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Simple game semantics and Day convolution

CLOVIS EBERHART, National Institute of Informatics, Japan
TOM HIRSCHOWITZ, Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LAMA, France
ALEXIS LAOUAR, Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LAMA, France

Game semantics has provided adequate models for a variety of programming languages [13], in which types
are interpreted as two-player games and programs as strategies. Melliès [14] suggested that such categories
of games and strategies may be obtained as instances of a simple abstract construction on weak double cate-
gories. However, in the particular case of simple games [10], his construction slightly differs from the standard
category.We refine the abstract construction using factorisation systems, and show that the new construction
yields the standard category of simple games and strategies. Another perhaps surprising instance is Day’s
convolution monoidal structure on the category of presheaves over a monoidal category.

1 INTRODUCTION
The construction of most game models follows a common pattern. Typically, a function 𝐴 → 𝐵
is interpreted as a strategy on a compound game made of 𝐴 and 𝐵, where the program plays as
Proponent (P) on 𝐵 and as Opponent (O) on 𝐴. A crucial feature of game models is composition
of strategies, by which two strategies 𝜎∶ 𝐴 → 𝐵 and 𝜏∶ 𝐵 → 𝐶 yield a strategy 𝜏 ∘ 𝜎∶ 𝐴 → 𝐶.
Intuitively, 𝜏 ∘ 𝜎 lets 𝜎 and 𝜏 interact on 𝐵 until one of them produces a move in 𝐴 or 𝐶. However,
in order to obtain a strategy 𝐴 → 𝐶, everything occurring on 𝐵 should be hidden.

Although widely acknowledged, this strong commonality is also recognised as poorly under-
stood, particularly in the presence of innocence, a constraint on strategies that restricts them
to purely functional behaviour. This has prompted a number of attempts at clarifying the situa-
tion [5, 10, 11]. In particular, Melliès [14] recently proposed a novel explanation, of unprecedented
simplicity. Indeed, it rests upon a purely categorical construction, essentially taking the slice of a
weak double category over an internal monad. This suggests that the approach may encompass a
wide variety of game models, which is currently not the case as it is restricted to linear languages.
More generally, it may prompt new connections between game semantics and other settings.

In this paper, we focus on a peculiar feature of Melliès’s approach, namely the slight discrep-
ancy between his category of games and strategies and the standard one. Indeed, while standard
strategies only play one move at a time, Melliès’s may play several moves simultaneously. This
raises the question of whether the standard setting may be recovered by refining his approach. We
answer this question positively by enriching the setting with a factorisation system [2]: using a
double categorical variant of the so-called comprehensive factorisation system [15], we obtain the
standard setting as an instance.

As a bonus, one of the connections alluded to above is established. Namely, we show that the
Day convolution product [3] arises as an instance of our refined framework, though only in the
restricted case of strict monoidal categories. The convolution product, which arose in algebraic
topology, extends the monoidal structure of a given category ℂ to the category ℂ of presheaves
on ℂ, i.e., contravariant functors ℂop → 𝐒𝐞𝐭. This makes formal the similarity, noted in [4, §6.5],
between convolution and composition of strategies, by showing that both are instances of the
same construction.

Authors’ addresses: Clovis Eberhart, National Institute of Informatics, Tokyo, Japan, clovis.eberhart@gmail.com; Tom Hir-
schowitz, Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LAMA, 73000, Chambéry, France, tom.hirschowitz@
univ-smb.fr; Alexis Laouar, Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LAMA, 73000, Chambéry, France,
alexis.laouar@ens-cachan.fr.
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Related work
BeyondMelliès’s obviously related work and [11], Garner and Shulman [8] prove results related to
Theorems 2.6 and 3.7. The common ground for comparison is the restriction of our Theorem 2.6 to
weak double categories with trivial vertical category, i.e., monoidal categories. TheirTheorem 14.2
is a generalisation in another direction, namely that of monoidal bicategories, and their Theo-
rem 14.5 could in particular accomodate various sorts of bicategorical factorisation systems. What
is needed for dealing with Day convolution in full generality (as mentioned in Section 4) is a com-
mon generalisation of their Theorem 14.5 and our Theorem 3.7.

Plan
In Section 2, after briefly reviewing double categories [6], a 2-dimensional generalisation of cate-
gories, we recall the cornerstone of Melliès’s variant of simple games, the double category �. We
then explain how Melliès’s bicategory of simple games may be obtained by a double categorical
generalisation of the slice construction. In Section 3, we then refine this construction.We introduce
double factorisation systems and show that restricting a slice weak double category to members of
the right class of a double factorisation system again yields a weak double category. Finally, we
observe that this construction has both standard simple games and Day convolution as instances.
We conclude and give some persective on future work in Section 4.

