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q-BOREL-LAPLACE SUMMATION FOR q-DIFFERENCE EQUATIONS WITH TWO SLOPES

Keywords: 

In this paper, we consider linear q-difference systems with coefficients that are germs of meromorphic functions, with Newton polygon that has two slopes. Then, we explain how to compute similar meromorphic gauge transformations than those appearing in the work of Bugeaud, using a q-analogue of the Borel-Laplace summation.

Introduction

Let q be a complex number with |q| > 1, and let us define σ q , the dilatation operator that sends y(z) to y(qz). Divergent formal power series may appear as solutions of linear q-difference systems with coefficients in C(z). The simplest example is the q-Euler equation zσ q y + y = z, that admits as solution the formal power series with complex coefficients ĥ := ∈N (-1) q ( +1) 2 z +1 .

To construct a meromorphic solution of the above equation, we use the Theta function

Θ q (z) := ∈Z q -( +1) 2 z = ∈N (1 -q --1 )(1 + q --1 z)(1 + q -z -1 ),
which is analytic on C * , vanishes on the discrete q-spiral -q Z := {-q n , n ∈ Z}, with simple zero, and satisfies σ q Θ q (z) = zΘ q (z) = Θ q z -1 .

For λ ∈ C * we denote by [λ] the class of λ in C * /q Z . Then, for all [λ] ∈ C * /q Z \ {[-1]} the following function ĥ[λ] , is solution of the same equation as ĥ and is meromorphic on C * with simple poles on the q-spiral -λq Z : ĥ[λ] := ∈Z q λ 1 + q λ × 1 Θ q q 1+ λ z .

It is easy to see that it does not depend of the chosen representative λ of the class [λ]. More generally, the meromorphic solutions play a major role in Galois theory of q-difference equations, see [Bug12, DVRSZ03, RS07, RS09, RSZ13, Sau00]. In the usual Picard-Vessiot theory, the Galois group of a q-difference equation with coefficients in C(z) is defined over C, but the solutions in the Picard-Vessiot rings involve symbols. On the other hand, Praagman in [START_REF] Praagman | Fundamental solutions for meromorphic linear difference equations in the complex plane, and related problems[END_REF] has shown the existence of a fundamental solution for such system, that is an invertible solution matrix, with entries that are meromorphic on C * . Applying naively the classical Picard-Vessiot theory with those solutions would give a Galois group defined on the field of functions invariant under the action of σ q , that is, the field of meromorphic functions on the torus C * /q Z , rather than a group defined on C. Fortunately, Sauloy has explained how to recover the Galois group with the meromorphic solutions.

Let us consider

(1)

σ q Y = AY, where A ∈ GL m (C({z})),
which means that A is an invertible m×m matrix with coefficients that are germs of meromorphic functions at z = 0. We are going to assume that the slopes of the Newton polygon of (1) belong to Z. See [START_REF] Ramis | Local analytic classification of qdifference equations[END_REF], §2.2, for a precise definition. Then, the work of Birkhoff and Guenther implies that after an analytic gauge transformation, such system may be put into a very simple form, that is in the Birkhoff-Guenther normal form. Moreover, after a formal gauge transformation, a system in the Birkhoff-Guenther normal form may be put into a diagonal bloc system. Then, the authors of [START_REF] Ramis | Local analytic classification of qdifference equations[END_REF] build a set of meromorphic gauge transformations, that make the same transformation as the formal gauge transformation, with germs of entries, having poles contained in a finite number of q-spirals of the form q Z α, with α ∈ C * . Moreover, the germs of meromorphic gauge transformations they build are uniquely determined by the set of poles and their multiplicities. V. Bugeaud considers the case where the Newton polygon of (1) has two slopes that are not necessarily entire. Analogously to [START_REF] Ramis | Local analytic classification of qdifference equations[END_REF] she builds meromorphic gauge transformations, but this time, the germs of meromorphic entries have poles on q dZ -spirals, for some d ∈ N * , instead of q Z -spirals. See [START_REF] Bugeaud | Groupe de Galois local des équations aux q-différences irrégulières[END_REF].

