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GALOIS GROUPS OF DIFFERENCE EQUATIONS OF

ORDER TWO ON ELLIPTIC CURVES

THOMAS DREYFUS AND JULIEN ROQUES

Abstract. This paper is concerned with difference equations on elliptic
curves. We establish some general properties of the difference Galois
groups of equations of order two, and give applications to the calculation
of some difference Galois groups. For instance, our results combined
with a result from transcendence theory due to Schneider allow us to
identify a large class of discrete Lamé equations with difference Galois
group GL2(C).
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1. Introduction

Let E ⊂ P2 be the elliptic curve defined by the projectivization of the
Weierstrass equation

(1) y2 = 4x3 − g2x− g3 with g2, g3 ∈ C.
We denote by E(C) the group of C-points of E . Its abelian group law is
denoted by ⊕.

In this paper, we study the difference Galois groups of linear difference
equations of order two on E(C) of the form:

(2) y(z ⊕ 2h) + a(z)y(z ⊕ h) + b(z)y(z) = 0

where y is an unknown function of the variable z ∈ E(C), h is a fixed non
torsion point of E(C) and a, b are given rational functions on E .

This equation can be seen as a difference equation over C. Indeed, if
Λ ⊂ C is a lattice of periods of E and if ℘ is the corresponding Weierstrass
function, then C/Λ is identified with E(C) via the factorization through C/Λ
of

ϕ : z ∈ C 7→ (℘(z) : ℘′(z) : 1) ∈ E(C).

Pulling back the equation (2) via ϕ, which is a group morphism from (C,+)
to (E(C),⊕), we obtain the following difference equation on C:

(3) y(z + 2h) + a(z)y(z + h) + b(z)y(z) = 0

where y is an unknown function of the variable z ∈ C, a := a ◦ ϕ and
b := b ◦ ϕ are Λ-periodic elliptic functions and h ∈ ϕ−1(h). So, we have the
following relations between the equations (2) and (3): z = ϕ(z), h = ϕ(h)
and y(z) = y(z).

These equations are discrete counterparts of differential equations on el-
liptic curves, a famous example of which is Lamé differential equation

y′′(z) = (A℘(z) +B)y(z)

where A,B ∈ C. The main results of this paper allow us to compute the
difference Galois groups of some equations such as the discrete Lamé equa-
tion

(4) ∆2
hy = (A℘(z) +B)y where ∆hy(z) =

y(z + h)− y(z)

h
.

For instance, the following theorem is a consequence of our main results com-
bined with a result from transcendence theory due to Schneider in [Sch36]
(see also Bertrand and Masser’s papers [BM80, Mas75]).

Theorem. Assume that E is defined over Q (i.e. g2, g3 ∈ Q) and that
h,A,B ∈ Q with A 6= 0. Then, the difference Galois group of equation (4)
is GL2(C).

To be precise, the base field for the difference Galois groups considered in
the present paper is not the field of Λ-periodic meromorphic functions over
C, but the field constituted of the meromorphic functions over C which are
Λ′-periodic for some sub-lattice Λ′ of Λ.

The galoisian aspects of the theory of difference equations have
attracted the attention of many authors in the past years e.g.
[Fra63, Fra66, Fra67, Fra74, Eti95, PS97, And01, DV02, Sau03, vdPR07,



DIFFERENCE EQUATIONS ON ELLIPTIC CURVES 3

RS07, HS08, CHS08, RS09, DVH10, Ngu11, RS14, Bug12, OW14].
The calculation of the difference Galois groups of finite difference or
q-difference equations of order two on P1 has been considered by Hendricks
[Hen97, Hen98] and by the second author [Roq08]. The work of Hendricks
served as a basis for the present work, but, to the best of our knowledge,
the present paper is the first to consider the difference Galois groups of
difference equations on a non rational variety. The study of dynamical
systems on elliptic curves appears in several areas of mathematics (e.g.
discrete dynamical systems, QRT maps). In particular, it is very likely that
the equations considered in the present paper will arise as linearizations
of discrete dynamical systems, in connection with discrete Morales-Ramis
theories [CR08, CR13]. In this context, the difference Galois groups are
used to obtain non-integrability results.

This paper is organized as follows. Section 2 contains reminders and
complements on difference Galois theory (for equations of arbitrary order)
with a special emphasis on difference equations on elliptic curves. We insist
on the fact that the base difference field for the difference Galois groups con-
sidered in the present paper is not the field of Λ-periodic elliptic functions
but the field of elliptic functions which are Λ′-periodic for some sub-lattice
Λ′ of Λ. In section 3, we introduce some notations related to the special
functions used in this paper (theta functions, Weierstrass ℘-functions) and
we collect some useful results. In section 4, we study the relations between
the irreducibility of the difference Galois group of equation (3) and the
solutions of an associated Riccati-type equation. We then study this Riccati
equation assuming that we have a priori informations on the divisors of the
coefficients a and b. In section 5, we show that there is a similar relation
between the imprimitivity of the Galois group and some Riccati-type
equation. Section 6 is devoted to the calculation of some difference Ga-
lois groups, including those of the discrete Lamé equations mentioned above.

Acknowledgements. Our original interest in difference equations on elliptic
curves arose from discussions with Jean-Pierre Ramis some years ago. We
thank Jean-Pierre Ramis and Michael Singer for interesting discussions. We
thank the referees for their careful reading and useful suggestions.

2. Difference Galois theory: reminders and complements

2.1. Generalities on difference Galois theory. For details on what fol-
lows, we refer to [vdPS97, Chapter 1].

A difference ring (R,φ) is a ring R together with a ring automorphism
φ : R → R. An ideal of R stabilized by φ is called a difference ideal of
(R,φ). If R is a field then (R,φ) is called a difference field.

The ring of constants Rφ of the difference ring (R,φ) is defined by

Rφ := {f ∈ R | φ(f) = f}.

A difference ring morphism (resp. difference ring isomorphism) from the

difference ring (R,φ) to the difference ring (R̃, φ̃) is a ring morphism (resp.

ring isomorphism) ϕ : R→ R̃ such that ϕ ◦ φ = φ̃ ◦ ϕ.



4 THOMAS DREYFUS AND JULIEN ROQUES

A difference ring (R̃, φ̃) is a difference ring extension of a difference

ring (R,φ) if R̃ is a ring extension of R and φ̃|R = φ; in this case,

we will often denote φ̃ by φ. Two difference ring extensions (R̃1, φ̃1) and

(R̃2, φ̃2) of a difference ring (R,φ) are isomorphic over (R,φ) if there exists a

difference ring isomorphism ϕ from (R̃1, φ̃1) to (R̃2, φ̃2) such that ϕ|R = IdR.

We now let (K,φ) be a difference field. We assume that its field of
constants C := Kφ is algebraically closed and that the characteristic of K
is 0.

Consider a linear difference system

(5) φY = AY with A ∈ GLn(K).