2 MELLIÈS’S SIMPLE GAMES
The cornerstone of Melliès’s account of simple games is a double category � (called the clock)
which embodies the essence of scheduling. So let us briefly recall what a double category is, and
then describe �.

2.1 Recap on double categories
A double category𝒞 essentially consists of two categories𝒞ℎ and𝒞𝑣 sharing the same object set,
together with a set of cells

𝐴 𝐵

𝐶 𝐷,

𝑓

𝑢

𝑔

𝑣𝛼

where 𝐴,𝐵, 𝐶, and 𝐷 are objects, 𝑓 and 𝑔 are morphisms in 𝒞ℎ, and 𝑢 and 𝑣 are morphisms
in 𝒞𝑣. In order to distinghish notationally between horizontal and vertical morphisms, we mark
horizontal ones with a bullet. Cells are furthermore equipped with composition and identities in
both directions. E.g., to any given cells with compatible vertical border as below left is assigned a
composite cell as below right

𝐴 𝐵 𝐸

𝐶 𝐷 𝐹

𝑆

𝑝

𝑇

𝑞𝛼

𝑆′

𝑇′

𝑟𝛽 ↦
𝐴 𝐸

𝐶 𝐹,

𝑆′•𝑆

𝑝

𝑇′•𝑇

𝑟𝛽•𝛼 (1)

Similarly, we have horizontal identities

𝐴 𝐴

𝐵 𝐵,

𝑖𝑑•𝐴

𝑝

𝑖𝑑•𝐵

𝑝𝑖𝑑•𝑝

2



Both notions of composition are required to be associative and the corresponding identities unital.
Finally, the interchange law requires the two different ways of parsing any compatible pasting

𝐴 𝐵 𝐶

𝐷 𝐸 𝐹

𝐺 𝐻 𝐼

𝛼

𝛽

𝛾

𝛿

to agree, i.e.,
(𝛿 ∘ 𝛾) • (𝛽 ∘ 𝛼) = (𝛿 • 𝛽) ∘ (𝛾 • 𝛼).

There is an alternative point of view on double categories which will be crucial to us. The pre-
vious presentation has emphasised 𝒞𝑣 and 𝒞ℎ, and added the set of cells. But we could also put
forward 𝒞𝑉 , the category whose objects are horizontal morphisms, and whose morphisms are
cells. Indeed, double categories may be axiomatised based on a pair of functors

𝑙, 𝑟 ∶ 𝒞𝑉 ⇉ 𝒞𝑣. (2)

What is missing from this is just horizontal composition and identities (for horizontal arrows
and cells), which may be postulated by requiring that 𝑙 and 𝑟 form a category object in 𝐂𝐚𝐭.

Equivalently, still, we can consider the following structure, which is almost a (large) double
category.

Definition 2.1. Let 𝐒𝐩𝐚𝐧(𝐂𝐚𝐭) have
• as objects all small categories,
• as vertical morphisms all functors,
• as horizontal morphisms 𝐴 𝐵 all spans 𝐴 ← 𝐶 → 𝐵 of functors, and
• as cells

𝐴 𝐵

𝑈 𝑉
all commuting diagrams

𝐴 𝐶 𝐵

𝑈 𝑊 𝑉

in 𝐂𝐚𝐭.
Vertical composition is given by (componentwise) composition of functors, while horizontal com-
position is given by pullbacks and their universal property.

The structure formed by 𝐒𝐩𝐚𝐧(𝐂𝐚𝐭) is a weak double category [7], a weak form of double cate-
gory where horizontal composition is only associative and unital up to coherent isomorphism, in
a suitable sense. In particular, the horizontal arrows and special cells of a weak double category
form a bicategory, where special means that the left and right borders are identities. This entails
that we may define monads in weak double categories just like one usually does in bicategories,
and we have:

Proposition 2.2. A double category is the same as a monad in 𝐒𝐩𝐚𝐧(𝐂𝐚𝐭).

Indeed, composing a span (2) with itself in 𝐒𝐩𝐚𝐧(𝐂𝐚𝐭) amounts to constructing the category
of pairs of compatible horizontal morphisms and cells (1), so requiring a monad multiplication is
requiring horizontal composition.
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2.2 The clock
The vertical category of Melliès’s � is the free category on the graph

𝑂 𝑃.

So its objects are just 𝑂 and 𝑃, which stand for Opponent and Proponent, as in game models, and
morphisms just count the number of (alternating) moves between them. One way to denote such
morphisms is just as alternating strings of 𝑂s and 𝑃s.