In the differential case, we also have the existence of formal power series solutions of linear differential equations with coefficients in C({z}), but we may apply to them a Borel-Laplace summation, in order to obtain meromorphic solutions. See [START_REF] Balser | From divergent power series to analytic functions[END_REF][START_REF] Ramis | Phénomène de Stokes et filtration Gevrey sur le groupe de Picard-Vessiot[END_REF][START_REF] Malgrange | Sommation des séries divergentes[END_REF][START_REF] Van Der Put | Galois theory of linear differential equations[END_REF]. In the q-difference case, although there are several qanalogues of the Borel and Laplace transformations, see [Abd60, Abd64, Dre15a, Dre15b, DVZ09, Hah49, MZ00, Ram92, RZ02, Tah14, Zha99, Zha00, Zha01, Zha02, Zha03], we do not know how to compute in general the meromorphic gauge transformations of [START_REF] Bugeaud | Groupe de Galois local des équations aux q-différences irrégulières[END_REF] using q-analogues of the Borel and Laplace transformations. Remark that when (1) has two entire slopes, we are in the framework of [START_REF] Ramis | Local analytic classification of qdifference equations[END_REF], and [Dre15a], Theorem 2.4, explains how to compute them with q-analogues of the Borel and Laplace transformations. See Remark 3.3. Although the q-summation process of [START_REF] Dreyfus | Building meromorphic solutions of q-difference equations using a Borel-Laplace summation[END_REF] applies for q-difference equations with two slopes in general, the functions obtained have too many poles to be optimal. Indeed, if the slopes are 0 and n d with n, d coprimes numbers, we expect to find meromorphic gauge transformations having entries with n q dZ spirals of poles of order at most one, and those of [START_REF] Dreyfus | Building meromorphic solutions of q-difference equations using a Borel-Laplace summation[END_REF] have n q Z spirals of poles of order at most one. The main goal of this paper is to compute Bugeaud's like meromorphic gauge transformations with a q-Borel-Laplace summation and with a minimal number of poles.

The paper is organized as follows. In §1 we introduce the q-analogues of the Borel and Laplace transformations. In §2, we give a brief summary of [START_REF] Bugeaud | Groupe de Galois local des équations aux q-différences irrégulières[END_REF]. The meromorphic gauge transformations she builds have q dZ -spirals of poles of multiplicity at most n, for some n ∈ N * . We prove the existence and the uniqueness of meromorphic gauge transformations having q dZ n -spiral of poles of multiplicity at most 1. In §3, we explain how to compute the latter meromorphic gauge transformations using a q-analogue of the Borel-Laplace summation.

Acknowledgments. The authors would like the thank the anonymous referee for permitting them to correct a mistake that was originally made in the first version of the paper.

1. Definition of q-analogues of Borel and Laplace transformations.

We start with the definition of the q-Borel and the q-Laplace transformations. The definition of the q-Borel we use comes from [START_REF] Dreyfus | Building meromorphic solutions of q-difference equations using a Borel-Laplace summation[END_REF]. Note that when µ = 1, we recover the q-Borel transformation that was originally introduced in [START_REF] Ramis | About the growth of entire functions solutions of linear algebraic qdifference equations[END_REF]. The q-Laplace we use is slightly different than the transformation defined in [START_REF] Dreyfus | Building meromorphic solutions of q-difference equations using a Borel-Laplace summation[END_REF]. When q > 1 is real and q is replaced by q 1/µ , we recover the q-Laplace transformation and the functional space introduced in [Zha02], Theorem 1.2.1. Earlier introductions of q-Laplace transformations can be found in [START_REF] Hasan | On q-Laplace transforms[END_REF][START_REF] Hasan | Certain inversion and representation formulae for q-Laplace transforms[END_REF]. Those latter behave differently than our q-Laplace transformation, since they involve q-deformations of the exponential, instead of the Theta function.

