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This paper is concerned with difference equations on elliptic curves. We establish some general properties of the difference Galois groups of equations of order two, and give applications to the calculation of some difference Galois groups. For instance, our results combined with a result from transcendence theory due to Schneider allow us to identify a large class of discrete Lamé equations with difference Galois group GL2(C).
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We denote by E(C) the group of C-points of E. Its abelian group law is denoted by ⊕.

In this paper, we study the difference Galois groups of linear difference equations of order two on E(C) of the form:

(2) y(z ⊕ 2h) + a(z)y(z ⊕ h) + b(z)y(z) = 0 where y is an unknown function of the variable z ∈ E(C), h is a fixed non torsion point of E(C) and a, b are given rational functions on E. This equation can be seen as a difference equation over C. Indeed, if Λ ⊂ C is a lattice of periods of E and if ℘ is the corresponding Weierstrass function, then C/Λ is identified with E(C) via the factorization through C/Λ of ϕ : z ∈ C → (℘(z) : ℘ (z) : 1) ∈ E(C). Pulling back the equation (2) via ϕ, which is a group morphism from (C, +) to (E(C), ⊕), we obtain the following difference equation on C:

(3) y(z + 2h) + a(z)y(z + h) + b(z)y(z) = 0 where y is an unknown function of the variable z ∈ C, a := a • ϕ and b := b • ϕ are Λ-periodic elliptic functions and h ∈ ϕ -1 (h). So, we have the following relations between the equations (2) and (3): z = ϕ(z), h = ϕ(h) and y(z) = y(z). These equations are discrete counterparts of differential equations on elliptic curves, a famous example of which is Lamé differential equation y (z) = (A℘(z) + B)y(z)

where A, B ∈ C. The main results of this paper allow us to compute the difference Galois groups of some equations such as the discrete Lamé equation (4) ∆ 2 h y = (A℘(z) + B)y where ∆ h y(z) = y(z + h) -y(z) h .

For instance, the following theorem is a consequence of our main results combined with a result from transcendence theory due to Schneider in [START_REF] Schneider | Arithmetische Untersuchungen elliptischer Integrale[END_REF] (see also Bertrand and Masser's papers [START_REF] Bertrand | Linear forms in elliptic integrals[END_REF][START_REF] Masser | Elliptic functions and transcendence[END_REF]).

Theorem. Assume that E is defined over Q (i.e. g 2 , g 3 ∈ Q) and that h, A, B ∈ Q with A = 0. Then, the difference Galois group of equation ( 4) is GL 2 (C).

To be precise, the base field for the difference Galois groups considered in the present paper is not the field of Λ-periodic meromorphic functions over C, but the field constituted of the meromorphic functions over C which are Λ -periodic for some sub-lattice Λ of Λ.

The galoisian aspects of the theory of difference equations have attracted the attention of many authors in the past years e.g. [Fra63, Fra66, Fra67, Fra74, Eti95, PS97, And01, DV02, Sau03, vdPR07, RS07, HS08, CHS08, RS09, DVH10, Ngu11, RS14, Bug12, OW14]. The calculation of the difference Galois groups of finite difference or q-difference equations of order two on P 1 has been considered by Hendricks [START_REF] Hendriks | An algorithm for computing a standard form for second-order linear q-difference equations[END_REF][START_REF] Hendriks | An algorithm determining the difference Galois group of second order linear difference equations[END_REF] and by the second author [START_REF] Roques | Galois groups of the basic hypergeometric equations[END_REF]. The work of Hendricks served as a basis for the present work, but, to the best of our knowledge, the present paper is the first to consider the difference Galois groups of difference equations on a non rational variety. The study of dynamical systems on elliptic curves appears in several areas of mathematics (e.g. discrete dynamical systems, QRT maps). In particular, it is very likely that the equations considered in the present paper will arise as linearizations of discrete dynamical systems, in connection with discrete Morales-Ramis theories [START_REF] Casale | Dynamics of rational symplectic mappings and difference Galois theory[END_REF][START_REF] Casale | Nonintegrability by discrete quadratures[END_REF]. In this context, the difference Galois groups are used to obtain non-integrability results. This paper is organized as follows. Section 2 contains reminders and complements on difference Galois theory (for equations of arbitrary order) with a special emphasis on difference equations on elliptic curves. We insist on the fact that the base difference field for the difference Galois groups considered in the present paper is not the field of Λ-periodic elliptic functions but the field of elliptic functions which are Λ -periodic for some sub-lattice Λ of Λ. In section 3, we introduce some notations related to the special functions used in this paper (theta functions, Weierstrass ℘-functions) and we collect some useful results. In section 4, we study the relations between the irreducibility of the difference Galois group of equation (3) and the solutions of an associated Riccati-type equation. We then study this Riccati equation assuming that we have a priori informations on the divisors of the coefficients a and b. In section 5, we show that there is a similar relation between the imprimitivity of the Galois group and some Riccati-type equation. Section 6 is devoted to the calculation of some difference Galois groups, including those of the discrete Lamé equations mentioned above.
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Difference Galois theory: reminders and complements

Generalities on difference Galois theory. For details on what follows, we refer to [vdPS97, Chapter 1].

A difference ring (R, φ) is a ring R together with a ring automorphism φ : R → R. An ideal of R stabilized by φ is called a difference ideal of (R, φ). If R is a field then (R, φ) is called a difference field.

The ring of constants R φ of the difference ring (R, φ) is defined by

R φ := {f ∈ R | φ(f ) = f }.
A difference ring morphism (resp. difference ring isomorphism) from the difference ring (R, φ) to the difference ring ( R, φ) is a ring morphism (resp. ring isomorphism) ϕ : R → R such that ϕ • φ = φ • ϕ.

A difference ring ( R, φ) is a difference ring extension of a difference ring (R, φ) if R is a ring extension of R and φ |R = φ; in this case, we will often denote φ by φ. Two difference ring extensions ( R 1 , φ 1 ) and ( R 2 , φ 2 ) of a difference ring (R, φ) are isomorphic over (R, φ) if there exists a difference ring isomorphism ϕ from ( R 1 , φ 1 ) to ( R 2 , φ 2 ) such that ϕ |R = Id R .

We now let (K, φ) be a difference field. We assume that its field of constants C := K φ is algebraically closed and that the characteristic of K is 0.

Consider a linear difference system

(5) φY = AY with A ∈ GL n (K).
According to [vdPS97, §1.1], there exists a difference ring extension (R, φ) of (K, φ) such that 1) there exists U ∈ GL n (R) such that φ(U ) = AU (such a U is called a fundamental matrix of solutions of (5)); 2) R is generated, as a K-algebra, by the entries of U and det(U ) -1 ; 3) the only difference ideals of (R, φ) are {0} and R. The corresponding difference Galois group G over (K, φ) of (5) is the group of K-linear ring automorphisms of R commuting with φ:

G := {σ ∈ Aut(R/K) | φ • σ = σ • φ}.
The choice of the base field is by no way innocent. The bigger the base field is, the smaller the Galois group is.

