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Abstract9

Template games [13] unify various approaches to game semantics, by exhibiting them as instances10

of a double-categorical variant of the slice construction. However, in the particular case of simple11

games [8, 11], template games do not quite yield the standard (bi)category. We refine the construc-12

tion using factorisation systems, obtaining as an instance a slight generalisation of simple games and13

strategies. Another instance is Day’s convolution monoidal structure on the category of presheaves14

over a strict monoidal category [2], which answers a question raised in [3].15
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1 Introduction21

Game semantics has provided adequate models for a variety of programming languages [10],22

in which types are interpreted as two-player games and programs as strategies. Most game23

models follow a common pattern. Typically, a function 𝐴 → 𝐵 is interpreted as a strategy24

on a compound game made of 𝐴 and 𝐵, where the program plays as Proponent (P) on 𝐵 and25

as Opponent (O) on 𝐴. Another common feature is composition of strategies, which takes26

strategies 𝜎∶ 𝐴 → 𝐵 and 𝜏∶ 𝐵 → 𝐶, and returns a strategy 𝜏 ∘ 𝜎∶ 𝐴 → 𝐶 by letting 𝜎 and 𝜏27

interact on 𝐵 until one of them produces a move in 𝐴 or 𝐶.28

Although widely acknowledged, this strong commonality is also recognised as poorly un-29

derstood, particularly in the presence of innocence, a constraint on strategies that restricts30

them to purely functional behaviour. This has prompted a number of attempts at clarifying31

the situation [4, 8, 9]. Recently, Melliès [13] proposed a novel explanation, of unpreceden-32

ted simplicity, named template games. It is based upon a purely categorical construction,33

essentially taking the slice of a weak double category over an internal monad, the template.34

This produces a new weak double category, in which composition of strategies occurs as35

so-called horizontal composition. In order to illustrate the construction, Melliès applies it to36

three different templates to obtain three models, respectively related to simple games [11],37

concurrent games [14], and the relational model. However, the first two differ significantly38

from their more standard counterparts.39

This raises the question of whether template games only produce new game models,40

or whether they also cover standard models. In this paper, we show that, up to a slight41

refinement, they do cover simple games. More precisely, we (1) modify the original template42

for simple games (Lemma 62), and (2) enrich the general construction with a factorisation43
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system [1] (Theorem 59), obtaining a slight generalisation of standard simple games as an44

instance (Corollary 66). More precisely, we obtain a variant in which games may have several45

‘initial positions’, before the game even starts, and similarly strategies may have several46

‘initial states’ over each of these initial positions. We thus easily characterise standard47

simple games and strategies as so-called definite template games and strategies.48

One motivation for simple and abstract constructions like template games is to find new49

connections with other settings. Our refined construction yields one such connection: we50

show that the Day convolution product [2] arises as an instance of our refined framework,51

though only in the restricted case of strict monoidal categories (Theorem 67). The convolu-52

tion product, which arose in algebraic topology, extends the monoidal structure of a given53

category ℂ to the category 􏾧ℂ of presheaves on ℂ, i.e., contravariant functors ℂop → 𝐒𝐞𝐭.54

This makes formal the similarity, noted in [3, §6.5], between convolution and composition55

of strategies, by showing that both are instances of the same construction.56

Related work. Beyond Melliès’s obviously related work and the related [9], Garner and57

Shulman [7] prove results related to our Theorems 50 and 59. The common ground for58

comparison is the restriction of Theorem 50 to weak double categories with trivial vertical59

category, i.e., monoidal categories. Their Theorem 14.2 is a generalisation in another dir-60

ection, namely that of monoidal bicategories, and their Theorem 14.5 could in particular61

accomodate various sorts of bicategorical factorisation systems.62

Terminology. Although template games and strategies are an abstract construction, we63

often abuse the term to denote the particular instance on the template for simple games.64

Plan. We follow the standard construction layers of game models: games, strategies, and65

composition of strategies. In Section 2, we analyse the differences between template and66

simple games, and describe our refinement of the former, which allows us to bridge the gap.67

In Section 3, we do the same at the level of strategies 𝐴 → 𝐵, for fixed games 𝐴 and 𝐵. In68

Section 4, we recall the abstract construction of template games. In Section 5, we introduce69

our refined construction, and illustrate it on the promised instances.70

2 Template games vs. simple games71

In this section, we first recall template games, and then analyse the discrepancies with simple72

games. Finally, we introduce our solution.73

Template games are based on the following simple category.74

Definition 1. Let �𝑣 denote the category freely generated by the graph 𝑂 𝑃.75

Thus, objects are just 𝑂 and 𝑃, which stand for Opponent and Proponent, as in most game76

models, and morphisms just count the number of (alternating) moves between them.77

Definition 2. A template game is a category 𝐴, equipped with a functor 𝑝∶ 𝐴 → �𝑣.78

Intuitively, objects of 𝐴 are positions, or plays, in the game, and 𝑝 gives their polarity: by79

convention, O is to play in positions mapped to 𝑂, while P is to play in others.80

Simple games clearly fit into this framework.81

Definition 3. A simple game 𝐴 is a rooted tree.82

The intuition is just as for template games, and indeed:83

Proposition 4. Any simple game 𝐴, viewed as a poset, hence as a category, forms a84

template game 𝑝𝐴 ∶ 𝐴 → �𝑣, where 𝑝𝐴 maps the root to 𝑂, its children to 𝑃, and so on.85
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Example 5. The simple game 𝔹 for booleans is the tree86

𝜀

𝐪

𝐪𝐭 𝐪𝐟,

𝐪

𝐭 𝐟
87

where we have labelled edges with moves, and each node with the corresponding play, i.e.,88

the sequence of moves needed to reach it from the root. The first move, 𝐪, represents O89

asking the value of the boolean, and the other moves represent the possible answers: true90

and false. The functor 𝑝𝔹 ∶ 𝔹 → �𝑣 maps 𝐪 to 𝑃 and all other objects to 𝑂.91

Discrepancies between template and simple games92

Template games are significantly more general than simple games. To start with, simple93

games have an empty, initial play, which template games need not. Furthermore, this initial94

play is mapped to 𝑂 by the functor to �𝑣.95

Lemma 6. For any simple game 𝐴, the category 𝐴 has an initial object, mapped to 𝑂 by96

the functor 𝐴 → �𝑣.97

Let us exhibit some counterexamples among general template games.98

Example 7. The template game 𝟙 → �𝑣 picking up 𝑃 is not equivalent to any simple game99

in the 2-category 𝐂𝐚𝐭/�𝑣.100

Example 8. Consider the template game consisting of ℤ, the poset of integers, and the101

functor ℤ → �𝑣 that maps 2𝑛 to 𝑂 and 2𝑛 + 1 to 𝑃. The category ℤ has no initial object,102

hence this template game is not equivalent to any simple game in 𝐂𝐚𝐭/�𝑣.103

Another discrepancy has to do with decomposing plays into moves.104

Definition 9. A functor 𝐹 ∶ 𝔼 → 𝔹 is a discrete Conduché fibration iff for any 𝐼
𝑢
−→ 𝐽

𝑣
−→ 𝐾105

in 𝔹 and 𝑃
𝑓
−→ 𝑅 in 𝔼 mapped to 𝑣 ∘ 𝑢, 𝑓 uniquely factors as 𝑘 ∘ ℎ with 𝐹(ℎ) = 𝑢 and 𝐹(𝑘) = 𝑣:106

𝑃 𝑅

𝑄

𝐼 𝐾.