The horizontal category �ℎ is simply the ordinal 𝟚, viewed as a category, except that 0 is here
renamed to 𝑂 and 1 to 𝑃, so we have 𝑂 ≤ 𝑃, and there are only three horizontal morphisms: 𝑂𝑂,
𝑃𝑃, and 𝑂𝑃.

Finally, cells describe the allowed schedulings in an arrow game: they are simply arrows in the
free category �𝑉 over the famous state diagram for simple games

𝑂𝑂 𝑂𝑃 𝑃𝑃.

Again, a way to write such morphisms is by valid sequences in {𝑂𝑂,𝑂𝑃, 𝑃𝑃}. Vertical composi-
tion of cells is simply composition in �𝑉 , i.e., concatenation. The most intuitive way to introduce
horizontal composition is to depict basic cells as triangles

𝑂 𝑂

𝑃

𝑂 𝑃

𝑃

𝑃 𝑃

𝑂

𝑂 𝑃

𝑂.

General cells are obtained by stacking up such basic triangles.

Example 2.3. To see the connection with standard game models, consider a typical play like
below left, whose scheduling is the cell below right in �. Written as a sequence, this morphism is
(𝑂𝑂,𝑂𝑃, 𝑃𝑃,𝑂𝑃,𝑂𝑂) — the sequence of involved horizontal morphisms.

ℕ ℕ

𝑞

𝑞

6

12

𝑂 𝑂

𝑃 𝑃

𝑂 𝑂

Depicting cells as stacks of triangles yields the following inductive definition of horizontal com-
position. Given two cells as in (1), if the middle object𝐷 is𝑂 then the last move in 𝛼, if any, cannot
be on the left. Symmetrically, if the middle object is 𝑃 then the last move in 𝛽, if any, cannot be on
the right. This simple case analysis reveals that

• either there is an ‘outwards’ bottom triangle, i.e., the bottom of 𝛼 and 𝛽 look like either of

𝑂 𝑂 𝑋

𝑋⊥

𝑋 𝑃 𝑃

𝑋⊥

with 𝑋 ∈ {𝑂, 𝑃} and 𝑋⊥ denoting the other player,
• or there is a pair of interacting bottom triangles, as in
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𝑂 𝑋 𝑃

𝑋⊥.

In the first case, the composite is the obvious triangle (𝑂𝑋,𝑂𝑋⊥, resp.𝑋𝑃,𝑋⊥𝑃), while in the last
case, the composite is the identity – which is precisely where game semantical hiding is encoded
in �. Melliès obtains:

Proposition 2.4. � forms a double category.

2.3 Simple games and strategies
This is where Melliès’s approach is novel. He simply puts:

Definition 2.5. A game is a functor to �𝑣, and a strategy from 𝑝∶ 𝐴 → �𝑣 to 𝑞 ∶ 𝐵 → �𝑣 is a
commuting diagram

𝐴 𝑆 𝐵

�𝑣 �𝑉 �𝑣

𝑝 𝑞 (3)

in 𝐂𝐚𝐭.

Intuitively, in a game 𝑝∶ 𝐴 → �𝑣, the objects of𝐴 are plays, and 𝑝 indicates which player should
play next. Morphisms are sequences of moves, whose number and polarity is again indicated by 𝑝.
The notion of strategy may be understood as follows: the limit

ℙ𝐴,𝐵

𝐴 𝐵

�𝑣 �𝑉 �𝑣

𝑝 𝑞

may be thought of as a category of plays on the arrow game 𝐴 → 𝐵, and the induced map 𝑆 →
ℙ𝐴,𝐵 describes which plays are accepted by the strategy.

Recalling the weak double category 𝐒𝐩𝐚𝐧(𝐂𝐚𝐭) from Definition 2.1, we observe that a game is
a morphism to �𝑣 in 𝐒𝐩𝐚𝐧(𝐂𝐚𝐭)𝑣, while a strategy 𝐴 → 𝐵 is merely a cell

𝐴 𝐵

�𝑣 �𝑣.