A straightforward computation shows that, for any σ ∈ G, there exists a unique C(σ) ∈ GL n (C) such that σ(U ) = U C(σ). According to [vdPS97, Theorem 1.13], one can identify G with an algebraic subgroup of GL n (C) via the faithful representation

σ ∈ G → C(σ) ∈ GL n (C).
If we choose another fundamental matrix of solutions U , we find a conjugate representation.

Remark 2. Given an nth order difference equation

(6) a n φ n (y) + • • • + a 1 φ(y) + a 0 y = 0,
with a 0 , ..., a n ∈ K and a 0 a n = 0, we can consider the equivalent linear difference system

(7) φY = AY, with A =         0 1 0 • • • 0 0 0 1 . . . . . . . . . . . . . . . . . . 0 0 0 • • • 0 1 -a 0 an -a 1 an • • • • • • -a n-1 an         ∈ GL n (K).
By "Galois group of the difference equation ( 6)" we mean "Galois group of the difference system (7)".

We shall now introduce a property relative to the difference base field, which appears in [START_REF] Van Der Put | Galois theory of difference equations[END_REF]Lemma 1.19].

Definition 3. We say that the difference field (K, φ) satisfies property (P) if the following properties hold:

-The field K is a C 1 -field 1 ; -If L is a finite field extension of K such that φ extends to a field endomorphism of L then L = K.

The following result is due to van der Put and Singer. We recall that two difference systems φY = AY and φY = BY with A, B ∈ GL n (K) are isomorphic over K if and only if there exists T ∈ GL n (K) such that φ(T )A = BT . Theorem 4. Assume that (K, φ) satisfies property (P). Let K φ = C. Let G ⊂ GL n (C) be the difference Galois group over (K, φ) of

(8) φ(Y ) = AY, with A ∈ GL n (K).
Then, the following properties hold: -G/G • is cyclic, where G • is the identity component of G; -there exists B ∈ G(K) such that (8) is isomorphic to φY = BY over K. Let G be an algebraic subgroup of GL n (C) such that A ∈ G(K). The following properties hold:

-G is conjugate to a subgroup of G; -any minimal element in the set of algebraic subgroups H of G for which there exists

T ∈ GL n (K) such that φ(T )AT -1 ∈ H(K) is conjugate to G; -G is conjugate to G if
and only if, for any T ∈ G(K) and for any proper algebraic subgroup H of G, one has that φ(T )AT -1 / ∈ H(K).

Proof. The proof of [vdPS97, Propositions 1.20 and 1.21] in the special case where K := C(z) and φ is the shift φ(f (z)) := f (z + h) with h ∈ C × , extends mutatis mutandis to the present case.

1. Recall that K is a C 1 -field if every non-constant homogeneous polynomial P over K has a non-trivial zero provided that the number of its variables is more than its degree.

2.2. Difference equations on elliptic curves. Let Λ ⊂ C be a lattice. Without loss of generality, we can assume that Λ = Z + Zτ, with (τ ) > 0, where (•) denotes the imaginary part. For any lattice Λ ⊂ C, we let M Λ be the field of Λ -periodic meromorphic functions. We denote by K the field defined by

K := Λ sub-lattice of Λ M Λ = k≥1 M kΛ .
Let h ∈ C such that h mod Λ is not a torsion point of C/Λ. We endow K with the non-cyclic field automorphism φ defined by

φ(f )(z) := f (z + h).
Then, (K, φ) is a difference field.

Proposition 5. The field of constants of (K, φ) is

K φ = C. Proof. Consider f ∈ K φ . Let Λ be a sub-lattice of Λ such that f ∈ M Λ . Note that f is Λ -periodic (because f ∈ M Λ ) and h-periodic (because φ(f ) = f ), so f is a (Λ + hZ)-periodic meromorphic function. But Λ + hZ has an accumulation point because h mod Λ is not a torsion point of C/Λ. Therefore, f is constant.
Proposition 6. The difference field (K, φ) satisfies property (P) (see Definition 3).

Proof. Since K = k≥1 M kΛ is the increasing union of the fields M kΛ , the fact that K is a C 1 -field follows from Tsen's theorem [START_REF] Lang | On quasi algebraic closure[END_REF] (according to which the function field of any algebraic curve over an algebraically closed field, e.g. M kΛ , is C 1 ).

Let L be a finite extension of K such that φ extends to a field endomorphism of L. We have to prove that L = K. The primitive element theorem ensures that there exists u ∈ L such that

L = K(u). Let Λ be a sub-lattice of Λ such that -u is algebraic over M Λ , -φ(u) ∈ M Λ (u). Then, M Λ (u) is a finite extension of M Λ and φ induces an automorphism of M Λ (u).
Using the equivalence of categories between between smooth projective curves and function fields of dimension 1 [Har77, Corollary 6.12], we see that there exists a commutative diagram of the form

X f / / ϕ X ϕ C/Λ z →z+h / / C/Λ
where ϕ : X → C/Λ is a morphism of smooth projective curves, whose induced morphism of function fields "is" the inclusion M Λ ⊂ M Λ (u), and where f is an endomorphism of X, whose induced morphism on function fields "is" φ : M Λ (u) → M Λ (u). Considering this commutative diagram, we see that f has degree 1 and that, if ϕ is ramified above y ∈ C/Λ , then ϕ is also ramified above y -h. So, the set of ramification values of ϕ is stable by z → z -h. This set being finite, it has to be empty. So, ϕ is unramified.

Hurwitz's formula implies that X has genus 1, i.e. that X is an elliptic curve. So, there exist a lattice Λ ⊂ C and an isomorphism ψ 

: M Λ (u) → M Λ . There exists (a, b) ∈ C × × C such that aΛ ⊂ Λ and such that the restriction ψ | M Λ is given, for all f ∈ M Λ , by ψ(f )(z) = f (az + b). (Indeed, ψ | M Λ : M Λ → M Λ is
∈ C × ×C such that aΛ ⊂ Λ .) The commutative diagram M Λ / / v(z) →v(az+b) $ $ H H H H H H H H H M Λ (u) ψ $ $ I I I I I I I I I M Λ w(z) →w( z-b a )
/ / M aΛ shows that the fields M Λ (u) and M aΛ are M Λ -isomorphic. But the extension M aΛ / M Λ is Galois (indeed, this is equivalent to the fact that the corresponding morphism of smooth projective curves C/Λ → C/aΛ is Galois, and this is easily seen from the explicit description of the morphisms between these curves). Therefore, any M Λ -morphism from M aΛ to K(u) must leave M aΛ globally invariant. But, M aΛ and M Λ (u) are M Λ -isomorphic subfields of K(u). So M Λ (u) ⊂ M aΛ , and therefore u ∈ M aΛ ⊂ K and L = K(u) ⊂ K.

