and temperature “truth” and “coarse”
approximations is the finite element code “FreeFem++”[10]. The P2-P1 Taylor-Hood finite element has
been used to build the velocity and pressure approximation spaces and the P2 finite element has been
used to build the temperature approximation space over various coarse and fine meshes: TH and Th.

4.1. Application 1 : Natural convection in a 2D cavity

In this example, we consider heat transfer due to natural convection inside a heated cavity as
introduced in section 3.2. To start with, we shall focus here on the approximation of the only temperature
θ, hence, in the remainder subsection, we have simplified the notation by removing the superscript θ on
N θ.
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In order to build the reduced basis space XN
h , we have computed a “training” sample made of a

series of ntrain = 93 fine finite element approximations of (16) for a Prandtl number varying between
0.5 and 1 and a Grashof number varying between 103 and 106 (see Figure 4).

TH (coarse) Th (fine) Tref (reference)

P2 ndof = 525 P2 ndof = 7905 P2 ndof = 31297

Figure 3: Embedded meshes used to build finite element approximation spaces
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Figure 4: Parameters distribution in Ξtrain = [0.5 : 1] × [103 : 106]

Let us denote by, ΞF
train, the “ full training” set of points, in D, associated to our complete “training”

sample of finite element approximations. In order to better take into account the disparity between
the solutions of lower and higher Rayleigh number (Ra = Gr × Pr), we have decomposed this initial
“training” parameter set into three parts (see figure 4) : ΞF

train = Ξ1
train ∪ Ξ2

train ∪ Ξ3
train with















































ΞF
train = [0.5 : 1]× [103 : 106],

Ξ1
train = [0.5 : 1]× [103 : 104],

Ξ2
train = [0.5 : 1]× [104 : 105],

Ξ3
train = [0.5 : 1]× [105 : 106].

(18)

11



In order to obtain an optimal set of parameters {σ1, · · · , σNmax
} from a given training sample Ξtrain ⊂

ΞF
train, we resort to a greedy sampling procedure given in Algorithm 1.

Algorithm 1 Greedy’s algorithm used to choose {σ1, · · · , σNmax
}

Given Ξtrain = (σ1, · · · , σnt) ∈ Dnt , nt >> 1 with nt ≤ ntrain and Ξtrain ⊂ ΞF
train

Choose randomly σ1, → S1 = {σ1} and X1

h = span{θh(σ1)}
Set ξ1 =

θh(σ1)

‖θh(σ1)‖L2

for n = 2 to Nmax do

σn = arg max
σ∈Ξtrain

‖θh(σ)−
n−1
∑

i=1

(θh(σ), ξi)L2 ξi‖L2

‖θh(σ)‖L2

Sn = Sn−1 ∪ σn and Xk
h = Xn−1

h + span{θh(σn)}

Compute ξ̃n = θh(σn)−
n−1
∑

i=1

ξi(θh(σn), ξi)L2 and set ξn =
ξ̃n

‖ξ̃n‖L2

end for

Besides, in order to determine the reduced basis’s optimal size we propose to look at the behavior of
the average error of the rectification process for all the σ ∈ Ξtrain \ SN as N increase to Nmax. In order
to do so, we computed temporary rectification matrices TN associated to the functionals {ξi}1≤i≤N .
To lighten the notation we introduce :
- The vectors T i ∈ R

N for i = 1, · · · , N defined by

(T i)j = T
N
i,j , ∀j = 1, · · · , N ;

- The vectors Ai ∈ R
Nmax for i = 1, · · · , N defined by

(Ai)k = (θH(σk), ξi)L2 ∀k = 1, · · · , Nmax;

- The vectors Bi ∈ R
Nmax defined by

(Bi)k = (θh(σk), ξi)L2 , ∀k = 1, · · · , Nmax;

- The matrix D ∈ R
Nmax×N defined by

D =







A1

...
AN






=







(θH(σ1), ξ1)L2 · · · (θH(σ1), ξN )L2

...
...