According to [vdPS97, §1.1], there exists a difference ring extension (R,φ)
of (K,φ) such that

1) there exists U ∈ GLn(R) such that φ(U) = AU (such a U is called a
fundamental matrix of solutions of (5));

2) R is generated, as a K-algebra, by the entries of U and det(U)−1;
3) the only difference ideals of (R,φ) are {0} and R.

Such a difference ring (R,φ) is called a Picard-Vessiot ring for (5) over (K,φ).
It is unique up to isomorphism of difference rings over (K,φ). It is worth
mentioning that Rφ = C; see [vdPS97, Lemma 1.8].

Remark 1. Picard-Vessiot rings are not domains in general: they are fi-
nite direct sums of domains cyclically permuted by φ; see [vdPS97, Corol-
lary 1.16].

The corresponding difference Galois group G over (K,φ) of (5) is the
group of K-linear ring automorphisms of R commuting with φ:

G := {σ ∈ Aut(R/K) | φ ◦ σ = σ ◦ φ}.

The choice of the base field is by no way innocent. The bigger the base field
is, the smaller the Galois group is.

A straightforward computation shows that, for any σ ∈ G, there exists
a unique C(σ) ∈ GLn(C) such that σ(U) = UC(σ). According to [vdPS97,
Theorem 1.13], one can identify G with an algebraic subgroup of GLn(C)
via the faithful representation

σ ∈ G 7→ C(σ) ∈ GLn(C).

If we choose another fundamental matrix of solutions U , we find a conjugate
representation.

Remark 2. Given an nth order difference equation

(6) anφ
n(y) + · · ·+ a1φ(y) + a0y = 0,
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with a0, ..., an ∈ K and a0an 6= 0, we can consider the equivalent linear
difference system

(7) φY = AY, with A =


0 1 0 · · · 0

0 0 1
. . .

...
...

...
. . .

. . . 0
0 0 · · · 0 1
− a0
an
− a1
an
· · · · · · −an−1

an

 ∈ GLn(K).

By “Galois group of the difference equation (6)” we mean “Galois group of
the difference system (7)”.

We shall now introduce a property relative to the difference base field,
which appears in [vdPS97, Lemma 1.19].

Definition 3. We say that the difference field (K,φ) satisfies property (P)
if the following properties hold:

– The field K is a C1-field 1;
– If L is a finite field extension of K such that φ extends to a field endo-

morphism of L then L = K.

The following result is due to van der Put and Singer. We recall that
two difference systems φY = AY and φY = BY with A,B ∈ GLn(K)
are isomorphic over K if and only if there exists T ∈ GLn(K) such that
φ(T )A = BT .

Theorem 4. Assume that (K,φ) satisfies property (P). Let Kφ = C. Let
G ⊂ GLn(C) be the difference Galois group over (K,φ) of

(8) φ(Y ) = AY, with A ∈ GLn(K).

Then, the following properties hold:
– G/G◦ is cyclic, where G◦ is the identity component of G;
– there exists B ∈ G(K) such that (8) is isomorphic to φY = BY over K.

Let G̃ be an algebraic subgroup of GLn(C) such that A ∈ G̃(K). The follow-
ing properties hold:

– G is conjugate to a subgroup of G̃;

– any minimal element in the set of algebraic subgroups H̃ of G̃ for which

there exists T ∈ GLn(K) such that φ(T )AT−1 ∈ H̃(K) is conjugate
to G;

– G is conjugate to G̃ if and only if, for any T ∈ G̃(K) and for any proper

algebraic subgroup H̃ of G̃, one has that φ(T )AT−1 /∈ H̃(K).

Proof. The proof of [vdPS97, Propositions 1.20 and 1.21] in the special
case where K := C(z) and φ is the shift φ(f(z)) := f(z + h) with h ∈ C×,
extends mutatis mutandis to the present case. �

1. Recall that K is a C1-field if every non-constant homogeneous polynomial P over K
has a non-trivial zero provided that the number of its variables is more than its degree.
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2.2. Difference equations on elliptic curves. Let Λ ⊂ C be a lattice.
Without loss of generality, we can assume that

Λ = Z + Zτ, with =(τ) > 0,

where =(·) denotes the imaginary part. For any lattice Λ′ ⊂ C, we let MΛ′

be the field of Λ′-periodic meromorphic functions. We denote by K the field
defined by

K :=
⋃

Λ′ sub-lattice of Λ

MΛ′ =
⋃
k≥1

MkΛ .

Let h ∈ C such that h mod Λ is not a torsion point of C/Λ. We endow K
with the non-cyclic field automorphism φ defined by

φ(f)(z) := f(z + h).

Then, (K,φ) is a difference field.

Proposition 5. The field of constants of (K,φ) is

Kφ = C.

Proof. Consider f ∈ Kφ. Let Λ′ be a sub-lattice of Λ such that f ∈ MΛ′ .
Note that f is Λ′-periodic (because f ∈ MΛ′) and h-periodic (because φ(f) =
f), so f is a (Λ′ + hZ)-periodic meromorphic function. But Λ′ + hZ has
an accumulation point because h mod Λ is not a torsion point of C/Λ.
Therefore, f is constant. �

Proposition 6. The difference field (K,φ) satisfies property (P) (see Def-
inition 3).

Proof. Since K =
⋃
k≥1

MkΛ is the increasing union of the fields MkΛ, the fact

that K is a C1-field follows from Tsen’s theorem [Lan52] (according to which
the function field of any algebraic curve over an algebraically closed field,
e.g. MkΛ, is C1).

Let L be a finite extension of K such that φ extends to a field endomor-
phism of L. We have to prove that L = K. The primitive element theorem
ensures that there exists u ∈ L such that L = K(u). Let Λ′ be a sub-lattice
of Λ such that

– u is algebraic over MΛ′ ,
– φ(u) ∈ MΛ′(u).

Then, MΛ′(u) is a finite extension of MΛ′ and φ induces an automorphism
of MΛ′(u).

Using the equivalence of categories between between smooth projective
curves and function fields of dimension 1 [Har77, Corollary 6.12], we see that
there exists a commutative diagram of the form

X
f //

ϕ

��

X

ϕ

��
C/Λ′

z 7→z+h
// C/Λ′

where ϕ : X → C/Λ′ is a morphism of smooth projective curves, whose
induced morphism of function fields “is” the inclusion MΛ′ ⊂ MΛ′(u), and
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where f is an endomorphism of X, whose induced morphism on function
fields “is” φ : MΛ′(u) → MΛ′(u). Considering this commutative diagram,
we see that f has degree 1 and that, if ϕ is ramified above y ∈ C/Λ′, then ϕ
is also ramified above y− h. So, the set of ramification values of ϕ is stable
by z 7→ z− h. This set being finite, it has to be empty. So, ϕ is unramified.

