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Consider a complex Hamiltonian system and an integral curve. In this paper, we give an effective and efficient procedure to put the variational equation of any order along the integral curve in reduced form provided that the previous one is in reduced form with an abelian Lie algebra. Thus, we obtain an effective way to check the Morales-Ramis-Simó criterion for testing meromorphic Liouville integrability of Hamiltonian systems.

q i fH fp i 9 p i ¡ fH fq i A first integral is a function of the q i and p i which is constant along the solutions of pX H q.

The system is called (meromorphically) Liouville integrable (or completely integrable) when it admits n (meromorphic) first integrals F 1 , . . . , F n which are functionally independent (their differentials are linearly independent) and in involution (their Poisson brackets vanish or, equivalently, the associated Hamiltonian vector fields X F i commute). We refer to the reference books [AM78, [START_REF] Cushman | Global aspects of classical integrable systems[END_REF][START_REF] Audin | Hamiltonian systems and their integrability[END_REF] for more on this topic; see also Section 2 for definitions.

The Ziglin-Morales-Ramis theory (see [START_REF] Juan | Integrability of dynamical systems through differential Galois theory: a practical guide, Differential algebra, complex analysis and orthogonal polynomials[END_REF][START_REF] Audin | Hamiltonian systems and their integrability[END_REF] for statements and applications) provides mathematical tools to check when a system is non-integrable. This is particularly useful as Hamiltonian systems generally come as parametrized families. The non-integrability criteria allow one to discard the vast majority of values of the parameters for which the system is not integrable. The principle is as follows. First, we find a particular solution Γ of the system pX H q (generally from an invariant plane found from symmetries) and we compute variational equations pVE p q, i.e. systems of linear differential equations governing a Taylor expansion of a solution of pX H q along the particular solution Γ. The Liouville integrability of pX H q induces integrability conditions on the variational equations pVE p q, which in turn imply properties of their monodromy or differential Galois groups. Technically, the Morales-Ramis-Simó theorem states that if pX H q is integrable, then the Lie algebras of the differential Galois groups of all variational equations pVE p q must be abelian (all these terms are defined in Section 2).

The strength of this criterion is that it turns a geometric condition (integrability) into an algebraic one (abelianity of a Lie algebra), thus paving the way for possible computations. However, although there exist general algorithms to compute differential Galois groups of reducible systems such as the variational equations pVE p q ( [START_REF] Feng | Hrushovski's algorithm for computing the galois group of a linear differential equation[END_REF][START_REF] Rettstadt | On the computation of the differential Galois group[END_REF] or [vdH07]), none of them are currently even close to being practical or implemented at this time.

Furthermore, the size of the variational equations pVE p q grows fast, so only a method which uses the structure of the system to make it simpler has a chance of being efficient. The main goal of the present paper is to explain how to use the structure of the system to make it simpler, which will allow us to check efficiently whether its Lie algebra is abelian or not.

Over the past decade, several approaches have been devised to concretely apply this Morales-Ramis-Simó integrability criterion.

For Hamiltonians of the form H °n i1 1 2 p 2 i V pqq, where V is a potential in q, the first variational equation is often a direct sum of Lamé equations of the form y P pxq pnpn 1q℘pxq Bq ypxq, where ℘ denotes the Weierstrass function associated to an elliptic curve. In this case, Morales has elaborated a local criterion to find obstructions to integrability on higher variational equations via local computations (see Lemmas 11 and 12 in [START_REF] Juan | Galoisian obstructions to integrability of Hamiltonian systems. I, II[END_REF] Page 79, and Proposition 7, Page 81). Maciejewski, Przybylska and Duval have elaborated techniques to handle variational equations for the case of Hamiltonians with potentials ([MP06, DM09, DM14, DM15]); see also the works of Combot and coauthors [START_REF] Combot | Integrability conditions at order 2 for homogeneous potentials of degree ¡1[END_REF][START_REF] Combot | Third order integrability conditions for homogeneous potentials of degree ¡1[END_REF][START_REF] Bostan | Computing necessary integrability conditions for planar parametrized homogeneous potentials[END_REF].

Another approach is to determine numerical trajectories and compute numerical monodromies around these. Although it is difficult to obtain rigorous proofs by these methods, they provide surprisingly precise information. They have been developed, for example, by Martinez and Simó [START_REF] Martínez | Non-integrability of Hamiltonian systems through high order variational equations: summary of results and examples[END_REF], by Simon and Simó in the Atwood paper [PPR 10], by Simon in the more recent [START_REF] Simon | Conditions and evidence for non-integrability in the Friedmann-Robertson-Walker Hamiltonian[END_REF][START_REF]Linearised higher variational equations[END_REF] and by Salnikov [START_REF] Salnikov | Effective algorithm of analysis of integrability via the Ziglin's method[END_REF][START_REF] Salnikov | On numerical approaches to the analysis of topology of the phase space for dynamical integrability[END_REF].

The general strategy for turning numerical evidence into rigorous proofs is to show that a certain commutator is non-zero. This in turn yields calculations of integrals and of residues, which can be achieved algorithmically due to their D-finiteness. This is used by Martinez and Simó in [START_REF] Martínez | Non-integrability of Hamiltonian systems through high order variational equations: summary of results and examples[END_REF] and later systematized by Combot and coauthors, see e.g. [START_REF] Combot | Third order integrability conditions for homogeneous potentials of degree ¡1[END_REF][START_REF] Combot | Integrability conditions at order 2 for homogeneous potentials of degree ¡1[END_REF][START_REF] Bostan | Computing necessary integrability conditions for planar parametrized homogeneous potentials[END_REF].

The approach that we develop in this paper follows previous work by two of the authors in [START_REF] Aparicio Monforte | A characterization of reduced forms of linear differential systems[END_REF][START_REF] Aparicio-Monforte | A reduction method for higher order variational equations of Hamiltonian systems[END_REF][START_REF] Aparicio-Monforte | A reduced form for linear differential systems and its application to integrability of Hamiltonian systems[END_REF]. We establish a reduction method. Consider the p-th variational equation pVE p q : Y I ApxqY , where the coefficients of Apxq are in a differential field k. Given an invertible matrix P pxq (a gauge transformation matrix), performing the linear change of variable Z P pxqY produces an equivalent linear differential system for Z, denoted by Z I P pxqrApxqs Z. The principle of reduction methods is to look for a gauge transformation P pxq such that the resulting system Z I P pxqrApxqs Z is "as simplified as possible".

Let G denote the differential Galois group of pVE p q and g be the Lie algebra of G.

Following traditional works of Kolchin and Kovacic, we will say that we have a reduced form when P pxqrApxqs gpkq (see Subsection 2.3.3). Despite the apparent technicality of this definition, the Kolchin-Kovacic theory shows why this is a desirable form. This is similar to the Lie-Vessiot-Guldberg theories of reduction of connections (see [START_REF] Blázquez | Differential Galois theory of algebraic Lie-Vessiot systems[END_REF][START_REF]Lie's reduction method and differential Galois theory in the complex analytic context[END_REF] for the latter and their connections with the Kolchin-Kovacic theory of reduced forms). Our strategy in this paper is to compute such a reduction matrix P pxq efficiently.

After this reduction process, the Lie algebra g is easily read and its abelianity (or not) is given in the process. Furthermore, if g is abelian, then this process will have prepared the system to allow an efficient reduction of the next variational equation.

Our strategy can be summarized as follows. The p-th variational equation pVE p q is a differential system of the form Y I ApxqY where Apxq has the form

Apxq ¢ A 1 pxq 0 Spxq A 2 pxq .
In the Morales-Ramis-Simó situation (see Subsection 2.5), we may assume that the A i pxq are in reduced form and that the Lie algebra of the differential Galois group of the block diagonal system

Y I A diag Y, with A diag ¢ A 1 pxq 0 0 A 2 pxq
, has an abelian Lie algebra. We show (Theorem 3.3 in Subsection 3.2) that the reduction matrix may be chosen of the form

P pxq ¢ Id 0 °i f i pxqS i Id
where Id denotes the identity matrix, where the S i are easily found from Spxq and where the unknown functions f i pxq remain to be found. In Subsection 3.4, we show how standard linear algebra allows us to find these f i pxq as rational solutions of first order linear differential equations y I λpxqy °i c i b i pxq where the c i are constant and where λpxq and the b i pxq are in a convenient field.

Structure of the paper.