...
(θH(σNmax

), ξ1)L2 · · · (θH(σNmax
), ξN )L2






.

In order to find the optimal coefficients TN
ij we resort to a least-square recipe with a penalty term. For

1 ≤ i ≤ N , we are looking for the vector T N
i which minimizes the following cost function Ci:

Ci = ‖D T i − Bi‖22 − λ‖T i‖22 (19)

where λ is a regularization coefficient and ‖ · ‖2 stand for the Euclidian ℓ2-norm. We can show that
minimization of the cost function(19) leads to a set of N linear equations in the N unknown coefficients
T

N
i,j and that it can be written as following the linear system:

(DT D + λ IN )T i = DT Bi ∀1 ≤ i ≤ N,
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where IN is the identity matrix in R
N×N . The solution of this equation is :

T i = (DT D + λ IN )
−1DT Bi ∀1 ≤ i ≤ N.
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Figure 5: Average errors with λ = 10−10 (left) and with λ = 0 (right) during the reduced basis construction stage with
Ξtrain = ΞF

train

Figure 5 shows for Ξtrain = ΞF
train, the behavior of the rectification process with and without the regu-

larization. The average relative errors are measured in L2-norm and defined by :

- for the true projection :
1

ntrain

ntrain
∑

k=1

∥

∥

∥

∥

θh(σk)−
N

∑

i=1

(θh(σk), ξi)L2 ξi

∥

∥

∥

∥

L2

‖θh(σk)‖L2

,

- for the coarse projection without rectification :
1

ntrain

ntrain
∑

k=1

∥

∥

∥

∥

θh(σk)−
N

∑

i=1

(θH(σk), ξi)L2 ξi

∥

∥

∥

∥

L2

‖θh(σk)‖L2

,

- for the coarse projection with rectification :
1

ntrain

ntrain
∑

k=1

∥

∥

∥

∥

θh(σk)−
N

∑

i,j=1

T
N
i,j(θH(σk), ξj)L2 ξi

∥

∥

∥

∥

L2

‖θh(σk)‖L2

.

Without the regularization we observe peaks in the error curve due to a deterioration of the rectified
solution when N is large.

Figures 6 and 7 show for the different training sets introduced in (18), the behavior of the rectification
process with a regularization term λ set to 10−10 in order to insure a robust process.
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Figure 6: Average errors during the reduced basis construction stage with Ξtrain = Ξ1

train ∪ Ξ2

train (left) and with
Ξtrain = Ξ2

train (right)
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Figure 7: Average errors during the reduced basis construction stage with Ξtrain = ΞF
train \ Ξ1

train (left) and Ξtrain = Ξ3

train

(right)

With the regularization, the rectification process remains good when N is large, despite the fact
that a threshold in the error is reached. Reminding that, as proven in [3, 4, 15], we have

‖θ(σ)− RN θH(σ) ‖H1 ≤ c1(N)(h+H2) + ε(N),

where RN θH(σ) =
N

∑

i,j=1

T
N
i,j (θH(σ), ξj)L2 ξi. The behavior of the rectified solution RN θH(σ) observed

when N is large in figures 6 and 7 confirms that constant c1(N) is growing with N .

Finally, we have decided to stop the enrichment of the reduced basis space when the rectification error
stop decreasing rapidly and reach a threshold (see table 2).
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Parameter space Ξtrain Nmax

ΞF
train 30

Ξ1train ∪ Ξ2train 20

Ξ2train 15

ΞF
train \ Ξ1train 20

Ξ3train 20

Table 2: Value of Nθ
max for a variety of Ξtrain

Figure 8, below shows the parameters distribution during the reduced basis construction stage with
Ξtrain = ΞF

train.
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Figure 8: Parameters distribution during the reduced basis construction stage with Ξtrain = ΞF
train

Once we have determined, for each parameter space Ξtrain, the set of parameters {σ1, · · · , σNmax
} that

will be used to generate Xh
N , we solve, for several values of N ≤ Nmax, the following eigenvalue problem:

find (λk,Φk) ∈ R
N × R

N , 1 ≤ k ≤ N such that

KN Φk = λk M
N Φk with MN

i,j =

∫

Ω

ξi ξj and KN
i,j =

∫

Ω

∇ξi ∇ξj .

