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Introduction

Let us consider the linear differential equation

( ∂ z Y (z) ∂ 2 z Y (z) ) = ( 0 1 r(z) 0 ) ( Y (z) ∂ z Y (z) ) ,
where r(z) is a rational function with coefficients in C. We have a Galois theory for this type of equation; see [START_REF] Van Der Put | Galois theory of linear differential equations[END_REF]. In particular, we can associate to this equation a group H, which we call the differential Galois group, that measures the algebraic relations of the solutions. In this case, this group can be viewed as a linear algebraic subgroup of SL 2 (C). Kovacic in [START_REF] Kovacic | An algorithm for solving second order linear homogeneous differential equations[END_REF] (see also [vdP99]) uses the classification of the linear algebraic subgroup of SL 2 (C) to obtain an algorithm that determines the Liouvillian solutions, which are the solutions that involve exponentials, indefinite integrals and solutions of polynomial equations. In particular, four cases happen:

(1) H is conjugated to a subgroup of B = Various improvements of this algorithm have been made. See for example [START_REF] Duval | Kovačič's algorithm and its application to some families of special functions[END_REF][START_REF] Hendriks | Galois action on solutions of a differential equation[END_REF][START_REF] Ulmer | Note on Kovacic's algorithm[END_REF][START_REF] Zharkov | Coefficient fields of solutions in Kovacic's algorithm[END_REF]. The case where H is finite has been totally solved in [START_REF] Michael | Galois groups of second and third order linear differential equations[END_REF][START_REF] Michael | Liouvillian and algebraic solutions of second and third order linear differential equations[END_REF]; see also [START_REF] Van Hoeij | Solving second order linear differential equations with Klein's theorem[END_REF].

Let {∂ 0 , ∂ 1 , . . . , ∂ n } be a set of n + 1 commuting derivations. In this article, we are interested in the parameterized linear differential equation of the form

( ∂ 0 Y ∂ 2 0 Y ) = ( 0 1 r 0 ) ( Y ∂ 0 Y ) ,
where r belongs in a suitable (∂ 0 , ∂ 1 , . . . , ∂ n )-differential field. The derivations ∂ 1 , . . . , ∂ n should be thought of as derivations with respect to the parameters. We will denote by C its field of the ∂ 0 -constants. In [START_REF] Landesman | Generalized differential Galois theory[END_REF] and [START_REF] Cassidy | Galois theory of parameterized differential equations and linear differential algebraic groups[END_REF][START_REF] Hardouin | Differential Galois theory of linear difference equations[END_REF], the authors develop a Galois theory for the parameterized linear differential equations. They define a parameterized differential Galois group that measures the (∂ 1 , . . . , ∂ n )-differential and algebraic relations between the solutions; see §1. This group can be seen as a differential group in the sense of Kolchin: this is a group of matrices whose entries lie in the differential field C and satisfy a set of polynomial differential equations with coefficients in C. In the case of the equation ∂ 2 0 Y = rY , the Galois group will be a linear differential algebraic subgroup of SL 2 (C). The goal of this paper is to extend the algorithm from Kovacic and compute the parameterized differential Galois group of the equation

∂ 2 0 Y = rY .
The article is presented as follows. In the first section, we recall some basic facts about parameterized differential Galois theory. This theory needs to use a field of the ∂ 0 -constants which is (∂ 1 , . . . , ∂ n )-differentially closed (see [START_REF] Cassidy | Galois theory of parameterized differential equations and linear differential algebraic groups[END_REF], Definition 3.2). We will make a stronger assumption on the field of the ∂ 0 -constants C: we will assume that C is a universal (∂ 1 , . . . , ∂ n )-field (see §1). We use this assumption on C because a field (∂ 1 , . . . , ∂ n )-differentially closed is an abstract field which has no interpretation as a field of functions. We will see in §2 that a result of Seidenberg will allow us to identify the elements of the universal (∂ 1 , . . . , ∂ n )-field C which we will consider as meromorphic functions on a polydisc D of C n .

In the second section, we recall the result of Seidenberg which implies that the parameterized differential Galois group can be seen as a linear differential algebraic subgroup defined over a field of meromorphic functions on a polydisc D of C n . Since the original algorithm from [START_REF] Kovacic | An algorithm for solving second order linear homogeneous differential equations[END_REF] can be applied if we consider rational functions having coefficients in an algebraically closed field, we apply Kovacic's algorithm for the field of rational functions having coefficients in C. We obtain Liouvillian solutions that can be interpreted as meromorphic functions. Then we explain how to compute the Galois group in the four cases of Kovacic's algorithm. In the case number 4, the Galois group is Zariski dense in SL 2 . We recall the definition of integrable systems and the link with integrable systems and equations with a Galois group that is Zariski dense in SL 2 . We decrease the number of integrability conditions by showing that this is enough to check the integrability condition for the pairs of derivations (∂ z , ∂), where ∂ belongs in the vectorial space spanned by the derivations with respect to the parameters. Then, we obtain an effective way to compute the Galois group in the case number 4, see Proposition 2.8. We summarize the results of the section in Theorem 2.10.

In the last section we give various examples of computation.