𝐽

𝑓

ℎ 𝑘

𝑣∘𝑢

𝑢 𝑣

107

Lemma 10. For any simple game 𝐴, the functor 𝑝𝐴 ∶ 𝐴 → �𝑣 is a discrete Conduché108

fibration.109

Proof. By construction, a morphism in 𝐴 over a path of length 𝑛 has the form 𝑝 → 𝑝𝑚1…𝑚𝑛110

for some play 𝑝 and moves 𝑚1, …,𝑚𝑛, hence decomposes as needed.111

Unlike simple games, not all template games are Conduché fibrations. Indeed, they may112

feature atomic sequences of moves, i.e., morphisms that are mapped to non-basic morphisms113

in �𝑣 and yet are ‘indecomposable’.114

Example 11. Consider the ordinal 𝟚 = {0 ≤ 1} viewed as a category, and the functor115

𝟚 → �𝑣 mapping 0 ≤ 1 to the path 𝑂 → 𝑃 → 𝑂. This is clearly not a Conduché fibration,116

hence is not equivalent to any simple game.117
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Refining template games118

As announced in §1,our solution to bridge the gap between template and simple games is119

twofold: (1) we use a different template, 𝕋, and (2) we restrict attention to functors 𝐴 → 𝕋120

which are discrete fibrations. Let us start with the new template.121

Definition 12. Let 𝕋𝑣 = 𝜔 denote the poset of natural numbers, viewed as a category.122

Remark 13. 𝕋𝑣 is isomorphic to the slice category 𝑂/�𝑣.123

Defining games to be functors to 𝕋𝑣 intuitively goes in the right direction, but does not124

quite solve any of our two problems.125

Example 14. Consider the functor 𝐷∶ 𝜔 → 𝜔 = 𝕋𝑣 defined by 𝐷(𝑛) = 2𝑛 + 1. It exhibits126

both problems at once: it does not preserve the initial object, and, e.g., 0 ≤ 1 does not admit127

any decomposition along the decomposition 1 ≤ 2 ≤ 3, a.k.a. 𝑃 → 𝑂 → 𝑃, of its image.128

However, if we restrict attention to a certain kind of functors 𝐴 → 𝕋𝑣, we do solve both129

problems at once. The relevant constraint on functors is generally stronger than being a130

Conduché fibration, but becomes equivalent when both categories have an initial object131

which is preserved by the functor.132

Definition 15. A functor 𝐹 ∶ 𝔼 → 𝔹 is a discrete fibration when for any 𝐸 ∈ 𝔼 and133

𝑢∶ 𝐵 → 𝐹(𝐸), there is a unique 𝑓 ∶ 𝐸′ → 𝐸 such that 𝐹(𝑓 ) = 𝑢, as in134

𝐸′ 𝐸

𝐵 𝐹(𝐸).

𝑓

𝑢

135

Let DFib(ℂ) denote the full subcategory of 𝐂𝐚𝐭/ℂ spanning discrete fibrations.136

Definition 16. A refined template game is a discrete fibration to 𝕋𝑣.137

Of course, any simple game 𝐴 yields a discrete fibration 𝑝𝐴 ∶ 𝐴 → 𝕋𝑣, and we have:138

Proposition 17. Any refined template game in DFib(𝕋𝑣) is isomorphic to 𝑝𝐴, for some139

simple game 𝐴, iff it is definite, i.e., its fibre over 0 is a singleton.140

3 Template strategies vs. simple strategies141

Let us now consider strategies. As for games, we start with Melliès’s notion, to emphasise142

its simplicity. Template strategies are based on the following simple category:143

Definition 18. Let �𝑉 denote the category freely generated by the graph144

𝑂𝑂 𝑂𝑃 𝑃𝑃.145

This is essentially the well-known state diagram for strategies in a simple arrow game 𝐴 → 𝐵,146

extended to a category. We need a little lemma before defining strategies.147

Lemma 19. The left and right projections give rise to functors 𝑠, 𝑡 ∶ �𝑉 → �𝑣, with148

𝑠(𝑋𝑌) = 𝑋 and 𝑡(𝑋𝑌) = 𝑌.149
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Definition 20. A template strategy from 𝑝∶ 𝐴 → �𝑣 to 𝑞 ∶ 𝐵 → �𝑣 is a tuple (𝑆, 𝑠′, 𝑡′, 𝑟)150

making the following diagram commute.151

𝐴 𝑆 𝐵

�𝑣 �𝑉 �𝑣

𝑠′

𝑝

𝑠

𝑟

𝑡′

𝑡

𝑞 (1)152

Let us now show that simple strategies give rise to template strategies. Simple strategies are153

rather subtle – which was one of the main motivations for template games in the first place!154

– so this is a bit technical. We first consider boolean simple strategies, which are easier, and155

then move on to general ones.156

Boolean simple strategies157

First, we need to define the arrow game 𝐴 → 𝐵, for any two simple games 𝐴 and 𝐵. The158

following definition is slightly vague: we refer to [11] for a fully rigorous one.159

Definition 21. Given two simple games 𝐴 and 𝐵, 𝐴 → 𝐵 interleaves moves from 𝐴 and 𝐵160

according to the following rules: (1) the polarity of moves in 𝐴 is inverted, (2) O starts in161

𝐵, and (3) only P gets to switch sides.162

Example 22. The game 𝔹 → 𝔹 is depicted below left, with an example play on the right.163

𝐪𝑟

𝐪𝑙 𝐭𝑟
𝐟𝑟

𝐭𝑙 𝐟𝑙

𝐭𝑟 𝐟𝑟 𝐭𝑟 𝐟𝑟

𝔹 𝔹

𝐪𝑟

𝐪𝑙

𝐭𝑙
𝐟𝑟

164

Definition 23. A boolean simple strategy 𝐴 → 𝐵 is a prefix-closed set of non-empty,165

even-length plays, called accepted, in 𝐴 → 𝐵.166

Example 24. The set of non-empty, even-length prefixes of the play in Example 22 (i.e.,167

the set {𝐪𝑟𝐪𝑙, 𝐪𝑟𝐪𝑙𝐭𝑙𝐟𝑟}) forms a boolean simple strategy.168

There are in fact several ways in which boolean simple strategies give rise to template169

strategies. We here present the relevant one in terms of semantics.170

Definition 25. The template strategy associated to a boolean simple strategy 𝜎∶ 𝐴 → 𝐵 is171