Which will provide N basis functions of XN
h orthogonalized in L2 and H1 norm, defined as

φ
θ,N
k =

1√
λk

N
∑

i=1

(Φk)i ξi.

To validate the reduced basis functions, we have looked at the convergence rate of the H1-orthogonal
projection from Xh into XN

h for some particular solutions θh(σ), with σ ∈ D \ Ξtrain depending on the
parameters space Ξtrain. Figure 9 shows the temperature field θh(σ) with a lower Rayleigh number (on
the left side) and a higher Rayleigh number (on the right side).
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Figure 9: Temperature field θh(σ) (on the left with σ = (0.75; 25 000) and on the right with σ = (0.7; 750 000))

Let the projection error measured in H1-norm defined by

‖ΠN θh(σ)− θref (σ)‖H1 =

∥

∥

∥

∥

N
∑

i=1

(θh(σk), φ
θ,N
i )H1 φ

θ,N
i − θref (σ)

∥

∥

∥

∥

H1

‖θref (σ)‖H1

,

where θref (σ) is a reference FEM solution computed on the reference mesh Tref (see figure 3).
Figure 10 shows that the projection error is same as the fine FEM error for N = Nmax.
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Figure 10: Convergence rate of the reduced basis’s projection measured in H1-norm (on the left with σ = (0.75; 25 000)
and on the right with σ = (0.7; 750 000))

In the figure 11 we can see the convergence rate of the non-intrusive reduced basis (NIRB) approximation
θN

H,h as function of N for some particular value of σ ∈ D \ Ξtrain depending on the parameters space

Ξtrain. We defined the relative NIRB error measured in H1-norm by

∥

∥

∥

∥

N
∑

i,j=1

R
θ,N
i,j (θh(σk), φ

θ,N
j )L2 φ

θ,N
i − θref (σ)

∥

∥

∥

∥

H1

‖θref (σ)‖H1

,
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Figure 11: Convergence rate of the improved reduced basis approximation θN
H,h as function of N measured in H1-norm

during the online stage (on the left with σ = (0.75; 25 000) and on the right with σ = (0.7; 750 000))

As we expected, we were able to reach the same accuracy as the fine finite element solution and to
reduced significantly the computational times (see table 3).

F.E.M. NIRB method
Fine sol. (on line stage)

FEM Rectification
coarse sol. N=15 N=20 N=30

7min28 26 sec 5 sec 9 sec 19 sec

Table 3: Average execution’s times

4.2. Application 2 : Cooling system of electronic devices

In this second example, we are interested in the evaluation of the velocity and the temperature inside
a simplified cooling system for electronics devices.

Th TH1
TH2

TH3

P2 Ndof = 20213 P2 Ndof = 5148 P2 Ndof = 5088 P2 Ndof = 1871

Figure 12: From the left to the right : fine mesh (Th), embedded coarse mesh (TH1
), non embedded coarse mesh (TH2

),
non embedded very coarse mesh (TH3

).

In order to build the reduced spaces XN
h and Y N

h we have used a fine finite element mesh with 20,213
degrees of freedom (mesh Th in Figure 12). In order to test the NIRB on various coarse meshes, we have
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computed a sample of coarse and fine finite element approximations of problem (17), using embedded
or non embedded meshes (see figure 12). The associated parameters space — denoted by Ξtrain — is of
size 120, and composed of parameters within the following values:

θb vb vc θc

288 0.5 0.1 295
292 1 0.2 300

2 0.3 305
0.4 310

315

To verify the non-intrusive reduced basis method, we have compared the fine finite element solution for
σ = (θb; vb; vc; θc) = (290; 1.5; 0.25; 312) (see figure 13) with different reduced solutions (see Figure 14).