After the submission of this paper, the authors in [START_REF] Gorchinskiy | Isomonodromic differential equations and differential tannakian categories[END_REF] has generalized Proposition 2.8 for equations with order more than two. Moreover, Carlos E Arreche has proved some other results in touch with parameterized Kovacic's algorithm. See [START_REF] Arreche | Computing the differential galois group of a one-parameter family of second order linear differential equations[END_REF].
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Parameterized differential Galois theory

Let K be a differential field equipped with n + 1 commuting derivations ∂ 0 , . . . , ∂ n and let ∆ = {∂ 1 , . . . , ∂ n }. We will assume that its field of the ∂ 0 -constants C is a universal (∆)-field with characteristic 0; that is, a (∆)-field such that for any (∆)-field C 0 ⊂ C, (∆)-finitely generated over Q, and any (∆)-finitely generated extension C 1 of C 0 , there is a (∆)-differential C 0 -isomorphism of C 1 into C. See [START_REF] Kolchin | Differential algebra and algebraic groups[END_REF], Chapter 3, Section 7, for more details. In particular, C is (∆)-differentially closed. In this section, we will recall the result from [START_REF] Cassidy | Galois theory of parameterized differential equations and linear differential algebraic groups[END_REF] of Galois theory for the parameterized linear differential equation of the form

(1.1) ( ∂ 0 Y ∂ 2 0 Y ) = ( 0 1 r 0 ) ( Y ∂ 0 Y ) ,
with r ∈ K. A parameterized Picard-Vessiot extension of the equation (1.1) on K is a (∂ 0 , . . . , ∂ n )-differential field extension K|K generated over K by the entries of an invertible solution matrix (we will call it a fundamental solution) and such that the field of the ∂ 0constants of K is equal to C. We can apply [CS07], Theorem 9.5, for the equation (1.1), and deduce the existence and the uniqueness up to (∂ 0 , . . . , ∂ n )-differential isomorphism of the parameterized Picard-Vessiot extension K|K. If ∆ = ∅, we recover the usual unparameterized Picard-Vessiot extension.

The parameterized (resp. unparameterized) differential Galois group G (resp. H) is the group of field automorphisms of the parameterized Picard-Vessiot extension (resp. the unparameterized Picard-Vessiot extension) of the equation (1.1), which induces the identity on K and commutes with all the derivations (resp. with the derivation ∂ 0 ). Let U be a fundamental solution. In the unparameterized case, {U -1 φ(U ), φ ∈ H} is a linear algebraic subgroup of GL 2 (C). In the parameterized case we find that {U -1 φ(U ), φ ∈ G} is a linear differential algebraic subgroup, that is, a subgroup of GL 2 (C) which is the zero of a set of (∆)-differential polynomials in 4 variables. See [START_REF] Cassidy | Galois theory of parameterized differential equations and linear differential algebraic groups[END_REF], Theorem 9.10, for a proof. Any other fundamental solution yields another differential algebraic subgroup of GL 2 (C) which are all conjugated over GL 2 (C). We will identify G (resp. H) with a linear differential algebraic subgroup of GL 2 (C) (resp. with a linear algebraic subgroup of GL 2 (C)) for a chosen fundamental solution. The next lemma is a classical result.

Lemma 1.1 ([Kov86], Section 1.3). G ⊂ SL 2 (C).
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Computation of the parameterized differential Galois group

Until the end of the paper, C denotes a universal (∆)-field equipped with n commuting derivations. Let C(z) be the (∂ z , ∆)-differential field of rational functions in the indeterminate z, with coefficients in C, where z is a (∆)-constant with ∂ z z = 1, C is the field of the ∂ z -constants and such that ∂ z commutes with all the derivations. Let us consider the parameterized linear differential equation

(2.1) ( ∂ z Y (z) ∂ 2 z Y (z) ) = ( 0 1 r(z) 0 ) ( Y (z) ∂ z Y (z) ) ,
with r(z) ∈ C(z). We want to apply Kovacic's algorithm for the parameterized linear differential equation (2.1). Let G ⊂ SL 2 (C) be the parameterized differential Galois group. The algorithm from [START_REF] Kovacic | An algorithm for solving second order linear homogeneous differential equations[END_REF] can be applied if the field of the ∂ z -constants is algebraically closed, which is the case here. The problem is that C is an abstract field which is not very convenient for the computations. In fact we have an interpretation of the elements of C as meromorphic functions. Let C 1 be the (∆)-differential field generated over Q by the z-coefficients of r(z). Using the following result of Seidenberg (see [START_REF] Seidenberg | Abstract differential algebra and the analytic case[END_REF][START_REF] Seidenberg | Abstract differential algebra and the analytic case[END_REF]) with K 0 = Q and K 1 = C 1 , we find the existence of a polydisc D of C n such that the z-coefficients of r(z) can be considered as meromorphic functions on D.

Theorem 2.1 (Seidenberg). Let Q ⊂ K 0 ⊂ K 1 be finitely generated (∆)-differential extensions of Q and assume that K 0 consists of meromorphic functions on some domain Ω of C n . Then K 1 is isomorphic to the field K * 1 of meromorphic functions on Ω 1 ⊂ Ω such that K 0 | Ω 1 ⊂ K *
1 , and the derivations in ∆ can be identified with the derivations with respect to the coordinates on Ω 1 .