𝑆

𝑝

�𝑉

𝑞

This provides a simple way of composing strategies, using the monad structure of � (given by
Propositions 2.2 and 2.4): the composite of 𝑆∶ 𝐴 → 𝐵 and 𝑇 ∶ 𝐵 → 𝐶 is simply the pasting

𝐴 𝐵 𝐶

�𝑣 �𝑣 �𝑣

𝑆

𝑝

�𝑉

�𝑉

𝑞

𝑇

�𝑉

𝑟

𝜇

(4)

where 𝜇 denotes the monad multiplication for �, i.e., horizontal composition of cells.
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Strategies are thus equipped with weak double category structure (although Melliès only con-
siders the underlying bicategory) by applying the following general result to the monad � in
𝐒𝐩𝐚𝐧(𝐂𝐚𝐭):

Theorem 2.6. Given any monad 𝑀𝑉 ∶ 𝑀𝑣 𝑀𝑣 in a weak double category 𝒞 , there is a slice
weak double category 𝒞/𝑀 whose

• vertical category is (𝒞/𝑀)𝑣 = 𝒞𝑣/𝑀𝑣;
• vertical category of cells is (𝒞/𝑀)𝑉 = 𝒞𝑉 /𝑀𝑉 ;
• horizontal composition of cells is given by pasting with monad multiplication, as in (4); and
• horizontal identity on 𝑝∶ 𝐴 → 𝑀𝑣 is the pasting

𝐴 𝐴

𝑀𝑣 𝑀𝑣.
𝑝

𝑀𝑉

𝑝𝑖𝑑•𝑝

𝜂

(5)

Proposition 2.7. Melliès’s bicategory of simple games is the underlying bicategory of𝐒𝐩𝐚𝐧(𝐂𝐚𝐭)/�.

A weak double category with trivial vertical category is nothing but a monoidal category. In
that case, the theorem reduces to the following well-known result used, e.g., in Weber [17]:

Corollary 2.8. The slice of a monoidal category over a monoid is again monoidal.

3 RECOVERING SIMPLE GAMES
3.1 Restricting to discrete fibrations
Thepresent workwas prompted byMelliès’s observation that𝐒𝐩𝐚𝐧(𝐂𝐚𝐭)/� is not quite equivalent
to the standard category of simple games and strategies. Indeed, one might have expected that,
restricting to strategies whose underlying functor 𝑆 → ℙ𝐴,𝐵 is an inclusion, we would obtain an
equivalent category. But this is not the case: Melliès’s games and strategies are intrinsically more
general. This is even emphasised as a feature, as it has the advantage of smoothing things up in the
context of asynchronous games, where a different clock is used. In our sequential setting, the extra
generality is twofold. First, the considered games may have no time origin — concretely there is
no empty play.

Example 3.1. A symptom is that the categories𝐴may not be well founded, i.e., theymay contain
infinite chains … → 𝑎𝑛 → … → 𝑎0.

The second source of extra generality is that games may feature ‘compound moves’, i.e., inde-
composable morphisms whose image in �𝑣 has length > 1.

Example 3.2. Take for 𝐴, e.g., the ordinal 𝟙 viewed as a category, and map its unique morphism
to 𝑂𝑃𝑂𝑃 in �𝑣.

This thus raises the question: can standard simple games be recovered by refining the abstract
Theorem 2.6?

The first step towards this is to characterise the games 𝐴 → �𝑣 that correspond to standard
simple games. This is easy: by definition, standard simple games are trees, which may be defined
as presheaves over the ordinal 𝜔. But presheaves are equivalent to discrete fibrations, hence the
idea of restricting (𝐒𝐩𝐚𝐧(𝐂𝐚𝐭)/�)𝑣 to discrete fibrations. However, this does not quite work, as�𝑣 lacks a ‘time origin’: presheaves on �𝑣 describe games in which there is no first move — all
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moves have predecessors. But if we slice �𝑣 under 𝑂, then we get it right, as we have 𝑂/�𝑣 ≅ 𝜔.
Similarly, 𝑂𝑂/�𝑉 describes scheduling in the arrow category starting from 𝑂𝑂.

Funnily enough, 𝑂𝑂∶ 𝑂 𝑂, viewed as a horizontal endomorphism in �, is a comonad (the
identity comonad on 𝑂), hence we may apply (the dual of) Theorem 2.6 to obtain:

Corollary 3.3. The slice ℍ ≔ 𝑂𝑂/� forms a double category.

Taking ℍ as a replacement for �, we get the desired property that discrete fibrations over ℍ𝑣
are equivalent to 𝜔.

In a similar vein, in recent work on game semantics [5, 12, 16], a concurrent notion of strategy
was defined as presheaves on plays. It thus would seem natural to also restrict strategies (3) to
ensure that the induced functor 𝑆 → ℙ𝐴,𝐵 is a discrete fibration. This may be enforced directly:

Lemma 3.4. Given a commuting diagram of functors

𝐴 𝑆 𝐵

𝑋 𝑇 𝑌
𝑝

𝑙

𝑚

𝑟

𝑞

where 𝑝 and 𝑞 are discrete fibrations, letting 𝑃 denote the limit of the subdiagram

𝐴 → 𝑋 ← 𝑇 → 𝑌 ← 𝐵,

the induced functor 𝑆 → 𝑃 is a discrete fibration iff the middle functor 𝑚∶ 𝑆 → 𝑇 is.