(𝔼(𝜎), 𝑠′, 𝑡′, 𝑟), where 𝔼(𝜎) is the poset of all prefixes of accepted plays, plus all extensions 𝑠𝑚172

of prefixes 𝑠 of even length, and 𝑟, 𝑠′, and 𝑡′ are the obvious projections.173

Example 26. Consider the strategy of Example 24. The functor 𝔼(𝜎) → �𝑉 can be174

represented as175

𝑂𝑃 𝑂𝑂
𝑂𝑂 𝑂𝑃 𝑃𝑃

𝑂𝑃,

𝐪𝑟 𝐪𝑙
𝐭𝑙

𝐟𝑙

𝐟𝑙

(2)176

with 𝑠′, 𝑡′ ∶ 𝟝 → 𝔹 displayed on the left and right in Figure 1 (with polarity indications).177
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𝔹 (𝔹 𝔹) 𝔹

𝑂 𝑂𝑂 𝑂

𝑂 𝑂𝑃 𝑃

𝑃 𝑃𝑃 𝑃

𝑂 𝑂 𝑂𝑃 𝑂𝑃 𝑃 𝑃

𝑂 𝑂𝑂 𝑂

𝐪𝑟

𝐪𝑙

𝐭𝑙
𝐟𝑙

𝐟𝑟

𝐪

𝐭
𝐟

𝐪

𝐟

Figure 1 Template strategy associated to the simple strategy of Example 24

General simple strategies178

Let us now consider the more general, non-deterministic (= non-boolean) but still standard,179

notion of simple strategy [11]. Let us start from an alternative presentation of boolean180

strategies.181

Definition 27. Let (𝐴 → 𝐵)𝑃∗ ↪ (𝐴 → 𝐵) denote the full subcategory spanning non-empty,182

even-length plays.183

Proposition 28. Boolean simple strategies 𝐴 → 𝐵 are equivalent to functors ((𝐴 →184

𝐵)𝑃∗)op → 𝟚.185

The idea is that a strategy 𝜎 accepts a given play 𝑝 iff the corresponding functor maps it to186

1 ∈ 𝟚, observing that functoriality ensures prefix-closedness.187

General simple strategies are obtained by generalising from 𝟚 to 𝐒𝐞𝐭:188

Definition 29. Let the category of simple strategies 𝐴 → 𝐵 be 𝒮(𝐴, 𝐵) ≔ 􏷿(𝐴 → 𝐵)𝑃∗.189

Remark 30. This is equivalent to the standard definition [11] as a slice category. Indeed,
letting 𝜔𝑃∗ denote the full subcategory of 𝜔 on positive, even ordinals, 𝑝𝐴→𝐵 restricts to a
discrete fibration (𝐴 → 𝐵)𝑃∗ → 𝜔𝑃∗. By the well-known equivalence 𝜕⋆ ∶ DFib(ℂ) → 􏾧ℂ ∶ 𝑒𝑙
between presheaves and discrete fibrations (recalled as Lemma 32 below), and, for any 𝑈 ∈ 􏾧ℂ,
the further equivalence 􏾧ℂ/𝑈 ≃ 􏾩𝑒𝑙(𝑈), we obtain

𝒮(𝐴, 𝐵) = 􏷿(𝐴 → 𝐵)𝑃∗ ≃ 􏾨𝜔𝑃∗/𝜕⋆((𝐴 → 𝐵)𝑃∗).

The latter slice category is precisely the standard definition.190

Of course, boolean simple strategies embed into general ones by postcomposition with the191

embedding 𝟚 ↪ 𝐒𝐞𝐭 determined by 0 ↦ ∅ and 1 ↦ 1.192

Let us now informally describe how simple strategies 𝜎 ∈ 􏷿(𝐴 → 𝐵)𝑃∗ give rise to template193

strategies, for which the following well-known result is the basis.194

Definition 31. For any small category ℂ, let 𝑋 ∈ 􏾧ℂ. The category of elements 𝑒𝑙(𝑋) of195

𝑋 has as objects pairs (𝑐, 𝑥) with 𝑥 ∈ 𝑋(𝑐), and as morphisms (𝑐, 𝑥) → (𝑐′, 𝑥′) all morphisms196

𝑓 ∶ 𝑐 → 𝑐′ such that 𝑋(𝑓 )(𝑥′) = 𝑥.197

Lemma 32. For any small category ℂ and 𝑋 ∈ 􏾧ℂ, the projection functor 𝑝𝑋 ∶ 𝑒𝑙(𝑋) → ℂ198

is a dicrete fibration, and the category of elements construction extends to an equivalence of199

categories 𝑒𝑙 ∶ 􏾧ℂ → DFib(ℂ). Let 𝜕⋆ denote the weak inverse to 𝑒𝑙.200
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Example 33. One possible definition of forests is as presheaves over 𝜔. Indeed, any 𝑇 ∈ 􏾧𝜔201

models the forest whose nodes of depth 𝑛 are 𝑇(𝑛), and whose parent relation is given by202

𝑇(𝑛 ≤ 𝑛 + 1) ∶ 𝑇(𝑛 + 1) → 𝑇(𝑛). The category 𝑒𝑙(𝑇) is just the same forest viewed as a poset,203

or rather a category, and the projection functor 𝑝𝑇 ∶ 𝑒𝑙(𝑇) → 𝜔 maps vertices to their depths.204

Trees are those 𝑇 ∈ 􏾧𝜔 such that 𝑇(0) is a singleton.205

Returning to simple and template strategies, we have a commuting diagram of functors206

𝐴 (𝐴 → 𝐵) 𝐵

�𝑣 �𝑉 �𝑣,
𝑝𝐴

𝑠 𝑡

𝑝𝐵 (3)207

so a first candidate follows by composition with the functor

𝑒𝑙(𝜎) → (𝐴 → 𝐵)𝑃∗ ↪ (𝐴 → 𝐵).

