
HAL Id: hal-01897378
https://hal.science/hal-01897378v1

Submitted on 17 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Vibration response demodulation, shock model and time
tracking

Xavier Laval, Nadine Martin, Pascal Bellemain, Z y Li, Corinne Mailhes,
Christian Pachaud

To cite this version:
Xavier Laval, Nadine Martin, Pascal Bellemain, Z y Li, Corinne Mailhes, et al.. Vibration response
demodulation, shock model and time tracking. CM 2018 - MFPT 2018 - 15th International Conference
on Condition Monitoring and Machinery Failure Prevention Technologies, Sep 2018, Nottingham,
United Kingdom. �hal-01897378�

https://hal.science/hal-01897378v1
https://hal.archives-ouvertes.fr




 

 

Vibration response demodulation, shock model and time tracking 
 

X. Laval, N. Martin, P. Bellemain, Z. Y. Li 

Univ. Grenoble Alpes, CNRS, Grenoble INP*, GIPSA-Lab, 38000 Grenoble, France 

* Institute of Engineering Univ. Grenoble Alpes 

+33 4 76 57 47 16 

xavier.laval@gipsa-lab.grenoble-inp.fr 

 

C. Mailhes 
 
Univ. of Toulouse, IRIT/INPT-ENSEEIHT /TéSA, 31000 Toulouse, France 

 

C. Pachaud 

Senior technical consultant, 3 place Sadi Carnot 87350 Panazol, France 

 

 

Abstract 

 

A reliable monitoring of a rotating machine needs amplitude and phase demodulation 

over well-chosen frequency bands. Although often applied, the behaviour of this 

estimator is not so well established in such a context and particularly for earlier and 

accurate fault detection. In attempt to provide keys for the understanding of vibration 

measures, this paper proposes a vibration signal model of a faulty gearbox. More 

attention is given to the amplitude modulation function to better model the shocks 

created by local tooth defects and incurred by all the meshing frequency harmonics. The 

proposed shock model is defined as the response of a mechanical system excited by a 

Dirac function assuming that the fault does not evolve during the measure. Parameters 

of resulting response models, exponentially periodic waves, are set to fit as much as 

possible to a sequence of signals to model the time evolution of the GOTIX bench 

during a fatigue test. All signals are processed by AStrion, an automatic and data-driven 

spectral monitoring approach. Interestingly, setting various fault model parameters, 

damping factors, amplitude modulation rates, frequency modulation indexes, fault 

location and number, helps for the understanding of the modulation phenomenon and 

illustrates the intrinsic limits of the demodulation approach. 

 

1. Introduction 
 

The preventive maintenance of a complex system including several rotating machines 

needs the use of advanced signal processing tools for early and accurate fault detection. 

Moreover, for an offline continuous monitoring, a sequence of data should be analysed 

and tracked automatically. In this context, this paper proposes to study one particular 

step of this analysis. After peak detection, harmonic family and sideband classification, 

tracking of associated features, the diagnosis is completed with a fault characterisation 

that can be achieved thanks to a demodulation process. This paper focusses on the 

classical approach by band pass filtering and Hilbert transform. This method can 

perform well provided that some constraints are satisfied. In attempt to provide keys for 

the understanding of vibration measures, this paper proposes the parallel analysis of 

real-world signals measured on the test bench GOTIX, and vibration signal models of 

the same gearbox. More attention is given to the amplitude modulation function to 
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better model the shocks created by local tooth defects and incurred by all the meshing 

frequency harmonics. This study supports the development of AStrion, a tool dedicated 

to automatic and data-driven analysis. Section 2 briefly recalls the AStrion concept. 

Section 3 derives the vibration model of a faulty gearbox. Sections 4 and 5 propose 

respectively frequency and amplitude modulation function models in the case of a local 

fault on a gear tooth. Section 6 examines the demodulation of signals generated from 

the models versus a real-world measure in order to justify the model choices. Then the 

limits of the Hilbert demodulation are underlined in Section 7. Section 8 draws the 

conclusions and perspectives. 