Corollary 7. The conclusions of Theorem 4 are valid for (K, φ).

Theta functions and Weierstrass ℘-function

3.1. Theta functions. We recall that

Λ = Z + τ Z ⊂ C with (τ ) > 0.
Let θ be the Jacobi theta function defined by

θ(z) = m∈Z (-1) m e iπm(m-1)τ e 2iπmz .
We shall now recall some basic facts about this function. We refer to [Mum07, Chapter I] for details and proofs.

Remark 8. The classical theta function is defined by ϑ(z, τ ) = m∈Z e iπm 2 τ +2iπmz . Actually, this is the function studied in [Mum07, Chapter I]. But, there is a simple relation between θ and ϑ, namely θ(z) = ϑ(z + 1-τ 2 , τ ). So that any statement for ϑ can be immediately translated into a statement for θ.

We recall that θ is a 1-periodic entire function such that θ(z + τ ) = -e -2iπz θ(z).

Moreover, we have the following formula, known as Jacobi's triple product formula:

θ(z) = ∞ m=1
(1 -e 2iπτ m ) 1 -e 2iπ((m-1)τ +z) 1 -e 2iπ(mτ -z) .

For any integer k ≥ 1, we let θ k be the function given by

θ k (z) := θ(z/k).
This k-periodic entire function satisfies the following functional equation:

(9) θ k (z + kτ ) = -e -2iπz/k θ k (z).
It follows from Jacobi's triple product formula that the zeroes of θ k are simple and that its set of zeroes is kΛ. Let Θ k be the set of entire functions of the form

c ξ∈C θ k (z -ξ) n ξ with c ∈ C × and (n ξ ) ξ∈C ∈ N (C)
with finite support. We denote by Θ quot k the set of meromorphic functions over C that can be written as quotient of two elements of Θ k . We define the divisor div k (f ) of f ∈ Θ quot k as the following formal sum of points of C/kΛ:

div k (f ) := λ∈C/kΛ ord λ (f )[λ],
where ord λ (f ) is the (z -ξ)-adic valuation of f , for an arbitrary ξ ∈ λ (it does not depend on the chosen ξ ∈ λ). For any λ ∈ C/kΛ and any ξ ∈ λ, we set [ξ] k := [λ]. Moreover, we will write

λ∈C/kΛ n λ [λ] ≤ λ∈C/kΛ m λ [λ] if, for all λ ∈ C/kΛ, n λ ≤ m λ . We also introduce the weight ω k (f ) of f defined by ω k (f ) := λ∈C/kΛ ord λ (f )λ ∈ C/kΛ
and its degree deg k (f ) given by

deg k (f ) := λ∈C/kΛ ord λ (f ) ∈ Z. If f = c ξ∈C θ k (z -ξ) n ξ ∈ Θ quot k , then div k (f ) = ξ∈C n ξ [ξ] k , ω k (f ) = ξ∈C n ξ ξ mod kΛ and deg k (f ) = ξ∈C n ξ .
The interest of Θ quot k in our context is given by the following classical result.

Proposition 9. We have

M × kΛ ⊂ Θ quot k .
Proof. This inclusion means that any kΛ-periodic meromorphic function can be written, up to some multiplicative constant in C × , as a quotient of product of functions of the form θ k (z -ξ). This is classical, see [Mum07, Chapter I, §6].

We now state a couple of lemmas, which will be used freely in the rest of the paper.

Lemma 10. Any f = c ξ∈C θ k (z -ξ) n ξ ∈ Θ quot k is k-periodic and satisfies (10) f (z + kτ ) = (-1) deg k (f ) e 2iπω e -2iπ deg k (f )z/k f (z)
where ω = ξ∈C n ξ ξ is a representative of ω k (f )2 . Conversely, any non zero k-periodic meromorphic function f over C such that

(11) f (z + kτ ) = ce -2iπnz/k f (z),
for some c ∈ C × and n ∈ Z, belongs to Θ quot k .

Proof. The fact that any f ∈ Θ quot k is k-periodic and satisfies the functional equation (10) follows from the fact that θ k is k-periodic and satisfies the functional equation (9). Conversely, consider a non zero k-periodic meromorphic function f over C satisfying an equation of the form (11). Using the functional equation (9), we see that the k-periodic meromorphic function

g(z) = f (z)θ k (z-ξ) θ k (z) n θ k (z) , where ξ ∈ C is such that e -2iπξ/k = (-1) n c, satisfies g(z + kτ ) = g(z). So g belongs to M × kΛ ⊂ Θ quot k
, whence the result.

Lemma 11. If f ∈ Θ k is such that deg k (f ) = 0 then f is constant. Proof. Consider f ∈ Θ k . There exists c ∈ C × and (n ξ ) ξ∈C ∈ N (C) with finite support such that f (z) = c ξ∈C θ k (z -ξ) n ξ .
Then, deg k (f ) = ξ∈C n ξ is equal to 0 by hypothesis. Thus, for all ξ ∈ C, n ξ = 0 and hence f = c is constant.

Weierstrass ℘-function.

For details on what follows, we refer to [START_REF] Silverman | The arithmetic of elliptic curves[END_REF], Chapter VI. Recall that

℘(z) := 1 z 2 + λ∈Λ\{0} 1 (z + λ) 2 - 1 λ 2 ∈ M Λ
denotes the Weierstrass elliptic function associated to the lattice Λ. For any integer k ≥ 1, we denote by ℘ k ∈ M kΛ the Weierstrass function defined by

℘ k (z) := ℘(z/k) ∈ M kΛ .
This kΛ-periodic meromorphic function is an even function, its poles are of order two and its set of poles is kΛ. Therefore, its derivative ℘ k is an odd function, its poles are of order three and its set of poles is kΛ.

Any kΛ-periodic elliptic function is a rational function in

℘ k and ℘ k , that is M kΛ = C(℘ k , ℘ k ).
Lemma 12. Assume that f ∈ M kΛ , seen has a meromorphic function over C/kΛ, has at most N poles counted with multiplicities (or, equivalently, that f = p/q with p, q ∈ Θ k such that deg k p, deg k q ≤ N ). Then, there exist

A = P/Q and B = R/S with P, Q ∈ C[X] of degree at most 2N and R, S ∈ C[X] of degree at most 2N + 3 such that f = A(℘ k ) + ℘ k B(℘ k ).
Proof. Using the fact that f (z) belongs to M kΛ if and only if f (kz) belongs to M Λ , it is easily seen that it is sufficient to prove the lemma for k = 1.