However, the fibres of this functor over plays of odd length are all empty. We thus need to208

insert additional objects over plays of odd length whose immediate prefix is accepted, thus209

yielding a functor 𝑒𝑙(𝜎) → (𝐴 → 𝐵) which at last induces the desired template strategy by210

composition with (3).211

We obtain the following result, which shows that even the more general simple strategies212

do not cover all template strategies.213

Lemma 34. Both functors 𝑒𝑙(𝜎) → (𝐴 → 𝐵) → �𝑉 are discrete Conduché fibrations.214

Furthermore, the former functor 𝑒𝑙(𝜎) → (𝐴 → 𝐵) is receptive, in the sense that for all215

even-length plays 𝑠 with immediate extensions 𝑠𝑚, and all (𝑠, 𝑥) ∈ 𝑒𝑙(𝜎), there exists a unique216

(𝑠𝑚, 𝑦) ∈ 𝑒𝑙(𝜎) and morphism (𝑠, 𝑥) → (𝑠𝑚, 𝑦) mapped to 𝑠 → 𝑠𝑚 by the projection.217

Refining template strategies218

As we did for games, let us now analyse and resolve the discrepancies. Clearly, the root and219

atomicity problems arise again. So a natural idea is to slice �𝑉 under 𝑂𝑂 and restrict to220

discrete fibrations 𝑆 → 𝑂𝑂/�𝑉 .221

Definition 35. Recalling Remark 13, naively refined template strategies are just as template222

strategies in Definition 20, but over 𝑂/�𝑣
𝑠
←− 𝑂𝑂/�𝑉

𝑡
−→ 𝑂/�𝑣, and with 𝑟 a discrete fibration.223

We obtain a first improvement:224

Lemma 36. With 𝑠 and 𝑡 as in Lemma 19 but in slices, 𝐴 → 𝐵 is a limit225

𝐴 (𝐴 → 𝐵) 𝐵

𝑂/�𝑣 𝑂𝑂/�𝑉 𝑂/�𝑣,
𝑝𝐴

𝑠 𝑡

𝑝𝐵 (4)226

and naively refined template strategies are equivalent to presheaves over 𝐴 → 𝐵.227

In order to precisely capture simple strategies, it remains to account for receptiveness. For228

this, our solution is to further restrict the template:229

Definition 37. Let 𝕋𝑉 denote the full subcategory of 𝑂𝑂/�𝑉 spanning even-length schedules.230
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Remark 38. It is tempting to further restrict to non-empty, even-length schedules. However,231

the obtained span does not form a monad, hence the general template games construction232

does not apply.233

Definition 39. Refined template strategies are defined just as template strategies in Defin-234

ition 20, but over 𝕋𝑣
𝑠

←− 𝕋𝑉
𝑡
−→ 𝕋𝑣, and with 𝑟 a discrete fibration.235

We obtain a restriction of Lemma 36 to the relevant plays:236

Lemma 40. The full subcategory (𝐴 → 𝐵)𝑃 ↪ (𝐴 → 𝐵) spanning even-length plays is a237

limit238

𝐴 (𝐴 → 𝐵)𝑃 𝐵

𝕋𝑣 𝕋𝑉 𝕋𝑣,
𝑝𝐴

𝑠 𝑡

𝑝𝐵 (5)239

and refined template strategies 𝐴 → 𝐵 are equivalent to discrete fibrations over (𝐴 → 𝐵)𝑃.240

Proof. By repeated application of stability of discrete fibrations under pullback, (𝐴 →241

𝐵)𝑃 → 𝕋𝑉 is a discrete fibration. Hence, in a diagram like (1) (with 𝕋 instead of �),242

assuming 𝑝, 𝑞 ∈ DFib, 𝑟 is a discrete fibration iff the induced morphism to (𝐴 → 𝐵)𝑃 is. The243

result then follows from Lemma 32.244

Corollary 41. There is a full, reflective embedding from simple strategies 𝒮(𝐴 → 𝐵)245

to refined template strategies, whose essential image consists of definite refined template246

strategies, i.e., those whose associated presheaf 𝑋 ∈ 􏷿(𝐴 → 𝐵)𝑃 is such that 𝑋(𝜀) = 1.247

Proof. The embedding (𝐴 → 𝐵)𝑃∗ ↪ (𝐴 → 𝐵)𝑃 being full, right Kan extension along its248

opposite defines a full, reflective embedding 􏷿(𝐴 → 𝐵)𝑃∗ ↪ 􏷿(𝐴 → 𝐵)𝑃, which returns definite249

refined template strategies by the standard end formula.250

Summary251

Until now, we have refined template games and strategies, first by replacing the original252

template � by our 𝕋, and second by restricting template games and strategies to be discrete253

fibrations. We have then identified simple games as definite template games, and constructed254

a full, reflective embedding from simple strategies 𝐴 → 𝐵 to refined template strategies255

𝑝𝐴 → 𝑝𝐵, with essential image the definite ones. What remains to be seen is whether we can256

refine Melliès’s double-categorical construction accordingly.257

4 Template games258

In this section, we review Melliès’s double-categorical variant of the slice construction. We259

then apply it to deduce that the new template 𝕋 yields a weak double category as desired.260

In the next section, we refine the construction using a factorisation system, which allows us261

to account for restriction to discrete fibrations.262

4.1 Double categories263

The key point is that the template � forms a double category [5], in a way that describes264

the scheduling of composition of strategies. So let us first briefly review double categories.265
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𝐴 𝐵

𝐶 𝐷

𝑓

𝑢

𝑔

𝑣𝛼

A double category 𝒞 essentially consists of a horizontal category 𝒞ℎ266

and a vertical one 𝒞𝑣 sharing the same object set, together with a set of267

cells as on the right where 𝐴,𝐵, 𝐶, and 𝐷 are objects, 𝑓 and 𝑔 are morph-268

isms in 𝒞ℎ, and 𝑢 and 𝑣 are morphisms in 𝒞𝑣. In order to distinghish269

notationally between horizontal and vertical morphisms, we mark horizontal ones with a270

bullet. Cells are furthermore equipped with composition and identities in both directions.271

E.g., to any given cells 𝛼 and 𝛽 with compatible vertical border is assigned a composite cell272

𝛽 • 𝛼, as below left. Similarly, we have horizontal identities 𝑖𝑑•𝑝 as below right.273

𝐴 𝐵 𝐸

𝐶 𝐷 𝐹

𝑆

𝑝

𝑇

𝑞𝛼

𝑆′

𝑇′

𝑟𝛽 ↦
𝐴 𝐸

𝐶 𝐹,

𝑆′•𝑆

𝑝

𝑇′•𝑇

𝑟𝛽•𝛼

𝐴 𝐴

𝐵 𝐵,

𝑖𝑑•𝐴

𝑝

𝑖𝑑•𝐵

𝑝𝑖𝑑•𝑝 (6)274

Both notions of composition are required to be associative and the corresponding identities275

unital, giving two categories 𝒞𝐻 and 𝒞𝑉 of cells. Finally, the interchange law requires the276

two different ways of parsing any compatible pasting as below to agree, i.e., (𝛿 ∘ 𝛾) • (𝛽 ∘ 𝛼) =277