In Section 2, we recall the necessary notions of Liouville integrability of Hamiltonian systems, differential Galois groups, reduced forms of linear differential systems and the Morales-Ramis-Simó integrability condition. This section contains only previously known material. In Section 3, we solve a problem that is interesting in its own right : given a block triangular differential system whose diagonal blocks are in reduced form and have an abelian Lie algebra, we give a practical procedure to put the system into reduced form (and hence compute its differential Galois group). In Section 4, we show how to reduce the Morales-Ramis-Simó condition to the latter problem and thereby provide an effective version of the Morales-Ramis-Simó integrability criterion. In Section 5, we demonstrate the efficiency of the method by computing the reduced form and the differential Galois groups of the first three variational equations on a four dimensional example, originally considered in [START_REF] Casale | Integrability of Hamiltonian systems with homogeneous potentials of degree zero[END_REF].

The Morales-Ramis-Simó Integrability Condition

2.1. Hamiltonian Systems and Liouville Integrability. Let pM , ωq be a complex analytic symplectic manifold of complex dimension 2n with n N ¦ . Since M is locally isomorphic to an open connected domain U C 2n , Darboux's theorem allows us to choose a set of local coordinates pq , pq pq 1 . . . q n , p 1 . . . p n q in which the symplectic form ω is expressed as J :

0 Idn ¡Idn 0 %
, where Id n denotes the identity matrix of size n. In these coordinates, given a function H C 2 pUq : U ÝÑ C (the Hamiltonian), we define a Hamiltonian system over U C 2n as the differential equation given by the vector field

X H : J∇H n i1 fH fp i f fq i ¡ n i1 fH fq i f fp i
, corresponding to the Hamiltonian differential system (2.1) 9 q i fH fp i pq , pq, 9 p i ¡ fH fq i pq , pq, for i 1 . . . n. Consider a non-punctual integral curve Γ of (2.1). A meromorphic function F : U ÝÑ C is called a meromorphic first integral of (2.1) along Γ if it is constant along integral curves in a neighborhood of Γ, or equivalently when X H pFq 0. Observe that the Hamiltonian is a first integral of (2.1), as we clearly have X H pHq 0.

The Poisson bracket t , u of two meromorphic functions f, g C 2 pUq is defined by tf , gu : x∇f , J∇gy. In the Darboux coordinates, its expression is tf , gu

n i1 ff fq i fg fp i ¡ ff fp i fg fq i
. The Poisson bracket endows the set of first integrals with a structure of Lie algebra. A function F is a first integral of (2.1) if and only if tF , Hu 0, i.e. H and F are in involution. Also, note that X tF , Hu rX F , X H s, so the involution condition means that the associated Hamiltonian vector fields commute.

A Hamiltonian system with n degrees of freedom is called Liouville integrable by meromorphic first integrals along the integral curve Γ if it possesses n first integrals (including the Hamiltonian) meromorphic over U which are functionally independent and in pairwise involution.

2.2. Variational Equations. Among the various approaches to the study of meromorphic integrability of complex Hamiltonian systems, we choose a Ziglin-Morales-Ramis type of approach. Concretely, our starting points are the Morales-Ramis theorem [START_REF] Juan | Galoisian obstructions to integrability of Hamiltonian systems. I, II[END_REF] and its generalization, the Morales-Ramis-Simó theorem [START_REF] Juan | Integrability of Hamiltonian systems and differential Galois groups of higher variational equations[END_REF][START_REF] Juan | Integrability of dynamical systems through differential Galois theory: a practical guide, Differential algebra, complex analysis and orthogonal polynomials[END_REF]. These two results give necessary conditions for the meromorphic integrability of Hamiltonian systems. Here, we need to introduce the notion of variational equation of order p N ¦ along a non-punctual integral curve of (2.1).

Let Φpz, tq be the flow defined by the equation (2.1). Given a non-punctual integral curve Γ of (2.1) and z 0 Γ, we let φptq : Φpz 0 , tq denote a temporal parametrization of Γ. We define the p th variational equation pVE p φ q of (2.1) along Γ to be the differential equation satisfied by the ξ j : f j Φpz , tq fz j for j ¤ p. For instance, the first three variational equations are given by (see [START_REF] Juan | Integrability of Hamiltonian systems and differential Galois groups of higher variational equations[END_REF], §3.4, Equation p14q, Page 860):

pVE 3 φ q : 6 9 8 9 7
pVE 2 φ q :

5 pVE 1 φ q : 9 ξ 1 d φ X H ξ 1 9 ξ 2 d 2 φ X H pξ 1 , ξ 1 q d φ X H ξ 2 9 ξ 3 d 3 φ X H pξ 1 , ξ 1 , ξ 1 q 2d 2 φ X H pξ 1 , ξ 2 q d φ X H ξ 3 . For p 1, the first variational equation pVE 1 φ q is a linear differential equation 9 ξ 1 A 1 ξ 1 where A 1 : d φ X H J ¤ Hess φ pHq sppn , Cxφptqyq,
where Cxφptqy denotes the differential field generated by the coefficients of the parametrization φptq. Higher order variational equations are not linear for p ¥ 2. However, for every pVE p φ q, one can construct an equivalent linear differential system pLVE p φ q called the linearized p th variational equation (see [START_REF] Juan | Integrability of Hamiltonian systems and differential Galois groups of higher variational equations[END_REF], §3.4 and [START_REF]Linearised higher variational equations[END_REF]). Indeed, pVE p φ q is linear in ξ p and polynomial in the ξ i for i p; however, the ξ i for i p are solutions of the linear differential system pLVE p¡1 φ q so that polynomials in the ξ i also satisfy linear differential systems, obtained via symmetric powers and tensor constructions. See, for example, §3 of [START_REF] Aparicio Monforte | A characterization of reduced forms of linear differential systems[END_REF] for practical details on these tensor constructions on differential systems.

For example, pVE 2 φ q is linear in ξ 2 and linear in the monomials of degree 2 in the ξ 1 , i.e. in the solutions of the second symmetric power system Y I sym 2 pA 1 qY . Hence the system pLVE 2 φ q is lower block-triangular and its diagonal blocks are sym 2 pA 1 q and A 1 . We obtain (see e.g. [MRR10, AMW11, Sim14b, CW15]) the following matrices A p for the first pLVE p φ q:

A 2 pxq ¢ sym 2 pA 1 pxqq 0 S 2 pxq A 1 pxq , A 3 pxq ¢ sym 3 pA 1 pxqq 0 S 3 pxq A 2 pxq ¤ ¥ sym 3 pA 1 pxqq 0 0 S 3,2 pxq sym 2 pA 1 pxqq 0 S 3,1 pxq S 2 pxq A 1 pxq .
In general, the matrix of pLVE p φ q is of the form A p pxq ¢ sym p pA 1 pxqq 0 S p pxq A p¡1 pxq

.

In [START_REF]Linearised higher variational equations[END_REF], §4.1, Simon provides explicit formulas for these linearized variational equations.

In what follows, we will identify pVE p φ q and pLVE p φ q and we will just speak of variational equations of order p.

The matrix sym i pA 1 pxqq has n i¡1 n¡1 ¨rows and columns, so that pLVE p φ q is a first order linear differential system of d p : °p i1 n i¡1 n¡1

¨ n p n ¨¡ 1 equations. The size d p grows fairly fast (polynomially of degree n in p) and forbids the use of a generic algorithm to compute on pLVE p φ q. For this reason, we elaborate a specific algorithm which takes advantage of the structure of pLVE p φ q so that the polynomial growth of the size will become a relatively minor concern.

2.3. Differential Galois Theory and Reduced Forms. We begin this subsection with elements of differential Galois theory. We refer to [START_REF] Van Der Put | Galois theory of linear differential equations[END_REF] or [START_REF] Crespo | Algebraic groups and differential Galois theory[END_REF][START_REF]Introduction to the Galois theory of linear differential equations[END_REF] for details and proofs.

2.3.1. The Base Field. Our base field will be k : Cxφptqy, the differential field generated by the coefficients of the parametrization φptq (and C is the field of constants, which is assumed to be algebraically closed). We need to make assumptions about k to elaborate our algorithms. First we assume that k is an effective field, i.e. that one can compute representatives of the four operations , ¡, ¢, { and one can effectively test whether two elements of k are equal, see e.g. [START_REF] Michael | Liouvillian solutions of linear differential equations with Liouvillian coefficients[END_REF]. Secondly, we assume that, given any scalar linear differential equation Lpypxqq 0 where Lpypxqq : a n pxqy pnq pxq a n¡1 pxqy pn¡1q pxq ¤ ¤ ¤ a 1 pxqy I pxq a 0 pxqypxq, with a i pxq k, one can effectively compute a basis of its space of rational solutions, i.e. the solutions which are in the base field k. The standard example of such a field would be k Cpxq with C Q. Singer showed, in [START_REF] Michael | Liouvillian solutions of linear differential equations with Liouvillian coefficients[END_REF], Lemma 3.5, that if k is an elementary extension of Cpxq or if k is an algebraic extension of a purely transcendental Liouvillian extension of Cpxq, then k satisfies the above two conditions and hence suits our purposes. He also proved, see Theorem 4.1 in [START_REF] Michael | Liouvillian solutions of linear differential equations with Liouvillian coefficients[END_REF], that an algebraic extension of k still satisfies our two assumptions, which will be useful, as reducing the first variational equation may induce algebraic extensions.