Hurwitz’s formula implies that X has genus 1, i.e. that X is an elliptic
curve. So, there exist a lattice Λ′′ ⊂ C and an isomorphism ψ : MΛ′(u) →
MΛ′′ . There exists (a, b) ∈ C× × C such that aΛ′′ ⊂ Λ′ and such that the
restriction ψ|MΛ′

is given, for all f ∈ MΛ′ , by ψ(f)(z) = f(az + b). (Indeed,
ψ|MΛ′

: MΛ′ → MΛ′′ is a field morphism from the function field of the elliptic

curve C/Λ′ to the the function field of the elliptic curve C/Λ′′. So, ψ|MΛ′

is induced by a morphism from the elliptic curve C/Λ′′ to the elliptic curve
C/Λ′. Now, our claim follows from the fact that the morphisms from C/Λ′′
to C/Λ′ are of the form z mod Λ′′ 7→ az+b mod Λ′ for some (a, b) ∈ C××C
such that aΛ′′ ⊂ Λ′.) The commutative diagram

MΛ′
� � //

v(z)7→v(az+b) $$HHHHHHHHH MΛ′(u)

ψ

�� $$IIIIIIIII

MΛ′′
w(z)7→w( z−b

a
)

// MaΛ′′

shows that the fields MΛ′(u) and MaΛ′′ are MΛ′-isomorphic. But the ex-
tension MaΛ′′ /MΛ′ is Galois (indeed, this is equivalent to the fact that the
corresponding morphism of smooth projective curves C/Λ′ → C/aΛ′′ is Ga-
lois, and this is easily seen from the explicit description of the morphisms be-
tween these curves). Therefore, any MΛ′-morphism from MaΛ′′ to K(u) must
leave MaΛ′′ globally invariant. But, MaΛ′′ and MΛ′(u) are MΛ′-isomorphic
subfields of K(u). So MΛ′(u) ⊂ MaΛ′′ , and therefore u ∈ MaΛ′′ ⊂ K and
L = K(u) ⊂ K. �

Corollary 7. The conclusions of Theorem 4 are valid for (K,φ).

3. Theta functions and Weierstrass ℘-function

3.1. Theta functions. We recall that

Λ = Z + τZ ⊂ C with =(τ) > 0.

Let θ be the Jacobi theta function defined by

θ(z) =
∑
m∈Z

(−1)meiπm(m−1)τe2iπmz.

We shall now recall some basic facts about this function. We refer to
[Mum07, Chapter I] for details and proofs.

Remark 8. The classical theta function is defined by

ϑ(z, τ) =
∑

m∈Z e
iπm2τ+2iπmz. Actually, this is the function studied in

[Mum07, Chapter I]. But, there is a simple relation between θ and
ϑ, namely θ(z) = ϑ(z + 1−τ

2 , τ). So that any statement for ϑ can be
immediately translated into a statement for θ.
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We recall that θ is a 1-periodic entire function such that

θ(z + τ) = −e−2iπzθ(z).

Moreover, we have the following formula, known as Jacobi’s triple product
formula:

θ(z) =

∞∏
m=1

(1− e2iπτm)
(

1− e2iπ((m−1)τ+z)
)(

1− e2iπ(mτ−z)
)
.

For any integer k ≥ 1, we let θk be the function given by

θk(z) := θ(z/k).

This k-periodic entire function satisfies the following functional equation:

(9) θk(z + kτ) = −e−2iπz/kθk(z).

It follows from Jacobi’s triple product formula that the zeroes of θk are
simple and that its set of zeroes is kΛ.

Let Θk be the set of entire functions of the form

c
∏
ξ∈C

θk(z − ξ)nξ

with c ∈ C× and (nξ)ξ∈C ∈ N(C) with finite support. We denote by Θquot
k

the set of meromorphic functions over C that can be written as quotient of
two elements of Θk.

We define the divisor divk(f) of f ∈ Θquot
k as the following formal sum of

points of C/kΛ:

divk(f) :=
∑

λ∈C/kΛ

ordλ(f)[λ],

where ordλ(f) is the (z − ξ)-adic valuation of f , for an arbitrary ξ ∈ λ (it
does not depend on the chosen ξ ∈ λ). For any λ ∈ C/kΛ and any ξ ∈ λ,
we set

[ξ]k := [λ].

Moreover, we will write ∑
λ∈C/kΛ

nλ[λ] ≤
∑

λ∈C/kΛ

mλ[λ]

if, for all λ ∈ C/kΛ, nλ ≤ mλ. We also introduce the weight ωk(f) of f
defined by

ωk(f) :=
∑

λ∈C/kΛ

ordλ(f)λ ∈ C/kΛ

and its degree degk(f) given by

degk(f) :=
∑

λ∈C/kΛ

ordλ(f) ∈ Z.

If f = c
∏
ξ∈C

θk(z − ξ)nξ ∈ Θquot
k , then

divk(f) =
∑
ξ∈C

nξ[ξ]k,
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ωk(f) =
∑
ξ∈C

nξξ mod kΛ

and

degk(f) =
∑
ξ∈C

nξ.

The interest of Θquot
k in our context is given by the following classical

result.

Proposition 9. We have

M×kΛ ⊂ Θquot
k .

Proof. This inclusion means that any kΛ-periodic meromorphic function
can be written, up to some multiplicative constant in C×, as a quotient of
product of functions of the form θk(z − ξ). This is classical, see [Mum07,
Chapter I, §6]. �

We now state a couple of lemmas, which will be used freely in the rest of
the paper.

Lemma 10. Any f = c
∏
ξ∈C

θk(z − ξ)nξ ∈ Θquot
k is k-periodic and satisfies

(10) f(z + kτ) = (−1)degk(f)e2iπωe−2iπ degk(f)z/kf(z)

where ω =
∑

ξ∈C nξξ is a representative of ωk(f) 2. Conversely, any non
zero k-periodic meromorphic function f over C such that

(11) f(z + kτ) = ce−2iπnz/kf(z),

for some c ∈ C× and n ∈ Z, belongs to Θquot
k .

Proof. The fact that any f ∈ Θquot
k is k-periodic and satisfies the functional

equation (10) follows from the fact that θk is k-periodic and satisfies the
functional equation (9). Conversely, consider a non zero k-periodic mero-
morphic function f over C satisfying an equation of the form (11). Using
the functional equation (9), we see that the k-periodic meromorphic func-

tion g(z) = f(z)θk(z−ξ)
θk(z)nθk(z) , where ξ ∈ C is such that e−2iπξ/k = (−1)nc, satisfies

g(z + kτ) = g(z). So g belongs to M×kΛ ⊂ Θquot
k , whence the result. �

Lemma 11. If f ∈ Θk is such that degk(f) = 0 then f is constant.

Proof. Consider f ∈ Θk. There exists c ∈ C× and (nξ)ξ∈C ∈ N(C) with finite
support such that

f(z) = c
∏
ξ∈C

θk(z − ξ)nξ .