(𝛿 • 𝛽) ∘ (𝛾 • 𝛼). 𝐴 𝐵 𝐶

𝐷 𝐸 𝐹

𝐺 𝐻 𝐼

𝛼

𝛽

𝛾

𝛿

278

4.2 The template � as a double category279

Let us now show that the template � forms a double category. As suggested by the notation,280

its vertical category and vertical category of cells are �𝑣 and �𝑉 . Its horizontal category �ℎ281

is generated by the graph 𝑂 → 𝑃. It is thus isomorphic to the ordinal 𝟚: there are exactly282

three horizontal morphisms: 𝑂𝑂, 𝑃𝑃, and 𝑂𝑃. To complete the definition, it remains to283

define composition and identities in �𝐻 . One way is to depict basic cells as triangles284

𝑂 𝑂

𝑃

𝑂 𝑃

𝑃

𝑃 𝑃

𝑂

𝑂 𝑃

𝑂,
(7)285

respectively denoting 𝑂𝑂 → 𝑂𝑃, 𝑂𝑃 → 𝑃𝑃, 𝑃𝑃 → 𝑂𝑃, and 𝑂𝑃 → 𝑂𝑂. General cells are286

obtained by stacking up such basic triangles. Depicting cells as stacks of triangles yields the287

following inductive definition of composition of cells 𝛼 and 𝛽 as in (6):288

If there is an ‘outwards’ bottom triangle, i.e., the bottom of 𝛼 and 𝛽 look like either of289

𝑂 𝑂 𝑋

𝑋⊥

𝑋 𝑃 𝑃

𝑋⊥

290

with 𝑋 ∈ {𝑂, 𝑃} and 𝑋⊥ denoting the other player, then the composite is obtained by291

composing the rest of 𝛼 and 𝛽, and appending the obvious triangle ((𝑂𝑋,𝑂𝑋⊥), resp.292

(𝑋𝑃,𝑋⊥𝑃)).293

Otherwise, there is a pair of interacting bottom triangles, as below left, in which case294

the composite is simply the composite of the rest of 𝛼 and 𝛽 – which is precisely where295

game semantical hiding is encoded in �.296
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𝑂 𝑋 𝑃

𝑋⊥

𝐿 𝑀 𝑅

𝐿⊥ 𝑅⊥

297

Remark 42. Ambiguous configurations as above right, where we would not know which298

triangle to put last in the composite, cannot occur. Indeed, existence of the left-hand299

triangle forces 𝑀 = 𝑃, while existence of the right-hand one forces 𝑀 = 𝑂.300

Horizontal identities are the so-called copycat schedules. The copycat on the vertical morph-301

ism 𝑂 → 𝑃 is obtained by composing 𝑂𝑂 → 𝑂𝑃 and 𝑂𝑃 → 𝑃𝑃, and dually for 𝑃 → 𝑂. The302

copycat schedule of a general morphism is the obvious composite of these basic copycats.303

We obtain as promised:304

Proposition 43 (Melliès [13]). The template � forms a double category.305

4.3 Template games as a double slice306

There is an alternative point of view on double categories which will be crucial to us: they307

may be axiomatised based on a span of functors 𝒞𝑣
𝑠

←− 𝒞𝑉
𝑡
−→ 𝒞𝑣. For this, let us consider308

the following structure, which is almost a (large) double category.309

Definition 44. Let 𝐒𝐩𝐚𝐧(𝐂𝐚𝐭) have as objects all small categories, as vertical morphisms310

all functors, as horizontal morphisms 𝐴 𝐵 all spans 𝐴 ← 𝐶 → 𝐵 of functors, and as cells311

below left all commuting diagrams as below right in 𝐂𝐚𝐭.312

𝐴 𝐵

𝑈 𝑉

𝐴 𝐶 𝐵

𝑈 𝑊 𝑉
313

Vertical composition is given by (componentwise) composition of functors, while horizontal314

composition is given by pullbacks and their universal property.315

The structure formed by 𝐒𝐩𝐚𝐧(𝐂𝐚𝐭) is a weak double category [6], a weak form of double316

category where horizontal composition is only associative and unital up to coherent iso-317

morphism, in a suitable sense.318

Remark 45. The horizontal arrows and special cells of a weak double category 𝒞 form a319

bicategory ℋ(𝒞), where special means that the left and right borders are identities.320

Remark 46. The reason 𝐒𝐩𝐚𝐧(𝐂𝐚𝐭) is weak is that one cannot hope to make a strictly321

associative choice of pullbacks.322

Just like one usually does in bicategories, we may define monads internally to weak double323

categories.324

Definition 47. A monad in a weak double category 𝒞 is a horizontal morphism 𝑀∶ 𝑋 𝑋,325

equipped with special cells326

𝑋

𝑋 𝑋
𝑀

𝑀

𝑀
𝜇 and 𝑋 𝑋

𝑀

𝜂327

satisfying the obvious generalisation of the usual monad laws.328
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Proposition 48. A double category is the same as a monad in 𝐒𝐩𝐚𝐧(𝐂𝐚𝐭).329

Proof. Composing an endo-span 𝒞𝑣
𝑠

←− 𝒞𝑉
𝑡
−→ 𝒞𝑣 with itself in 𝐒𝐩𝐚𝐧(𝐂𝐚𝐭) amounts to330

constructing the category of pairs of compatible horizontal morphisms and cells (6), so331

requiring a monad multiplication is requiring horizontal composition.332

Explicitly, if 𝒞 is a double category, then it can be seen as a monad 𝒞𝑉 ∶ 𝒞𝑣 𝒞𝑣 in333

Span(Cat) with 𝜇 and 𝜂 given by horizontal composition and identities.334

It should now be clear that a template game is a vertical morphism to �𝑣 in 𝐒𝐩𝐚𝐧(𝐂𝐚𝐭),335

while a template strategy 𝐴 → 𝐵 is merely a cell336

𝐴 𝐵

�𝑣 �𝑣.

𝑆

𝑝

�𝑉

𝑞337

This allows us to define composition of template strategies, using the monad structure of �338

given by Propositions 48 and 43.339

Proposition 49. The composite of 𝑆∶ 𝐴 → 𝐵 and 𝑇 ∶ 𝐵 → 𝐶 is the pasting below left, while340

the identity on any 𝑝∶ 𝐴 → �𝑣 is the one below right.341

𝐴 𝐵 𝐶

�𝑣 �𝑣 �𝑣

𝑆

𝑝

�𝑉

�𝑉

𝑞

𝑇

�𝑉

𝑟

𝜇

𝐴 𝐴

�𝑣 �𝑣

𝑝

�𝑉

𝑝𝑖𝑑•𝑝

𝜂

(8)342

From this, it easily follows that strategies in fact form a weak double category, and clearly343

this construction works for any monad in any weak double category. Namely, Melliès’s344

construction may be obtained by applying the following theorem.345

Theorem 50. Given any monad 𝑀𝑉 ∶ 𝑀𝑣 𝑀𝑣 in a weak double category 𝒞 , there is a346

slice weak double category 𝒞/𝑀 whose347

vertical category is (𝒞/𝑀)𝑣 = 𝒞𝑣/𝑀𝑣;348

vertical category of cells is (𝒞/𝑀)𝑉 = 𝒞𝑉 /𝑀𝑉 ;349

horizontal composition is given by pasting with 𝜇, as on the left in (8);350

horizontal identity on 𝑝∶ 𝐴 → 𝑀𝑣 is by pasting with 𝜂 as on the right in (8).351

and all operations on cells are given by their counterparts in 𝒞 .352

Proposition 51. The weak double category Games(�) of template games [13] is equal to353