Throughout the paper, we will say that two analytic functions f and g are equal, if there exists U ⊂ C, open connected set, such that f and g are analytic on U and are equal on U . We fix, once for all, a determination of the logarithm over the Riemann surface of the logarithm we call log. Definition 1.1. Let µ ∈ Q >0 . We define the q-Borel transformation of order µ as follows

Bµ : C[[z]] -→ C[[ζ]] ∈N a z -→ ∈N a q -( -1) 2µ ζ .
We are going to make the following abuse of notations. For λ ∈ C * , and n, d positive co-prime integers, we denote by [λ] the class of λ in C * /q dZ n . Let M(C * , 0) be the field of functions that are meromorphic on some punctured neighborhood of 0 in

C * . More explicitly, f ∈ M(C * , 0) if and only if there exists V , an open neighborhood of 0, such that f is analytic on V \ {0}. Definition 1.2. Let µ = n d ∈ Q >0 with n, d positive co-prime integers and [λ] ∈ C * /q dZ n . An element f of M(C * , 0) is said to belongs to H [λ]
µ if there exist ε > 0 and a connected domain Ω ⊂ C, such that:

• ∈ dZ n z ∈ C * z -λq < ε q λ ⊂ Ω.
• The function f can be continued to an analytic function on Ω with q d n -exponential growth at infinity, which means that there exist constants L, M > 0, such that for all z ∈ Ω:

|f (z)| < LΘ |q| d n (M |z|
). Note that it does not depend of the chosen representative λ. An element f of M(C * , 0) is said to belongs to H µ , if there exists a finite set Σ ⊂ C * /q dZ n , such that for all

[λ] ∈ C * /q dZ n \ Σ, we have f ∈ H [λ] µ . Definition 1.3. Let µ = n d ∈ Q >0 with n, d positive co-prime integers, [λ] ∈ C * /q dZ n .
Because of [START_REF] Dreyfus | Building meromorphic solutions of q-difference equations using a Borel-Laplace summation[END_REF], Lemma 1.3, the following map, which does not depend of the chosen representative λ, is well defined and is called q-Laplace transformation of order µ:

L [λ] µ : H [λ] µ -→ M(C * , 0) f -→ ∈ dZ n f q λ Θ q d n q d n + λ z .
For |z| close to 0, the function

L [λ]
µ (f ) (z) has poles of order at most 1 that are contained in the q dZ n -spiral -λq dZ n . Remark 1.4. The q-Laplace we use is slightly different than the transformation defined in [START_REF] Dreyfus | Building meromorphic solutions of q-difference equations using a Borel-Laplace summation[END_REF]. Let µ ∈ Q >0 and q := q 1/µ . The q -Laplace transformation of order (1, 1) of [START_REF] Dreyfus | Building meromorphic solutions of q-difference equations using a Borel-Laplace summation[END_REF] equals to the q-Laplace transformation of order µ of this paper.

The following lemmas, which give basic properties of the Borel and Laplace transformations, will be needed in §3. For n, d positive co-prime integers, we set σ

d/n q := σ q d/n . Lemma 1.5. Let µ := n d ∈ Q >0 with n, d positive co-prime integers, and [λ] ∈ C * /q dZ n . • Let ĥ ∈ C[[z]]
. Then, we have Bµ zσ d/n q ĥ = ζ Bµ ĥ .

• Let f ∈ H [λ]
µ . Then, we have zσ µ . Iterating n times Lemma 1.5, we find Bµ z n σ d q ĥ = q -d(n-1) 2

d/n q L [λ] µ (f ) = L
ζ n Bµ ĥ and z n σ d q L

[λ]

µ (f ) = q d(n-1) 2 L [λ] µ (ζ n f ).
Let C{z} be the ring of germs of analytic functions at z = 0.

Lemma 1.7.

Let µ := n d ∈ Q >0 with n, d positive co-prime integers, [λ] ∈ C * /q dZ n . Let f ∈ C{z}. Then, • Bµ (f ) ∈ H [λ] µ . • L [λ] µ • Bµ (f ) = f .
Proof. Let us prove briefly the first point. Let us take f = ∈N a z ∈ C{z}. It's easy to see that its q-Borel transform is defined and analytic on the whole plan C, so we just have to check the q d n -exponential growth at infinity. Since f ∈ C{z}, we have the existence of L, M > 0 such that for all ∈ N, |a | < LM . We have for all z ∈ C,

Bµ (f )(z) ≤ ∈N |a ||q| -( -1)d 2n |z| ≤ L ∈N M |q| -( -1)d 2n |z| ≤ LΘ |q| d n (M |z|).
Let us now prove the second point. Using the expression of Θ q , we find that for all k ∈ Z,

Θ q d n q k d n z = q k(k-1)d 2n z k Θ q d n (z)
. Following the definition of the q-Laplace transformation, we obtain that, for all [λ] ∈ C * /q dZ n , L [λ] µ (1) = 1.