In what follows, we see the Λ-periodic elliptic functions as meromorphic functions on C/Λ. Let A, B ∈ C(X) be such that f = A(℘) + ℘ B(℘). It follows from the formula

A(℘(z)) = f (z) + f (-z) 2 that A(℘) has at most 2N poles counted with multiplicities in C/Λ. But, if A = P/Q with gcd(P, Q) = 1 then A(℘) has at least deg Q poles counted with multiplicities in C/Λ (namely, the zeroes of Q(℘)) . So deg Q ≤ 2N .
Using the fact that elliptic functions have the same numbers of zeroes and poles, the same argument applied to 1/A(℘) shows that deg P ≤ 2N .

Using the formula 

B(℘(z)) = f (z) -f (-z) 2℘ ( 
φY = AY with A = 0 1 -b -a ∈ GL 2 (M Λ )
the associated difference system. For the notations M Λ , φ, K, etc, we refer to §2 and §3.

We let G ⊂ GL 2 (C) be the difference Galois group over (K, φ) of equation (12). According to Corollary 7, G is an algebraic subgroup of GL 2 (C) such that the quotient G/G • of G by its identity component G • is cyclic. A direct inspection of the classification, up to conjugation, of the algebraic subgroups of GL 2 (C) given in [START_REF] Nguyen | Algebraic subgroups of GL2(C). Indag[END_REF]Theorem 4] shows that G satisfies one of the following properties:

-The group G is reducible (i.e. conjugate to some subgroup of the group of upper-triangular matrices in GL 2 (C)). If G is reducible, we distinguish the following sub-cases:

-The group G is completely reducible (i.e. is conjugate to some subgroup of the group of diagonal matrices in GL 2 (C)). -The group G is not completely reducible.

-The group G is irreducible (i.e. not reducible) and imprimitive (see §5

for the definition). -The group G is irreducible and is not imprimitive, and, in this case, there exists an algebraic subgroup µ of

C × such that G = µ SL 2 (C). Therefore, G = {M ∈ GL 2 (C) | det(M ) ∈ H} where H = det(G) ⊂ C × .
In order to determine H, one can use the fact that H = det(G) is the difference Galois group of φy = (det A)y = by (this follows for instance from tannakian duality [vdPS97, §1.4]). Our first task, undertaken in the present section, is to study the reducibility of G. The imprimitivity of G will be considered in §5. In what follows, we denote by I 2 the identity matrix of GL 2 (C).

Lemma 13. The following statements hold:

(1) If (13) has one and only one solution in K then G is reducible but not completely reducible.

(2) If (13) has exactly two solutions in K then G is completely reducible but not an algebraic subgroup of C × I 2 .

(3) If (13) has at least three solutions in K then it has infinitely many solutions in K and G is an algebraic subgroup of C × I 2 .

(4) If none of the previous cases occur then G is irreducible.

Proof. The proof of this lemma is identical to that of [Hen98, Theorem 4.2], to whom we refer for more details.

(1) We assume that (13) has one and only one solution u ∈ K. A straightforward calculation shows that

φ(T )AT -1 = u * 0 b/u for T := 1 -u 1 -u 1 ∈ GL 2 (K).
We deduce from this and from Corollary 7 that G is reducible. Moreover, if G was completely reducible then, in virtue of Corollary 7, φ(T )AT -1 would be diagonal for some T := (t i,j ) 1≤i,j≤2 ∈ GL 2 (K). Equating the entries of the antidiagonal of φ(T )AT -1 with 0, we find that t 21 t 22 , -t 11 t 12 ∈ K are solutions of the Riccati equation. Since det(T ) = 0, these solutions are distinct, whence a contradiction.

(2) Assume that (13) has exactly two solutions u 1 , u 2 ∈ K. We have

φ(T )AT -1 = u 1 0 0 u 2 for T := 1 u 1 -u 2 -u 2 1 -u 1 1 ∈ GL 2 (K).
We deduce from this and from Corollary 7 that G is completely reducible. Moreover, if G was an algebraic subgroup of C × I 2 then, according to Corollary 7, there would exist u ∈ K and T = (t i,j ) 1≤i,j≤2 ∈ GL 2 (K) such that φ(T )AT -1 = uI 2 . This equality implies that t 21 and t 22 are non zero and that, for all c, d ∈ C with ct 2,2 + dt 1,2 = 0,

- ct 21 + dt 11 ct 22 + dt 12 ∈ K
is a solution of (13). It is easily seen that we get in this way infinitely many solutions of the Riccati equation, this is a contradiction.

(3) Assume that (13) has at least three solutions u 1 , u 2 , u 3 ∈ K. The proof of assertion (2) of the present lemma shows that φY = AY is isomorphic over K to φY = u i 0 0 u j Y for all 1 ≤ i < j ≤ 3. Therefore, there exists

T ∈ GL 2 (K) such that φ(T ) u 1 0 0 u 2 = u 1 0 0 u 3 T.
Equating the second columns in this equality, we see that there exists f ∈ K × such that either u 1 = φf f u 2 or u 3 = φf f u 2 ; up to renumbering, one can assume that the former case holds true. It follows that φY = AY is isomorphic over K to φY = (u 1 I 2 )Y and, according to Corollary 7, G is an algebraic subgroup of C × I 2 . We have shown during the proof of statement (2) that this implies that the Riccati equation ( 13) has infinitely many solutions in K. (4) Assume that G is reducible. According to Corollary 7, there exists T = (t i,j ) 1≤i,j≤2 ∈ GL 2 (K) such that φ(T )AT -1 is upper triangular. Then t 22 = 0 and -t 21 t 22 ∈ K is a solution of the Riccati equation (13). This proves claim (4).

In the proof of the previous lemma, we have shown the following result, which we state independently for ease of reference.

Lemma 14. The following properties are equivalent:

-The Riccati equation (13) has at least three solutions in K.

-The Riccati equation (13) has infinitely many solutions in K.

-The difference Galois group G is a subgroup of C × I 2 .

-There exist u ∈ K × and T ∈ GL 2 (K) such that φ(T )AT -1 = uI 2 .

We shall now state and prove one more lemma.

Lemma 15. Let Λ ⊂ Λ be sublattices of Λ such that the quotient Λ /Λ is cyclic. Assume that there exist u ∈ M × Λ and T ∈ GL 2 (M Λ ) such that (14) φ(T )AT -1 = uI 2 .

Then, the Riccati equation ( 13) has at least two distinct solutions in M Λ .