Then, degk(f) =
∑

ξ∈C nξ is equal to 0 by hypothesis. Thus, for all ξ ∈ C,
nξ = 0 and hence f = c is constant. �

2. It follows from this formula that f belongs to MkΛ if and only if degk(f) =∑
ξ∈C nξ = 0 and ω =

∑
ξ∈C nξξ ∈ Z.
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3.2. Weierstrass ℘-function. For details on what follows, we refer to
[Sil09], Chapter VI. Recall that

℘(z) :=
1

z2
+

∑
λ∈Λ\{0}

1

(z + λ)2
− 1

λ2
∈ MΛ

denotes the Weierstrass elliptic function associated to the lattice Λ. For any
integer k ≥ 1, we denote by ℘k ∈ MkΛ the Weierstrass function defined by

℘k(z) := ℘(z/k) ∈ MkΛ .

This kΛ-periodic meromorphic function is an even function, its poles are of
order two and its set of poles is kΛ. Therefore, its derivative ℘′k is an odd
function, its poles are of order three and its set of poles is kΛ.

Any kΛ-periodic elliptic function is a rational function in ℘k and ℘′k, that
is

MkΛ = C(℘k, ℘
′
k).

Lemma 12. Assume that f ∈ MkΛ, seen has a meromorphic function over
C/kΛ, has at most N poles counted with multiplicities (or, equivalently,
that f = p/q with p, q ∈ Θk such that degk p,degk q ≤ N). Then, there
exist A = P/Q and B = R/S with P,Q ∈ C[X] of degree at most 2N and
R,S ∈ C[X] of degree at most 2N + 3 such that

f = A(℘k) + ℘′kB(℘k).

Proof. Using the fact that f(z) belongs to MkΛ if and only if f(kz) belongs
to MΛ, it is easily seen that it is sufficient to prove the lemma for k = 1.
In what follows, we see the Λ-periodic elliptic functions as meromorphic
functions on C/Λ. Let A,B ∈ C(X) be such that f = A(℘) + ℘′B(℘). It
follows from the formula

A(℘(z)) =
f(z) + f(−z)

2

that A(℘) has at most 2N poles counted with multiplicities in C/Λ. But,
if A = P/Q with gcd(P,Q) = 1 then A(℘) has at least degQ poles counted
with multiplicities in C/Λ (namely, the zeroes of Q(℘)) . So degQ ≤ 2N .

Using the fact that elliptic functions have the same numbers of zeroes and
poles, the same argument applied to 1/A(℘) shows that degP ≤ 2N .

Using the formula

B(℘(z)) =
f(z)− f(−z)

2℘′(z)
,

similar arguments show that degR ≤ 2N + 3 and degS ≤ 2N + 3. �

4. Irreducibility of the difference Galois group

We let

(12) φ2(y) + aφ(y) + by = 0 with a ∈ MΛ and b ∈ M×Λ

be a difference equation of order 2 with coefficients in MΛ and we denote by

φY = AY with A =

(
0 1
−b −a

)
∈ GL2(MΛ)
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the associated difference system. For the notations MΛ, φ, K, etc, we refer
to §2 and §3.

We let G ⊂ GL2(C) be the difference Galois group over (K,φ) of equa-
tion (12). According to Corollary 7, G is an algebraic subgroup of GL2(C)
such that the quotient G/G◦ of G by its identity component G◦ is cyclic.
A direct inspection of the classification, up to conjugation, of the algebraic
subgroups of GL2(C) given in [NvdPT08, Theorem 4] shows that G satisfies
one of the following properties:

– The group G is reducible (i.e. conjugate to some subgroup of the group
of upper-triangular matrices in GL2(C)). If G is reducible, we distin-
guish the following sub-cases:

– The group G is completely reducible (i.e. is conjugate to some
subgroup of the group of diagonal matrices in GL2(C)).

– The group G is not completely reducible.
– The group G is irreducible (i.e. not reducible) and imprimitive (see §5

for the definition).
– The group G is irreducible and is not imprimitive, and, in this case,

there exists an algebraic subgroup µ of C× such that G = µSL2(C).
Therefore, G = {M ∈ GL2(C) | det(M) ∈ H} where H = det(G) ⊂
C×. In order to determine H, one can use the fact that H = det(G)
is the difference Galois group of φy = (detA)y = by (this follows for
instance from tannakian duality [vdPS97, §1.4]).

Our first task, undertaken in the present section, is to study the reducibil-
ity of G. The imprimitivity of G will be considered in §5.

4.1. Riccati equation and irreducibility. The non linear difference
equation

(13) (φ(u) + a)u = −b
is called the Riccati equation associated to equation (12). A straightforward
calculation shows that u is a solution of this equation if and only if φ− u is
a right factor of φ2 + aφ+ b, whence its link with irreducibility.

In what follows, we denote by I2 the identity matrix of GL2(C).

Lemma 13. The following statements hold:

(1) If (13) has one and only one solution in K then G is reducible but
not completely reducible.

(2) If (13) has exactly two solutions in K then G is completely reducible
but not an algebraic subgroup of C×I2.

(3) If (13) has at least three solutions in K then it has infinitely many
solutions in K and G is an algebraic subgroup of C×I2.

(4) If none of the previous cases occur then G is irreducible.

Proof. The proof of this lemma is identical to that of [Hen98, Theorem 4.2],
to whom we refer for more details.

(1) We assume that (13) has one and only one solution u ∈ K. A straight-
forward calculation shows that

φ(T )AT−1 =

(
u ∗
0 b/u

)
for T :=

(
1− u 1
−u 1

)
∈ GL2(K).
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We deduce from this and from Corollary 7 that G is reducible.
Moreover, if G was completely reducible then, in virtue of Corollary 7,

φ(T )AT−1 would be diagonal for some T := (ti,j)1≤i,j≤2 ∈ GL2(K). Equat-
ing the entries of the antidiagonal of φ(T )AT−1 with 0, we find that
− t21
t22
,− t11

t12
∈ K are solutions of the Riccati equation. Since det(T ) 6= 0,

these solutions are distinct, whence a contradiction.
(2) Assume that (13) has exactly two solutions u1, u2 ∈ K. We have

φ(T )AT−1 =

(
u1 0
0 u2

)
for T :=

1

u1 − u2

(
−u2 1
−u1 1

)
∈ GL2(K).

We deduce from this and from Corollary 7 that G is completely reducible.
Moreover, if G was an algebraic subgroup of C×I2 then, according to

Corollary 7, there would exist u ∈ K and T = (ti,j)1≤i,j≤2 ∈ GL2(K) such
that

φ(T )AT−1 = uI2.

This equality implies that t21 and t22 are non zero and that, for all c, d ∈ C
with ct2,2 + dt1,2 6= 0,

−ct21 + dt11

ct22 + dt12
∈ K

is a solution of (13). It is easily seen that we get in this way infinitely many
solutions of the Riccati equation, this is a contradiction.
(3) Assume that (13) has at least three solutions u1, u2, u3 ∈ K. The proof
of assertion (2) of the present lemma shows that φY = AY is isomorphic

over K to φY =

(
ui 0
0 uj

)
Y for all 1 ≤ i < j ≤ 3. Therefore, there exists

T ∈ GL2(K) such that

φ(T )

(
u1 0
0 u2

)
=

(
u1 0
0 u3

)
T.