Differential Galois Theory.

Let us consider a linear differential system of the form Y I pxq ApxqY pxq, with Apxq M n pkq, that is a square matrix of size n N ¦ in coefficients in k. A Picard-Vessiot extension for Y I pxq ApxqY pxq is a differential field extension K|k, generated over k by the entries of a fundamental solution matrix and such that the field of constants of K is C. The Picard-Vessiot extension K exists and is unique up to differential field isomorphism.

The differential Galois group G of Y I pxq ApxqY pxq is the group of field automorphisms of the Picard-Vessiot extension K that commute with the derivation and leave all elements of k invariant. Let U pxq GL n pKq be a fundamental solution matrix of Y I pxq ApxqY pxq with coefficients in K. For any ϕ G, ϕpU pxqq is also a fundamental solution matrix, so there exists a constant matrix C ϕ GL n C ¨such that ϕpU pxqq U pxq.C ϕ . The map ρ U : ϕ Þ ÝÑ C ϕ is an injective group morphism. An important fact is that G, identified with Im ρ U , may be viewed as a linear algebraic subgroup of GL n C ¨.

Two linear differential equations Y I pxq ApxqY pxq and Y I pxq BpxqY pxq, with Apxq, Bpxq M n pkq are said to be equivalent over k (or gauge equivalent over k) when there exists P pxq GL n pkq, called a gauge transformation matrix, such that Bpxq P pxq rApxqs : P pxqApxqP ¡1 pxq P I pxqP ¡1 pxq.

Note that in this case:

Y I pxq ApxqY pxq ðñ rPpxqY pxqs I BpxqP pxqY pxq. Conversely, if there exist matrices Apxq, Bpxq M n pkq and P pxq GL n pkq, such that we have Y I pxq ApxqY pxq, Z I pxq BpxqZpxq and Zpxq P pxqY pxq, then Bpxq P pxq rApxqs . The Lie algebra g of the linear algebraic group G GL n C ¨is the tangent space to G at the identity. Equivalently, it is the set of matrices N such that Id n N satisfies the defining equations of the algebraic group G modulo 2 .

Part two of the following proposition is known as the Kolchin-Kovacic reduction theorem. A proof can be found in [START_REF] Van Der Put | Galois theory of linear differential equations[END_REF], Proposition 1.31 and Corollary 1.32. See also [START_REF] Blázquez | Differential Galois theory of algebraic Lie-Vessiot systems[END_REF], Theorem 5.8. Proposition 2.1 (Kolchin-Kovacic reduction theorem). Let us consider the differential system Y I pxq ApxqY pxq with Apxq M n pkq. Let G be its differential Galois group and g be the Lie algebra of G.

(1) Let H GL n C ¨be a linear algebraic group and h M n C ¨be its Lie algebra. If

Apxq belongs to hpkq :

h C k, then G is contained in a conjugate of H. (2) Assume that k is a C 1 -field ¦ and G is connected. Let H G be a connected linear
algebraic group with Lie algebra h such that Apxq hpkq. Then, there exists a gauge transformation P pxq Hpkq such that P pxqrApxqs gpkq. 2.3.3. Reduced Forms of Linear Differential Systems. Let Apxq M n pkq, G be the differen- tial Galois group of Y I pxq ApxqY pxq and g its Lie algebra. We say that the system Y I pxq ApxqY pxq is in reduced form (or in Kolchin-Kovacic reduced form) when Apxq gpkq g C k. This section contains a quick survey on reduced forms and their practical use.

¦ A field k is a C 1 -field when every non-constant homogeneous polynomial P over k has a non-trivial zero provided that the number of its variables is more than its degree. For example, Cpxq is a C 1 -field and any algebraic extension of a C 1 -field is a C 1 -field.

Following [START_REF] Wei | Lie algebraic solution of linear differential equations[END_REF], a Wei-Norman decomposition of Apxq is a finite sum of the form Apxq ¸ai pxqM i , where M i has coefficients in C and the a i pxq k form a basis of the C-vector space spanned by the entries of Apxq. The M i depend on the choice of a i pxq but the C-vector space generated by the M i is independent of the choice of the a i pxq. Definition 2.2. Let LiepAq M n C ¨denote the Lie algebra generated by the M i . We define Lie alg pAq M n C ¨, called the Lie algebra associated to A, as the algebraic envelope of the Lie algebra LiepAq, i.e. as the smallest Lie algebra of a linear algebraic group which contains LiepAq.

Let LiepA; kq : LiepAqpkq M n pkq and Lie alg pA; kq : Lie alg pAqpkq M n pkq. We see that the system Y I pxq ApxqY pxq is in reduced form when Lie alg pA; kq gpkq. These reduced forms have long been studied in the context of inverse problems in differential Galois theory (see [START_REF] Mitschi | Solvable-by-finite groups as differential Galois groups[END_REF] and references therein). Their use in direct problems is more recent. Blazquez and Morales use them in their studies of Lie-Vessiot systems in [START_REF] Blázquez | Differential Galois theory of algebraic Lie-Vessiot systems[END_REF][START_REF]Lie's reduction method and differential Galois theory in the complex analytic context[END_REF]. Their application to Morales-Ramis theory is initiated in [START_REF] Aparicio-Monforte | A reduced form for linear differential systems and its application to integrability of Hamiltonian systems[END_REF] where Aparicio-Monforte and Weil show how to put the first variational equation in reduced form. In [START_REF] Aparicio Monforte | A characterization of reduced forms of linear differential systems[END_REF], the same authors with Compoint show that a system is in reduced form if and only if, for any tensor construction constpApxqq on Apxq, any rational or hyperexponential solution of Y I constpApxqqY has constant coefficients. One can also find in [START_REF] Aparicio Monforte | A characterization of reduced forms of linear differential systems[END_REF] a complete procedure to put a linear differential system into reduced form when it is irreducible (or completely reducible). This does not really apply here as the variational equations are generally reducible (and not completely reducible) systems -and the reduction method of [START_REF] Aparicio Monforte | A characterization of reduced forms of linear differential systems[END_REF] is far from being efficient yet.

The approach that we elaborate in this paper was initiated (incompletely) in [START_REF] Aparicio-Monforte | A reduction method for higher order variational equations of Hamiltonian systems[END_REF]. It is based on another criterion for reduced form, which is given in the following lemma.

Lemma 2.3. Given Apxq M n pkq, let G be the differential Galois group of Y I pxq ApxqY pxq and g be its Lie algebra. Let H be a connected linear algebraic group whose Lie algebra h satisfies h Lie alg pAq. Assume that G is connected. Then Y I pxq ApxqY pxq is in reduced form, i.e. G H and g h, if and only if, for all gauge transformation matrices P pxq in Hpkq, we have hpkq Lie alg pPrAs; kq.

Proof. Follows directly from the Kolchin-Kovacic reduction theorem, see Proposition 2.1.

2.4. The Morales-Ramis-Simó Integrability Criterion. We are now in position to state the Morales-Ramis-Simó integrability criterion. See [START_REF] Juan | Integrability of Hamiltonian systems and differential Galois groups of higher variational equations[END_REF] for a proof and §2 for the definitions.

Theorem 2.4 (Morales-Ramis-Simó integrability criterion). Consider a Hamiltonian vector field X H and a non-punctual integral curve Γ. For p N ¦ , let G p be the differential Galois group of pVE p φ q, the p th variational equation along Γ. Let g p be the Lie algebra of G p .

Assume that the Hamiltonian vector field X H is Liouville integrable by meromorphic first integrals along the integral curve Γ. Then, for all p N ¦ , g p is abelian.

Of course, given p N ¦ , computing the differential Galois group G p of such a big differential system would be an unrealistic task in practice unless we use the structure of the system to simplify the computations. We will establish a specific reduction method, i.e. compute a gauge transformation matrix P p pxq such that P p pxqrA p pxqs g p pkq. After this reduction process, the Lie algebra g p is easily read and its abelianity (or not) is given in the process. Furthermore, if g p is abelian, then this process will have prepared the system to allow an efficient reduction of the next variational equation. Under these hypotheses, we will show in the next section how to put the p th variational equation A p pxq into reduced form in an efficient way.