𝐒𝐩𝐚𝐧(𝐂𝐚𝐭)/�.354

A weak double category with trivial category 𝒞𝑣 is nothing but a monoidal category. In355

that case, the theorem reduces to the following well-known result used, e.g., in Weber [16]:356

Corollary 52. The slice of a monoidal category over a monoid is again monoidal.357

5 Refined template games, simple games, and Day convolution358

5.1 Refined template games359
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𝐴 𝐶

𝐵 𝐷
𝑓 𝑘 𝑔

We now want to recover simple games by replacing � with 𝕋, and restrict-360

ing the slice construction in 𝐒𝐩𝐚𝐧(𝐂𝐚𝐭) to discrete fibrations (for vertical361

morphisms and cells). For this, we appeal to factorisation systems.362

Definition 53. For all morphisms 𝑓 and 𝑔 in a category 𝒞 , let 𝑓 ⊥𝑔 iff for all commuting363

squares as above right, there exists a unique 𝑘 as shown making both triangles commute. For364

any class ℳ of morphisms, let ℳ ⊥ = {𝑔 | ∀𝑓 ∈ ℳ , 𝑓 ⊥𝑔}. We define ⊥ℳ symmetrically.365

A (strong) factorisation system on a category 𝒞 consists in classes ℒ and ℛ of arrows366

such that ℒ ⊥ = ℛ , ℒ = ⊥ℛ , and every arrow factors as 𝑟 ∘ 𝑙 with 𝑙 ∈ ℒ and 𝑟 ∈ ℛ .367

Example 54. Discrete fibrations form the right class of the comprehensive factorisation368

system (Fin,DFib) on 𝐂𝐚𝐭, whose left class is that of final functors [15].369

Our refined construction is based on the following generalisation of factorisation systems.370

Definition 55. A double factorisation system on a weak double category 𝒞 consists of371

factorisation systems (ℒ𝑣,ℛ𝑣) and (ℒ𝑉 ,ℛ𝑉 ) on 𝒞𝑣 and 𝒞𝑉 , respectively, such that the372

source and target functors 𝒞𝑉 → 𝒞𝑣 both map ℒ𝑉 to ℒ𝑣 and ℛ𝑉 to ℛ𝑣, and all cells 𝛼 as373

below left with ℓ, ℓ ′ ∈ ℒ𝑣 and 𝑟, 𝑟′ ∈ ℛ𝑣 factor as below right, with 𝜆 ∈ ℒ𝑉 and 𝜌 ∈ ℛ𝑉 .374

𝐴 𝐴′

𝐵 𝐵′

𝐶 𝐶′

𝑆

ℓ ℓ ′

𝑟

𝑈

𝑟′

𝛼 =

𝐴 𝐴′

𝐵 𝐵′

𝐶 𝐶′

𝑆

ℓ
𝑇

ℓ ′

𝑟

𝑈

𝑟′

𝜆

𝜌

375

Lemma 56. Discrete fibrations and componentwise discrete fibrations are the right classes376

of a double factorisation system ((Fin,DFib), (Fin𝑉 ,DFib𝑉 )) on 𝐒𝐩𝐚𝐧(𝐂𝐚𝐭). Furthermore,377

DFib𝑉 is stable under horizontal composition and identities.378

Proof. As is well-known, discrete fibrations may be defined by unique lifting w.r.t. the379

injection 𝟙 ↪ 𝟚 mapping 0 to 1. Componentwise discrete fibrations may be defined similarly,380

in 𝐒𝐩𝐚𝐧(𝐂𝐚𝐭)𝑉 . The result then follows from componentwise discrete fibrations being stable381

under horizontal composition, which holds because they are stable under pullback in the382

arrow category.383

In order to state the promised generalisation of Theorem 50 in full generality, we need384

the following, somewhat awkward notion of stability of left residuals. Indeed, our two385

applications work for rather different reasons, as emphasised by Corollaries 60 and 61 below.386

Definition 57. A monad 𝑀𝑉 ∶ 𝑀𝑣 𝑀𝑣 in a weak double category 𝒞 has stable left387

residuals w.r.t. a double factorisation system ((ℒ𝑣,ℛ𝑣), (ℒ𝑉 ,ℛ𝑉 )), iff388

(a) for all 𝛼, 𝛽 ∈ ℛ𝑉 such that the composite below left factors as on the right,389

𝐴 𝐶 𝐵

𝑀𝑣 𝑀𝑣 𝑀𝑣

𝑃 𝑄

𝑀𝑉

𝑀𝑉

𝑀𝑉

𝛼 𝛽

𝜇

=

𝐴 𝐵

𝑀𝑣 𝑀𝑣

𝑄•𝑃

𝑀𝑉

𝜆

𝜌

(9)390

for any 𝑆∶ 𝐴′ 𝐴 and 𝑇 ∶ 𝐵 𝐵′ in 𝒞ℎ, the composite 𝑖𝑑𝑇 • 𝜆 • 𝑖𝑑𝑆 below is in ℒ𝑉 ;391
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𝐴′ 𝐴 𝐵 𝐵′,𝑆 𝜆 𝑇392

(b) for all 𝑝 ∈ ℛ𝑣 such that the composite below left factors as on the right, for any 𝑆∶ 𝐴′ 𝐴393

and 𝑇 ∶ 𝐵 𝐵′ in 𝒞ℎ, 𝑖𝑑𝑇 • 𝜆 • 𝑖𝑑𝑆 is in ℒ𝑉 .394

𝐴 𝐴

𝑀𝑣 𝑀𝑣

𝑝

𝑀𝑉

𝑝𝑖𝑑•𝑝

𝜂

=

𝐴 𝐵

𝑀𝑣 𝑀𝑣

𝑁

𝑀𝑉

𝜆

𝜌
(10)395

Remark 58. In both cases, existence of a special 𝜆 follows by Definition 55.396

Theorem 59. Consider any monad 𝑀𝑉 ∶ 𝑀𝑣 𝑀𝑣 in a weak double category 𝒞 with397

stable left residuals w.r.t. a double factorisation system ((ℒ𝑣,ℛ𝑣), (ℒ𝑉 ,ℛ𝑉 )). Then there398

