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REPRESENTATION THEORY OF

DISCONNECTED REDUCTIVE GROUPS

PRAMOD N. ACHAR, WILLIAM HARDESTY, AND SIMON RICHE

Abstract. We study three fundamental topics in the representation theory of

disconnected algebraic groups whose identity component is reductive: (i) the
classification of irreducible representations; (ii) the existence and properties of

Weyl and dual Weyl modules; and (iii) the decomposition map relating repre-

sentations in characteristic 0 and those in characteristic p (for groups defined
over discrete valuation rings). For each of these topics, we obtain natural

generalizations of the well-known results for connected reductive groups.

1. Introduction

Let G be a (possibly disconnected) affine algebraic group over an algebraically
closed field k, and let G◦ be its identity component. We call G a (possibly) dis-
connected reductive group if G◦ is reductive. The goal of this paper is to extend a
number of well-known foundational facts about connected reductive groups to the
disconnected case.

Such groups occur naturally, even when one is primarily interested in connected
reductive groups. Namely, for a connected reductive group H, the stabilizer Hx

of a nilpotent element in the Lie algebra of H may be disconnected. Let Hx
unip be

its unipotent radical; then Hx/Hx
unip is a disconnected reductive group. The study

of (the derived category of) coherent sheaves on the nilpotent cone N of H, and
in particular of perverse-coherent sheaves on N , leads naturally to questions about
representations of Hx/Hx

unip. See [AHR] for some questions of this form, and for
some applications of the results of this paper.

The present paper contains three main results:

(1) We classify the irreducible representations of G in terms of those of G◦, via
an adaptation of Clifford theory (Theorem 2.16).

(2) Assuming that the characteristic of k does not divide |G/G◦|, we prove that
the category of finite-dimensional G-modules has a natural structure of a
highest-weight category (Theorem 3.7).

(3) Starting from a disconnected reductive group scheme over an extension of
the p-adic integers (with algebraically closed residue field), one obtains a
“decomposition map” relating the Grothendieck groups of representations
in characteristic 0 and in characteristic p. We prove that this map is an
isomorphism.

P.A. was supported by NSF Grant Nos. DMS-1500890 and DMS-1802241. This project has
received funding from the European Research Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant agreement No. 677147).
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These results are certainly not surprising, and some of them may be known to
experts, but we are not aware of a reference that treats them in the detail and
generality needed for the applications in [AHR].

Acknowledgments. We thank Jens Carsten Jantzen a helpful conversation.

2. Classification of simple representations

In this section we consider (affine) algebraic groups over an arbitrary alge-
braically closed field k. Our goal is to describe the representation theory of a
disconnected algebraic group G whose neutral connected component G◦ is reduc-
tive in terms of the representation theory of G◦, via a kind of Clifford theory.

2.1. Twist of a representation by an automorphism. Let G be an algebraic
group, ϕ : G

∼→ G an automorphism, and let π = (V, %) be a representation of G.
Then we define the representation ϕπ as the pair (V, % ◦ϕ−1). (Below, we will most
of the time write V for π, and ϕV for ϕπ.) It is straightforward to check that if

ψ : G
∼→ G is a second automorphism, then we have

(2.1) ψ
(
ϕπ
)

= ψ◦ϕπ.

If f : π → π′ is a morphism of G-representations, then the same linear map defines
a morphism of G-representations ϕπ → ϕπ′, which will sometimes be denoted ϕf .

Lemma 2.1. Let H ⊂ G be a subgroup, and (V, %) be a representation of H. Then
there exists a canonical isomorphism of G-modules

ϕ IndGH(V, %) ∼= IndGϕ(H)(V, % ◦ ϕ−1).

Proof. By definition, we have

IndGH(V, %) = {f : G→ V | ∀h ∈ H, f(gh) = %(h−1)(f(g))},

IndGϕ(H)(V, % ◦ ϕ−1) = {f : G→ V | ∀h ∈ ϕ(H), f(gh) = % ◦ ϕ−1(h−1)(f(g))}.
Here, in both cases the functions are assumed to be algebraic, and the G-action is
defined by (g · f)(h) = f(g−1h). We have a natural isomorphism of vector spaces

IndGH(V, %)
∼→ IndGϕ(H)(V, % ◦ ϕ−1)

sending f to f ◦ ϕ−1. It is straightforward to check that this morphism is an
isomorphism of G-modules from ϕ IndGH(V, %) to IndGϕ(H)(V, % ◦ ϕ−1). �

Remark 2.2. More generally, if G′ is another algebraic group and ϕ : G
∼→ G′ is

an isomorphism, for any G-module π we can consider the G′ module ϕπ defined as
above. Then the same arguments as for Lemma 2.1 show that we have ϕ IndGH(π) ∼=
IndG

′

ϕ(H)(
ϕπ).