Proof. Discrete fibrations are the right class of a (strong) factorisation system (see Lemma 3.6
below), hence are stable under composition and pullback, and furthermore enjoy left cancellation:
if 𝑔 ∘ 𝑓 and 𝑔 are discrete fibrations, then so is 𝑓 .

Now, the limit 𝑃 may be computed by taking pullbacks of 𝑝 and 𝑞, respectively along 𝑙 and 𝑟,
and then taking the pullback of the obtained cospan. Thus, if 𝑝 and 𝑞 are discrete fibrations, then
by stability under pullback and composition, so is the projection functor 𝑃 → 𝑇 .

Thus, if the induced functor 𝑆 → 𝑃 is a discrete fibration, then so is the middle functor 𝑆 → 𝑇
by stability under composition.

Conversely, if the middle functor 𝑆 → 𝑇 is a discrete fibration, then so is the induced functor
𝑆 → 𝑃 by left cancellation. □

3.2 Simple games
We thus hope to recover standard simple games by slicing � under 𝑂𝑂, and restricting the slice
construction to discrete fibrations (for vertical morphisms and cells). This may be carried over to
the abstract setting using the observation, recalled in the above proof, that discrete fibrations are
the right class of a factorisation system.

Definition 3.5. A double factorisation system on a weak double category 𝒞 consists of factorisa-
tion systems (ℒ𝑣,ℛ𝑣) and (ℒ𝑉 ,ℛ𝑉 ) on 𝒞𝑣 and 𝒞𝑉 , respectively, such that

(A) ℒ𝑉 is preserved under horizontal composition and contains horizontal identities, and
(B) all cells 𝛼 as below left with ℓ, ℓ ′ ∈ ℒ𝑣 and 𝑟, 𝑟′ ∈ ℛ𝑣 factor as below right, with 𝜆 ∈ ℒ𝑉

and 𝜌 ∈ ℛ𝑉 .
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𝐴 𝐴′

𝐵 𝐵′

𝐶 𝐶′

𝑆

ℓ ℓ ′

𝑟

𝑈

𝑟′

𝛼 =

𝐴 𝐴′

𝐵 𝐵′

𝐶 𝐶′

𝑆

ℓ
𝑇

ℓ ′

𝑟

𝑈

𝑟′

𝜆

𝜌

Lemma 3.6. Discrete fibrations and componentwise discrete fibrations are the right classes of fac-
torisation systems which together form a double factorisation system for 𝐒𝐩𝐚𝐧(𝐂𝐚𝐭).

Proof. It is well-known that discrete fibrations may be defined by unique lifting w.r.t. the in-
jection 𝟙 ↪ 𝟚 mapping 0 to 1. The only non-obvious point is then that componentwise discrete
fibrations are stable under horizontal composition, which follows from the general fact that the
right class of any factorisation system is stable under pullback in the arrow category. □

This leads us to the following generalisation of Theorem 2.6:

Theorem 3.7. Given any monad 𝑀𝑉 ∶ 𝑀𝑣 𝑀𝑣 in a weak double category 𝒞 with double fac-
torisation system ((ℒ𝑣,ℛ𝑣), (ℒ𝑉 ,ℛ𝑉 )), there is a slice weak double category 𝒞/ℛ𝑀 whose

• vertical category (𝒞/ℛ𝑀)𝑣 is 𝒞𝑣/ℛ𝑣𝑀𝑣, the full subcategory of 𝒞𝑣/𝑀𝑣 on maps in ℛ𝑣;
• vertical category of cells is (𝒞/ℛ𝑀)𝑉 = 𝒞𝑉 /ℛ𝑉𝑀𝑉 ;
• horizontal composition of cells is given by factoring the pasting (4) as 𝜌 ∘ 𝜆 and returning 𝜌;
• andwhose horizontal identity on any 𝑝∶ 𝐴 → 𝑀𝑣 is given by factoring (5) as 𝜌∘𝜆 and returning
𝜌.

Remark 3.8. The fact that identities and horizontal composites have the right perimeter follows
from Condition (B) in Definition 3.5.

Remark 3.9. When the monad multiplication is in ℛ𝑉 , and ℛ𝑉 is stable under horizontal com-
position and contains horizontal identities, then so are (4) and (5), hence 𝒞/ℛ𝑀 is a sub weak
double category of 𝒞/𝑀.

In the general case, we may picture composition in (𝒞/ℛ𝑀)ℎ as follows:

𝐴 𝐵 𝐶

𝑀𝑣 𝑀𝑣 𝑀𝑣.