Let (M D , ∂ t 1 , . . . , ∂ tn ) denotes the ∆ t = {∂ t 1 , . . . , ∂ tn }-differential field of meromorphic functions on D, a polydisc of C n . Let t = (t 1 , . . . , t n ).
The discussion above tell us that the r(z) of the equation (2.1) can be identified with r(z, t), an element of M D (z) * , where D is a polydisc of C n . We will consider the parameterized linear differential equation

( ∂ z Y (z, t) ∂ 2 z Y (z, t) ) = ( 0 1 r(z, t) 0 ) ( Y (z, t) ∂ z Y (z, t) ) , with r(z, t) ∈ M D (z).
The group G is defined by a finite number of (∆)-differential polynomials. Again, using the result of Seidenberg with the (∆)-differential field generated over Q by the coefficients of the (∆)-differential polynomials that define G and the z-coefficients of r(z), we deduce that G can be seen as a linear differential algebraic subgroup of SL 2 (M D ). Again using the result of Seidenberg, we remark that after shrinking D, we can assume that if G is conjugated over SL 2 (C) to Q, we can identify Q and G as linear differential algebraic subgroups of SL 2 (M D ), and they are conjugated over SL 2 (M D ). Furthermore, we obtain that the Liouvillian solutions found are defined over the algebraic closure of M D (z). We will compute G as a linear differential algebraic subgroup of SL 2 (M D ). We recall that we have four cases to consider:

(1) There exists a Liouvillian solution of the form g(z, t) = e

∫ z 0 f (u,t)du , with f (z, t) belongs to M D (z).
(2) There exists a Liouvillian solution of the form g(z, t) = e (4) There are no Liouvillian solutions. These correspond to the four cases recalled in the introduction. Proposition 6.26 of [START_REF] Hardouin | Differential Galois theory of linear difference equations[END_REF] says that if we take the same fundamental solution, the Zariski closure of G is the unparameterized differential Galois group. This means that in each case we are looking at the Zariski dense subgroups of the group given by usual Kovacic's algorithm.

2.1.

We start with the case number 1. There exists a Liouvillian solution of the form:

g(z, t) = e ∫ z 0 f (u,t)du , with f (z, t) ∈ M D (z).
The action of G on the solution g(z, t) can be computed with the following lemma:

Lemma 2.2. Let σ ∈ G. (1) Let α(t) ∈ M D and p, q ∈ N, such that GCD(p, q) = 1. Then there exists k ∈ N such that σ((z -α(t)) p/q ) = e 2ikπ q (z -α(t)) p/q . (2) Let α(t), β(t) ∈ M D and β(t) / ∈ Q. Then there exists a ∈ C and c ∈ C * such that σ((z -α(t)) β(t) ) = ce aβ(t) (z -α(t)) β(t) . (3) Let Q(z, t) ∈ M D (z). Then there exists a ∈ C * such that σ(e Q(z,t) ) = ae Q(z,t) .
Proof. (1) We use the fact the elements of G are fields automorphisms that leave M D invariant.

(2) A computation shows that

∂ t i (z -α(t)) β(t) = [ log(z -α(t))∂ t i β(t) - ∂ t i α(t)β(t) z -α(t) ] (z -α(t)) β(t) .
The fact that σ commutes with all the derivations implies the existence of a ∈ C and

f (t) ∈ M D such that σ ( log(z -α(t)) ) = log(z -α(t)) + a and σ ( (z -α(t)) β(t) ) = f (t)(z -α(t)) β(t) .
Since ∂ t i σ = σ∂ t i , we obtain that

[ log(z -α(t))∂ t i β(t) + a∂ t i β(t) - ∂t i α(t)β(t) z-α(t) ] f (t) = ∂ t i f (t) + f (t) [ log(z -α(t))∂ t i β(t) - ∂t i α(t)β(t) z-α(t) ] .
Finally, f (t) satisfies the parameterized linear differential equation

∂ t i ( ∂ t i f (t) f (t)a∂ t i β(t) ) = 0.
This means that

∂t i f (t) f (t)a∂t i β(t) = c ∈ C * and log f (t) = aβ(t) + log(c).
Then we deduce that f (t) = ce aβ(t) .

(3) We use the fact that

∂ t i σ ( e Q(z,t) ) = σ ( ∂ t i ( e Q(z,t) )) = σ ( ∂ t i (Q(z, t)) e Q(z,t) ) = ∂ t i Q(z, t)σ ( e Q(z,t)
) .

The equation

∂ t i σ ( e Q(z,t) ) = ∂ t i Q(z, t)σ ( e Q(z,t) ) admits σ(e Q(z,t) ) = ae Q(z,t) with a ∈ C * as a solution.
We deduce that the matrices of G are upper triangular. We will denote by G m GL 1 (M D ) the multiplicative group. The proof of the following proposition is inspired by the proof of [START_REF] Yu | Differential algebraic subgroups of SL(2) and strong normality in simple extensions[END_REF] 

{( m(t) a(t) 0 m(t) -1
)

, where

m(t) ∈ M, a(t) ∈ A } .
For the proof of the proposition, we will need the following lemmas.