The Strategy for an effective

Remark 2.5. Our assumptions imply that the first variational equation is in reduced form. This in turn implies that our base field k is no longer just Cxφy but may be an algebraic extension of the latter (see [START_REF] Aparicio Monforte | A characterization of reduced forms of linear differential systems[END_REF]). In the sequel, our base field k is the algebraic extension of Cxφy which is needed to put the first variational equation into reduced form. Since an algebraic extension of a C 1 -field is a C 1 -field, we obtain that k is a C 1 -field provided that Cxφy is a C 1 -field. Consequently, we are allowed to use Proposition 2.1 as soon as Cxφy is a C 1 -field. From now on, we assume that k is a C 1 -field.

Our assumptions also imply (see [START_REF] Aparicio Monforte | A characterization of reduced forms of linear differential systems[END_REF], Lemma 32, Page 1513) that, for all m t1, . . . , p ¡ 1u, the differential Galois groups G m are connected. Moreover, both the groups G m and their Lie algebras g m are abelian.

Lemma 2.6. The group G p is connected.

Proof. This is a direct application of [START_REF] Juan | Integrability of dynamical systems through differential Galois theory: a practical guide, Differential algebra, complex analysis and orthogonal polynomials[END_REF], Lemma 10.

As we can see in [START_REF] Aparicio Monforte | A characterization of reduced forms of linear differential systems[END_REF], Lemma 14, Page 1508, Sym p pP 1 pxqqrsym p pA 1 pxqqs sym p pA 1,red pxqq. Also, sym p pA 1,red pxqq is a reduced form of sym p pA 1 pxqq. Indeed, this follows from [START_REF] Aparicio Monforte | A characterization of reduced forms of linear differential systems[END_REF], Theorem 1, because any tensor construction on sym p pA 1 pxqq is a construction on A 1 pxq. . We have seen that Y I pxq A diag pxqY pxq is in reduced form and Lie alg pA diag q is abelian. The aim of this section is to show how to use those hypotheses to put the full system Y I pxq ApxqY pxq in reduced form.

3.1. The Diagonal and Off-Diagonal Subalgebras. We refer to §2.3.3 for the notations used in this subsection. Let M 1 , . . . , M δ M n C ¨be a basis of Lie alg pA diag q and let B 1 , . . . , B σ M n C ¨be a basis of Lie alg pA sub q. We define the vector space h : Lie alg pA diag q Lie alg pA sub q. Note that Lie alg pAq h, and h is the Lie algebra of a linear algebraic group. Let us sum up some elementary properties of h in the two following lemmas: (1) For pi, jq t1; 2u 2 , ¢ 0 0

Lemma 3.1. Let us consider a matrix ¢ N 1 pxq 0 N 2,1 pxq N 2 pxq
C i pxq 0 ¢ 0 0 C j pxq 0 0.
(2) The matrix

¢ N 1 pxq 0 N 2,1 pxq N 2 pxq ¢ 0 0 C 1 pxq 0 and the Lie bracket ¢ N 1 pxq 0 N 2,1 pxq N 2 pxq , ¢ 0 0 C 1 pxq 0 &
belong to Lie alg pA sub ; kq. Furthermore Lie alg pA sub ; kq is an ideal in hpkq.

Proof.

(1) A straightforward computation shows the first point of the lemma.

(2) We have

¢ N 1 pxq 0 N 2,1 pxq N 2 pxq ¢ 0 0 C 1 pxq 0 ¢ 0 0 N 2 pxqC 1 pxq 0 hpkq and ¢ N 1 pxq 0 N 2,1 pxq N 2 pxq , ¢ 0 0 C 1 pxq 0 & ¢ 0 0 N 2 pxqC 1 pxq ¡ C 1 pxqN 1 pxq 0 hpkq.
We prove that they belong to Lie alg pA sub ; kq using that fact that the diagonal blocks of the two matrices are zero. The latter Lie bracket identity also shows that QrAs; k

© Lie alg ¡ R r QrAs; k © .
Let K|k denote the Picard-Vessiot extension for the equation Y I pxq ApxqY pxq and let U pxq : The following corollary will be crucial for the reduction procedure of §3.4. 

¢ U 1 pxq 0 U 2,1 pxq U 2 pxq GL n pKq, with U i pxq GL n i pKq be a fundamen- tal solution. The elements of G are of the form ¢ G 1 0 G 2,1 G 2 GL n C ¨, with G i GL n i C ¨. Let G sub be
f i pxqrB i , A diag pxqs ¡ σ i1 f I i pxqB i .
Proof. Due to the first point of Lemma 3.1, we have the equalities P ¡1 pxq Id n ¡ σ i1 f i pxqB i and P pxqApxq Apxq σ i1 f i pxqB i A diag pxq. As Apxq A diag pxq A sub pxq, we use Lemma 3.1 and find that

P pxqApxqP ¡1 pxq £ A diag pxq A sub pxq σ j1 f j pxqB j A diag pxq £ Id n ¡ σ ķ1 f k pxqB k Apxq σ j1 f j pxqB j A diag pxq ¡ σ ķ1 f k pxqA diag pxqB k Apxq σ i1 f i pxqrB i , A diag pxqs.
Similarly, we have

P I pxqP ¡1 pxq £ σ i1 f I i pxqB i £ Id n ¡ σ j1 f j pxqB j σ i1 f I i pxqB i .
This yields the desired result.

We have seen in Lemma 3.1 that Lie alg pA sub ; kq is an ideal in hpkq. In particular, for all Bpxq Lie alg pA sub ; kq, the bracket rBpxq, A diag pxqs is in Lie alg pA sub ; kq. This implies that the k-linear map Ψ : r, A diag pxqs, which is the adjoint action of Lie alg pA diag ; kq on Lie alg pA sub ; kq, is well defined: Ψ : Lie alg pA sub ; kq ÝÑ Lie alg pA sub ; kq Bpxq Þ ÝÑ rBpxq, A diag pxqs.

The following lemma will be necessary in §3.4. Note that the proof of the lemma gives a complete description of a finite set containing the eigenvalues of Ψ.

Lemma 3.7. The eigenvalues of the linear map Ψ belong to k. Furthermore, there exists a basis of constant matrices, such that the matrix of the linear map Ψ in this basis is block-diagonal, with blocks that are upper-triangular matrices with only one eigenvalue.

Proof. Let M 1 , . . . , M δ M n C ¨be a basis of Lie alg pA diag q, which is abelian. We may write A diag pxq δ i1 g i pxqM i with g i pxq k. Let Ψ i : r, M i s denote the adjoint action of M i on Lie alg pA sub q. As the matrices M i commute pairwise, the Jacobi identity on Lie brackets implies that the Ψ i also commute pairwise. The Ψ i have coefficients in the algebraically closed field C and commute pairwise, and therefore they are simultaneously triangularizable in a basis pC j q of Lie alg pA sub q. By construction, the C j are constant matrices. Each C j lies in a characteristic space of Ψ i associated with an eigenvalue λ i,j .

We define λ j pxq : °δ i1 g i pxqλ i,j . As Ψ °δ i1 g i pxqΨ i , we see that the λ j pxq k are the eigenvalues of Ψ and that the matrix of Ψ is triangular in the basis pC j q of Lie alg pA sub ; kq.

Remark 3.8. One may refine this proof to predict the eigenvalues of Ψ.

Let γ 1 pxq, . . . , γ ω pxq k be the eigenvalues of A diag pxq. The above reasoning shows the ex-

istence of P 1 GL n C ¨, such that P 1 A diag pxqP ¡1 1 : ¤ ¦ ¥ L 1 pxq 0 . . . 0 L ω pxq
, where for 1 ¤ i ¤ ω, L i pxq is a matrix in coefficients in k, with only one eigenvalue γ i pxq.