Proof. The Galois extension M

Λ | M Λ is cyclic of order k := [M Λ : M Λ ].
Its Galois group Gal(M Λ | M Λ ) is generated by the field automorphism σ 1 given by σ 1 (f (z)) = f (z+λ ), where λ ∈ Λ is a representative of a generator of Λ /Λ . Note that the action of Gal(M Λ | M Λ ) on M Λ commutes with the action of φ. Applying σ 1 to equation ( 14), we get

φ(σ 1 (T ))Aσ 1 (T ) -1 = σ 1 (u)I 2 , so φ(S)u = σ 1 (u)S, with S := σ 1 (T )T -1 ∈ GL 2 (M Λ ). It follows that there exists g σ 1 ∈ M ×
Λ (namely, one of the non zero entries of S) such that

σ 1 (u) = φ(g σ 1 ) g σ 1 u.
Consider the norm

N := N M Λ | M Λ (g σ 1 ) = σ∈Gal(M Λ | M Λ ) σ(g σ 1 ) ∈ M × Λ .
We have

φ(N) = σ∈Gal(M Λ | M Λ ) σ σ 1 (u)g σ 1 u = σ∈Gal(M Λ | M Λ ) σ(g σ 1 ) = N, so N = c ∈ (K φ ) × = C × . Up to replacing g σ 1 by g σ 1 c -1/k , we may assume that N M Λ | M Λ (g σ 1 ) = 1. Hilbert's 90 Theorem [Ser68, § X.1] ensures that there exists m ∈ M × Λ such that g σ 1 = m σ 1 (m)
.

For any σ = σ j 1 ∈ Gal(M Λ | M Λ ), we set g σ := g σ 1 σ 1 (g σ 1 ) • • • σ j-1 1 (g σ 1 ) = m/σ(m) ∈ M × Λ ; we have σ(u) = φ(g σ ) g σ u.
It follows that

u := φ(m) m u
is invariant under the action of Gal(M Λ | M Λ ) and hence belongs to M × Λ . We have

φ T A T -1 = uI 2 , with T := mT ∈ GL 2 (M Λ ).
Applying σ ∈ Gal(M Λ | M Λ ) to this equality, we get

φ σ(T ) A σ(T ) -1 = uI 2 .
It follows that the matrix

C σ := T σ T -1 ∈ GL 2 (M Λ )
satisfies φ(C σ ) = C σ and, hence, that its entries belong to

K φ = C. Moreover, σ → C σ is a 1-cocyle for the natural action of Gal(M Λ | M Λ ) on GL 2 (C) but this action is trivial so σ → C σ is a group morphism from Gal(M Λ | M Λ ) to GL 2 (C). Since Gal(M Λ | M Λ ) is cyclic, this im- plies that there exists P ∈ GL 2 (C) such that, for all σ ∈ Gal(M Λ | M Λ ), the matrix D σ := P -1 C -1 σ P ∈ GL 2 (C) is diagonal. We have, for all σ ∈ Gal(M Λ | M Λ ), σ(T ) = D σ T where T = (t i,j ) 1≤i,j≤2 := P -1 T ∈ GL 2 (M kΛ ). It follows that u 1 := -t 11 t 12
and v 1 :=

-t 21 t 22
are invariant by the action of Gal(M Λ | M Λ ) and hence belong to M Λ . But u 1 and v 1 are solutions of the Riccati equation (13) (this was already used in the proof of assertion (2) of Lemma 13). So u 1 and v 1 are solutions in M Λ of the Riccati equation ( 13).

We now come to the main result of this subsection.

Theorem 16. The following statements hold:

(1) The Galois group G is reducible if and only if the Riccati equation ( 13) has at least one solution in M 2Λ .

(2) The Galois group G is completely reducible if and only if the Riccati equation (13) has at least two solutions in M 2Λ .

Proof. In virtue of Lemma 13, it is sufficient to prove that: (a) Assume that the Riccati equation ( 13) has a unique solution u in K.

Since u(z), u(z + 1) and u(z + τ ) are solutions of (13), we get

u(z) = u(z + 1) = u(z + τ )
and hence u ∈ M Λ . (b) Assume that the Riccati equation ( 13) has exactly two solutions in K and let u ∈ K be one of these solutions. Since u(z), u(z + 1) and u(z + 2) are solutions of (13), we get u(z +2) = u(z). Similarly, we have u(z +2τ ) = u(z). So u ∈ M 2Λ . (c) What follows is inspired by [Hen98, Theorem 4.2], but is a little bit subtler. Assume that the Riccati equation (13) has at least three solutions in K.

(iv) ω k (p/q) = deg k (r)h mod kΛ.

Proof. In what follows, the greatest common divisors (gcd) has to be understood in the ring O(C) of entire functions 3 . Let p 4 , p 5 ∈ Θ k , with gcd(p 4 , p 5 ) = 1, be such that u = p 4 /p 5 . Let r ∈ Θ k be a greatest common divisor of φ -1 (p 4 ) and p 5 and consider

p := p 4 φ(r) ∈ Θ k and q := p 5 r ∈ Θ k .
By construction, we have u = φr r p q with gcd(p, φ(q)) = gcd(φ(r)p, rq) = 1. Then, the Riccati equation ( 13) becomes

p 3 φr r p q φ φr r p q + p 1 φr r p q = -p 2 ,
i.e. p 3 φ 2 (r)pφ(p) + p 1 φ(r)pφ(q) = -p 2 rqφ(q). It is now easily seen that p divides p 2 and that q divides φ -1 (p 3 ) in O(C). In terms of divisors, this is exactly (i) and (ii).

According to Lemma 10, we have

p q (z + kτ ) = (-1) deg k (p/q) e 2iπω/k e -2iπ deg k (p/q)z/k p q (z)
for some representative ω of ω k (p/q), and

φ(r) r (z + kτ ) = e -2iπ deg k (r)h/k φ(r) r (z). 
Therefore u(z + kτ ) = (-1) deg k (p/q) e 2iπω/k e -2iπ deg k (p/q)z/k e -2iπ deg k (r)h/k u(z).

But u ∈ M kΛ , so u(z + kτ ) = u(z) and, hence, (-1) deg k (p/q) e 2iπω/k e -2iπ deg k (p/q)z/k e -2iπ deg k (r)h/k = 1.

Hence deg k (p/q) = 0 and ω = deg k (r)h mod kΛ. This proves (iii) and (iv).

We will see in § 6.1 that Proposition 17 is a useful theoretic tool in order to determine the difference Galois groups of families of equations, such as the discrete Lamé equations mentioned in the introduction.

We shall now conclude this section with a few words about Proposition 17.