Equating the second columns in this equality, we see that there exists
f ∈ K× such that either u1 = φf

f u2 or u3 = φf
f u2; up to renumbering,

one can assume that the former case holds true. It follows that φY = AY
is isomorphic over K to

φY = (u1I2)Y

and, according to Corollary 7, G is an algebraic subgroup of C×I2. We have
shown during the proof of statement (2) that this implies that the Riccati
equation (13) has infinitely many solutions in K.
(4) Assume that G is reducible. According to Corollary 7, there exists
T = (ti,j)1≤i,j≤2 ∈ GL2(K) such that φ(T )AT−1 is upper triangular. Then
t22 6= 0 and − t21

t22
∈ K is a solution of the Riccati equation (13). This proves

claim (4). �

In the proof of the previous lemma, we have shown the following result,
which we state independently for ease of reference.

Lemma 14. The following properties are equivalent:
– The Riccati equation (13) has at least three solutions in K.
– The Riccati equation (13) has infinitely many solutions in K.
– The difference Galois group G is a subgroup of C×I2.
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– There exist u ∈ K× and T ∈ GL2(K) such that φ(T )AT−1 = uI2.

We shall now state and prove one more lemma.

Lemma 15. Let Λ′′ ⊂ Λ′ be sublattices of Λ such that the quotient Λ′/Λ′′

is cyclic. Assume that there exist u ∈ M×Λ′′ and T ∈ GL2(MΛ′′) such that

(14) φ(T )AT−1 = uI2.

Then, the Riccati equation (13) has at least two distinct solutions in MΛ′.

Proof. The Galois extension MΛ′′ |MΛ′ is cyclic of order k := [MΛ′′ : MΛ′ ].
Its Galois group Gal(MΛ′′ |MΛ′) is generated by the field automorphism σ1

given by σ1(f(z)) = f(z+λ′), where λ′ ∈ Λ′ is a representative of a generator
of Λ′/Λ′′. Note that the action of Gal(MΛ′′ |MΛ′) on MΛ′′ commutes with
the action of φ. Applying σ1 to equation (14), we get

φ(σ1(T ))Aσ1(T )−1 = σ1(u)I2,

so
φ(S)u = σ1(u)S, with S := σ1(T )T−1 ∈ GL2(MΛ′′).

It follows that there exists gσ1 ∈ M×Λ′′ (namely, one of the non zero entries
of S) such that

σ1(u) =
φ(gσ1)

gσ1

u.

Consider the norm

N := NMΛ′′ |MΛ′
(gσ1) =

∏
σ∈Gal(MΛ′′ |MΛ′ )

σ(gσ1) ∈ M×Λ′ .

We have

φ(N) =
∏

σ∈Gal(MΛ′′ |MΛ′ )

σ

(
σ1(u)gσ1

u

)
=

∏
σ∈Gal(MΛ′′ |MΛ′ )

σ(gσ1) = N,

so N = c ∈ (Kφ)× = C×. Up to replacing gσ1 by gσ1c
−1/k, we may assume

that
NMΛ′′ |MΛ′

(gσ1) = 1.

Hilbert’s 90 Theorem [Ser68, § X.1] ensures that there exists m ∈ M×Λ′′ such
that

gσ1 =
m

σ1(m)
.

For any σ = σj1 ∈ Gal(MΛ′′ |MΛ′), we set

gσ := gσ1σ1(gσ1) · · ·σj−1
1 (gσ1) = m/σ(m) ∈ M×Λ′′ ;

we have

σ(u) =
φ(gσ)

gσ
u.

It follows that

ũ :=
φ(m)

m
u

is invariant under the action of Gal(MΛ′′ |MΛ′) and hence belongs to M×Λ′ .
We have

φ
(
T ′
)
A
(
T ′
)−1

= ũI2, with T ′ := mT ∈ GL2(MΛ′′).
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Applying σ ∈ Gal(MΛ′′ |MΛ′) to this equality, we get

φ
(
σ(T ′)

)
A
(
σ(T ′)

)−1
= ũI2.

It follows that the matrix

Cσ := T ′σ
(
T ′
)−1 ∈ GL2(MΛ′′)

satisfies φ(Cσ) = Cσ and, hence, that its entries belong to Kφ = C.
Moreover, σ 7→ Cσ is a 1-cocyle for the natural action of Gal(MΛ′′ |MΛ′)
on GL2(C) but this action is trivial so σ 7→ Cσ is a group morphism
from Gal(MΛ′′ |MΛ′) to GL2(C). Since Gal(MΛ′′ |MΛ′) is cyclic, this im-
plies that there exists P ∈ GL2(C) such that, for all σ ∈ Gal(MΛ′′ |MΛ′),
the matrix Dσ := P−1C−1

σ P ∈ GL2(C) is diagonal. We have, for all
σ ∈ Gal(MΛ′′ |MΛ′),

σ(T ′′) = DσT
′′ where T ′′ = (t′′i,j)1≤i,j≤2 := P−1T ′ ∈ GL2(MkΛ).

It follows that u1 :=
−t′′11
t′′12

and v1 :=
−t′′21
t′′22

are invariant by the action of

Gal(MΛ′′ |MΛ′) and hence belong to MΛ′ . But u1 and v1 are solutions of the
Riccati equation (13) (this was already used in the proof of assertion (2) of
Lemma 13). So u1 and v1 are solutions in MΛ′ of the Riccati equation (13).

�

We now come to the main result of this subsection.

Theorem 16. The following statements hold:

(1) The Galois group G is reducible if and only if the Riccati equation
(13) has at least one solution in M2Λ.

(2) The Galois group G is completely reducible if and only if the Riccati
equation (13) has at least two solutions in M2Λ.

Proof. In virtue of Lemma 13, it is sufficient to prove that:

(a) If the Riccati equation (13) has a unique solution in K, then it belongs
to MΛ.
(b) If the Riccati equation (13) has exactly two solutions in K, then they
belong to M2Λ.
(c) If the Riccati equation (13) has at least three solutions in K, then the
Riccati equation (13) has at least two solutions in M2Λ.

(a) Assume that the Riccati equation (13) has a unique solution u in K.
Since u(z), u(z + 1) and u(z + τ) are solutions of (13), we get

u(z) = u(z + 1) = u(z + τ)

and hence u ∈ MΛ.
(b) Assume that the Riccati equation (13) has exactly two solutions in K
and let u ∈ K be one of these solutions. Since u(z), u(z+1) and u(z+2) are
solutions of (13), we get u(z+2) = u(z). Similarly, we have u(z+2τ) = u(z).
So u ∈ M2Λ.
(c) What follows is inspired by [Hen98, Theorem 4.2], but is a little bit sub-
tler. Assume that the Riccati equation (13) has at least three solutions in K.
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According to Lemma 14, there exist u ∈ K and T = (ti,j)1≤i,j≤2 ∈ GL2(K)
such that

(15) φ(T )AT−1 = uI2.