 

2. Continuous monitoring and the demodulation phase 
 

For a continuous and automatic monitoring, AStrion is a data-driven tool including a set 

of modules from data validation, to peak, harmonic-sideband detection
(1)

 and creation of 

a wide list of advanced features, or fault indicators, that can be a posteriori associated to 

kinematic values of the system analysed. For surveillance, a dedicated time-frequency 

tracking over all previous timestamps
(2)

 builds trajectories of peak, harmonic and 

sideband families that generate continuous system health indicators. This approach has 

been validated on onshore wind turbines
(3)(4)(5) 

and paper machines
(6)

. 

One of the AStrion modules, called AStrion-M
(7)

, gives the possibility to demodulate 

any frequency band containing the detected side bands around one detected carrier. This 

paper aims at assessing this module through the investigation of a vibration signal 

model. The background of the method is very classical, namely a band pass filtering, 

followed by a time synchronous averaging, amplitude and phase/frequency modulation 

function estimations after a Hilbert transform. The innovative part of AStrion applies a 

multi-rate filtering which design is data-driven and fully automatic whatever the size of 

the spectral band, also automatically set by the previous modules of AStrion. The multi-

rate filtering is a solution for having stable filters. 

In a nutshell, the method is derived in an iterative process driven by a filter stability 

criterion. If the band-pass filter with the given spectral band is stable, the band-pass 

filtering is applied, the frequency shifting is done in one go, the signal is then down-

sampled and demodulated. The chosen band-pass filter is an elliptic one, a sharp roll-off 

being required. If not, if the high pass filter from the lower frequency boundary of the 

given spectral band until the Shannon frequency is stable, this high-pass filtering is 

applied followed by iterations of low-pass filtering and down-sampling, with a final 

demodulation. The chosen high-pass filter is an elliptic one also. The low-pass filter is a 

Butterworth one. If both filters are unstable, a sequence of decimation (low-pass filter 

and down-sample) is iterated until the band-pass of high-pass filter is stable. 

The inputs of AStrion-M are the outputs of the harmonic and side band detection, 

namely AStrion-H. Before the filtering step of AStrion-M is applied a time synchronous 

averaging with the fault frequency. The outputs of each AStrion-M demodulation are 

then the amplitude and phase/frequency demodulation functions in angle on one rotation 

of the faulty component and a list of indicators. In a continuous monitoring, the 

indicators are associated between the different time stamps. This tracking is of interest 

to evaluate the evolution of the state of the system. 

Even though other demodulation approaches exist, this paper will focus on this Hilbert 

approach only in order to highlight and illustrate two problems, the filter band 

sensitivity and the Bedrosian constraints on the amplitude demodulation function versus 
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the phase demodulation function
(12)

 depending on the model proposed and its 

parameters. 

 

3. Vibration signal model of a faulty gearbox 
 

This paper will consider a pair of meshing gears at steady-state conditions, so with mesh 

under a constant speed and load. Such a healthy system at nominal speed and at a given 

load produces a vibration component due to the transmission error of each pair of the 

meshing gears. This component, due to the elastic deformation of the loaded teeth, is 

load dependent and periodic of the gear mesh frequency with integer harmonics. In 

addition, geometrical deviations from the ideal tooth profiles, intentional or 

unintentional, contribute also to the error transmission but is non-load dependent. 

Moreover the meshing force has also reactions in the shafts that support the gear. It 

causes vibration components at both the gear and pinion frequencies at a smaller 

amplitude level but with also a number of harmonics. In this paper the reaction of the 

shafting bearings is not considered. In case of a healthy system, a signal vibration model 

denoted as ���������	
	 can be written as 

 

���������	
 = ∑ ������ sin�2�ℎ�����	 + ������� + ∑ ������ �� �2�!�����	 +"#�$%
"&�$%

������� +∑ �''()(*) sin�2�+�'()(*)	 + �''()(*)�",'$% + n�	
, ............................................... (1) 

 

where, for the gear mesh frequency �����, -. is the harmonic number, ������ 	the 

amplitude and ������ the phase of the h
th 

harmonic, for the gear shaft frequency �����, 

-/ is the harmonic number, ������ the amplitude and ������ the phase of the r
th 

harmonic, for the pinion shaft frequency �'()(*), -0 is the harmonic number, �''()(*) 

the amplitude and �''()(*)the phase of the p
th

 harmonic. In addition of these 

deterministic parts induced mainly by the meshing force, the random part of the 

vibration signal and the non-periodic components n(t) are simply approximated here by 

a stationary Gaussian white noise. 