Lemma 2.4. Assume that C * ⊂ M . Let m(t) ∈ M and a(t) ∈ A. Then m(t)a(t) ∈ A.
Proof. With Lemma 2.2, we obtain that for all m(t) ∈ M , there exists b(t

) ∈ M such that b(t) 2 = m(t). Let m(t) ∈ M , b(t) 2 = m(t), γ b(t) ∈ Γ b(t)
, and a(t) ∈ A. The computation

( b(t) γ b(t) 0 b(t) -1
) (

1 a(t) 0 1 ) ( b(t) γ b(t) 0 b(t) -1 ) -1 = ( 1 m(t)a(t) 0 1 ) shows that if m(t) ∈ M and a(t) ∈ A, then m(t)a(t) ∈ A. Lemma 2.5. Assume that C * ⊂ M . Let m(t) ∈ M . Then γ m(t) , γ ′ m(t) ∈ Γ m(t) if and only if (γ m(t) -γ ′ m(t) ) ∈ A. Proof. Let γ m(t) , γ ′ m(t) ∈ Γ m(t) . The computation ( m(t) γ m(t) 0 m(t) -1 ) ( m(t) γ ′ m(t) 0 m(t) -1 ) -1 = ( 1 m(t)(γ m(t) -γ ′ m(t) ) 0 1 ) shows that m(t)(γ m(t) -γ ′ m(t) ) ∈ A, and then (γ m(t) -γ ′ m(t) ) ∈ A, because of Lemma 2.4. Conversely, if (γ m(t) -γ ′ m(t) ) ∈ A and γ m(t) ∈ Γ m(t) , then m(t)(γ m(t) -γ ′ m(t) ) ∈ A, because of Lemma 2.4. The same computation shows that γ ′ m(t) ∈ Γ m(t) . Lemma 2.6. Assume that C * ⊂ M . Let b ∈ C * \ {±1} and γ b ∈ Γ b . Let β(t) = b(b 2 -1) -1 γ b . Then, β(t)(m(t) -m(t) -1 ) ∈ Γ m(t) , for all m(t) ∈ M . Proof. Let m(t) ∈ M and γ m(t) ∈ Γ m(t) . The computation ( b γ b 0 b -1 ) ( m(t) γ m(t) 0 m(t) -1 ) ( b γ b 0 b -1 ) -1 ( m(t) γ m(t) 0 m(t) -1 ) -1 = ( 1 (1 -m(t) 2 )bγ b -(1 -b 2 )m(t)γ m(t) 0 1 ) implies that (1 -m(t) 2 )bγ b -(1 -b 2 )m(t)γ m(t) ∈ A. Since (1 -b 2 )m(t) ∈ M , Lemma 2.4 implies that (1 -b 2 ) -1 m(t) -1 (1 -m(t) 2 )bγ b -γ m(t) = β(t)(m(t) -m(t) -1 ) -γ m(t) ∈ A. Therefore β(t)(m(t) -m(t) -1 ) ∈ Γ m(t)
, because of Lemma 2.5.

Proof of Proposition 2.3. With Lemmas 2.5 and 2.6, we find that

G ≃ {( m(t) β(t)(m(t) -m(t) -1 ) + a(t) 0 m(t) -1
)

, where m(t) ∈ M, a(t) ∈ A } .

If we change the fundamental solution, i.e, if we conjugate G over GL 2 (M D ), we can simplify the expression of G. After conjugation by the element P =

( 1 β(t) 0 1

)

, we obtain that

P GP -1 ≃ {( m(t) a(t) 0 m(t) -1
)

, where m(t) ∈ M, a(t) ∈ A } .

We now want to compute G when C * ⊂ M . The computation of M has already been done in Lemma 2.2. We are now interested in the computation of A, which is a linear differential algebraic subgroup of (M D , +). Cassidy classifies the linear differential algebraic subgroups of the additive group in [START_REF] Cassidy | Differential algebraic groups[END_REF], Lemma 11. We define M D [y 1 . . . , y ν ] ∆t , as the ring of linear homogeneous differential polynomials. There exists P 1 , . . .

P m ∈ M D [y] ∆t such that A = {a(t) ∈ M D |P 1 (a(t)) = • • • = P m (a(t)) = 0}.
We recall that g(z, t)

∫ z u=0 g(u, t) -2 du is another solution. We can choose β(t) ∈ M D such
that in the basis formed by the solutions g(z, t) and g(z, t)

∫ z u=0 g(u, t) -2 du + β(t)g(z, t), G is equal to {( m(t) a(t) 0 m(t) -1
)

, where m(t) ∈ M, a(t) ∈ A } . Let G g ⊂ G be the subfield of elements that fix g(z, t) and let σ ∈ G g . Let a(t) ∈ A be such that