𝑆

𝑝

𝑀𝑉

𝑀𝑉

𝑞

𝑇

𝑀𝑉

𝑟

𝜇

𝜆

𝜌

Proof of Theorem 3.7. By coherence for weak double categories [9, Theorem 7.5], and assum-
ing a higher universe in which 𝒞 is small, we may assume that 𝒞 is in fact a (strict) double
category.

Composition of cells in 𝒞/ℛ𝑀 is just as in 𝒞 , so the only non-trivial point to check is weak
associativity and unitality of horizontal composition (of morphisms). For weak associativity, we
observe that both cells
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𝐴 𝐵 𝐶 𝐷

𝑀𝑣 𝑀𝑣 𝑀𝑣 𝑀𝑣

𝑆

𝑝

𝑀𝑉

𝑀𝑉

𝑀𝑉

𝑞

𝑇

𝑀𝑉

𝑟𝛼 𝛽

𝑈

𝑀𝑉

𝑠

𝜇
𝜇

𝛾

𝐴 𝐵 𝐶 𝐷

𝑀𝑣 𝑀𝑣 𝑀𝑣 𝑀𝑣

𝑆

𝑝

𝑀𝑉

𝑀𝑉

𝑀𝑉

𝑞

𝑇

𝑀𝑉

𝑟𝛼 𝛽

𝑈

𝑀𝑉

𝑠

𝜇
𝜇

𝛾

are equal. Now, denoting composition in (𝒞/ℛ𝑀)ℎ by •̃, 𝛾•̃(𝛽•̃𝛼) and (𝛾•̃𝛽)•̃𝛼 are obtained by
factoring them as follows. For the former, we factor

𝑇 • 𝑆
𝛽•𝛼
−−−→ 𝑀𝑉 • 𝑀𝑉

𝜇
−→ 𝑀𝑉 as 𝑇 • 𝑆

𝜆𝛽,𝛼
−−−→ 𝐾𝛽,𝛼

𝜌𝛽,𝛼
−−−→ 𝑀𝑉 ,

in which, by Condition (B), 𝜆𝛽,𝛼 has identity left and right borders, i.e., is special. We then factor

𝑈 • 𝐾𝛽,𝛼
𝛾•𝜌𝛽,𝛼
−−−−−→ 𝑀𝑉 • 𝑀𝑉

𝜇
−→ 𝑀𝑉 as 𝑈 • 𝐾𝛽,𝛼

𝜆𝛾,(𝛽,𝛼)
−−−−−−→ 𝐾𝛾,(𝛽,𝛼)

𝜌𝛾,(𝛽,𝛼)
−−−−−→ 𝑀𝑉 .

The other composite may be computed symmetrically, so that we obtain factorisations:

𝐴 𝐵 𝐶 𝐷

𝑀𝑣 𝑀𝑣

𝑆

𝑝

𝐾𝛾,(𝛽,𝛼)

𝑀𝑉

𝑇 𝑈

𝑠
𝜆𝛽,𝛼

𝜆𝛾,(𝛽,𝛼)

𝜌𝛾,(𝛽,𝛼)

𝐴 𝐵 𝐶 𝐷

𝑀𝑣 𝑀𝑣.

𝑆

𝑝

𝐾(𝛾,𝛽),𝛼

𝑀𝑉

𝑇 𝑈

𝑠
𝜆𝛽,𝛾

𝜆(𝛾,𝛽),𝛼

𝜌(𝛾,𝛽),𝛼

By Condition (A), both are in fact factorisations for (ℒ𝑉 ,ℛ𝑉 ), so that by lifting, we obtain a
special cell 𝑎𝛼,𝛽,𝛾 ∶ 𝐾𝛾,(𝛽,𝛼) −∼ 𝐾(𝛾,𝛽),𝛼 such that 𝜌(𝛾,𝛽),𝛼 ∘ 𝑎𝛼,𝛽,𝛾 = 𝜌𝛾,(𝛽,𝛼), which is our candidate
associator for 𝒞/ℛ𝑀. It satisfies the MacLane pentagon by uniqueness of lifting.

Weak unitality follows similarly. □

We finally obtain:

Corollary 3.10. Consider the weak double category 𝐒𝐩𝐚𝐧(𝐂𝐚𝐭)/𝐷𝐹𝑖𝑏ℍ. Restricting horizontal
morphisms to discrete fibrations 𝑆 → ℙ𝐴,𝐵 that are subcategory inclusions, we obtain a category
which is isomorphic to the standard category of simple games.