Let k ∈ N∗ be such that the entries of T and u belong to MkΛ. Consider the
following field extensions:

MΛ ⊂ L ⊂ MkΛ, with L := MZ+kτZ .

Applying Lemma 15 to the extension MkΛ |L and to the equation (15), we
get that the Riccati equation (13) has two distinct solution u1 and v1 in L.
If both of them belong to M2Λ then the proof is completed. Otherwise, up to
renumbering, we can assume that u1 6∈ M2Λ i.e. that u1 is not 2τ -periodic.
Then

u1(z), u2(z) := u1(z + τ) and u3(z) := u1(z + 2τ)

are distinct solutions in L of the Riccati equation. For all integers i, j ∈

{1, 2, 3} with i < j we set Ti,j := 1
ui−uj

(
−uj 1
−ui 1

)
∈ GL2(L) and we have

φ (Ti,j)A (Ti,j)
−1 =

(
ui 0
0 uj

)
(this was already used in the proof of assertion (2) of Lemma 13). Therefore,

φ
(
T1,3 (T1,2)−1

)(
u1 0
0 u2

)
=

(
u1 0
0 u3

)
T1,3 (T1,2)−1 .

Equating the second columns in this equality, we see that there exists f ∈ L×
such that either u1 = φf

f u2 or u3 = φf
f u2; up to renumbering, we may assume

that the former equality holds true. Then, we have

(16) φ
(
T̃
)
AT̃−1 = u1I2

with

u1 ∈ L× and T̃ :=

(
1 0
0 f

)
T1,2 ∈ GL2(L).

Applying Lemma 15 to the extension L|MΛ and to the equation (16), we see
that the Riccati equation (13) has 2 distinct solutions in MΛ. This concludes
the proof. �

4.2. On the solutions of the Riccati equation. We refer to §3.1 for
the notations (divk, degk, ωk, etc) used in this subsection. Let k ≥ 1 be an
integer. Consider p1 ∈ Θk ∪ {0} and p2, p3 ∈ Θk such that

a =
p1

p3
and b =

p2

p3
.

We let u ∈ MkΛ be a potential solution of the Riccati equation (13).

Proposition 17. We have

u =
φ(r)

r

p

q
for some p, q, r ∈ Θk such that

(i) divk(p) ≤ divk(p2),
(ii) divk(q) ≤ divk(φ

−1(p3)),
(iii) degk(p) = degk(q),
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(iv) ωk (p/q) = degk(r)h mod kΛ.

Proof. In what follows, the greatest common divisors (gcd) has to be un-
derstood in the ring O(C) of entire functions 3. Let p4, p5 ∈ Θk, with
gcd(p4, p5) = 1, be such that u = p4/p5. Let r ∈ Θk be a greatest com-
mon divisor of φ−1(p4) and p5 and consider

p :=
p4

φ(r)
∈ Θk and q :=

p5

r
∈ Θk.

By construction, we have

u =
φr

r

p

q

with gcd(p, φ(q)) = gcd(φ(r)p, rq) = 1. Then, the Riccati equation (13)
becomes

p3
φr

r

p

q
φ

(
φr

r

p

q

)
+ p1

φr

r

p

q
= −p2,

i.e.

p3φ
2(r)pφ(p) + p1φ(r)pφ(q) = −p2rqφ(q).

It is now easily seen that p divides p2 and that q divides φ−1(p3) in O(C).
In terms of divisors, this is exactly (i) and (ii).

According to Lemma 10, we have
p

q
(z + kτ) = (−1)degk(p/q)e2iπω/ke−2iπ degk(p/q)z/k p

q
(z)

for some representative ω of ωk(p/q), and

φ(r)

r
(z + kτ) = e−2iπ degk(r)h/kφ(r)

r
(z).

Therefore

u(z + kτ) = (−1)degk(p/q)e2iπω/ke−2iπ degk(p/q)z/ke−2iπ degk(r)h/ku(z).

But u ∈ MkΛ, so u(z + kτ) = u(z) and, hence,

(−1)degk(p/q)e2iπω/ke−2iπ degk(p/q)z/ke−2iπ degk(r)h/k = 1.

Hence degk(p/q) = 0 and ω = degk(r)h mod kΛ. This proves (iii) and
(iv). �

We will see in § 6.1 that Proposition 17 is a useful theoretic tool in order
to determine the difference Galois groups of families of equations, such as
the discrete Lamé equations mentioned in the introduction.

We shall now conclude this section with a few words about Proposition 17.

Remark 18. How to use Proposition 17 in order to decide whether G is ir-
reducible? Theorem 16 ensures that G is irreducible if and only if the Riccati
equation (13) has a solution u ∈ M2Λ; we let p, q, r be as in Proposition 17.
Assertions (i) and (ii) of Proposition 17, show that there are finitely many
explicit possibilities for the divisors div2(p) and div2(q). But deg2(r) is en-
tirely determined by these divisors in virtue of (iv) of Proposition 17. So,

3. According to [Hel40], any finitely generated ideal of O(C) is principal, whence the
existence of the greatest common divisor of any couple of elements of O(C). Such a
greatest common divisor is unique up to multiplication by an unit of O(C).
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we can compute an integer N ≥ 0 such that if the Riccati equation (13) has
a solution u ∈ M2Λ, then

u = p0/q0

with p0, q0 ∈ Θ2 such that deg2(p0) ≤ N and deg2(q0) ≤ N . Lemma 12
ensures that

u = A(℘2) + ℘′2B(℘2)

for some A = P/Q and B = R/S with P,Q ∈ C[X] of degree at most 2N
and R,S ∈ C[X] of degree at most 2N + 3.

So, in order to determine whether or not the Riccati equation (13) has at
least one solution in M2Λ, we are lead to the following question: do there
exist A = P/Q and B = R/S with P,Q ∈ C[X] of degree at most 2N and
R,S ∈ C[X] of degree at most 2N + 3 such that u = A(℘2) + ℘′2B(℘2) is a
solution of the Riccati equation (13)? Substituting u = A(℘2) + ℘′2B(℘2) in
the Riccati equation (13) and using the addition formula:

℘2(z) + ℘2(h) + ℘2(z + h) =
1

4

(
℘′2(z)− ℘′2(h)

℘2(z)− ℘2(h)

)2

,

we are lead to decide whether multivariate polynomials, whose indetermi-
nates are the coefficients of P,Q,R and S, have a common complex solution.
This can be decided by using Gröbner bases.

Note however that, in order to make this method an effective tool, we
have to know the divisors of a and b, and to be able to deduce degk(r) from
assertion (iv) of Proposition 17.

5. Imprimitivity of the difference Galois group

We want to determine whether G is imprimitive, that is whether G is
conjugate to a subgroup of{(

α 0
0 β

)
| α, β ∈ C×

}⋃{(
0 γ
δ 0

)
| γ, δ ∈ C×

}
.

Theorem 19. Assume that G is irreducible and that a 6= 0. Then, G is
imprimitive if and only if there exists u ∈ M2Λ such that

(17)

(
φ2(u) +

(
φ2

(
b

a

)
− φ(a) +

φ(b)

a

))
u = −φ(b)b

a2
.