is a slice weak double category 𝒞/ℛ𝑉𝑀 whose399

vertical category (𝒞/ℛ𝑉𝑀)𝑣 is 𝒞𝑣/ℛ𝑣𝑀𝑣, the full subcategory of 𝒞𝑣/𝑀𝑣 on maps in ℛ𝑣;400

vertical category of cells is (𝒞/ℛ𝑉𝑀)𝑉 = 𝒞𝑉 /ℛ𝑉𝑀𝑉 ;401

horizontal composition is given by 𝜌 in (9);402

horizontal identity on any 𝑝∶ 𝐴 → 𝑀𝑣 is given by 𝜌 in (10);403

and all operations on cells are given by their counterparts in 𝒞 .404

Proof. See Appendix A.405

Corollary 60. Consider any monad 𝑀𝑉 ∶ 𝑀𝑣 𝑀𝑣 in a weak double category 𝒞 with double406

factorisation system ((ℒ𝑣,ℛ𝑣), (ℒ𝑉 ,ℛ𝑉 )). If 𝜂, 𝜇 ∈ ℛ𝑉 and ℛ𝑉 is stable under horizontal407

composition and identities, then 𝒞/ℛ𝑉𝑀 exists and is a sub weak double category of 𝒞/𝑀.408

Proof. Both pastings on the left of (9) and (10) are already in ℛ𝑉 .409

Corollary 61. Consider any monad 𝑀𝑉 ∶ 𝑀𝑣 𝑀𝑣 in a weak double category 𝒞 with double410

factorisation system ((ℒ𝑣,ℛ𝑣), (ℒ𝑉 ,ℛ𝑉 )). If ℒ𝑉 is stable under horizontal composition,411

then 𝒞/ℛ𝑉𝑀 is a weak double category.412

Proof. Stability under horizontal composition entails stability under whiskering.413

5.2 Simple games414

Let us at last return to simple games. We have:415

Lemma 62. 𝕋 is a monad whose multiplication and unit are in DFib𝑉 .416

Proof. In 𝕋, multiplication is composition of schedules (through parallel composition and417

hiding) and the unit is given by copycat schedules. The crucial point to prove that multi-418

plication is in DFib𝑉 is that, for any pair (𝑝, 𝑞) of schedules in 𝕋𝑉 •𝕋𝑉 , the last move in 𝑠(𝑞)419

(= 𝑡(𝑝)) cannot be last in both 𝑝 and 𝑞 for polarity reasons. For the unit, the crucial point420

is that the restriction of a copycat schedule is itself copycat.421

By Corollary 60, we have:422

Corollary 63. 𝐒𝐩𝐚𝐧(𝐂𝐚𝐭)/DFib𝑉𝕋 is a sub weak double category of 𝐒𝐩𝐚𝐧(𝐂𝐚𝐭).423

Finally, let us relate to simple strategies.424
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Definition 64 ([11, Definition 9]). Simple games, strategies, and natural transformations425

form a bicategory 𝒮 .426

Theorem 65. The full, reflective embeddings 𝐹𝐴,𝐵 ∶ 𝒮(𝐴, 𝐵) ∼ DFib((𝐴 → 𝐵)𝑃) of Corol-
lary 41 determine a locally reflective and fully-faithful weak 2-functor

𝒮 → ℋ(𝐒𝐩𝐚𝐧(𝐂𝐚𝐭)/DFib𝑉𝕋)

(where ℋ is the bicategory of special cells, as in Remark 45), whose essential image consists427

of definite refined template games and strategies.428

Proof. The essential image part of the result is clear. By [12, §2.2], we need to organise the429

full, reflective embeddings 𝐹𝐴,𝐵 into a weak 2-functor, which here means that 𝐹 commutes430

with composition of strategies up to coherent isomorphism.431

Corollary 66. The bicategory 𝒮 of simple games and strategies is biequivalent to the432

locally full sub-bicategory of ℋ(𝐒𝐩𝐚𝐧(𝐂𝐚𝐭)/DFib𝑉𝕋) spanning definite refined template games433

and strategies.434

5.3 Day convolution435

We finally reach the application mentioned in the introduction: Day convolution. The436

purpose of this operation is to show that 􏾧ℂ is monoidal when ℂ is. Let us now recover this437

structure from Theorem 59, in the particular case where ℂ is strictly monoidal. The starting438

point is the sub weak double category, say 𝒲 , of 𝐒𝐩𝐚𝐧(𝐂𝐚𝐭), obtained by restricting attention439

to just one object and one vertical morphism, namely the terminal category 𝟙 and the440

identity thereon. Thus, 𝒲𝑉 consists of categories and functors, and horizontal composition441

is given by cartesian product. Furthermore, a monad in 𝒲 is nothing but a monoid in442

𝐂𝐚𝐭 for the cartesian product, i.e., a strict monoidal category ℂ. Clearly, final functors and443

discrete fibrations form a double factorisation system (ℒ𝑉 ,ℛ𝑉 ) = (Fin,DFib) on 𝒲 . Final444

functors being closed under binary products, ℒ𝑉 is closed under horizontal composition445

and identities, so Corollary 61 applies and we obtain a weak double category 𝒲 /DFibℂ. This446

weak double category is vertically trivial, hence underlies a monoidal category, say ℂ′.447

Theorem 67. For any strictly monoidal category ℂ, the monoidal category ℂ′ is equivalent448

to 􏾧ℂ equipped with the convolution tensor product.449

Proof. See Appendix B450

6 Conclusion and perspectives451

We have designed an abstract slice construction over monads in weak double categories,452

which has as instances (1) a weak double category of simple games and concurrent strategies,453

whose underlying bicategory of definite games and strategies is biequivalent to the standard454

one, and (2) the monoidal category of presheaves over any small strict monoidal category.455

For future work, we first could try to accomodate not only the weak double category456

structure of template games, but also symmetric monoidal closedness. Furthermore, Melliès457

is also currently working on a template game model of full linear logic. This will of course458

be a useful feature to incorporate to our framework. Another direction for future work is to459

generalise our contsruction to encompass Day convolution for non-strict monoidal categories.460