σ ( g(z, t) ∫ z u=0 g(u, t) -2 du + β(t)g(z, t) ) = ( g(z, t) ∫ z u=0 g(u, t) -2 du + β(t)g(z, t) ) + a(t)g(z, t). Since σ ( g(z, t) ∫ z u=0 g(u, t) -2 du + β(t)g(z, t) ) = g(z, t) ( σ (∫ z u=0 g(u, t) -2 du ) + β(t) ) ,
we deduce that

σ (∫ z u=0 g(u, t) -2 du ) - ∫ z u=0 g(u, t) -2 du = a(t) ∈ A.
Therefore, the differential polynomials P i satisfy ∀σ ∈ G g :

σ ( P i (∫ z u=0 g(u, t) -2 du )) = P i ( σ (∫ z u=0 g(u, t) -2 du )) = P i (∫ z u=0 g(u, t) -2 du + a(t) ) = P i (∫ z u=0 g(u, t) -2 du ) . Since P i (∫ z u=0 g(u, t) -2 du
) is fixed by the elements of G g , we deduce by the Galois correspondence in the parameterized differential Galois theory (see [START_REF] Cassidy | Galois theory of parameterized differential equations and linear differential algebraic groups[END_REF], Theorem 9.5) that

P i (a(t)) = 0 ⇐⇒ P i (∫ z u=0 g(u, t) -2 du ) ∈ M D (z)⟨g(z, t)⟩ ∂z,∆t ,
where M D (z)⟨g(z, t)⟩ ∂z,∆t denotes the (∂ z , ∆ t )-differential field generated by M D (z) and g(z, t).
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Let us consider the case number 2. There exists a Liouvillian solution of the form e

∫ z 0 f (u,t)du , such that f (z, t) satisfies f (z, t) 2 + a(z, t)f (z, t) + b(z, t) = 0, where a(z, t), b(z, t) ∈ M D (z). There exists ε ∈ {±1} such that f (z, t) = -a(z, t) + ε √ a(z, t) 2 -4b(z, t) 2 .
By computing the action of G on e

∫ z 0 -a(u,t)+ε √ a(u,t) 2 -4b(u,t) 2 du , we find that e ∫ z 0 -a(u,t)-ε √ a(u,t) 2 -4b(u,t) 2
du is another Liouvillian solution which is linearly independent of the first one. By computing the action of G on the second Liouvillian solution we find the existence of M , a linear differential algebraic subgroup of the multiplicative group G m such that, in the basis formed by the two Liouvillian solutions

G ≃ {( a(t) 0 0 a -1 (t) ) ∪ ( 0 b -1 (t) -b(t) 0 )
, where

a(t), b(t) ∈ M } .
We are now interested in the computation of M . A direct computation shows that if there

exists σ ∈ G such that σ ( e ∫ z 0 f (u,t)du ) = α(t)e ∫ z 0 f (u,t)du
, then for all i ≤ n, α(t) satisfies the parameterized differential equation

∂ t i α(t) + α(t) ( ∂ t i ∫ z 0 f (u, t)du ) = α(t)σ ( ∂ t i ∫ z 0 f (u, t)du ) . Let ∂ t i α(t) = ∂t i α(t)
α(t) be the logarithm derivation. In [START_REF] Cassidy | Differential algebraic groups[END_REF], Chapter 4, we see that there exist P 1 , . . . ,

P k ∈ M D [y 1 . . . , y n ] ∆t such that M ≃ { α(t) P 1 ( ∂ t i α(t) ) = • • • = P k ( ∂ t i α(t) ) = 0 } .
The polynomial P j satisfies, for all σ ∈ G, P j (∂ t i

∫ z 0 f (u, t)du) = σ (P j (∂ t i ∫ z 0 f (u, t)du))
and then

P j ( ∂ t i α(t) ) = 0 ⇐⇒ P j ( ∂ t i ∫ z 0 f (u, t)du ) ∈ M D (z).

2.3.

In the third case, G is finite, because whose Zariski closure is finite. Since all finite linear differential algebraic subgroups of SL 2 (M D ) are finite linear algebraic subgroups of SL 2 (M D ), G is equal to the unparameterized differential Galois group. This is the same problem as in the unparameterized case. See [START_REF] Van Hoeij | Solving second order linear differential equations with Klein's theorem[END_REF] for the computation of G.

2.4.

We now consider the case where no Liouvillian solutions are found. We have seen in the introduction that in this case, the unparameterized differential Galois group is

SL 2 (M D ). Therefore, G is Zariski dense in SL 2 (M D ).
The classification of the Zariski dense subgroup of SL 2 (M D ) has been made in [START_REF] Cassidy | Differential algebraic groups[END_REF], Proposition 42. Let D be the M D -vectorial space of derivations of the form 

{ n ∑ i=0 a i (t)∂ t i
Let D ⊂ D be such that G is conjugated over SL 2 (M D ) to SL 2 (M D D ).
We want to compute explicitly D. This leads us to the notion of integrable systems. Let