Figure 13: Temperature field for σ = (θb; vb; vc; θc) = (290; 1.5; 0.25; 312)
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Figure 14: Relative error between the fine FEM solution and the various reduced solutions measured in H1-norm (tem-
perature on the left and velocity on the right).

• Case 1:
In this example, we want to see the error due only to the reduced basis size N . To do so, as in
the previous section, we have computed the L2 projection of the fine finite element solution on
the reduced basis space.

For a given N , those solutions are the best approximation that we can expect in the reduced basis
space.

• Case 2, 3 and 4:
In those examples, we wanted to see how the choice of the coarse mesh TH affect the NIRB method
when there is no rectification.
We have used embedded coarse mesh (TH = TH1

) and not embedded coarse meshes (TH = TH2
or

TH3
) to compute the reduced approximation in respectively the case 2, 3 and 4.

We notice that as N goes larger the error between the different reduced solutions and the FEM
solution goes smaller to finally reach a threshold. This is due to the fact that the coarse finite
element’s error become more significant than the reduced basis size’s error.

Remark : From a practical viewpoint, we want to use a finite element software able to compute
the coefficients γHi

j (σ) easily and in a way that it is not too time consuming. Indeed, in order
to do compute those coefficients we resort to numerical integration. However, in the case when
the meshes are not embedded a supplementary difficulty arise from the fact that the reduced basis
functions and the coarse solutions do not belong to a same finite element space. We want to avoid
an extra interpolation error due to the interpolation of the coarse solution to the reference mesh.
It is made by the use of a numerical quadrature formula over each triangle Kh based Gauss points,

here we choose a P2-unisolvent formula (with 7 points). For example

∫

Kh

θHi
(σ)ξj

h will be replaced

by
7

∑

p=1

ωp × θHi
(xp;σ)× ξ

j
h(xp), where ωp are the weight of the quadrature point. Then to compute

θHi
(xp;σ), we just have to find in which triangle of THi

belongs the point xp, to avoid any inter-
polation of θHi

(σ) on Kh. In the software that we have used for our numerical experiments, this
step was done automatically.
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• Case 2 + Rec, 3 + Rec and 4 + Rec : In those examples we wanted to see the influence of
the rectification on the reduced solution. We observe that with this rectification we are able to
reach the same accuracy as if we have projected the reference finite element solution on the reduced
basis space, even with the coarsest mesh. In particular, when using coarse mesh TH3

, we are able
to divide the computational times by 10 without any loss of accuracy (see figures 15 and 16).
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Figure 15: Relative error between the fine FEM solution the various reduced solutions measured in H1-norm with TH = TH3

(temperature on the left and velocity on the right).
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4.3. Conclusion

The present paper illustrates the capability of non-intrusive reduced basis method to return compu-
tationally efficient and accurate thermal flux for simple model of cooling systems. Coarse triangulations
have been used to compute finite element solutions during the online stage. In order to regain accuracy,
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we first project these solutions into the RB space, and then improve them via a rectification technique.
Our numerical results prove that the two ingredients i) projection ii) rectification, are inseparable in
order to get the expected accuracy. With this approach, we are still able to significantly reduce our
computational cost without modifying the CFD code, and it is thus user-friendly. The only thing that
we need to get out the plain CFD finite element software are: i) the meshes (fine and coarse) and ii)
the nodal values of each fields we want to approximate, in order to export these data in a simple finite
element code (as e.g. Matlab, FEEL++, FreeFem++) where simple L2 and H1 scalar products are
performed. Our simulations also illustrate that the coarse and fine meshes do not need to be embedded.
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