In the proof of Lemma 3.7, we have proved the existence of a basis of constant matrices, such that the matrix of the linear map Ψ in this basis is block-diagonal, with blocks that are upper-triangular matrices corresponding to convenient restriction of the linear maps Ψ i,j : X i,j Þ Ñ X i,j L i pxq ¡ L j pxqX i,j . For 1 ¤ i, j ¤ ω, the map Ψ i,j admits only one eigenvalue that is equal to γ i pxq ¡ γ j pxq k. Then, the eigenvalues of Ψ are of the form tγ i pxq ¡ γ j pxq, 1 ¤ i, j ¤ ωu. Now the diagonal blocks are symmetric powers of A 1,red pxq; the latter has an abelian associated Lie algebra and is triangular. It follows that the γ i pxq are linear combinations (with integer coefficients) of the eigenvalues of A 1,red pxq, so that the eigenvalues of Ψ also are linear combinations (with integer coefficients) of the eigenvalues of A 1,red pxq. The k-linear adjoint map Ψ r, A diag s : Lie alg pA sub ; kq Ñ Lie alg pA sub ; kq has its eigenvalues λ 1 pxq, . . . , λ κ pxq in k (see Lemma 3.7) and its minimal polynomial has the form

Π Ψ pXq κ ¹ i1 pX ¡ λ i pxqq m i , with m i N ¦ .
For each eigenvalue λ i pxq, we let E λ i : ker ppΨ ¡ λ i pxqId σ q m i q be the corresponding characteristic space. So we have the standard decomposition Lie alg pA sub ; kq

À κ i1 E λ i .
Of course, the E λ i are Ψ-invariant subspaces. Now Lie alg pA sub ; kq is also a Ψ-invariant subspace of Lie alg pA sub ; kq. As the E λ i have each a basis formed of constant matrices (Lemma 3.7), Proposition 3.6 implies that we thus have

Lie alg pA sub ; kq κ à i1 ¡ E λ i £ Lie alg pA sub ; kq © .
In the reduction process, we may (and will) hence perform a reduction on each E λ i separately. So, without loss of generality, we now assume that Ψ has one eigenvalue λpxq k and Π Ψ pXq pX ¡ λpxqq m , for some m N ¦ .

As above, we let E λ : ker ppΨ ¡ λpxqId σ q m q and, for i t0, . . . , mu, let E piq

λ : ker ¡ pΨ ¡ λpxqId σ q i ©
. We have the standard flag decomposition

E λ À m i1 E piq λ {E pi¡1q λ .
And, last, we recall that for M pxq E piq λ {E pi¡1q 

f i pxqC i with f i pxq k. As ΨpC i q λpxqC i r C i , with r C i E pm¡1q
λ , we apply Proposition 3.6 to obtain:

P rAs Āpxq t i1 f i pxq r C i t i1 a i pxq λpxqf i pxq ¡ f I i pxq ¨Ci .
We see that, in order to achieve reduction in E pmq λ {E pm¡1q λ , we should have f I i pxq λpxqf i pxq a i pxq for all i t1, . . . , su.

In other words, the differential equation y I pxq λpxqypxq a i pxq should have a rational solution for each i t1, . . . , su.

In practice, we do not know the C i nor the a i pxq so we now show how to compute them.

Let B 1 , . . . , B t denote a basis of E pmq λ {E pm¡1q λ , formed of constant matrices. We will find candidates for the C i by computing which combinations of the B i may be "removed" from Apxq by a gauge transformation as above. We decompose Apxq as Apxq Āpxq

t i1 b i pxqB i .
There exist (yet unknown) constants c i,j such that B i t j1 c i,j C j , so that:

Apxq Āpxq t i1 b i pxq £ t j1 c i,j C j Āpxq t j1 £ t i1 c i,j b i pxq C j .
So, the calculation from the previous paragraph shows that there should exist g j pxq k such that, for j t1, . . . , su, g I j pxq λpxqg j pxq t i1 c i,j b i pxq. The way to find s, the g j pxq and the c i,j is given by Lemma 3.9 (which is proved here for convenience but is well known to specialists).

Lemma 3.9. Let λpxq, b 1 pxq, . . . , b t pxq be elements of k. The set of tuples pgpxq, c 1 , . . . , c t q k ¢ C t such that g I pxq λpxqgpxq t i1 c i b i pxq is a C-vector space. Moreover, one can effectively compute a basis of this vector space.

Proof. Let L b be the linear differential operator of order t whose solution space is spanned by b 1 pxq, . . . , b t pxq. Let L : L b ¤ d dx ¡ λpxq ¨, where the product is the composition, i.e. the usual product in the non-commutative Ore ring kr d dx s. One readily sees that a function gpxq k satisfies Lpgpxqq 0 if and only if L b pg I pxq ¡ λpxqgpxqq 0, i.e. if there exist constants c i C such that g I pxq ¡ λpxqgpxq t i1 c i b i pxq. Hence, the set of tuples pgpxq, c 1 , . . . , c t q k ¢ C t such that g I pxq λpxqgpxq t i1 c i b i pxq is isomorphic with the set of rational solutions gpxq of L. The latter is a vector space whose basis can be effectively computed, see §2.3.1. Lemma 3.9 allows us to compute easily, see §2.3.1, a dimension s N and a basis ¡ pg j pxq, c p,jq q © j1..s of elements in k ¢ C t such that the equation y I pxq λpxqypxq t i1 c i,j b i pxq has a rational solution ypxq g j pxq. The unknown functions a i pxq that we were looking for are thus given by a i pxq t i1 c i,j b i pxq. Via the incomplete basis theorem, we construct a constant invertible matrix Q GL t C ẅhose first s columns are the c p,jq . We may view Q as the base change matrix from the basis pB j q t j1 of E pmq λ {E pm¡1q λ to a new basis pC j q t j1 of E pmq λ {E pm¡1q λ . Let γ i,j denote the entries of Q ¡1 . Lemma 3.10. Let s N, pg j pxqq j1,...,s , and pγ i,j q be computed as in the above paragraph. For i t1, . . . , tu, let f i pxq : s j1 γ i,j g j pxq. Finally, let P pmq λ : Id n t i1 f i pxqB i . Then P pmq λ is a partial reduction matrix, in the sense that

(3.4) Lie alg ¡ P pmq λ rAs; k © ¡ E pmq λ {E pm¡1q λ © gpkq ¡ E pmq λ {E pm¡1q λ © .
Furthermore, for all r Qpxq : Id 

h i pxqC i Rpxq, with h i pxq k, Rpxq E pm¡1q λ , such that (3.6) gpkq ¡ E pmq λ {E pm¡1q λ © Lie alg ¡ r RrP pmq λ rAss; k © ¡ E pmq λ {E pm¡1q λ © .
But by construction, we have the inclusion

(3.7) LiepP pmq λ rAs; kq ¡ E pmq λ {E pm¡1q λ © Lie ¡ r RrP pmq λ rAss; k © ¡ E pmq λ {E pm¡1q λ © .
Combining (3.5), (3.6) and (3.7) proves (3.4).

Let r

Qpxq : Id n t is 1 h i pxqC i with h s 1 pxq, . . . , h t pxq k. By construction, we have

(3.8) LiepP pmq λ rAs; kq ¡ E pmq λ {E pm¡1q λ © Lie ¡ r QrP pmq λ rAss; k © ¡ E pmq λ {E pm¡1q λ © .
Let r C j : ΨpC j q ¡ λpxqC j . We use (3.3) and the fact that Ψ is k-linear plus Proposition 3.6 to deduce the existence of Apxq LiepP pmq λ rAs; kq

¡ E pmq λ {E pm¡1q λ © such that (3.9) P pmq λ pxqrApxqs ¡ r QpxqrP pmq λ pxqrApxqss Apxq t is 1 h i pxq r C i .
Let j ts 1, . . . , tu. We know that C j LiepP pmq λ rAs; kq. By definition, the matrix r C j ΨpC j q ¡ λpxqC j belongs to LiepP pmq λ rAs; kq E pm¡1q Combining (3.8) and this equality, we find the result.

3.4.2. The Full Reduction Procedure. The reduction procedure now is easy to establish by iterating the above process. By assumption, all variational equations of lower order are in reduced form and have an abelian associated Lie algebra.

Choose an eigenvalue λpxq SpecpΨq of the adjoint map Ψ r, A diag s. Let E λ : E pmq λ be the corresponding characteristic space. Let l : m. Initially we assumed that the first variational equation had been put into reduced form and had an abelian associated Lie algebra. However, the procedure described in this paper can be also used to put the first variational equation into reduced form, i.e. to apply effectively the original Morales-Ramis integrability criterion. This allows us to recover the reduction method established by two of the authors in [START_REF] Aparicio-Monforte | A reduced form for linear differential systems and its application to integrability of Hamiltonian systems[END_REF]. First, factor the first variational equation, i.e. compute an equivalent lower blocktriangular form differential system. (see e.g. [START_REF] Van Der Put | Galois theory of linear differential equations[END_REF]). Then, apply a reduction procedure to the irreducible blocks on the diagonal (for example the one of Aparicio-Compoint-Weil from [START_REF] Aparicio Monforte | A characterization of reduced forms of linear differential systems[END_REF]). This will put these blocks in diagonal form (maybe after an algebraic extension); otherwise we have an obstruction to integrability (Boucher-Weil criterion, see [START_REF] Boucher | theorem to test the non-complete integrability of the planar three-body problem, From combinatorics to dynamical systems[END_REF][START_REF] Juan | Integrability of dynamical systems through differential Galois theory: a practical guide, Differential algebra, complex analysis and orthogonal polynomials[END_REF]). If the blocks have dimension 1 or 2, then a faster method using a variant of the Kovacic algorithm is given in [START_REF] Aparicio-Monforte | A reduced form for linear differential systems and its application to integrability of Hamiltonian systems[END_REF].