A 0 (z, t), . . . , A k (z, t), m × m matrices with entries in M D (z) and ∂ ′ t 1 , . . . , ∂ ′ t k ∈ D. The following system [S] :          ∂ z Y (z, t) = A 0 (z, t)Y (z, t) ∂ ′ t 1 Y (z, t) = A 1 (z, t)Y (z, t) . . . ∂ ′ t k Y (z, t) = A k (z, t)Y (z, t) is integrable if and only if, for all 0 ≤ i, j ≤ k, ∂ ′ t j A i (z, t) -∂ ′ t i A j (z, t) = A j (z, t)A i (z, t) -A i (z, t)A j (z, t), where ∂ ′ t 0 = ∂ z .
We recall here [CS07], Proposition 6.3, which relates the integrable system and the parameterized differential Galois group in the case where the field of the

∂ z -constants is differentially closed. Proposition 2.7. Let {∂ ′ t 1 , . . . , ∂ ′ t k } be a commuting basis of D, a vectorial subspace of D. G is conjugated to SL 2 (M D D ) over SL 2 (M D )
if and only if there exist A 1 (z, t), . . . , A k (z, t), m × m matrices with entries in M D (z) † , such that the following system is integrable:

[S] :          ∂ z Y (z, t) = A(z, t)Y (z, t) ∂ ′ t 1 Y (z, t) = A 1 (z, t)Y (z, t) . . . ∂ ′ t k Y (z, t) = A k (z, t)Y (z, t).
We want to give simpler necessary and sufficient conditions for the integrability of the system in Proposition 2.7. First, we will write a necessary and sufficient condition for the integrability of

[S ′ ] : { ∂ z Y (z, t) = A(z, t)Y (z, t) ∂ ′ Y (z, t) = A ′ (z, t)Y (z, t),
where A ′ (z, t) = The fact that [S ′ ] is integrable is equivalent to the solution in (M D (z)) 4 of the parameterized differential system:

       ∂ z a(z, t) = c(z, t) -b(z, t)r(z, t) ∂ z b(z, t) = d(z, t) -a(z, t) ∂ z c(z, t) = (a(z, t) -d(z, t))r(z, t) + ∂ ′ r(z, t) ∂ z d(z, t) = b(z, t)r(z, t) -c(z, t) ⇐⇒          ∂ z a(z, t) = -∂ z d(z, t) ∂ 2 z b(z, t) = 2∂ z d(z, t) ∂ z c(z, t) = -∂ z b(z, t)r(z, t) + ∂ ′ r(z, t) ∂ 2 z b(z,t) 2 = b(z, t)r(z, t) -c(z, t) ⇐⇒          ∂ z a(z, t) = -∂ z d(z, t) ∂ 2 z b(z, t) = 2∂ z d(z, t) ∂ z c(z, t) = -∂ z b(z, t)r(z, t) + ∂ ′ r(z, t) ∂ 3 z b(z,t) 2 = 2∂ z b(z, t)r(z, t) + b(z, t)∂ z r(z, t) -∂ ′ r(z, t).
We can easily see that the existence of b(z, t) ∈ M D (z) as a solution of

∂ 3 z b(z, t) 2 = 2∂ z b(z, t)r(z, t) + b(z, t)∂ z r(z, t) -∂ ′ r(z, t) †
Using the result of Seidenberg, we can identify the matrices as elements of GL2(M D (z)) because their entries involve a finite number of elements of the fields of the ∂z-constants.

Thomas Dreyfus is equivalent to the fact that the system [S ′ ] is integrable. There exists an algorithm to determine if such a system has a solution (see [START_REF] Van Der Put | Galois theory of linear differential equations[END_REF], p. 100). We obtain a necessary and sufficient condition on ∂ ′ for the integrability condition of the system [S ′ ]. Let D be the maximal vectorial subspace of D such that for all derivations ∂ ′ in D, there exists A ′ (z, t), m × m matrix with entries in M D (z) such that the following system is integrable:

[S ′ ] : { ∂ z Y (z, t) = A(z, t)Y (z, t) ∂ ′ Y (z, t) = A ′ (z, t)Y (z, t).
We want to prove that the parameterized differential Galois group of

∂ z Y (z, t) = A(z, t)Y (z, t) is conjugated to SL 2 (M D D ) over SL 2 (M D ).
Assume that this is not the case. Then by Proposition 2.7, there exists (

D 1 , D 2 D, having at least dimension 1, with D 1 ̸ = D 2 such that G is conjugated to SL 2 (M D 1 D ) and SL 2 (M D 2 D ). In this case, SL 2 (M D 1 D ) is conjugated to SL 2 (M D 2 D ) over SL 2 (M D ). The fact that D 1 = D 2 is proved in [Sit75],
1) G is conjugated to SL 2 (M D D ) over SL 2 (M D ).
(2) For all ∂ ′ that belongs in a commuting basis of D, the following parameterized differential equation has a solution in M D (z):

∂ 3 z b(z, t) 2 = 2∂ z b(z, t)r(z, t) + b(z, t)∂ z r(z, t) -∂ ′ r(z, t).
(3) For all ∂ ′ ∈ D, the following parameterized differential equation has a solution in M D (z):

∂ 3 z b(z, t) 2 = 2∂ z b(z, t)r(z, t) + b(z, t)∂ z r(z, t) -∂ ′ r(z, t).
Remark 2.9. In the case where n = 1, i.e, there is only one parameter, the Zariski dense subgroups of SL 2 (M D ) are (up to conjugation over SL 2 (M D )) SL 2 (M D ) and SL 2 (C).