 

Let it now assume a local defect on the gear such as a flaking which produces one 

impact each gear rotation. This impact or shock induces fluctuations in the torque 

transmitted by the gears. These dynamic transmission errors induce phase modulations 

when the motor is asynchronous and amplitude modulations due to the variations of the 

meshing force. The measured signal is then modulated in amplitude and phase by 

functions periodic with the rotation frequency of the shaft supporting the faulty gear. 

Therefore, the signal vibration model in Eq. (1) denoted now as �1�2����	
	 is modified 

as 

 

�1�2����	
 = ∑ AM��	
 sin�2�ℎ�����	 + 56��	
 + ������� + ∑ ������ �� �2�!�����	 +"#�$%
"&�$%

������� +∑ �''()(*) sin�2�+�'()(*)	 + �''()(*)�",'$% + n�	
,  ....................................................... (2) 

 

where �6��	
 and 56��	
 are the amplitude and phase modulation function of the h
th

 

harmonic of ����� respectively. The phase relationships of the sidebands on either side 

of ����� are different between the amplitude and phase modulations. All these vibration 

sources are transmitted via a transmission path through the structure to the point 
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measurement where the accelerometer is located. The measure is then the result of a 

convolution with the impulse response of the transmission path. Unfortunately, the 

vibration signal after the transfer function of the structure can be a mix of these 

demodulations and lose this phase property
(9)

. This issue is not considered in this paper. 

 

4. Frequency modulation function model 
 

If we assume that a local fault is on the gear tooth, 56��	
 in Eq. (2) can be modelled 

with a sum of harmonic sine functions to the fundamental ����� 

 

                                                    56��	
 = ∑ 7�8�� �2�9�����	
:8$% , ............................... (3) 

 

with 7�8 the frequency modulation index of the harmonic k of the fault frequency �����. 
The frequency excursion of harmonic k is equal to 27�89�<=>!. With ?� the gear tooth 

number (see Appendix), the frequency modulation rate associated to order k of ����� 

and order h of ����� is denoted @6A�8 and defined as, 

 

                                                     @6A�8 = 27ℎ99�<=>!
2ℎ�B=�ℎ = 97ℎ9

ℎ?<	, ............................................. (4) 

 

5. Amplitude modulation function model 
 

5.1. As a discrete Fourier series 

 

As the modulation is a periodic process, the modulation function is often represented by 

discrete Fourier series
(10)

, 

 

                              �6��	
 = �������1 + ∑ B�ℓ�� �2�ℓ�����	 + ∅F
Gℓ$% �, ................... (5) 

 

with H the harmonic number, B�ℓ  the amplitude modulation index of harmonic of order 

ℓ, B�ℓ ≤ 1, ∅� a random phase. All periodic function with a finite power can be 

decomposed in an infinite sum of sines, which argues for the use of this model. 

Nevertheless, the sinusoidal property of �6��	
 has no link with the physics, so the 

need for a high number H of modes. However, the high orders will be quickly embedded 

in the background and will have no influence in the model. 

Moreover, this function can be negative. So, it is of great importance to add a positivity 

constraint to prohibit negative values which will induce higher harmonics in the 

amplitude and an additional phase term after demodulation. At some angles, the 

vibration amplitude of the faulty signal can be lower than the healthy vibration 

amplitude. As an alternative, the authors in
(13)

 model the fault impact with a Hanning 

function, which length represents the angular duration of the impact. 