Remark 18. How to use Proposition 17 in order to decide whether G is irreducible? Theorem 16 ensures that G is irreducible if and only if the Riccati equation (13) has a solution u ∈ M 2Λ ; we let p, q, r be as in Proposition 17. Assertions (i) and (ii) of Proposition 17, show that there are finitely many explicit possibilities for the divisors div 2 (p) and div 2 (q). But deg 2 (r) is entirely determined by these divisors in virtue of (iv) of Proposition 17. So, 3. According to [START_REF] Helmer | Divisibility properties of integral functions[END_REF], any finitely generated ideal of O(C) is principal, whence the existence of the greatest common divisor of any couple of elements of O(C). Such a greatest common divisor is unique up to multiplication by an unit of O(C).

we can compute an integer N ≥ 0 such that if the Riccati equation (13) has a solution u ∈ M 2Λ , then u = p 0 /q 0 with p 0 , q 0 ∈ Θ 2 such that deg 2 (p 0 ) ≤ N and deg 2 (q 0 ) ≤ N . Lemma 12 ensures that

u = A(℘ 2 ) + ℘ 2 B(℘ 2 ) for some A = P/Q and B = R/S with P, Q ∈ C[X] of degree at most 2N and R, S ∈ C[X] of degree at most 2N + 3.
So, in order to determine whether or not the Riccati equation ( 13) has at least one solution in M 2Λ , we are lead to the following question: do there exist 13) and using the addition formula:

A = P/Q and B = R/S with P, Q ∈ C[X] of degree at most 2N and R, S ∈ C[X] of degree at most 2N + 3 such that u = A(℘ 2 ) + ℘ 2 B(℘ 2 ) is a solution of the Riccati equation (13)? Substituting u = A(℘ 2 ) + ℘ 2 B(℘ 2 ) in the Riccati equation (
℘ 2 (z) + ℘ 2 (h) + ℘ 2 (z + h) = 1 4 ℘ 2 (z) -℘ 2 (h) ℘ 2 (z) -℘ 2 (h) 2 ,
we are lead to decide whether multivariate polynomials, whose indeterminates are the coefficients of P, Q, R and S, have a common complex solution. This can be decided by using Gröbner bases. Note however that, in order to make this method an effective tool, we have to know the divisors of a and b, and to be able to deduce deg k (r) from assertion (iv) of Proposition 17.

Imprimitivity of the difference Galois group

We want to determine whether G is imprimitive, that is whether G is conjugate to a subgroup of

α 0 0 β | α, β ∈ C × 0 γ δ 0 | γ, δ ∈ C × .
Theorem 19. Assume that G is irreducible and that a = 0. Then, G is imprimitive if and only if there exists u ∈ M 2Λ such that

(17) φ 2 (u) + φ 2 b a -φ(a) + φ(b) a u = - φ(b)b a 2 .
Proof. Arguing exactly as in [Hen98, Theorem 4.6], we get that G is imprimitive if and only if equation (17) has a solution in K. But this is a Riccati-type equation, with φ replaced by φ 2 . Therefore, the assertions (a), (b) and (c) given at the beginning of the proof of Theorem 16 allow us to conclude.

Remark 20. If a = 0 then G is imprimitive in virtue of Corollary 7.

Note that Proposition 17 can be used in order to find restrictions on the solutions of the above Riccati-type equation, but with φ replaced by φ 2 .

Applications

We recall that h ∈ C is such that h mod Λ is not a torsion point of C/Λ, i.e. that the corresponding point h of E(C) is not a torsion point. Theorem 21. Assume that E is defined over Q (i.e. g 2 , g 3 ∈ Q) and that h, A, B ∈ Q with A = 0. Then, the difference Galois group over (K, φ) of equation ( 18) is GL 2 (C).

A straightforward calculation shows that equation ( 18) can be rewritten as follows:

φ 2 y -2φy + (-Ah 2 ℘(z) -Bh 2 + 1)y = 0. We will deduce Theorem 21 from the following theorem combined with a transcendence result due to Schneider.

Theorem 22. Consider a ∈ C × and b(z) = α℘(z)+β with (α, β) ∈ C × ×C. Let z 0 ∈ C be such that ℘(z 0 ) = -β/α 4 . If Zh ∩ ( z 0 + Λ) = {0} for all
∈ {-8, ..., 8} (this holds in particular if Zh ∩ (Zz 0 + Λ) = {0}) then the difference Galois group over (K, φ) of φ 2 y + aφy + by = 0 is GL 2 (C).

Proof of Theorem 22. For the notations, div k , [•] k , etc, we refer to §3.1. Note that div

1 (b) = [z 0 ] 1 + [-z 0 ] 1 -2[0] 1 . So, we can write a = p 1 p 3 and b = p 2 p 3 for some p 1 , p 2 , p 3 ∈ Θ 1 with div 1 (p 2 ) = [z 0 ] 1 + [-z 0 ] 1 and div 1 (p 3 ) = 2[0] 1 .
We claim that G is irreducible i.e., in virtue of Theorem 16, that the Riccati equation

(19) (φ(u) + a)u = -b
does not have any solution in M 2Λ . Suppose to the contrary that it has a solution u ∈ M 2Λ . Proposition 17 ensures that there exist p, q, r ∈ Θ 2 such that

u = φ(r) r p q and (i) div 2 (p) ≤ 1 , 2 ∈{0,1} [ 1 + 2 τ -z 0 ] 2 + [ 1 + 2 τ + z 0 ] 2 , (ii) div 2 (q) ≤ 1 , 2 ∈{0,1} 2[ 1 + 2 τ + h] 2 ,
4. Any non constant elliptic function f (z) has at least one zero (otherwise, 1/f (z) would be an entire elliptic function and hence would be constant). In particular, ℘(z) + β/α has a least one zero in C.

(iii) deg 2 (p) = deg 2 (q), (iv) ω 2 (p/q) = deg 2 (r)h mod 2Λ. Properties (i) and (ii) above imply that ω 2 (p/q) = z 0 -deg 2 (q)h mod Λ for some ∈ {-4, ..., 4}. We infer from this and from (iv) that (deg 2 (r) + deg 2 (q))h = z 0 mod Λ.

The assumption on z 0 ensures that deg 2 (r) = deg 2 (q) = 0. It follows from (iii) that deg 2 (p) = 0 and hence u is a constant. But it is easily seen that equation (19) does not have any constant solution; this proves our claim.

We claim that G is not imprimitive i.e., in virtue of Theorem 19, that

(20) φ 2 (u) + φ 2 (b) a -a + φ(b) a u = - φ(b)b a 2
does not have any solution in M 2Λ . Suppose to the contrary that it has a solution u ∈ M 2Λ . Equation ( 20) is of the form:

u φ 2 (u) + p 1 p 3 = p 2 p 3 , for some p 1 , p 2 , p 3 ∈ Θ 1 with div 1 (p 2 ) = 2[-2h] 1 + [z 0 ] 1 + [-z 0 ] 1 + [z 0 -h] 1 + [-z 0 -h] 1 and div 1 (p 3 ) = 2[-2h] 1 + 2[-h] 1 + 2[0] 1 .
We apply Proposition 17 with φ replaced by φ 2 to obtain the existence of p, q, r ∈ Θ 2 such that u = φ 2 (r) r p q ,

where:

(v) div 2 (p) ≤ 1 , 2 ∈{0,1} 2[ 1 + 2 τ -2h] 2 + [ 1 + 2 τ + z 0 ] 2 + [ 1 + 2 τ -z 0 ] 2 +[ 1 + 2 τ + z 0 -h] 2 + [ 1 + 2 τ -z 0 -h] 2 , (vi) div 2 (q) ≤ 1 , 2 ∈{0,1} 2[ 1 + 2 τ ] 2 + 2[ 1 + 2 τ + h] 2 + 2[ 1 + 2 τ + 2h] 2 , (vii) deg 2 (p) = deg 2 (q), (viii) ω 2 (p/q) = 2 deg 2 (r)h mod 2Λ. We claim that (v') div 2 (p) ≤ 1 , 2 ∈{0,1} [ 1 + 2 τ + z 0 ] 2 + [ 1 + 2 τ -z 0 ] 2 , (vi') div 2 (q) ≤ 1 , 2 ∈{0,1} 2[ 1 + 2 τ ] 2 .
Indeed, otherwise, arguing as for the proof of the irreducibility of G, we see that (v), (vi) and (viii) would lead to a relation of the form (2 deg 2 (r) + d)h = z 0 mod Λ for some integer ∈ {-8, ..., 8} and some integer d > 0 and this would contradict our assumption on z 0 . Then, (viii) shows that 2 deg 2 (r)h = z 0 mod Λ for some integer ∈ {-4, ..., 4} and hence deg 2 (r) = 0. Therefore, u = p/q with p, q ∈ Θ 2 satisfying (v') and (vi') above. Now remark that

φ 2 (u) + φ 2 (b) a -a + φ ( 
b) a does not have poles in Λ. But any element of Λ is a pole of order 2 of the right hand side of equation ( 20), so any element of Λ is a pole of order at least 2 of u. It follows that (vi') is an equality. Then, using (vii), we see that (v') is also an equality.

So div 2 (u) = div 2 (b) and hence u = cb for some c ∈ C × . We now plug u = cb into equation (20) and we get:

c c + 1 a φ 2 (b) -a + φ(b) a = - φ(b) a 2 .
Since -2h is a pole of φ 2 (b) but not of φ(b), we get c = -1/a and the above equation simplifies as follows:

-

1 a -a + φ(b) a = - φ(b)
a 2 . This gives 1 = 0, whence a contradiction.

Therefore, G is irreducible and not imprimitive. So, as explained at the beginning of section 4, G = {M ∈ GL 2 (C) | det(M ) ∈ H} where H ⊂ C × is the Galois group of φy = by, which is easily seen to be the multiplicative group (C × , •). This concludes the proof.

Proof of Theorem 21. In virtue of Theorem 22, it is sufficient to prove that Zh ∩ (Zz

0 + Λ) = {0}. Consider m 1 , m 2 ∈ Z and λ ∈ Λ such that m 1 h = m 2 z 0 + λ. We have ℘(z 0 ) = -Bh 2 +1 Ah 2 ∈ Q. It follows that either m 2 z 0 + λ ∈ Λ or ℘(m 2 z 0 +λ) ∈ Q.
(Indeed, suppose that m 2 z 0 +λ ∈ Λ. Using equation (1), we see that ℘ (z 0 ) ∈ Q. Therefore, ϕ(z 0 ) belongs to E(Q), the map ϕ being defined in the introduction. Using the fact that ϕ is a group morphism and that E(Q) is a subgroup of E(C), we get ϕ(mz 0 ) ∈ E(Q). Therefore, ℘(mz 0 + λ) = ℘(mz 0 ) ∈ Q.) In the former case, we get m 1 h ∈ Λ and hence m 1 = 0. In the later case, it follows from the work of Schneider [START_REF] Schneider | Arithmetische Untersuchungen elliptischer Integrale[END_REF] (for a reference in english, see Baker's book [Bak90, Theorem 6.2]; see also Bertrand and Masser's papers [START_REF] Bertrand | Linear forms in elliptic integrals[END_REF][START_REF] Masser | Elliptic functions and transcendence[END_REF]) that m 2 z 0 +λ and hence m 1 h are transcendental numbers, which is excluded. 

A family of examples with Galois groups between SL

= α℘(z) + β with (α, β) ∈ C × × C. Let z 0 ∈ C be such that ℘(z 0 ) = -β/α. If Zh ∩ ( z 0 + Λ) =
{0} for all ∈ {-16, ..., 16} (this holds in particular if Zh∩(Zz 0 +Λ) = {0}) then the difference Galois group over (K, φ) of φ 2 y + aφy + by = 0 is µ 2k SL 2 (C) if b is a primitive kth root of the unity and GL 2 (C) otherwise, where µ 2k is the group of complex kth roots of the unity. The proof will be given after the following corollary.

Corollary 24. Assume that E is defined over Q (i.e. g 2 , g 3 ∈ Q). Consider b ∈ Q × and a(z) := α℘(z) + β with α, β ∈ Q and α = 0. Then, the difference Galois group over (K, φ) of φ 2 y + aφy + by = 0 is µ 2k SL 2 (C) if b is a primitive kth root of the unity and GL 2 (C) otherwise.

Proof. Similar to deduction of Theorem 21 from Theorem 22.

Proof of Theorem 23. Note that

div 1 (a) = [z 0 ] 1 + [-z 0 ] 1 -2[0] 1 .
So, we can write a = p 1 p 3 and b = p 2 p 3 for some p 1 , p 2 , p 3 ∈ Θ 1 with div 1 (p 2 ) = 2[0] 1 and div 1 (p 3 ) = 2[0] 1 .

We claim that G is irreducible i.e., in virtue of Theorem 16, that the Riccati equation does not have any solution in M 2Λ . Suppose to the contrary that it has a solution u ∈ M 2Λ . Proposition 17 ensures that there exist p, q, r ∈ Θ 2 such that u = φ(r) r p q and (i) div 2 (p) ≤ 1 , 2 ∈{0,1} 2[ 1 + 2 τ ] 2 , (ii) div 2 (q) ≤ 1 , 2 ∈{0,1} 2[ 1 + 2 τ + h] 2 , (iii) deg 2 (p) = deg 2 (q), (iv) ω 2 (p/q) = deg 2 (r)h mod 2Λ. Properties (i) and (ii) above imply that ω 2 (p/q) = -h deg 2 (q) mod Λ.

We infer from this and from (iv) that (deg 2 (r) + deg 2 (q))h = 0 mod Λ. This yields deg 2 (r) = deg 2 (q) = 0. It follows from (iii) that deg 2 (p) = 0 and hence u is a constant. But it is easily seen that equation (21) does not have any constant solution; this proves our claim.