In particular, assume that we are given an algebraic group G′ and an embedding
of G as a normal subgroup of G′. Then for any g ∈ G′, we have an automorphism
ad(g) of G sending h to ghg−1. In this setting, we will write gV for ad(g)V , and
gf for ad(g)f . Then for g, h ∈ G′, since ad(g) ◦ ad(h) = ad(gh), (2.1) translates to
g
(
hV
)

= ghV .
The verification of the following lemma is straightforward.

Lemma 2.3. Let (V, %) be a representation of G. Then if g ∈ G, %(g−1) induces

an isomorphism V
∼→ gV .
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2.2. Disconnected reductive groups. From now on we fix an algebraic group
G whose identity component G◦ is reductive. We set A := G/G◦ (a finite group).
The canonical quotient morphism G→ A will be denoted $.

Let T be the “universal maximal torus” of G◦, i.e., the quotient B/(B,B) for
any Borel subgroup B ⊂ G◦. (Since all Borel subgroups in G◦ are G◦-conjugate,
and since B = NG◦(B) acts trivially on B/(B,B), the quotient B/(B,B) does
not depend on B, up to canonical isomorphism.) Let X = X∗(T ) be its weight
lattice. If T ′ ⊂ B is any maximal torus, then the composition T ′ ↪→ B � T is
an isomorphism, and this lets us identify X with X∗(T ′). The image in X under
this identification of the roots of (G,T ′), and of the subset of positive roots (chosen
as the opposite of the T ′-weights on the Lie algebra of B), do not depend on
the choice of T ′; so they define the canonical root system Φ ⊂ X and the subset
Φ+ ⊂ Φ of positive roots. Similar comments apply to coroots, so that we can define
the dominant weights X+ ⊂ X. We denote by W the Weyl group of T . (This group
is well defined because NB(T ′) = T ′ for a maximal torus T ′ contained in a Borel
subgroup B.)

Given a weight λ ∈ X+, we denote by

L(λ), ∆(λ), ∇(λ)

the irreducible, Weyl, and dual Weyl G◦-modules, respectively, corresponding to

λ. Here ∇(λ) is defined as the induced module IndG
◦

B (kB(λ)) for some choice of
Borel subgroup B ⊂ G◦, L(λ) is the unique simple submodule of ∇(λ), and ∆(λ)
is defined as (∇(−w0λ))∗, where w0 ∈ W is the longest element. (These modules
do not depend on the choice of B up to isomorphism thanks to Lemma 2.1 and
Lemma 2.3.)

For any g ∈ G and any Borel subgroup B ⊂ G◦, ad(g) induces an isomorphism

B/(B,B)
∼→ gBg−1/(gBg−1, gBg−1). Since gBg−1 is also a Borel subgroup of G◦,

this defines an automorphism ad(g) of T . The fact that T is well defined translates
to the property that ad(g) = id if g ∈ G◦, so that ad factors through a morphism
A→ Aut(T ), which we will also denote by ad.

For a ∈ A and λ ∈ X, we set

(2.2) aλ := λ ◦ ad(a−1).

This operation defines an action of A on X, which preserves Φ, Φ+ and X+. More-
over, Lemma 2.1 implies that for any λ ∈ X+ and g ∈ G, we have canonical
isomorphisms

(2.3) g∆(λ) ∼= ∆($(g)λ), gL(λ) ∼= L($(g)λ), g∇(λ) ∼= ∇($(g)λ).

We will denote by Irr(G◦) the set of isomorphism classes of simple G◦-modules.
This set admits an action of G, where g acts via [V ] 7→ [gV ]. (Of course, this
action factors through an action of A.) The constructions above provide a natural

bijection X+ ∼→ Irr(G◦) (sending λ to the isomorphism class of L(λ)), which is
A-equivariant in view of (2.3).