 

5.2. As a shock response 

 

To be closer to the physics and knowing that a local failure on a tooth generates shocks 

at each rotation, we propose to consider �6��	
 in Eq. (2) as the result of an impact or 

shock at each gear rotation. Let 	�J be the instant of the shock of the fault tooth K on a 
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rotation of the gear with regard to a tooth reference. We assume that the fault does not 

evolve during the measure so that 	�J is the same at each rotation. Each shock excites 

the resonance modes of the system which response is the sum of both the forced and 

free response of the system at these resonance modes. So for a measure over M rotations 

of the gear, a sequence of shocks occurs at 	�J = 	�J + � L 1/����� with s = 1,M. The 

response of this multi-shock excitation is the sum of all the responses at these instants. 

If we define each shock as a Dirac function, this response can be written as 

 
�1�2���,1�����	
 =

∑ ������sin�2�ℎ�����	 + ��������	
 +"&�$%
∑ 	N�$O ∑ ������B��=PQR��P�S

T
	u V	 W 	�JX sin V2�ℎ������	 W 	�J
 + ������X"&�$% , ........................ (6) 

 

where u�	
	 is the Heaviside function. The damping factor Z� does not depend on the 

shock but on the system, so on index h only, and the amplitude B��  depends on both the 

forced and free response of the system excitation, so on both index s and h. More details 

are given in 
(8)

. So �6��	
 writes as 

 

                          �6��	
 = ������ [1 + =PQR�	u�	
 ∗ ∑ 	B��N�$O ] V	 W 	�KX^ ,. ........................ (7) 

the symbol ∗ denoting the convolution operation. In the following section, this model is 

tested by AStrion and compared to GOTIX test bench results. 

 

6. Models versus real-world measures 
 

GOTIX, a test bench located in GIPSA-lab to characterize defects on rotating machines 

is used to produce a database on a natural wearing of a gearbox with 2 parallel straight 

gears meshing together. The 2 gears are connected respectively to a driving 

asynchronous 3-phase motor rotating at 474 rpm and a loading DC-generator applying a 

200Nm torque on the output shaft. The ratio between input and output shaft is 3.8. The 

detail of this bench can be found in appendix. 

 

 
Figure 1: Spectral peaks detected by AStrion on a measured signal on GOTIX. 

Highlighted are the meshing harmonics with yellow arrows and the sidebands 

from the input shaft around the 3
rd
 meshing harmonic with green arrows. 

 

Figure 1 shows a healthy GOTIX signal with preponderant meshing harmonics 

modulated by both input and output shaft frequencies. From a signal of low to 

intermediate state of wear, AStrion provides the amplitude values of the peaks 
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associated to the harmonic families of input and output shafts, and gear mesh, thus 

providing the ������, ������, �''()(*) terms of equation (1). These values were used to 

generate simulated signals with the same pattern, thus simulating the healthy state of the 

gearbox. In order to create a faulty state, �6��	
 and 56��	
 have been added to these 

signals. 

In a first study, Figure 2 shows �6��	
 modeled as described in section 5.1. Even if the 

positivity constraint is applied, the shape of a sine sum does not fit well with the 

estimated one from measured signals. Furthermore, choosing the parameters of this 

model is really a complex task if the number of faulty teeth and their location should be 

controlled. 

 

 
Figure 2: On the left, model of an abF�c
 of the first harmonic of defgF with 20 
harmonic sines of the faulty frequency gear, a decreasing modulation index and a 

random phase, signal to noise ratio of 20 dB, duration 20 s. On the right, estimated 

abF�c
 of the 3rd harmonic of defgFin GOTIX test bench. 

 

The estimated �6��	
 from GOTIX signal shows that, while most teeth generate 

amplitude variations of similar values, one generates a higher value. This is probably 

due to a fault on 1 tooth, and will be considered as a signature of a shock. 

 

A second study have tested the proposed shock model of equation (6). The shock 

amplitude B��  is chosen constant at 3 in order to correspond to the estimated �6��	
 of 

the third harmonic of the GOTIX signal. This particular harmonic is chosen because of 

its highest energy, making the result clearer. In the simulated signals, this amplitude is 

constant for every harmonic. 	J is chosen as the instant of meshing of the 25th tooth. 

 

 
Figure 3: Estimated abF�c
 of the 3rd harmonic of a GOTIX signal (blue) and a 

simulated signal (red). 
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While the damping factor Z� is chosen constant for every harmonics in the same signal, 

five different values have been used to correspond to five different durations of the 

shock, from half a tooth to 8 teeth. The duration is calculated as the time for the shock 

to decrease to 5% of the initial value. 