Compute a constant basis pB

i q i1..t of E plq λ {E pl¡1q
Once this is done, the method of this paper allows us to reduce the lower triangular blocks, thus putting the first variational equation into reduced form. 4.2. The Effective Morales-Ramis-Simó Integrability Criterion. The Morales-Ramis-Simó integrability criterion states that if one of the variational equations of a Hamiltonian system has a differential Galois group whose Lie algebra is not abelian, then it is not (meromorphically) Liouville integrable. For p N ¦ , let Y I pxq A p pxqY pxq be the variational equation of order p, let G p be the differential Galois group of Y I pxq A p pxqY pxq and let g p be the Lie algebra of G p .

As we have seen in §4. We refer to §2 and §3 for the notations used in this subsection. The Morales-Ramis-Simó integrability criterion implies that, if the Hamiltonian system is integrable, once our reduced form from Theorem 3.11 is computed, g p should be abelian for all p N ¦ . With Lemma 3.1, we find that this is equivalent to saying that the resulting adjoint map Ψ red r, A diag s should be the zero map (because Lie alg pA sub q is always abelian and Lie alg pA diag q is assumed to be abelian). So, when performing the reduction, any characteristic space E λ corresponding to a non-zero eigenvalue λpxq SpecpΨq must vanish. Also, for λ 0, all E plq 0 (for l ¡ 2) must vanish too.

As a consequence, if one is only interested in finding an obstruction to integrability but not necessarily a reduced form, the reduction step in §3.4.1 can be significantly simplified. Indeed (we use the notations from §3.4.1), instead of the equation with parametrized right-hand side in Lemma 3.9, it is enough to look for a rational solution g i pxq to each equation y I pxq λpxqypxq b i pxq. If any of these equations does not have a rational solution, then the adjoint map Ψ red of the reduced form will still have the non-zero eigenvalue λpxq, hence yielding an obstruction to abelianity of the associated Lie algebra.

Otherwise, the partial reduction matrix of Lemma 3.10 is easier to compute: just let P pmq λ pxq : Id n t i1 g i pxqB i , compute P pmq λ pxqrApxqs, compute a basis pB i q of the new space E pm¡1q λ and iterate this reduction as in §3.4.1. Do this for all non-zero eigenvalues of Ψ. For the zero eigenvalue, proceed similarly for the E plq 0 (for all l ¡ 2). Note that since λ 0, the problem is slightly easier. Indeed, using the notations from §3.4.1, we only have to check whether every b i pxq admits a primitive g i pxq k. If any of the b i pxq does not admit a primitive in k, we obtain an obstruction to abelianity. Otherwise, the partial reduction matrix will be P plq 0 pxq : Id n t i1 g i pxqB i . If at this stage the process has not stopped, the partially reduced matrix has an associated Lie algebra which is abelian so the application of the Morales-Ramis-Simó integrability criterion now makes it necessary to go to the next higher variational equation. We may even iterate the process to the next variational equation without finishing the reduction: the only assumption that was used in our algorithmic construction was that the Lie algebra associated to the previous variational equation was abelian. However, this is not very satisfying and one should, at this last step, compute the reduced form by applying Lemma 3.9 until the final case λ 0 and m 1. Since λ 0, the computations here are slightly easier.

An Example

Consider the Hamiltonian with potential given by H :

1 2 p 2 1 1 2 p 2 2 V
, where the potential is given by

V q 2 q 2 3 9q 2 1 q 2 2 ¨.
This potential appears at the end of the [START_REF] Casale | Integrability of Hamiltonian systems with homogeneous potentials of degree zero[END_REF] where the authors present it as a case where their necessary conditions are all satisfied so that one could guess that the system might be integrable, but it is left as an open case. The corresponding Hamiltonian system is pX H q : 6 9 9 9 8 9 9 9 7 9 q 1 p 1 9 q 2 p 2 9 p 1 3 q 2 p3q1 2 q 2 2 q q 1 4 9 p 2 ¡3 3 q 1 2 q 2 2 q 1 3 Using the method of Darboux points and homothetic solutions (see [START_REF] Casale | Integrability of Hamiltonian systems with homogeneous potentials of degree zero[END_REF] or the papers by the same authors or the papers by Combot in the references), we find a (rather obvious) pencil of particular solutions q 1 λx, q 2 c ¡3q 1 c ¡3λx, p 1 9 q 1 λ, p 2 c ¡3p 1 c ¡3λ.

To simplify the expression of later results, we choose λ 4 i3 3{4 i m 2 ¡1 ; the pencil now depends on a free parameter m and our particular solutions are:

q 1 4 i3 3{4 i m 2 ¡ 1 x, q 2 12¤3 1{4 i m 2 ¡ 1 x, p 1 4 i3 3{4 i m 2 ¡ 1 , p 2 12¤3 1{4 i m 2 ¡ 1 .

First Variational Equation. The first variational equation has matrix

A 1 with A 1 ¤ ¦ ¦ ¦ ¦ ¦ ¥ 0 0 1 0 0 0 0 1 3 8 m 2 ¡1 x 2 ¡i c 3pm 2 ¡1q 8x 2 0 0 ¡i c 3pm 2 ¡1q 8x 2 ¡ m 2 ¡1 8x 2 0 0
. Following §4.1, we find a reduction matrix for this first variational equation:

P 1 ¤ ¦ ¦ ¦ ¦ ¦ ¥ x 1 i c 3 1 ¡ix c 3 ¡i c 3 1 ¡i{3 c 3 1 0 i{2 c 3pm 1q x ¡1{2 m¡1 x ¡i c 3 0 1{2 m 1 x i{6 c 3pm¡1q x .
So, the reduced form of the first variational equation is

A 1,red ¤ ¦ ¦ ¦ ¦ ¥ 0 0 0 0 0 0 0 0 0 0 1 2 m 1 x 0 0 0 0 ¡ 1 2 m¡1 x .
The associated Lie algebra is one dimensional (and abelian). We hence turn to the second variational equation.

Second Variational Equation.

The matrix of the second variational equation is

A 2 pxq ¢ sym 2 pA 1 pxqq 0 S 2 pxq A 1 pxq .
We start with the partial reduction matrix

Q 2,1 pxq ¢ Sym 2 pP 1 pxqq 0 0 P 1 pxq , to obtain 
Apxq : Q 2,1 pxqrA 2 pxqs ¢ sym 2 pA 1,red pxqq 0 S 2,1 pxq A 1,red pxq where S 2,1 pxq c 2 ¤ ¦ ¦ ¦ ¦ ¦ ¥ 0 0 0 0 0 0 0 1 x 3 1 x 2 1 x 0 0 0 0 0 0 0 ¡ 1 x 2 ¡ 1 x ¡1 0 0 1 xm 1 m 0 1 mx 2 1 xm 10{3 i c 3 mx 2 10{3 i c 3 xm 10{3 i c 3 m 0 0 ¡ 1 mx 2 ¡ 1 xm 0 ¡ 1 mx 3 ¡ 1 mx 2 ¡10{3 i c 3 mx 3 ¡10{3 i c 3 mx 2 ¡10{3 i c 3 xm with c 2 1 48 p1 iq m 2 ¡ 1 ¨3{2 c 2 ¤ 3 1 4 .
The off-diagonal Lie algebra h sub is generated by four matrices and calculation shows that it has dimension 10. The matrix Ψ of the adjoint action rA diag , s on h sub has eigenvalues r¡3f 2 , ¡2f 2 , ¡f 2 , 0, f 2 , 2f 2 , 3f 2 s, where f 2 : m 1 2x (eigenvalue of A 1,red ), and is diagonalizable. Applying our algorithm produces the reduced form We remark that LiepA 2,red q is one-dimensional (because xA 2,red is a constant matrix) whereas its algebraic envelope Lie alg pA 2,red q is two dimensional. This follows from the fact that an algebraic Lie algebra contains both the semi-simple and nilpotent part of each of its elements. This can also be seen by solving the reduced system. This is now very easy and the Picard-Vessiot extension is kpx m 1 2 , lnpxqq, which has transcendence degree two over k.

A simple calculation (or a look at the Picard-Vessiot extension) shows that Lie pA 2,red q is again abelian so we may proceed to the third variational equation.

Third Variational Equation.

We do what we did for the second variational equation; we perform the first partial reduction on the diagonal to obtain Apxq : Q 3,1 pxqrA 3 pxqs ¢ sym 3 pA 1,red pxqq 0 S 3,1 pxq A 3,red pxq .