We claim that for all a ∈ C, ∈ N, L Let ∈ N, and assume that for every a ∈ C, we have

L [λ] µ • Bµ az = az . Let a ∈ C * and let us prove that L [λ] µ • Bµ az +1 = az +1 . We use Lemma 1.5 to find L [λ] µ • Bµ az +1 = azL [λ] µ • Bµ q -n d z .
We use the induction hypothesis to obtain

azσ d/n q L [λ] µ • Bµ q -n d z = azσ d/n q q -n d z = az +1 .
This proves the claim. To prove the lemma, we remark that Bµ (resp.

L [λ]
µ ) is an additive morphism between C{z} and

H [λ] µ (resp. H [λ]
µ and M(C * , 0)).

We finish this section by giving asymptotic properties of the Borel-Laplace summation. The definition of q-Gevrey asymptotic is an adaptation of [START_REF] Dreyfus | Building meromorphic solutions of q-difference equations using a Borel-Laplace summation[END_REF], Definition 1.8, in this setting.

Definition 1.8. Let µ := n d ∈ Q >0 with n, d positive co-prime integers, [λ] ∈ C * /q dZ n , f ∈ M(C * , 0) and f := i∈N fi z i ∈ C[[z]]. We say that f ∼ [λ] µ f ,
if for all ε, R > 0 sufficiently small, there exist L, M > 0, such that for all k ∈ N and for all z in

z ∈ C * |z| < R \ ∈ dZ n z ∈ C * z + q λ < ε q λ , we have f (z) - k-1 i=0 fi z i < LM k |q| k(k-1) 2µ |z| k .
For µ ∈ Q >0 , we define the formal q-Laplace transformation of order µ as follows:

Lµ : C[[ζ]] -→ C[[z]] ∈N a ζ -→ ∈N a q ( -1) 2µ z .
Using Lemma 1.5, for all ∈ N, and [λ] ∈ C * /q dZ n , we obtain

L µ ζ = L [λ] µ ζ . Proposition 1.9. Let µ := n d ∈ Q >0 with n, d positive co-prime integers, [λ] ∈ C * /q dZ n and f ∈ H [λ]
µ . Then, we have

L [λ] µ (f ) ∼ [λ] µ L µ (f ) .
Proof. This is a direct consequence of [START_REF] Dreyfus | Building meromorphic solutions of q-difference equations using a Borel-Laplace summation[END_REF], Proposition 1.9, and Remark 1.4.

Corollary 1.10. Let µ := n d ∈ Q >0 with n, d positive co-prime integers, [λ] ∈ C * /q dZ n and f ∈ C[[z]] with Bµ (f ) ∈ H [λ] µ . Then L [λ] µ • Bµ (f ) ∼ [λ] µ f .
2. Local analytic study of q-difference systems.

Let C((z)) be the fraction field of C[[z]]. Let K be a sub-field of C((z)) or M(C * , 0) stable under σ q and let A, B ∈ GL m (K). The two q-difference systems, σ q Y = AY and σ Y = BY are said to be equivalent over K, if there exists P ∈ GL m (K), called the gauge transformation, such that B = P [A] σ q := (σ q P )AP -1 .

In particular,

σ q Y = AY ⇐⇒ σ q (P Y ) = BP Y.
Conversely, if there exist A, B, P ∈ GL m (K) such that σ q Y = AY , σ q Z = BZ and Z = P Y , then

B = P [A] σ q .
We remind that C({z}) is the field of germs of meromorphic functions at z = 0. Until the end of the paper, we fix A ∈ GL m C({z}) . Let µ := n d ∈ Q >0 with n, d positive co-prime integers, and a ∈ C * . We define the d times d companion matrix as follows:

E n,d,a :=       0 1 . . . . . . . . . 1 az n 0      
.

For the proof of the following result, see [START_REF] Bugeaud | Groupe de Galois local des équations aux q-différences irrégulières[END_REF], Theorem 1.18. See also [START_REF] Van Der Put | Galois theory of q-difference equations[END_REF], Corollary 1.6.