For a simulated signal with Z�  corresponding to half a tooth and a GOTIX signal 

demodulated with the same bandwidth, Figure 3 shows that �6��	
	parameters, 

especially the shock amplitude, are realistic considering that GOTIX is relatively 

healthy while the shock modulation aims to simulate a default on the gear. 

Different 56��	
 have been tested: 

• No 56��	
, 
• 56��	
 as in equation (3), with K=1 (1 sine) with different values of 7�8 = h equal to 

1, 5, 10 and 20 (same value for each harmonic), 

• 56��	
 as in equation (3), with K=4 where the dependence to the mesh harmonics is 

not taken into consideration, 7�8 = 78  with 78  chosen to correspond to the estimated 

56��	
 of the GOTIX signal. A multiplicative factor h = 1, 5, 10	and 20 is 

successively applied to 78  to simulate an increasingly faulty 56��	
. The 

comparison in Figure 4 shows that the actual GOTIX 56��	
 is more complicated, 

even though taking K=4 seems sufficient to have comparable amplitudes. 

A noise has been added with a signal-to-noise ratio equivalent to the GOTIX 

measurements, estimated with AStrion
(14)

. 

 

  
Figure 4: Theoretical abF�c
	 with different damping factors (left) and	kbF�c
 

with K=4 (right) for one rotation with comparison with the GOTIX signal. 

 

7. Limits of the Hilbert demodulation 
 

7.1. Demodulation in a “friendly” case 

 

Figure 5: Spectral peaks detected by AStrion on the simulated signal with only one 

harmonic. 

 

25
th

 tooth 

Page 7 of 14



 

 

For a first evaluation of the performances of the demodulation method described in 

section 2, a simplified simulated signal has been considered with only the 6
th

 harmonic 

of the mesh frequency in (2) to avoid interferences between harmonics and to have a 

great number of sidebands. As visible in the spectrum in Figure 5, the shock produces 

sidebands on a very large band. Thus, the demodulation has been performed on the 

whole spectrum. 

 

 
Figure 6: Theoretical and estimated abF�c
 for different damping factors, with a 

amplitude shock of 3 (left) and zoom on the shock instant (right). 

 

 

 
Figure 7: Estimated kbF�c
 with different damping factors (top) and zoom on the 

shock time (bottom). On the left, kbF�c
 with K=4, c=5. On the right, no kbF�c
. 
 

Table 1. MQE of abF�c
 and kbF�c
 with various kbF�c
 in the “friendly” case 
 

 Theoretical 56��	
 Damping factor 

½ tooth 1tooth 2 teeth 4 teeth 8 teeth 

MQE of 

�6��	
 
No PM 0.0017 0.0017 0.0017 0.0017 0.0022 

K=1 c=1 0.0021 0.0021 0.0024 0.0025 0.0027 

K=4 c=20 0.0025 0.0026 0.0027 0.0028 0.0031 

MQE of 

56��	
 
No PM 0.0009 0.0010 0.0011 0.0011 0.0014 

K=1 c=1 0.0011 0.0011 0.0012 0.0012 0.0014 

K=4 c=20 0.0013 0.0012 0.0012 0.0013 0.0015 
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As shown on Figure 6 and Figure 7, the demodulation is very efficient in this 

simplified case. The estimated �6��	
 and 56��	
 are very close to the original one, 

whatever the simulated 56�. In order to evaluate the efficiency of the demodulation, 

the theoretical and estimated values were compared in Table 1 using the mean quadratic 

error (MQE). 

All the values are very low, showing the efficiency of demodulation in this simplified 

case (only one mesh frequency, no interference in the demodulation caused by the other 

harmonics, and very large demodulation band). However, while this indicator reflects 

well the overall precision of the demodulation, it is enough. Indeed, Figure 6 shows that 

both shocks are not correctly estimated compared to the theoretical ones. Thus, two 

indicators have been added: the shock amplitude error (SAE) and the shock position 

error (SPE). Let us denote �� the shock amplitude, �l� its estimation, while mnJ denotes 

the estimation of the shock angular position mJ = ����� 	J 360⁄  over one gear rotation. 