The off-diagonal Lie algebra h sub now has dimension 33. The matrix Ψ of the adjoint action rA diag , s on h sub is no longer diagonalizable. Letting again f 2 : m 1 2x , the minimal polynomial Π Ψ pXq of Ψ is X 2 pX ¡ f 2 q 2 pX f 2 q 2 pX ¡ 2f 2 q 2 pX 2f 2 q 2 pX ¡ 3f 2 q pX 3f 2 q pX ¡ 4f 2 q pX 4f 2 q . Our reduction procedure turns S 3,1 pxq into S 3,red pxq : c 2

x M 3 , where M 3 is the matrix The associated Lie algebra Lie alg pA 3,red q is still two-dimensional and is still abelian. Actually, the reduced system is easily solved and its Picard-Vessiot extension is the same as that of V E 2 so they still have the same (abelian) differential Galois group.

¤ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¥ 0 

Conclusion

The reduction procedure established in this paper gives an effective version of the Morales-Ramis-Simó criterion in the sense that it allows us to effectively test whether an p-th variational equation has an abelian Lie algebra. However, when the first p ¡ 1 variational equations have an abelian Lie algebra but the p-th does not, there is no known way to measure a priori which p would be needed. So, one may apply the reduction iteratively to higher and higher order but there is no criterion for determining when to stop. Also, when all variational equations have an abelian Lie algebra, the system could still be non-integrable (but one would see this on the variational equations along another particular solution). This reduction procedure will also allow further study of how the dimensions of the Galois groups of the successive variational equations evolve, both in integrable and non-integrable situations.

The reduced form may also be combined with the methods of [START_REF] Aparicio-Monforte | Formal first integrals along solutions of differential systems[END_REF][START_REF]Linearised higher variational equations[END_REF] for finding Taylor expansions of first integrals. Once the system is in reduced form, the results of [START_REF] Aparicio Monforte | A characterization of reduced forms of linear differential systems[END_REF] show that the Taylor expansions of a first integral, along the particular solution Γ, have constant coefficients. So, once the system is in reduced form, the (eventual) first integrals are easily found. In that sense, our reduced forms appear as pre-normal forms along Γ. Pushing the reduction further to develop a normal form theory would be a natural development.

The concepts of variational equations are mutatis mutandis the same for general (non-Hamiltonian) dynamical systems (see e.g. [START_REF] Casale | Morales-Ramis theorems via Malgrange pseudogroup[END_REF] or [START_REF] Casale | Galoisian methods for testing irreducibility of order two nonlinear differential equations[END_REF], where several notions of variational equations are compared). The notion of Liouville integrability may be generalized to these contexts by Bogoyavlenskij integrability: the notion of involution of first integrals is replaced by the (equivalent) notion of commuting vector fields, see [START_REF] Ayoul | Galoisian obstructions to non-Hamiltonian integrability[END_REF][START_REF] Bates | Complete integrability beyond Liouville-Arnold[END_REF][START_REF] Bogoyavlenskij | A concept of integrability of dynamical systems[END_REF][START_REF] Cushman | Global aspects of classical integrable systems[END_REF]. The Morales-Ramis-Simó theory is generalized in ( [START_REF] Ayoul | Galoisian obstructions to non-Hamiltonian integrability[END_REF][START_REF] Casale | Morales-Ramis theorems via Malgrange pseudogroup[END_REF]) to any kind of ordinary differential systems. The reader may remark that, in this paper, we essentially never use the symplectic structure of the Hamiltonian system from which we started. Hence, the reduction methods that we developed in the (symplectic) Morales-Ramis-Simó context extends naturally to any Bogoyavlenskij integrable differential system.

Our reduction procedure is interesting in its own right because it applies to other kinds of "solvable" situations that can be found in the context of differential Galois theories. Indeed, consider a differential system of the form Y I ApxqY where Apxq has the form Apxq ¢ A 1 pxq 0 Spxq A 2 pxq . Assume that the block-diagonal part ¢ A 1 pxq 0 0 A 2 pxq is in reduced form and has an abelian associated Lie algebra. Our reduction procedure readily extends to this (slightly more general) situation and puts the system into reduced form. In particular, it may be viewed as a way to pre-simplify the solutions.

Last, we mention the case of diagonals with a non-abelian Lie algebra. In [START_REF] Casale | Galoisian methods for testing irreducibility of order two nonlinear differential equations[END_REF], Casale and Weil develop a similar reduction technique to a family of systems in the above form but where ¢ A 1 pxq 0 0 A 2 pxq has a non-abelian Lie algebra. Mixing these ideas and the ones developed in this work may provide a way toward a reduction method for general reducible linear differential systems.

C 2 pxq 0

 0 Lie alg pA sub ; kq.

2Since D 1 ©.¢n 1 0 N 0 N pxq 0 hpkq.

 1000 the subgroup of elements of G of the form ¢ Id n 1 0 G 2,1 Id n 2 . A direct computation shows that G sub is a normal subgroup of G. Therefore, G G sub G{G sub . Due to [PS03], Proposition 1.34, (2), G diag : G{G sub is isomorphic to the differential Galois group of Y I pxq A diag pxqY pxq. Let us write r QpxqrApxqs : ¢ D 1 pxqrsym p pA 1,red pxqqs 0 A 2,1 pxq D 2 pxqrA p¡1,red pxqs , for some matrix A 2,1 pxq in coefficients in k. We use the relation G G sub G diag and the fact that Y I pxq r QpxqrApxqsY pxq is in reduced form to find that Lie alg pxqA 2,1 pxqD 1 pxq A p¡1,red pxq . pxq and D 2 pxq are invertible matrices, Lie alg Using the facts that the systems Y I pxq A diag pxqY pxq and Y I pxq r QpxqrApxqsY pxq are in reduced form and G G sub G diag , we find that Lie alg ¢ sym p pA 1,red q 0 0 A p¡1,red pkq Lie alg ¢ D 1 rsym p pA 1,red qs 0 0 D 2 rA p¡1,red s pkq. Combined with (3.2), this proves that Lie alg ¡ In other words, Y I pxq Rpxq r QpxqrApxqsY pxq is in reduced form. Proof of Theorem 3.3. It follows from Lemma 3.4 that a reduction matrix can always be chosen of the form P pxq Id pxq Id n 2Hpkq, where N pxq M n 2 ,n 1 pkq. By a straightforward computation, we find logpP pxqq ¢ 0 But with the same reasoning as in the proof of Lemma 3.1, we obtain that logpP pxqq Lie alg pA sub ; kq. This concludes the proof of Theorem 3.3.

3. 4 .3

 4 Decreasing the Dimension of LiepA; kq. We refer to §2.3, §3.1 and §3.2 for the notations and definitions used in this subsection. The aim of this section is to find a gauge transformation P pxq such that Y I pxq P pxqrApxqsY pxq is in reduced form. Thanks to Corollary 3.5, it is sufficient to compute a gauge transformation P pxq 3 Id n Bpxq, Bpxq Lie alg pA sub ; kq A such that, for every gauge transformation r Qpxq Id n Bpxq, Bpxq Lie alg pA sub ; kq A , we have LiepP rAs; kq Lie ¡ r QrP rAss; k © .

.

  We combine this fact and (3.9) to deduce LiepP pmq λ rAs; kq E pm¡1q λ Lie ¡ r QrP pmq λ rAss; k © E pm¡1q λ .

λ and compute the partial reduction matrix P plq λ : Id n t i1 f©3

 i1 i pxqB i as in Lemma 3.10. Perform the transformation Apxq : P plq λ pxqrApxqs, let l : l ¡ 1 and iterate this paragraph until l 0. When all these successive steps are performed, let P λ pxq : m ¹ l1 P plq λ pxq. Note that, by construction, the matrices P plq λ pxq commute pairwise so the order does not matter in the latter product. Now perform this for all eigenvalues λpxq SpecpΨq. The resulting matrix is a reduced form.Theorem 3.11. Using the algorithm and notations of the above paragraph, let P pxq : ¹ λpxqSpecpΨq P λ pxq and A p,red pxq : P pxqrApxqs. Then the system Y I pxq A p,red pxqY pxq is in reduced form and P pxq is the corresponding reduction matrix. Proof. Define A sub pxq as the off-diagonal part of A p,red pxq as in the rest of this section. Pick any matrix Hpxq Lie alg ¡ A sub ; k for some λpxq SpecpΨq, for some integer l. Let r Qpxq : Id n Hpxq. Then, Lemma 3.10 implies that we have the equality LiepA p,red ; kq Lie ¡ r QrA p,red s; k © . Now, Lemmas 3.1 and 3.2 show that any matrix in Id n Bpxq, Bpxq Lie alg ¡ A sub ; k © A is a product of matrices Id n Hpxq of the above form. It follows that, for every gauge transformation r Qpxq in the set 3 Id n Bpxq, Bpxq Lie alg ¡ A sub ; k © A , we have LiepA p,red ; kq Lie ¡ r QrA p,red s; k © . So, Corollary 3.5 shows that the system Y I pxq A p,red pxqY pxq is in reduced form and P pxq is the corresponding reduction matrix. 4. Back to the Morales-Ramis-Simó Integrability Criterion 4.1. Reducing the First Variational Equation.