Proof. Arguing exactly as in [Hen98, Theorem 4.6], we get that G is im-
primitive if and only if equation (17) has a solution in K. But this is a
Riccati-type equation, with φ replaced by φ2. Therefore, the assertions (a),
(b) and (c) given at the beginning of the proof of Theorem 16 allow us to
conclude. �

Remark 20. If a = 0 then G is imprimitive in virtue of Corollary 7.

Note that Proposition 17 can be used in order to find restrictions on the
solutions of the above Riccati-type equation, but with φ replaced by φ2.
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6. Applications

We recall that h ∈ C is such that h mod Λ is not a torsion point of C/Λ,
i.e. that the corresponding point h of E(C) is not a torsion point.

6.1. A discrete version of Lamé equation. Let us consider the difference
equation

(18) ∆2
hy = (A℘(z) +B)y where ∆hy(z) =

y(z + h)− y(z)

h
and A,B ∈ C. This is a discrete version of the so-called Lamé differential
equation

y′′(z) = (A℘(z) +B)y(z).

Theorem 21. Assume that E is defined over Q (i.e. g2, g3 ∈ Q) and that
h,A,B ∈ Q with A 6= 0. Then, the difference Galois group over (K,φ) of
equation (18) is GL2(C).

A straightforward calculation shows that equation (18) can be rewritten
as follows:

φ2y − 2φy + (−Ah2℘(z)−Bh2 + 1)y = 0.

We will deduce Theorem 21 from the following theorem combined with a
transcendence result due to Schneider.

Theorem 22. Consider a ∈ C× and b(z) = α℘(z)+β with (α, β) ∈ C××C.
Let z0 ∈ C be such that ℘(z0) = −β/α 4. If Zh ∩ (`z0 + Λ) = {0} for all
` ∈ {−8, ..., 8} (this holds in particular if Zh ∩ (Zz0 + Λ) = {0}) then the
difference Galois group over (K,φ) of φ2y + aφy + by = 0 is GL2(C).

Proof of Theorem 22. For the notations, divk, [·]k, etc, we refer to §3.1. Note
that

div1(b) = [z0]1 + [−z0]1 − 2[0]1.

So, we can write a = p1

p3
and b = p2

p3
for some p1, p2, p3 ∈ Θ1 with

div1(p2) = [z0]1 + [−z0]1

and
div1(p3) = 2[0]1.

We claim that G is irreducible i.e., in virtue of Theorem 16, that the
Riccati equation

(19) (φ(u) + a)u = −b
does not have any solution in M2Λ. Suppose to the contrary that it has a
solution u ∈ M2Λ. Proposition 17 ensures that there exist p, q, r ∈ Θ2 such
that

u =
φ(r)

r

p

q
and

(i) div2(p) ≤
∑

`1,`2∈{0,1}[`1 + `2τ − z0]2 + [`1 + `2τ + z0]2,

(ii) div2(q) ≤
∑

`1,`2∈{0,1} 2[`1 + `2τ + h]2,

4. Any non constant elliptic function f(z) has at least one zero (otherwise, 1/f(z) would
be an entire elliptic function and hence would be constant). In particular, ℘(z) +β/α has
a least one zero in C.
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(iii) deg2(p) = deg2(q),
(iv) ω2 (p/q) = deg2(r)h mod 2Λ.

Properties (i) and (ii) above imply that

ω2 (p/q) = `z0 − deg2(q)h mod Λ

for some ` ∈ {−4, ..., 4}. We infer from this and from (iv) that

(deg2(r) + deg2(q))h = `z0 mod Λ.

The assumption on z0 ensures that deg2(r) = deg2(q) = 0. It follows
from (iii) that deg2(p) = 0 and hence u is a constant. But it is easily
seen that equation (19) does not have any constant solution; this proves our
claim.

We claim that G is not imprimitive i.e., in virtue of Theorem 19, that

(20)

(
φ2(u) +

φ2(b)

a
− a+

φ(b)

a

)
u = −φ(b)b

a2

does not have any solution in M2Λ. Suppose to the contrary that it has a
solution u ∈ M2Λ. Equation (20) is of the form:

u

(
φ2(u) +

p1

p3

)
=
p2

p3
,

for some p1, p2, p3 ∈ Θ1 with

div1(p2) = 2[−2h]1 + [z0]1 + [−z0]1 + [z0 − h]1 + [−z0 − h]1

and

div1(p3) = 2[−2h]1 + 2[−h]1 + 2[0]1.

We apply Proposition 17 with φ replaced by φ2 to obtain the existence of
p, q, r ∈ Θ2 such that

u =
φ2(r)

r

p

q
,

where:
(v)

div2(p) ≤
∑

`1,`2∈{0,1}

2[`1 + `2τ − 2h]2 + [`1 + `2τ + z0]2 + [`1 + `2τ − z0]2

+[`1 + `2τ + z0 − h]2 + [`1 + `2τ − z0 − h]2,

(vi) div2(q) ≤
∑

`1,`2∈{0,1}

2[`1 + `2τ ]2 + 2[`1 + `2τ + h]2 + 2[`1 + `2τ + 2h]2,

(vii) deg2(p) = deg2(q),
(viii) ω2 (p/q) = 2 deg2(r)h mod 2Λ.

We claim that
(v’) div2(p) ≤

∑
`1,`2∈{0,1}[`1 + `2τ + z0]2 + [`1 + `2τ − z0]2,

(vi’) div2(q) ≤
∑

`1,`2∈{0,1} 2[`1 + `2τ ]2.

Indeed, otherwise, arguing as for the proof of the irreducibility of G, we see
that (v), (vi) and (viii) would lead to a relation of the form

(2 deg2(r) + d)h = `z0 mod Λ
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for some integer ` ∈ {−8, ..., 8} and some integer d > 0 and this would
contradict our assumption on z0. Then, (viii) shows that

2 deg2(r)h = `z0 mod Λ

for some integer ` ∈ {−4, ..., 4} and hence deg2(r) = 0. Therefore, u = p/q
with p, q ∈ Θ2 satisfying (v’) and (vi’) above. Now remark that

φ2(u) +
φ2(b)

a
− a+

φ(b)

a
does not have poles in Λ. But any element of Λ is a pole of order 2 of the
right hand side of equation (20), so any element of Λ is a pole of order at
least 2 of u. It follows that (vi’) is an equality. Then, using (vii), we see
that (v’) is also an equality.

So div2(u) = div2(b) and hence u = cb for some c ∈ C×. We now plug
u = cb into equation (20) and we get:

c

((
c+

1

a

)
φ2(b)− a+

φ(b)

a

)
= −φ(b)

a2
.

Since −2h is a pole of φ2(b) but not of φ(b), we get c = −1/a and the above
equation simplifies as follows:

−1

a

(
−a+

φ(b)

a

)
= −φ(b)

a2
.