So, SAE and SAP are defined by 

 

                                      q�r = |tSPtSu|
tS ∗ 100	and	q5r = xmJ W mJux.. ............................ (8) 

 

Table 2: Errors of the estimated shock in the “friendly” case 

 

 
Indicator 

in % 

Damping factor 

½ tooth 1tooth 2 teeth 4 teeth 8 teeth 

�6��	
 & 

no 56��	
 
SAE 26.85 16.79 2.61 2.77 7.22 

SPE 0.14 0.16 0.44 0.41 0.47 

 

Thus, despite being in a simplified case, Table 2 raises 3 problems: 

•••• The shock amplitude is not correctly estimated for the shorter shocks (half-tooth 

and one tooth). The shorter the shock, the bigger the error is. This is confirmed 

by the SAE values, which goes up to 26.85% for the shortest shock. 

•••• The estimated shock position is not accurate, even if the error is small compared 

to the tooth width (<0.5°). 

•••• On Figure 7, the estimated 56��	
 shows a small shock at the same position as 

in �6��	
, albeit with a less amplitude, even where no 56��	
 was present in 

the simulated signal. This shows that the 56��	
 is influenced by �6��	
. 
 

7.2. Demodulation in a realistic case 

 

 Demodulation problem with real GOTIX signals 7.2.1.

The simulated signals have now every harmonics present, as in Equation (2). The 

analysis of a GOTIX signal spectrum with the AStrion-H, the harmonic and sideband 

classification module, shows that the predominant gearbox harmonics are surrounded by 

sidebands at the frequency of the input and output shaft. In order to simplify, only the 

sidebands from the input shaft have been included in the simulated signals. 
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Figure 8: Sidebands detected by AStrion-H around z{ and z| in a GOTIX signal. 

 

The biggest drawback when demodulating around a gear mesh harmonic is that the 

meshing frequency is a multiple of the shaft rotation frequency. Thus, the sidebands 

around a mesh harmonic }) =  �B=�ℎ are influenced by the sidebands of every other 

harmonics. It is tricky to determine which part of the sideband value is coming from }), 

and which part is coming from })~%. The same peaks will be classified by AStrion-H as 

sidebands around }) and })~%. See Figure 8. Practically, this reduces drastically the 

number of sidebands usable for demodulation. Since GOTIX have 57 teeth on the gear, 

57 sidebands are between each harmonic. The demodulation will be performed on half 

that number, thus between sidebands [-28 28] instead of the whole spectrum. 

As the higher in amplitude, the 3
rd

 harmonic has been chosen for the demodulation. The 

band of demodulation is thus [1131 1574] Hz. It is important to notice that an efficient 

multirate filter is applied to the signal in order to reach this band. That explains in 

particular why, on the following figures, there is much less high frequency noise. 

 

 Comparison model-GOTIX for the amplitude modulation 7.2.2.

In this part, we will evaluate the effect of the shock duration on the demodulation 

process. Compared to Figure 6, the estimated �6��	
 in Figure 9 is less accurate in 

amplitude and the peak shape is rounder. This is confirmed by the MQE values in Table 

3 showing values in this less friendly case around a hundred times higher than in table 

1. 

 

 
Figure 9: Theoretical and estimated �6��	
 for different damping factors, with a 

shock of amplitude 3 (left) and zoom on the shock time (right). 

 

But the most problematic parts are actually the errors in the estimation of the shock 

amplitude and position. Table 4 shows that the error in the estimation of the shock 

amplitude can be very important, above 60%, especially for shorter shocks. In the 

contrary, the longer the shock is, the more important the error in the estimation of its 

position is. In GOTIX, the angle between 2 consecutive teeth is 6.3°. Thus, an error of 

4° can induce diagnosis error in the defect tooth location. Furthermore, 2 different 
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defaults can have the same demodulation shape. As an example, a short shock with high 

amplitude, and a longer shock with lower amplitude can be difficult to distinguish. 