What is needed here is a common generalisation of [7, Theorem 14.5] and Theorem 59.461
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Finally, it is slightly unsatisfactory to only get standard simple games up to a locally fully-462

faithful embedding. In order to obtain a biequivalence, preliminary investigation suggests463

that instead of restricting the slice construction w.r.t. some factorisation system, it would464

be more expressive to construct the factorisation system directly in the relevant slice, for465

which fibrant objects would be the desired strategies. Indeed, e.g., polarities, which cannot466

be used before slicing, become available in the slice. This technique also seems to apply for467

refining the correspondence to, e.g., deterministic strategies, and possibly even innocence.468
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Theorem 7.5), and assuming a higher universe in which 𝒞 is small, we may assume that 𝒞506

is in fact a (strict) double category.507

Composition of cells in 𝒞/ℛ𝑉𝑀 is just as in 𝒞 , so the only non-trivial point to check508

is weak associativity and unitality of horizontal composition (of morphisms). For weak509

associativity, we observe that both cells510

𝐴 𝐵 𝐶 𝐷

𝑀𝑣 𝑀𝑣 𝑀𝑣 𝑀𝑣

𝑆

𝑝

𝑀𝑉

𝑀𝑉

𝑀𝑉

𝑞

𝑇

𝑀𝑉

𝑟𝛼 𝛽

𝑈

𝑀𝑉

𝑠

𝜇
𝜇

𝛾

𝐴 𝐵 𝐶 𝐷

𝑀𝑣 𝑀𝑣 𝑀𝑣 𝑀𝑣

𝑆

𝑝

𝑀𝑉

𝑀𝑉

𝑀𝑉

𝑞

𝑇

𝑀𝑉

𝑟𝛼 𝛽

𝑈

𝑀𝑉

𝑠

𝜇
𝜇

𝛾

511

are equal. Now, denoting composition in (𝒞/ℛ𝑉𝑀)ℎ by •̃, 𝛾•̃(𝛽•̃𝛼) and (𝛾•̃𝛽)•̃𝛼 are obtained512

by factoring them as follows. For the former, we factor513

𝑇 • 𝑆
𝛽•𝛼
−−→ 𝑀𝑉 • 𝑀𝑉

𝜇
−→ 𝑀𝑉 as 𝑇 • 𝑆

𝜆𝛽,𝛼
−−→ 𝐾𝛽,𝛼

𝜌𝛽,𝛼
−−→ 𝑀𝑉 ,514

in which, by definition, 𝜆𝛽,𝛼 has identity left and right borders, i.e., is special. We then factor515

𝑈 • 𝐾𝛽,𝛼
𝛾•𝜌𝛽,𝛼
−−−−→ 𝑀𝑉 • 𝑀𝑉

𝜇
−→ 𝑀𝑉 as 𝑈 • 𝐾𝛽,𝛼

𝜆𝛾,(𝛽,𝛼)
−−−−→ 𝐾𝛾,(𝛽,𝛼)

𝜌𝛾,(𝛽,𝛼)
−−−−→ 𝑀𝑉 .516

The other composite may be computed symmetrically, so that we obtain factorisations:517

𝐴 𝐵 𝐶 𝐷

𝑀𝑣 𝑀𝑣

𝑆

𝑝

𝐾𝛾,(𝛽,𝛼)

𝑀𝑉

𝑇 𝑈

𝑠
𝜆𝛽,𝛼

𝜆𝛾,(𝛽,𝛼)

𝜌𝛾,(𝛽,𝛼)

𝐴 𝐵 𝐶 𝐷

𝑀𝑣 𝑀𝑣.

𝑆

𝑝

𝐾(𝛾,𝛽),𝛼

𝑀𝑉

𝑇 𝑈

𝑠
𝜆𝛽,𝛾

𝜆(𝛾,𝛽),𝛼

𝜌(𝛾,𝛽),𝛼

518

By stability of left residuals, both are in fact factorisations for (ℒ𝑉 ,ℛ𝑉 ), so that by lifting,519

we obtain a special cell 𝑎𝛼,𝛽,𝛾 ∶ 𝐾𝛾,(𝛽,𝛼) −∼ 𝐾(𝛾,𝛽),𝛼 such that 𝜌(𝛾,𝛽),𝛼 ∘ 𝑎𝛼,𝛽,𝛾 = 𝜌𝛾,(𝛽,𝛼), which is520

our candidate associator for 𝒞/ℛ𝑉𝑀. It satisfies the MacLane pentagon by uniqueness of521

lifting.522

Weak unitality follows similarly.523

B Proof of Theorem 67524

Let us first recall that the convolution tensor product is given as follows:525

Definition 68. For any small monoidal category ℂ and 𝑋,𝑌 ∈ 􏾧ℂ, let

(𝑋 ⊗ 𝑌)(𝑐) = 􏾙
(𝑐1,𝑐2)∈ℂ2

𝑋(𝑐1) × 𝑌(𝑐2) × ℂ(𝑐, 𝑐1 ⊗ 𝑐2).

In order to prove Theorem 67, let us first show:526

Lemma 69. Let 𝑓 ∶ 𝐴 → 𝐵 be a functor. The discrete fibration 𝜌𝑓 associated to 𝑓 is
determined up to isomorphism by

𝜕⋆(𝜌𝑓 )(𝑏) ≅ 􏾙
𝑎∈𝐴

𝐵(𝑏, 𝑓 (𝑎)),

where 𝜕⋆ ∶ DFib(𝐵) → 􏾦𝐵 is the standard equivalence between discrete fibrations and presheaves.527
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Proof. This is actually obvious by construction. In [15], the dual case is actually treated,528

initial functors and discrete opfibrations. But up to this discrepancy, 𝜕⋆(𝑓 ) is precisely 𝑘 in529

the proof of [15, Theorem 3], which would in our case be defined as the left Kan extension530

of 𝐴op !
−→ 1

1
−→ 𝐒𝐞𝐭 along 𝑓 op. By the well-known characterisation of left Kan extensions by531

coends, we readily obtain the desired formula.532

Proof of Theorem 67. By construction, given two presheaves 𝑋,𝑌 ∈ 􏾧ℂ and transporting
them to their corresponding discrete fibrations, say 𝑆∶ 𝑒𝑙(𝑋) → ℂ and 𝑇 ∶ 𝑒𝑙(𝑌) → ℂ, their
tensor product 𝑆•̃𝑇 in ℂ′ is the right factor of the composite

𝑒𝑙(𝑋) × 𝑒𝑙(𝑌)
𝑆×𝑇
−−→ ℂ × ℂ

⊗
−→ ℂ.

By Lemma 69, the result has its corresponding presheaf defined up to isomorphism by533

𝜕⋆(𝑆•̃𝑇)(𝑐) ≅ ∫(𝑎,𝑏)∈𝑒𝑙(𝑋)×𝑒𝑙(𝑌) ℂ(𝑐, ⊗((𝑆 × 𝑇)(𝑎, 𝑏)))
= ∫(𝑎,𝑏)∈𝑒𝑙(𝑋)×𝑒𝑙(𝑌) ℂ(𝑐, 𝑆(𝑎) ⊗ 𝑇(𝑏))
≅ ∫((𝑐1,𝑥),(𝑐2,𝑦))∈𝑒𝑙(𝑋)×𝑒𝑙(𝑌) ℂ(𝑐, 𝑐1 ⊗ 𝑐2)
≅ ∫𝑐1,𝑐2 𝑋(𝑐1) × 𝑌(𝑐2) × ℂ(𝑐, 𝑐1 ⊗ 𝑐2),534

as desired.535
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