Theorem 2.1. There exist integers n 1 , . . . , n k ∈ Z, d 1 , . . . , d k , m 1 , . . . , m k ∈ N * , with

n 1 d 1 < • • • < n k d k , gcd(n i , d i ) = 1, m i d i = m, and • Ĥ ∈ GL m C((z)) , • C i ∈ GL m i (C), • a i ∈ C * , such that A = Ĥ Diag C i ⊗ E n i ,d i ,a i σ q
, where

Diag C i ⊗ E n i ,d i ,a i :=    C 1 ⊗ E n 1 ,d 1 ,a 1 . . . C k ⊗ E n k ,d k ,a k    .
The aim of this paper will be to replace this Ĥ by a meromorphic gauge transformation computed with q-Borel-Laplace transformations. Assume that k = 2, see Theorem 2.1 for the notation, and let n 1 , n 2 , d 1 , d 2 , a 1 , a 2 , C 1 , C 2 , given by Theorem 2.1. In [START_REF] Bugeaud | Groupe de Galois local des équations aux q-différences irrégulières[END_REF], V. Bugeaud makes the local analytic classification of q-difference systems with two slopes. Let us now detail her work. She explains how to reduce to the case where C 2 ⊗ E n 2 ,d 2 ,a 2 = I 1 , that is the identity matrix of size 1 and where C 1 is a unipotent Jordan bloc. For r ≥ 1 let us write

U r :=       1 1 0 . . . . . . . . . 1 0 1       ∈ GL r (C),
the unipotent Jordan bloc of length r.

Until the end of the paper, we assume that k = 2, C 2 ⊗ E n 2 ,d 2 ,a 2 = I 1 and C 1 = U r , for some r ≥ 1. Note that due to the assumption, we have n d 2 = 0 and

n 1 d 1 < 0. Let n := -n 1 ∈ N * , d := d 1 , µ := n d ∈ Q >0 and a := a 1 . Note that m -1 = d × r.
Let us remind that C{z} is the ring of germs of analytic functions at z = 0. Using [START_REF] Bugeaud | Groupe de Galois local des équations aux q-différences irrégulières[END_REF], Theorem 2.9, we deduce: Theorem 2.2. There exist • W , column vector of size dr with coefficients in

n-1 ν=0 Cz ν , • F ∈ GL m C({z}) , such that A = F [B] σ q , where: B := E -n,d,a ⊗ U r W 0 1 .
It follows from Theorem 2.1 that we have the existence and the uniqueness of

I dr Ĥ 0 1 ∈ GL m C[[z]] ,
formal gauge transformation, that satisfies

B = I dr Ĥ 0 1 Diag(E -n,d,a ⊗ U r , 1) σ q .
Let us define the finite set Σ ⊂ C * /q dZ n , as follows

Σ := [λ] ∈ C * /q dZ n λ n ∈ aq (n-1)d 2 q dZ .
Let M(C * ) be the field of meromorphic functions on C * .

Proposition 2.3. Let [λ] ∈ C * /q dZ n \ Σ.
There exists a unique matrix

I dr Ĥ[λ] 0 1 ∈ GL m M(C * ) , such that B = I dr Ĥ[λ] 0 1 Diag(E -n,d,a ⊗ U r , 1) σ q
, and for all 1 ≤ i ≤ dr, the meromorphic function of the line number i of the column vector Ĥ[λ] , has poles of order at most 1 contained in the q dZ n -spiral -λq -i+1 q dZ n .

Remark 2.4. In [START_REF] Bugeaud | Groupe de Galois local des équations aux q-différences irrégulières[END_REF], Proposition 3.8, a similar result is shown. In her work, the entry number i of the meromorphic gauge transformation has poles of order at most n contained in the q dZ -spiral -λq -i+1 q dZ . It is worth mentioning that our meromorphic gauge transformation has the same number of poles, counted with multiplicities, which is a crucial property.

Using the definition of Σ, we deduce that for all κ ∈ Z,

λ n q -d(n-1) 2
q κd = a. This proves our claim.

With Lemma 1.7, we obtain that L

[λ] µ • Bµ (W 1 ) = W 1 . Using additionally (5) and Remark 1.6, we find that

z n σ d q L [λ] µ • Bµ Ĥ1 = aU d r L [λ] µ • Bµ Ĥ1 + W 1 .
Moreover, the entries of L Example 3.2. Assume that n = 1, d = 2, r = 1, a = 1, and W = (0, 1) t . Then, the first entry ĥ of Ĥ is solution of zσ 2 q ĥ = ĥ + z.