Then we only have to check whether

∂ 3 z b(z, t) 2 = 2∂ z b(z, t)r(z, t) + b(z, t)∂ z r(z, t) -∂ t r(z, t),
has a solution in M D (z).
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Examples

In the following examples, we will consider equations having coefficients in M D (z) and we will compute G as a linear differential algebraic subgroup of SL 2 (M D ). In the three first examples, we are in the case where no Liouvillian solutions are found. In the fourth example, we are in the case number 1 and in the last example, we are in the case number 2. 

∂ 3 z b(z, t) 2 = 2∂ z b(z, t)r(z, t) + b(z, t)∂ z r(z, t) - 2n ∑ i=0 a i (t)z i
has a rational solution if and only if there exists c(t 

) ∈ M D such that { a 2n (t) = c(t)(2n + 1) i < 2n : a i (t) = c(t)(i + 1)t i+1 . Then G ≃ SL 2 ( M ∂ t ′ D ) , where ∂ t ′ = (2n + 1)∂ t 2n + 2n-1 ∑ i=0 (i + 1)t i+1 ∂ t i . Example 3.2 (Bessel equation). Let r(z, t) = 4t 2 -1 4z 2 -1. In [Kov86
+ Z)} = ∅.
We obtain that G is Zariski dense in SL 2 (M D ). With Remark 2.9, we have to see whether the parameterized linear differential equation

(3.1) ∂ 3 z b(z, t) 2 = 2∂ z b(z, t) ( 4t 2 -1 4z 2 -1 ) + b(z, t) 1 -4t 2 2z 3 - 2t z
has a solution in M D (z). Suppose that there exists b(z, t) ∈ M D (z) satisfying such an equation. We can see directly that if b(z, t) has a pole, then it is z = 0. Assume that b(z, t) has a pole of order ν at z = 0 and let 0 ̸ = f (t) ∈ M D equal the value at (0, t) of z ν b(z, t). Since b(z, t) satisfies the equation (3.1), we find for all t ∈ D:

-f (t)ν(ν -1)(ν -2) 2 = -f (t)ν 4t 2 -1 2 + f (t) 1 -4t 2 2 .
For all ν, there is no 0 ̸ = f (t) satisfying this equality and we find that b(z, t) ∈ M D [z].

Let ν be its degree and f (t) its leading term. The equation (3.1) has no constant solution, and we can assume ν > 1. We find that for all t ∈ D, Let ν be its degree and 0 ̸ = f (t) be its leading term. We find that (ν+1)f (t) 2 = 0, which admits no solution different from 0. Then G ≃ SL 2 (M D ).

Example 3.4. If r(z, t) = t z 2 , then we have two Liouvillian solutions

f 1 (z, t) = √ zz √ 1+4t 2 and f 2 (z, t) = √ zz - √ 1+4t 2
.

We can compute the parameterized differential Galois group for the fundamental solution

( f 1 (z, t) f 2 (z, t) ∂ z f 1 (z, t) ∂ z f 2 (z, t) ) : G ≃ {( αe a( √ 1+4t) 0 0 α -1 e -a( √ 1+4t)
)

, where a ∈ C , α ∈ C * } .

Viewed as a linear differential algebraic subgroup GL 2 (M D ),

G ≃ { ( α(t) 0 0 α -1 (t)
)

, where ∂ t ( √ 1 + 4t∂ t α(t) α(t)

) = 0 } .
Example 3.5. If r(z, t) = t z -3 16z 2 , then we have two Liouvillian solutions f 1 (z, t) = (z) 1/4 e 2(tz) 1/2 and f 2 (z, t) = (z) 1/4 e -2(tz) 1/2 .

We can compute the parameterized differential Galois group for the fundamental solution

( f 1 (z, t) f 2 (z, t) ∂ z f 1 (z, t) ∂ z f 2 (z, t) ) : G ≃ {( a(t) 0 0 a -1 (t) ) ∪ ( 0 b -1 (t) -b(t) 0 )
, where a(t), b(t) ∈ C * } .

We can remark that we have an integrable system 

),),

  where a ∈ C * , b ∈ C } and there exists a Liouvillian solution of the form e ∫ z 0 f (u)du , with f (z) ∈ C(z). (2) H is conjugated to a subgroup of where a, b ∈ C * } and there exists a Liouvillian solution of the form e ∫ z 0 f (u)du , where f (z) is algebraic over C(z) of degree two and f (z) / ∈ C(z). (3) H is finite and all the solutions are algebraic over C(z). (4) H = SL 2 (C) and there are no Liouvillian solutions. Date: September 13, 2013. 2010 Mathematics Subject Classification. Primary 34M15, 12H20, 34M03. Work partially supported by ANR-06-JCJC-0028 and NFS CCF-0952591. 1 Thomas Dreyfus

∫ z 0 f

 0 (u,t)du , where f (z, t) is algebraic over M D (z) of degree two and f (z, t) / ∈ M D (z).(3) All the solutions are algebraic over M D (z).