3.3 Day convolution
We finally reach the surprising application mentioned in the introduction, Day convolution. The
purpose of this operation is to show that the Yoneda embedding 𝐲∶ ℂ → ℂ is monoidal when ℂ
is. This means that ℂ may be equipped with monoidal structure preserved by 𝐲 up to coherent
isomorphism. The tensor is given as follows:

Definition 3.11. For any small monoidal category ℂ and 𝑋,𝑌 ∈ ℂ, let

(𝑋 ⊗ 𝑌)(𝑐) = 
(𝑐1,𝑐2)∈ℂ2

𝑋(𝑐1) × 𝑌(𝑐2) × ℂ(𝑐, 𝑐1 ⊗ 𝑐2).
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Let us now recover this structure from Theorem 3.7, in the particular case where ℂ is strictly
monoidal. The starting point is the sub weak double category, say 𝒲 , of 𝐒𝐩𝐚𝐧(𝐂𝐚𝐭), obtained by
restricting attention to just one object and one vertical morphism, namely the terminal category 𝟙
and the identity thereon.Thus,𝒲𝑉 consists of categories and functors, and horizontal composition
is given by cartesian product. Furthermore, a monad in 𝒲 is nothing but a monoid in 𝐂𝐚𝐭 for the
cartesian product, i.e., a strict monoidal category ℂ. The double factorisation system induced by
discrete fibrations on 𝐒𝐩𝐚𝐧(𝐂𝐚𝐭) restricts to one on 𝒲 , and obviously the weak double category
𝒲 /𝐷𝐹𝑖𝑏ℂ is vertically trivial, hence underlies a monoidal category, say ℂ′.

Theorem 3.12. For any strictly monoidal category ℂ, the monoidal category ℂ′ is equivalent to ℂ
equipped with the convolution tensor product.

In order to prove this, let us first show:

Lemma 3.13. Let 𝑓 ∶ 𝐴 → 𝐵 be a functor. The discrete fibration 𝜌𝑓 associated to 𝑓 is determined
up to isomorphism by

𝜕⋆(𝜌𝑓 )(𝑏) ≅ 
𝑎∈𝐴

𝐵(𝑏, 𝑓 (𝑎)),

where 𝜕⋆ ∶ 𝐷𝐹𝑖𝑏𝐵 → 𝐵 is the standard equivalence between discrete fibrations and presheaves.

Proof. This is actually obvious by construction. In [15], the dual case is actually treated, initial
functors and discrete opfibrations. But up to this discrepancy, 𝜕⋆(𝑓 ) is precisely 𝑘 in the proof

of [15, Theorem 3], which would in our case be defined as the left Kan extension of 𝐴op !
−→ 1

1
−−−→

𝐒𝐞𝐭 along 𝑓 op. By the well-known characterisation of left Kan extensions by coends, we readily
obtain the desired formula. □

Proof of Theorem 3.12. By construction, given two presheaves 𝑋,𝑌 ∈ ℂ and transporting
them to their corresponding discrete fibrations, say 𝑆∶ 𝑒𝑙(𝑋) → ℂ and 𝑇 ∶ 𝑒𝑙(𝑌) → ℂ, their tensor
product 𝑆•̃𝑇 in ℂ′ is the right factor of the composite

𝑒𝑙(𝑋) × 𝑒𝑙(𝑌)
𝑆×𝑇
−−−→ ℂ × ℂ

⊗
−→ ℂ.

By Lemma 3.13, the result has its corresponding presheaf defined up to isomorphism by

𝜕⋆(𝑆•̃𝑇)(𝑐) ≅ ∫(𝑎,𝑏)∈𝑒𝑙(𝑋)×𝑒𝑙(𝑌)
ℂ(𝑐, ⊗((𝑆 × 𝑇)(𝑎, 𝑏)))

= ∫(𝑎,𝑏)∈𝑒𝑙(𝑋)×𝑒𝑙(𝑌)
ℂ(𝑐, 𝑆(𝑎) ⊗ 𝑇(𝑏))

≅ ∫((𝑐1,𝑥),(𝑐2,𝑦))∈𝑒𝑙(𝑋)×𝑒𝑙(𝑌)
ℂ(𝑐, 𝑐1 ⊗ 𝑐2)

≅ ∫𝑐1,𝑐2 𝑋(𝑐1) × 𝑌(𝑐2) × ℂ(𝑐, 𝑐1 ⊗ 𝑐2), as desired. □

4 CONCLUSION AND PERSPECTIVES
We have designed an abstract slice construction over monads in weak double categories, which
has as instances

• a weak double category of simple games and concurrent strategies,
• and the monoidal category of presheaves over any strict monoidal category.