We have ζ B1/2 ĥ = B1/2 ĥ + ζ, which means that B1/2 ĥ = ζ ζ-1 . Therefore, for all [λ] ∈ C * /q 2Z \ {[1]} , we find that Ĥ[λ] ( ĥ[λ] , σ q ĥ[λ] ) t , where ĥ[λ] ĥ[λ] = ∈2Z q λ q λ -1 × 1 Θ q 2 q 2+ λ z .

Remark 3.3. In [Dre15a], Theorem 2.5, the author defines a meromorphic solution with another q-analogues of the Borel and Laplace transformation. When d = 1, the two sums obtained are the same. On the other hand when d = 1 the solutions defined here have less poles than the solutions of [START_REF] Dreyfus | Building meromorphic solutions of q-difference equations using a Borel-Laplace summation[END_REF]. More precisely, see Theorem 2.1 for the notations, assume that k = 2 and n 2 = 0. Let d 1 , n 1 be given by Theorem 2.1. In [START_REF] Dreyfus | Building meromorphic solutions of q-difference equations using a Borel-Laplace summation[END_REF], it is shown how to build, with another q-Borel and q-Laplace transformations, meromorphic gauge transformations similar to §2 but with germs of entries having q Z |n 1 | -spirals of poles of order 1. The solutions we compute here have q d 1 Z |n 1 | -spirals of poles of order 1.

  If α ∈ C, and b ∈ C * , then, we write b α instead of e α log(b) . One has b α+β = b α b β , for all α, β ∈ C, and all b ∈ C * Let C[[z]] be the ring of formal power series.

  The first point is given by [Dre15a], Lemma 1.4. The second point is a consequence of [Dre15a], Lemma 1.4, and Remark 1.4. Remark 1.6. Let ĥ ∈ C[[z]] and f ∈ H [λ]

µ•

  Bµ az = az . Let us prove the claim by an induction on . The case = 0 is a straightforward consequence of Bµ (1) = 1, L [λ] µ (1) = 1, and the C-linearity of the two maps.

µ

  • Bµ Ĥ1 have poles of order at most 1 contained in the q dZ n -spiral -λq dZ n . But we have seen in the proof of Proposition 2.3, that this implies Ĥ[λ] 1 = L [λ] µ • Bµ Ĥ1 .

The first author is funded by the labex CIMI. This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme under the Grant Agreement No 648132. The final version of this paper will be published in Journal of Difference Equations and Applications.

Proof. Using B = I dr Ĥ 0 1

Diag(E -n,d,a ⊗ U r , 1) σ q , we find,

(2) σ q Ĥ = (E -n,d,a ⊗ U r ) Ĥ + W.

Let us write ( ĥi ) i=1,...,dr := Ĥ and (w i ) i=1,...,dr := W . Writing the equations of (2), we find for all 1 ≤ i < d, for all 0 ≤ k < r, (we make the convention that ĥi = 0 for i > dr)

(3)

And for all 0 < k ≤ r, (4) z n σ q ĥkd = a ĥ(k-1)d+1 + a ĥkd+1 + w kd .

For 1 ≤ i ≤ d, let Ĥi := ( ĥi+kd ) k=0,...,r-1 . With (3) and (4), we find that there exist

Consequently, it is sufficient to prove the existence and the uniqueness of a meromorphic vector Ĥ[λ] 1 ∈ (M(C * )) r with entries having poles of order at most 1 contained in the q

If we put q := q d , and z := z n , we find that the the case

1 + W 1 with convenient poles. Let us prove the uniqueness. To the contrary, let us assume that there exists another meromorphic solution with the same properties for the poles. Then the equation z n σ d q Y = aU d r Y has a non zero meromorphic solution having poles of order at most 1 contained in the q dZ n -spiral -λq dZ n . This contradict the uniqueness in the case W 1 ∈ C[z n ], and proves the result.

Main result

Let us keep the notations of the previous section. We now state our main result. We refer to §1 for the definitions of the Borel and Laplace transformations. Let [λ] ∈ C * /q dZ n \ Σ. We have seen in the proof of Proposition 2.3, that in order to compute Ĥ[λ] =: ĥ