This gives 1 = 0, whence a contradiction.
Therefore, G is irreducible and not imprimitive. So, as explained at the

beginning of section 4, G = {M ∈ GL2(C) | det(M) ∈ H} where H ⊂ C×
is the Galois group of φy = by, which is easily seen to be the multiplicative
group (C×, ·). This concludes the proof. �

Proof of Theorem 21. In virtue of Theorem 22, it is sufficient to prove that
Zh ∩ (Zz0 + Λ) = {0}. Consider m1,m2 ∈ Z and λ ∈ Λ such that m1h =

m2z0 +λ. We have ℘(z0) = −Bh2+1
Ah2 ∈ Q. It follows that either m2z0 +λ ∈ Λ

or ℘(m2z0+λ) ∈ Q. (Indeed, suppose that m2z0+λ 6∈ Λ. Using equation (1),
we see that ℘′(z0) ∈ Q. Therefore, ϕ(z0) belongs to E(Q), the map ϕ being
defined in the introduction. Using the fact that ϕ is a group morphism
and that E(Q) is a subgroup of E(C), we get ϕ(mz0) ∈ E(Q). Therefore,
℘(mz0 + λ) = ℘(mz0) ∈ Q.) In the former case, we get m1h ∈ Λ and hence
m1 = 0. In the later case, it follows from the work of Schneider [Sch36]
(for a reference in english, see Baker’s book [Bak90, Theorem 6.2]; see also
Bertrand and Masser’s papers [BM80, Mas75]) that m2z0+λ and hence m1h
are transcendental numbers, which is excluded. �

6.2. A family of examples with Galois groups between SL2(C)
and GL2(C).

Theorem 23. Let us consider b ∈ C×, and a(z) := α℘(z) + β with
(α, β) ∈ C× × C. Let z0 ∈ C be such that ℘(z0) = −β/α. If Zh∩(`z0 +Λ) =
{0} for all ` ∈ {−16, ..., 16} (this holds in particular if Zh∩(Zz0 +Λ) = {0})
then the difference Galois group over (K,φ) of φ2y + aφy + by = 0 is
µ2k SL2(C) if b is a primitive kth root of the unity and GL2(C) otherwise,
where µ2k is the group of complex kth roots of the unity.
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The proof will be given after the following corollary.

Corollary 24. Assume that E is defined over Q (i.e. g2, g3 ∈ Q). Consider

b ∈ Q× and a(z) := α℘(z) + β with α, β ∈ Q and α 6= 0. Then, the
difference Galois group over (K,φ) of φ2y+ aφy+ by = 0 is µ2k SL2(C) if b
is a primitive kth root of the unity and GL2(C) otherwise.

Proof. Similar to deduction of Theorem 21 from Theorem 22. �

Proof of Theorem 23. Note that

div1(a) = [z0]1 + [−z0]1 − 2[0]1.

So, we can write a = p1

p3
and b = p2

p3
for some p1, p2, p3 ∈ Θ1 with

div1(p2) = 2[0]1

and

div1(p3) = 2[0]1.

We claim that G is irreducible i.e., in virtue of Theorem 16, that the
Riccati equation

(21) (φ(u) + a)u = −b

does not have any solution in M2Λ. Suppose to the contrary that it has a
solution u ∈ M2Λ. Proposition 17 ensures that there exist p, q, r ∈ Θ2 such
that

u =
φ(r)

r

p

q

and
(i) div2(p) ≤

∑
`1,`2∈{0,1} 2[`1 + `2τ ]2,

(ii) div2(q) ≤
∑

`1,`2∈{0,1} 2[`1 + `2τ + h]2,

(iii) deg2(p) = deg2(q),
(iv) ω2 (p/q) = deg2(r)h mod 2Λ.

Properties (i) and (ii) above imply that

ω2 (p/q) = −hdeg2(q) mod Λ.

We infer from this and from (iv) that

(deg2(r) + deg2(q))h = 0 mod Λ.

This yields deg2(r) = deg2(q) = 0. It follows from (iii) that deg2(p) = 0 and
hence u is a constant. But it is easily seen that equation (21) does not have
any constant solution; this proves our claim.

We claim that G is not imprimitive i.e., in virtue of Theorem 19, that
(we recall that b is constant)

(22)

(
φ2(u) +

b

φ2(a)
− φ(a) +

b

a

)
u = − b

2

a2

does not have any solution in M2Λ. Suppose to the contrary that it has a
solution u ∈ M2Λ. Equation (22) is of the form:

u

(
φ2(u) +

p1

p3

)
=
p2

p3
,
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for some p1, p2, p3 ∈ Θ1 with

div1(p2) = 4[0]1 + 2[−h]1 + [z0 − 2h]1 + [−z0 − 2h]1

and

div1(p3) = 2[−h]1 + 2[z0]1 + 2[−z0]1 + [z0 − 2h]1 + [−z0 − 2h]1.

Proposition 17 ensures that there exist p, q, r ∈ Θ2 such that

u =
φ2(r)

r

p

q
,

and:
(v)

div2(p) ≤
∑

`1,`2∈{0,1}

4[`1 + `2τ ]2 + 2[`1 + `2τ − h]2

+[`1 + `2τ + z0 − 2h]2 + [`1 + `2τ − z0 − 2h]2,

(vi)

div2(q) ≤
∑

`1,`2∈{0,1}

2[`1 + `2τ + h]2 + 2[`1 + `2τ + z0 + 2h]2 + 2[`1 + `2τ − z0 + 2h]2

+[`1 + `2τ + z0]2 + [`1 + `2τ − z0]2,

(vii) deg2(p) = deg2(q),
(viii) ω2 (p/q) = 2 deg2(r)h mod 2Λ.

We claim that
(v’) div2(p) ≤

∑
`1,`2∈{0,1} 4[`1 + `2τ ]2,

(vi’) div2(q) ≤
∑

`1,`2∈{0,1}[`1 + `2τ + z0]2 + [`1 + `2τ − z0]2.

Otherwise, arguing as for the proof of the irreducibility of G, we see that
(v), (vi) and (viii) would lead to a relation of the form

(2 deg2(r) + d)h = `z0 mod Λ

for some integer ` ∈ {−16, ..., 16} and some integer d > 0 and this would
contradict our assumption on z0. Then, (viii) shows that

2 deg2(r)h = `z0 mod Λ

for some integer ` ∈ {−4, ..., 4} and hence deg2(r) = 0. So u = p/q with
p, q ∈ Θ2 satisfying (v’) and (vi’) above. In particular, −h is not a zero of
u. But −h (which is a pole of φ(a)) is a pole of

φ2(u) +
b

φ2(a)
− φ(a) +

b

a
.

So −h is a pole of the left hand side of (22). This a contradiction because
−h is not a pole of the right hand side of (22).

Therefore, G is irreducible and not imprimitive. So, as explained at the
beginning of section 4, G = {M ∈ GL2(C) | det(M) ∈ H} where H ⊂ C×
is the Galois group of φy = by, which is easily seen to be µk if b is a kth
root of the unity and C× otherwise. �
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