We see at least two directions for future work. First, we should try to accomodate not only the
weak double category structure of Melliès’s construction, but also symmetric monoidal closed-
ness. Melliès is also currently working on the construction of a linear exponential comonad [1]
on his category of simple games and concurrent strategies. This will of course be a useful feature
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to incorporate to our framework. The second direction for future work is to generalise our con-
tsruction to encompass Day convolution for non-strict monoidal categories. This will involve a
3-dimensional refinement of weak double categories.

REFERENCES
[1] P. N. Benton, Gavin M. Bierman, Valeria de Paiva, and Martin Hyland. 1992. Linear Lambda-Calculus and Categorial

Models Revisited. In Computer Science Logic, 6th Workshop, CSL ’92, Selected Papers (LNCS), Egon Börger, Gerhard
Jäger, Hans Kleine Büning, Simone Martini, and Michael M. Richter (Eds.), Vol. 702. Springer, 61–84. https://doi.org/
10.1007/3-540-56992-8_6

[2] Aldridge K. Bousfield. 1977. Constructions of Factorization Systems in Categories. Journal of Pure and Applied Algebra
9, 2-3 (1977), 287–329.

[3] Brian Day. 1970. On closed categories of functors. In Reports of the Midwest Category Seminar IV (Lecture Notes in
Mathematics), Vol. 137. Springer, 1–38.

[4] Clovis Eberhart. 2018. Catégories et diagrammes de cordes pour les jeux concurrents. Ph.D. Dissertation. Université
Savoie Mont Blanc.

[5] Clovis Eberhart and Tom Hirschowitz. 2018. What’s in a game?: A theory of game models. In Proc. 33rd Symposium
on Logic in Computer Science, Anuj Dawar and Erich Grädel (Eds.). ACM, 374–383. https://doi.org/10.1145/3209108.
3209114

[6] Charles Ehresmann. 1963. Catégories structurées. Annales scientifiques de l’Ecole Normale Supérieure 80, 4 (1963),
349–426.

[7] Richard H. G. Garner. 2006. Polycategories. Ph.D. Dissertation. University of Cambridge.
[8] Richard Garner and Michael Shulman. 2016. Enriched categories as a free cocompletion. Advances in Mathematics

289 (2016), 1–94.
[9] Marco Grandis and Robert Paré. 1999. Limits in double categories. Cahiers de Topologie et Géométrie Différentielle

Catégoriques 40, 3 (1999), 162–220.
[10] Russell Harmer, J. Martin E. Hyland, and Paul-André Melliès. 2007. Categorical Combinatorics for Innocent Strategies.

In Proc. 22nd Symposium on Logic in Computer Science IEEE, 379–388. https://doi.org/10.1109/LICS.2007.14
[11] Michel Hirschowitz, André Hirschowitz, and Tom Hirschowitz. 2007. A theory for game theories. In International

Conference on Foundations of Software Technology and Theoretical Computer Science. Springer, 192–203.
[12] Tom Hirschowitz. 2014. Full abstraction for fair testing in CCS (expanded version). Logical Methods in Computer

Science 10, 4 (2014). https://doi.org/10.2168/LMCS-10(4:2)2014
[13] J. Martin E. Hyland. 1997. Game Semantics. In Semantics and Logics of Computation, AndrewM. Pitts and Peter Dybjer

(Eds.). Cambridge University Press, 131–184.
[14] Paul-André Melliès. 2018. Asynchronous games fifteen years later. (2018). Preprint.
[15] Ross Street and R. F. C. Walters. 1973. The Comprehensive Factorization of a Functor. Bulletin of the American

Mathematical Society 79, 5 (1973).
[16] Takeshi Tsukada and C.-H. Luke Ong. 2015. Nondeterminism in Game Semantics via Sheaves. In Proc. 30th Symposium

on Logic in Computer Science IEEE.
[17] Mark Weber. 2004. Generic morphisms, parametric representations and weakly cartesian monads. Theory and Appli-

cations of Categories 13 (2004), 191–234.

11

https://doi.org/10.1007/3-540-56992-8_6
https://doi.org/10.1007/3-540-56992-8_6
https://doi.org/10.1145/3209108.3209114
https://doi.org/10.1145/3209108.3209114
https://doi.org/10.1109/LICS.2007.14
https://doi.org/10.2168/LMCS-10(4:2)2014

	Abstract
	1 Introduction
	2 Melliès's simple games
	2.1 Recap on double categories
	2.2 The clock
	2.3 Simple games and strategies

	3 Recovering simple games
	3.1 Restricting to discrete fibrations
	3.2 Simple games
	3.3 Day convolution

	4 Conclusion and perspectives
	References