  Morales-Ramis-Simó Criterion. We refer to §2.2 and §2.3 for the notations used in this subsection. Let us fix an integer p ¥ 2. The matrix of the p th variational equation has the form

	A p pxq	¢	sym p pA 1 pxqq S p pxq	0 A p¡1 pxq

.

For each m t1, . . . , pu, we let G m denote the differential Galois group of the m th variational equation Y I pxq A m pxqY pxq and g m its Lie algebra. For all m t1, . . . , p ¡ 1u, we assume that we know a gauge transformation matrix P m pxq such that P m pxqrA m pxqs is in reduced form, i.e. Lie alg pP m rA m sq g m , and we further assume that each g m is abelian. We let A m,red pxq denote the obtained reduced form, that is A m,red pxq : P m pxqrA m pxqs.

  Consider the block-diagonal gauge transformation matrix Spxq has entries in k, and the block-diagonal part of QpxqrA p pxqs is in reduced form.The submatrices sym p pA 1,red pxqq and A p¡1,red pxq belong respectively to M n 1 pkq and M n 2 pkq, with n 1 : n p¡1

					Qpxq :	¢	Sym p pP 1 pxqq 0	0 P p¡1 pxq	.
	Thanks to the above remarks (see also [AM10], §4.5.2), we find that
				QpxqrA p pxqs	¢	sym p pA 1,red pxqq Spxq	0 A p¡1,red pxq
	Furthermore, Lie alg	¢	sym p pA 1,red q 0	0 A p¡1,red	is abelian.
	3. Reduction of Linear Differential Systems with a Reduced Abelian
						Diagonal Part
	The previous subsection shows that finding a reduced form for the p th variational equation
	now amounts to finding a reduced form for
	Apxq : QpxqrA p pxqs	Spxq	0 A p¡1,red pxq
	and A sub pxq :	¢	0 Spxq 0 0	0	0 A p¡1,red pxq

, where

¢ sym p pA 1,red pxqq M n pkq. n¡1 ¨and n 2 : n p¡1 n ¨¡ 1.

We have Apxq A diag pxq A sub pxq, where A diag pxq : ¢ sym p pA 1,red pxqq

  Lie alg pA sub ; kq is an ideal in hpkq. Lemma 3.2. For all Bpxq Lie alg pA sub ; kq, we have exppBpxqq Id n Bpxq and logpId I pxq P pxqrApxqsY pxq is in reduced form. Let G be the differential Galois group of Y I pxq ApxqY pxq. By construction, we have G G p , where G p is the differential Galois group of the p-th variational equation Y I pxq A p pxqY pxq. Let H be the connected linear algebraic group with Lie algebra h. Lemma 3.4. There exists a unipotent gauge transformation P pxq, of the form P pxq Id n 1 0 N pxq Id n 2 Hpkq, such that Y I pxq P pxqrApxqsY pxq is in reduced form. Proof. Let H A be the connected linear algebraic group with Lie algebra Lie alg pA; kq. We have the inclusions G H A H. As G G p , Lemma 2.6 shows that G is connected. So we may use the second point of Proposition 2.1 to obtain the exis-QpxqrApxqsY pxq is in reduced form. Let Rpxq : pxqS Q pxq Id n 2 Hpkq. Consequently, to prove the lemma, it is sufficient to prove that Y I pxq Rpxq r QpxqrApxqsY pxq is in reduced form. We have to prove that Lie alg

	tence of r Qpxq : Y I pxq r so that Rpxq r Qpxq	¢	D 1 pxq 0 S Q pxq D 2 pxq ¢ Id n 1 D ¡1	H A pkq such that the linear differential system ¢ D ¡1 1 pxq 0 0 D ¡1 Hpkq 2 pxq 0
	¡	r QrAs; k
	Before proving Theorem 3.3, we start with a key lemma.

n Bpxqq Bpxq. This induces two bijective maps which are inverses of each other exp : Lie alg pA sub ; kq ÝÑ 3 Id n Bpxq, Bpxq Lie alg pA sub ; kq A Bpxq Þ Ñ Id n Bpxq log : 3 Id n Bpxq, Bpxq Lie alg pA sub ; kq A ÝÑ Lie alg pA sub ; kq Id n Bpxq Þ Ñ Bpxq. Proof. Let Bpxq Lie alg pA sub ; kq. The equality exppBpxqq Id n Bpxq is a direct consequence of the first point of Lemma 3.1. The same argument shows that logpId n Bpxqq Bpxq. It follows directly that exp and log are bijective on the wished sets and inverses of each other. 3.2. The Shape of the Reduction Matrix. We refer to §2.3 and §3.1 for the notations and definitions used in this subsection. The aim of this subsection is to prove: Theorem 3.3. There exists a gauge transformation P pxq 3 Id n Bpxq, Bpxq Lie alg pA sub ; kq A , such that Y ¢ 2 © Lie alg ¡ R r QrAs; k © . Let H R r Q be the algebraic group whose Lie algebra is Lie alg ¡ R r QrAs © . Thanks to the first point of Proposition 2.1, the group H R r Q contains G. Since Y I pxq r QpxqrApxqsY pxq is in reduced form, G is an algebraic group whose Lie algebra is Lie alg ¡ r QrAs © . This implies that Lie alg ¡ r

  Corollary 3.5. Assume that, for all gauge transformations of the form Id n Bpxq, Bpxq Lie alg pA sub ; kq LiepA; kq LiepP rAs; kq. Then, Y I pxq ApxqY pxq is in reduced form. Proof. Theorem 3.3 provides a Bpxq Lie alg pA sub ; kq and P pxq Id n Bpxq such that the system Y I pxq P pxqrApxqsY pxq is in reduced form. In virtue of the hypothesis, LiepA; kq LiepP rAs; kq. This implies that Lie alg pA; kq gpkq, where g is the Lie algebra of the differential Galois group G of Y I pxq ApxqY pxq. This proves that Y I pxq ApxqY pxq The Adjoint Action. We refer to §2.3 and §3.1 for the notations and definitions used in this subsection. In §3.2, we have proved the existence of a gauge transformation Id n Bpxq, Bpxq Lie alg pA sub ; kq A , such that Y I pxq P pxqrApxqsY pxq is in reduced form. Let B 1 , . . . , B σ M n C ¨denote a basis of Lie alg pA sub q. pxqB i , with f i pxq k and B i Lie alg pA sub q, then

	3.3. matrix P pxq	3
	σ i1 f i P pxqrApxqs Apxq Proposition 3.6. If P pxq : Id n
	P pxq	3
	is in reduced form.

A

, we have σ i1

  1, we may use the procedure of §3 to put the first variational equation Y I pxq A 1 pxqY pxq in reduced form. If g 1 is not abelian, which can be checked easily, then the original Morales-Ramis integrability criterion fails. Let p ¥ 2 and assume that, for all m t1, . . . , p ¡ 1u, we know a gauge transformation matrix P m pxq such that P m pxqrA m pxqs is in reduced form, i.e. Lie alg pP m rA m sq g m . We further assume that each g m is abelian. Then, see §2.2, the p th variational equation is of the form Y I pxq A p pxqY pxq, where A p pxq : the matrix S p pxq has entries in k. Let Qpxq : Let P pxq be the gauge transformation that we have computed in §3.4. Then, A p,red pxq : P pxqrApxqs P pxqrQpxqrA p pxqss is in reduced form. If g p is not abelian, which now can be easily checked, the Morales-Ramis-Simó integrability criterion fails. If g p is abelian, we may iterate the same procedure in order to put Y I pxq A p 1 pxqY pxq in reduced form.To summarize, for any p ¥ 2, we are able to put the successive variational equations Y I pxq A 1 pxqY pxq, . . . , Y I pxq A p pxqY pxq in reduced form or prove that one of the g i is not abelian.4.3.A Simplified Reduction Procedure. In view of the applications of this reduction procedure to the Morales-Ramis-Simó integrability criterion, we have the following shortcut.

				¢	Sym p pP 1 pxqq 0	0 P p¡1 pxq	and
	consider (see §2.5)			
	Apxq : QpxqrA p pxqs	¢	sym p pA 1,red pxqq Spxq	0 A p¡1,red pxq
			¢	sym p pA 1 pxqq S p pxq	0 A p¡1 pxq

and .
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