  , where a i (t) ∈ M D } , and D a vectorial subspace of D. Let M D D be the elements of M D that are constant for the derivations in D. Remark that if D = {0}, then M D D = M D . The linear differential algebraic subgroups of SL 2 (M D ) that are Zariski dense in SL 2 (M D ) are conjugated over SL 2 (M D ) to the groups of the form SL 2 (M D D ), with D a vectorial subspace of D.

(

  a(z, t) b(z, t) c(z, t) d(z, t)) is an m × m matrix with entries in M D (z) and ∂ ′ ∈ D.

)∈

  Theorem 1.2, Chapter 2, but we will recall the proof here. Let α ∈ M D 1 D and consider the diagonal matrix M = ( SL 2 (M D 1 D ). Since similar matrices have the same set of eigenvalues and M D 2 D is algebraically closed , we obtain that α(t) ∈ M D 2 D . Therefore M D 1 D ⊂ M D 2 D and, by symmetry, M D 1 D = M D 2 D . We then deduce D 1 = D 2 = D. We have proved: Proposition 2.8. We have the following equivalences:

  Example 3.1 (Schrodinger equation with rational potential of odd degree). Let us consider r(z, t) = z 2n+1 + 2n ∑ i=0 t i z i . There are no Liouvillian solutions. The parameterized linear differential equation

0=

  -2νf (t), which implies that the equation (3.1) has no solutions in M D (z) and then G ≃ SL 2 (M D ). LINEAR DIFFERENTIAL EQUATION OF ORDER TWO Example 3.3 (Harmonic oscillator). Let r(z, t) = z 24 +t. There are no Liouvillian solutions. With Remark 2.9, we have to check whether the parameterized linear differential equation∂ 3 z b(z, t) 2 = 2∂ z b(z, t) in M D (z).We can see directly that if b(z, t) ∈ M D (z) is a solution, then it has no poles, which means that b(z, t) ∈ M D [z].

{

  ∂ z Y (z, t) = A(z, t)Y (z, t) ∂ t Y (z, t) = B(z, t)Y (z, t) with A(z, t) =

  , Theorem 1.4. Let p : G → G m that sends Let M be the image of p and A ⊂ M D such that We have already computed M with Lemma 2.2. For m(t) ∈ M , let Γ m(t) be the set of γ m(t) ∈ M D such that We will identify C * with the field of constants elements of M D . If C * ̸ ⊂ M , because of Lemma 2.2, g(z, t) ∈ M D (z), -2 du, which is another solution. We obtain explicitly a fundamental solution and we can compute G. The next proposition explains how to compute G when C * ⊂ M . Let us keep the same notations. Assume that C

	{(	1 a(t)	
		0 1	
		( m(t) γ m(t)
		0	m(t) -1
		∫ z	
	and we can compute explicitly g(z, t) g(u, t) Proposition 2.3. u=0
			(	m(t)	a(t)
				0	m -1 (t)

)

Thomas Dreyfus on m(t). )

, where a(t) ∈ A } is the kernel of p.

) ∈ G. * ⊂ M . Then G is conjugated to

* MD(z) denotes the (∂z, ∆t)-differential field of rational functions with indeterminate z and with coefficients in MD such that ∂zz = 1, z is a (∆t)-constant and the field MD is the field of the ∂z-constants.

COMPUTING THE GALOIS GROUP OF SOME PARAMETERIZED LINEAR DIFFERENTIAL EQUATION OF ORDER TWO 2.5. We summarize in the next theorem the results of this section.

Theorem 2.10. Let us consider ∂ 2 z Y (z, t) = r(z, t)Y (z, t) with r(z, t) ∈ M D (z) and let G be the parameterized differential Galois group, seen as a linear differential algebraic subgroup of SL 2 (M D ). There are four possibilities:

(1) There exists a Liouvillian solution of the form g(z, t) = e ∫ z 0 f (u,t)du , with f (z, t) belongs to M D (z). There are two possibilities: (a) If g(z, t) ∈ M D , then we can compute explicitly another solution g(z, t) ∫ z u=0 g(u, t) -2 du which is linearly independent with g(z, t). In this basis of solutions we can compute explicitly G. (b) In the other case, G is conjugated to:

)

, where

where:

(2) There exists a Liouvillian solution of the form g(z, t) = e ∫ z 0 f (u,t)du , where f (z, t) is algebraic over M D (z) of degree two and f (z, t) / ∈ M D (z). In this case, G is conjugated to

(3) G is finite. In this case, G is equal to the unparameterized differential Galois group. (4) There are no Liouvillian solutions. In this case, there exists D, a M D -vectorial space of derivations spanned by

and only if the following parameterized differential equation has a solution in M

Notice that the computation of the Liouvillian solutions and the unparameterized differential Galois group are already known. Our results compute the parameterized differential Galois group in the cases 1,2 and 4. The classification of the Zariski dense linear differential algebraic subgroup of SL 2 (M D ) and the link with integrable systems were already known (see [START_REF] Cassidy | Differential algebraic groups[END_REF][START_REF] Cassidy | Galois theory of parameterized differential equations and linear differential algebraic groups[END_REF]), but we give here an effective way to compute the Galois group in the case number 4 and we decrease the number of integrability conditions.