We claim that G is not imprimitive i.e., in virtue of Theorem 19, that (we recall that b is constant) Proposition 17 ensures that there exist p, q, r ∈ Θ 2 such that u = φ 2 (r) r p q , and:

(v) div 2 (p) ≤ 1 , 2 ∈{0,1} 4[ 1 + 2 τ ] 2 + 2[ 1 + 2 τ -h] 2 +[ 1 + 2 τ + z 0 -2h] 2 + [ 1 + 2 τ -z 0 -2h] 2 , (vi) div 2 (q) ≤ 1 , 2 ∈{0,1} 2[ 1 + 2 τ + h] 2 + 2[ 1 + 2 τ + z 0 + 2h] 2 + 2[ 1 + 2 τ -z 0 + 2h] 2 +[ 1 + 2 τ + z 0 ] 2 + [ 1 + 2 τ -z 0 ] 2 ,
(vii) deg 2 (p) = deg 2 (q), (viii) ω 2 (p/q) = 2 deg 2 (r)h mod 2Λ. We claim that (v') div 2 (p) ≤ 1 , 2 ∈{0,1} 4[ 1 + 2 τ ] 2 , (vi') div 2 (q) ≤ 1 , 2 ∈{0,1} [ 1 + 2 τ + z 0 ] 2 + [ 1 + 2 τ -z 0 ] 2 . Otherwise, arguing as for the proof of the irreducibility of G, we see that (v), (vi) and (viii) would lead to a relation of the form (2 deg 2 (r) + d)h = z 0 mod Λ for some integer ∈ {-16, ..., 16} and some integer d > 0 and this would contradict our assumption on z 0 . Then, (viii) shows that 2 deg 2 (r)h = z 0 mod Λ for some integer ∈ {-4, ..., 4} and hence deg 2 (r) = 0. So u = p/q with p, q ∈ Θ 2 satisfying (v') and (vi') above. In particular, -h is not a zero of u. But -h (which is a pole of φ(a)) is a pole of

φ 2 (u) + b φ 2 (a)
-φ(a) + b a .

So -h is a pole of the left hand side of (22). This a contradiction because -h is not a pole of the right hand side of (22). Therefore, G is irreducible and not imprimitive. So, as explained at the beginning of section 4, G = {M ∈ GL 2 (C) | det(M ) ∈ H} where H ⊂ C × is the Galois group of φy = by, which is easily seen to be µ k if b is a kth root of the unity and C × otherwise.

  Such a difference ring (R, φ) is called a Picard-Vessiot ring for (5) over (K, φ). It is unique up to isomorphism of difference rings over (K, φ). It is worth mentioning that R φ = C; see [vdPS97, Lemma 1.8]. Remark 1. Picard-Vessiot rings are not domains in general: they are finite direct sums of domains cyclically permuted by φ; see [vdPS97, Corollary 1.16].

  a field morphism from the function field of the elliptic curve C/Λ to the the function field of the elliptic curve C/Λ . So, ψ | M Λ is induced by a morphism from the elliptic curve C/Λ to the elliptic curve C/Λ . Now, our claim follows from the fact that the morphisms from C/Λ to C/Λ are of the form z mod Λ → az+b mod Λ for some (a, b)

  z) , similar arguments show that deg R ≤ 2N + 3 and deg S ≤ 2N + 3. 4. Irreducibility of the difference Galois group We let (12) φ 2 (y) + aφ(y) + by = 0 with a ∈ M Λ and b ∈ M × Λ be a difference equation of order 2 with coefficients in M Λ and we denote by

4. 1 .

 1 Riccati equation and irreducibility. The non linear difference equation (13) (φ(u) + a)u = -b is called the Riccati equation associated to equation (12). A straightforward calculation shows that u is a solution of this equation if and only if φ -u is a right factor of φ 2 + aφ + b, whence its link with irreducibility.

  (a) If the Riccati equation (13) has a unique solution in K, then it belongs to M Λ . (b) If the Riccati equation (13) has exactly two solutions in K, then they belong to M 2Λ . (c) If the Riccati equation (13) has at least three solutions in K, then the Riccati equation (13) has at least two solutions in M 2Λ .

6. 1 .

 1 A discrete version of Lamé equation. Let us consider the difference equation (18) ∆ 2 h y = (A℘(z) + B)y where ∆ h y(z) = y(z + h) -y(z) h and A, B ∈ C. This is a discrete version of the so-called Lamé differential equation y (z) = (A℘(z) + B)y(z).

  2 (C) and GL 2 (C). Theorem 23. Let us consider b ∈ C × , and a(z) :

  u) + a)u = -b

  any solution in M 2Λ . Suppose to the contrary that it has a solution u ∈ M 2Λ . Equation (22) is of the form:u φ 2 (u) + p 1 p 3 = p 2 p 3 , for some p 1 , p 2 , p 3 ∈ Θ 1 with div 1 (p 2 ) = 4[0] 1 + 2[-h] 1 + [z 0 -2h] 1 + [-z 0 -2h] 1 and div 1 (p 3 ) = 2[-h] 1 + 2[z 0 ] 1 + 2[-z 0 ] 1 + [z 0 -2h] 1 + [-z 0 -2h] 1 .

It follows from this formula that f belongs to M kΛ if and only if deg k (f ) = ξ∈C n ξ = 0 and ω = ξ∈C n ξ ξ ∈ Z.

The first author is founded by the labex CIMI. The second author is partially funded by the french ANR project QDIFF (ANR-2010-JCJC-010501).

According to Lemma 14, there exist u ∈ K and T = (t i,j ) 1≤i,j≤2 ∈ GL 2 (K) such that (15) φ(T )AT -1 = uI 2 .

Let k ∈ N * be such that the entries of T and u belong to M kΛ . Consider the following field extensions:

Applying Lemma 15 to the extension M kΛ |L and to the equation (15), we get that the Riccati equation ( 13) has two distinct solution u 1 and v 1 in L.

If both of them belong to M 2Λ then the proof is completed. Otherwise, up to renumbering, we can assume that u 1 ∈ M 2Λ i.e. that u 1 is not 2τ -periodic. Then u 1 (z), u 2 (z) := u 1 (z + τ ) and u 3 (z) := u 1 (z + 2τ ) are distinct solutions in L of the Riccati equation. For all integers i, j ∈ {1, 2, 3} with i < j we set T i,j := 1

∈ GL 2 (L) and we have

(this was already used in the proof of assertion (2) of Lemma 13). Therefore,

Equating the second columns in this equality, we see that there exists f ∈ L × such that either u 1 = φf f u 2 or u 3 = φf f u 2 ; up to renumbering, we may assume that the former equality holds true. Then, we have

Applying Lemma 15 to the extension L| M Λ and to the equation ( 16), we see that the Riccati equation (13) has 2 distinct solutions in M Λ . This concludes the proof.

4.2. On the solutions of the Riccati equation. We refer to §3.1 for the notations (div k , deg k , ω k , etc) used in this subsection. Let k ≥ 1 be an integer. Consider

We let u ∈ M kΛ be a potential solution of the Riccati equation (13).

Proposition 17. We have u = φ(r) r p q for some p, q, r ∈ Θ k such that (i) div k (p) ≤ div k (p 2 ), (ii) div k (q) ≤ div k (φ -1 (p 3 )), (iii) deg k (p) = deg k (q),