 

Table 3. MQE of abF�c
 with various kbF�c
 in the realistic case 
 

 Theoretical 56��	
 
Damping factor 

½ 

tooth 
1 tooth 2 teeth 4 teeth 8 teeth 

MQE of 

�6��	
 
No PM 0.1827 0.2327 0.3090 0.3188 0.3098 

K=1 c=1 0.1981 0.2523 0.3207 0.3237 0.3215 

K=4 c=20 0.2134 0.2692 0.3269 0.3359 0.3319 

 

Table 4. Errors of the estimated shock in the realistic case 
 

 Indicator in % 
Damping factor 

½ tooth 1tooth 2 teeth 4 teeth 8 teeth 

�6��	
 & 

no 56��	
 
SAE 63.30 56.82 44.29 30.14 14.79 

SPE 0.33 0 1.00 3.00 4.34 

 

 Comparison model-GOTIX for the phase modulation 7.2.3.

As in the “friendly” case, 56��	
 is influenced by the shock in �6��	
, even when no 

56��	
 is originally present. Compared to the previous case, this shock in 56��	
 is 

lower and larger due to the reduction of the demodulation band. Interestingly, the MQE 

shown in Table 5 are even lower in this case. This is probably due to the multirate 

filtering removing the high frequency noise present in the “friendly” case. It is enough 

to compensate the effect of the band reduction, contrary to �6��	
. 
 

 
Figure 10: Theoretical ad estimated kbF�c
 for different damping factors. On the 

left, kbF�c
 K=4, c=5. On the right, no kbF�c
 
 

Table 5. MQE of kbF�c
 with various kbF�c
 in the realistic case 
 

 
Theoretical 

56��	
 
Damping factor 

½ tooth 1tooth 2 teeth 4 teeth 8 teeth 

MQE of 

56��	
 
No PM 0.0011 0.0010 0.0009 0.0005 0.0004 

K=1 c=1 0.0008 0.0007 0.0007 0.0006 0.0003 

K=4 c=20 0.0012 0.0013 0.0012 0.0007 0.0005 

 

7.3. Explanations about the demodulation errors 

There are mainly 2 reasons explaining the errors between theoretical and estimated 

�6��	
 and 56��	
, the filtering and the non-respect of the Bedrosian condition. 
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 Filtering problem 7.3.1.

As explained in part 7.2.1, the configuration of gearing systems compels the filtering to 

be applied on restricted bands. In the case of the shock model, the full spectrum is very 

large band. Thus, reducing this band removes the high frequencies of the shock. This is 

what mainly explains the rounding of the estimated shock, as well as the decrease in 

amplitude and the position shift observed. 

However, since the original 56��	
 was at most a sum of 4 sines, its frequency range 

was very limited and mostly unaffected by the reduction of the band. Thus, in this case, 

the demodulation was very efficient to estimate the phase. However, while it has not 

been studied here, the demodulation of a quick phase variation, in the case of a missing 

tooth for example, would probably suffer the same limitations. 

 

 Respect of the Bedrosian condition 7.3.2.

When applying the Hilbert transform, the Bedrosian constraints are respected only if the 

spectral support of �6��	
 denoted as �N and the spectral support of sin	�2�ℎ�����	 +
56��	

 denoted as �� are disjointed. However, in the case of the shock function, �N 

is theoretically infinite, and for 56��	
 equal a sum of sines, �� is also infinite. For the 

purpose of this study, in order to understand the effect of the length of the shock, it is 

considered that the boundaries of �N and �� are defined for 98% of the energy. The 3
rd

 

GOTIX harmonic ����� used for the demodulation is at 1350Hz. Thus, according to 

Table 6, only the 8 tooth case respect the Bedrosian condition, if BΦ is below 1260Hz. 

 

Table 6. �b and �� for different abF�c
 (up) and for different kbF�c
 (down) 
 

abF�c
 
Length of shock 

½ tooth 1 tooth 2 teeth 4 teeth 8 teeth 

�N (Hz) 10449 8440 4145 1827 720 

 

kbF�c
 No PM K=1 c=1 K=1 c=20 K=4 c=1 K=4 c=20 

��  (Hz) 0 15.8 332.2 0 47.5 

 

As a reminder, the amplitudes of the 4 sines correspond to a healthy state of GOTIX, 

thus the values of these sines are low (<0.3). This explains the obtained bandwidths. 

Thus, the Bedrosian condition is less respected for K=1 and c=20, with a half-tooth 

shock. The study of the estimated 56��	
 revealed that it is influenced by the shock in 

�6��	
. This influence can be estimated by the maximum of the error between the 

estimated and theoretical one, because this maximum is always due to the shock. 

 

Table 7: Maximum of the error of kbF�c
 
 

Length of 

shock 
½ tooth 1tooth 2 teeth 4 teeth 8 teeth 

No PM 0.18 0.14 0.10 0.11 0.07 

K=1 c=1 0.23 0.19 0.14 0.09 0.07 

K=1 c=20 0.47 0.51 0.46 0.40 0.38 

K=4 c=1 0.19 0.15 0.11 0.09 0.06 

K=4 c=20 0.23 0.20 0.17 0.11 0.06 
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Table 7 shows that the less the Bedrosian condition is respected, the more the estimated 

56��	
 is influenced. Thus this condition is responsible for this influence. However, as 

shown by the MQE values of the estimated 56��	
, this influence is still limited 

compared with the influence of the filtering on �6��	
, 56��	
 is well estimated. 
 

Finally, a non-realistic case is studied with a very strong 56��	
 defined as a sum of 4 

sines with amplitudes of [1 0.8 0.6 0.4] and c=20. The corresponding bandwidth as 

previously defined is now 910 Hz. Figure 11 shows that both estimated �6��	
 and 

56��	
 are strongly disturbed. 

 

 
Figure 11: Comparison between theoretical and estimated abF�c
 (left) and 
kbF�c
 (right) in the case of a strong non-respect of the Bedrosian condition. 

 

8. Conclusions 
 

To better understand the constraints of the demodulation process by Hilbert transform 

for the analysis of signals in context of system surveillance, this paper has proposed an 

analysis interpretation of both measured signals and signal models to highlight the 

limits of the method. Models of amplitude and phase modulation in the presence of a 

default on the gear have been proposed and validated by comparison with real measured 

signals. Future studies should improve the shock model, adding more shocks of various 

amplitudes to simulate each tooth, and include realistic models for phase problems, such 

as phase lag. 

While the filtering on too-narrow bandwidth cannot be prevented, especially in the case 

of meshing systems, due to mechanical constraints, it is important to consider its effects 

in the diagnosis. However, it is possible to limit or prevent the effects of the Bedrosian 

condition. It is obvious that the compliance with Bedrosian constraints is less and less 

possible when demodulating in low frequency bands. It is thus preferable to demodulate 

higher harmonics, but the overall energy of the sidebands available has to be taken into 

account. The results will be a help for a further improvement of the method and most 

importantly for an optimal configuration of the demodulation process in the automatic 

data-driven AStrion tool. Further work should focus on the magnitude of the distortion 

in relation with both the bandwidth and the amplitude of the respective spectrums, and 

define the acceptability of this distortion for the diagnosis.  

Finally, the monitoring of the evolution of these demodulations over a default dataset, 

possible with the AStrion software, will provide precious information on the efficiency 

of this technic on diagnosis. 
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Appendix. GOTIX test bench 

Driving three-phase asynchronous motor Leroy-Somer P280 S-8, 55 kW. Braking DC 

generator Leroy-Somer 54.3 kW, commanded by a Leroy-Somer DMV 2342 inverter. 

The motor is powered either by 340V 50Hz AC or Altivar 66 inverter. Parallel straight 

teeth in case-hardened steel. 

Tooth number, Gear ?� = 57, Pinion ?' = 15, RPM�gear
=474rpm 

OROS acquisition system, sampling frequency 25.6	�}�, data length 10 s, 18 

synchronous channels (6 accelerometers, 3 phase current & voltage measurement, 1 

torquemeter, 1 tachometer and 2 optical encoders with top-tour. 

Further http://www.gipsa-lab.grenoble-inp.fr/projet/gotix/presentation.html 
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