Lemma 2.4. Let V be an irreducible G-module. Then V is semisimple as a G◦-
module. All of its irreducible G◦-submodules lie in a single G-orbit in Irr(G◦).
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Proof. Choose an irreducible G◦-submodule M ⊂ V , and choose a set of coset
representatives g1, . . . , gr for G◦ in G. The subspace

r∑
i=1

giM ⊂ V

is stable under the action of G, so it must be all of V . Each summand giM is stable
under G◦, so there is a surjective map of G◦-representations

r⊕
i=1

giM →
r∑
i=1

giM = V.

Now, giM is isomorphic as a G◦-module to giM ; in particular, each giM is an
irreducible G◦-module, and

⊕
i giM is semisimple. Thus, as a G◦-module, V is a

quotient of a semisimple module, all of whose summands lie in a single G-orbit of
Irr(G◦), so the same holds for V itself. �

2.3. The component group and induced representations. For each a ∈ A =
G/G◦, let us choose, once and for all, a representative ι(a) ∈ G. In the special case
a = 1A, we require that

ι(1A) = 1G.

Given a, b ∈ A, the representative ι(ab) need not be equal to ι(a)ι(b); but these
elements lie in the same coset of G◦. Explicitly, there is a unique element γ(a, b) ∈
G◦ such that

ι(a)ι(b) = ι(ab)γ(a, b).

Our assumption on ι(1A) implies that for any a ∈ A, we have

γ(1A, a) = γ(a, 1A) = 1G.

By expanding ι(abc) in two ways, one finds that

(2.4) γ(ab, c) · ad(ι(c)−1)(γ(a, b)) = γ(a, bc)γ(b, c).

Now let V be a G◦-module. By Lemma 2.3, for any a, b ∈ A the action of γ(a, b)
defines an isomorphism of G◦-modules

γ(a,b)V
∼→ V.

Twisting by ι(ab) we deduce an isomorphism

φa,b : ι(a)ι(b)V
∼→ ι(ab)V.

We can use the maps ι and γ to explicitly describe representations of G that are
induced from G◦, as follows. Let us denote by k[A] the group algebra of A over k.
Let V be a G◦-module, and consider the vector space

(2.5) Ṽ = k[A]⊗ V =
⊕
f∈A

kf ⊗ V.

We now explain how to make Ṽ into a G-module. Note that every element of G
can be written uniquely as ι(a)g for some a ∈ A and g ∈ G◦. We put

(2.6) ι(a)g · (f ⊗ v) = af ⊗ γ(a, f) · ad(ι(f)−1)(g) · v.

Using (2.4) one can check that this does indeed define an action of G on Ṽ .
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Lemma 2.5. The map

f 7→
∑
a∈A

a⊗ f(ι(a))

defines an isomorphism of G-modules IndGG◦(V )
∼→ Ṽ .

Proof. It is clear that our map is an isomorphism of vector spaces, and that its
inverse sends a ⊗ v to the function f : G → V such that f(ι(a)g) = g−1 · v for
g ∈ G◦ and f(ι(b)g) = 0 for g ∈ G◦ and b ∈ A r {a}. It is not difficult to check
that this inverse map respects the G-actions, proving the proposition. �

In view of Lemma 2.5, it is clear that as G◦-modules, we have

(2.7) IndGG◦(V ) ∼=
⊕
f∈A

ι(f)V,

as expected.

2.4. A twisted group algebra of a stabilizer. Let λ ∈ X+, and let Aλ = {a ∈
A | aλ = λ} be its stabilizer. We also set Gλ := $−1(Aλ). In view of (2.3), we have

(2.8) Gλ = {g ∈ G | gL(λ) ∼= L(λ)}.
We fix a representative for the simple G◦-module L(λ) and, for each a ∈ Aλ, an

isomorphism of G◦-modules

θa : L(λ)
∼→ ι(a)L(λ).

In the special case that a = 1A, we require that

θ1A = idL(λ).

Explicitly, these maps have the property that for any g ∈ G◦ and v ∈ L(λ), we
have

(2.9) θa(g · v) = ad(ι(a)−1)(g) · θa(v),

where on the right-hand side we consider the given action of G◦ on L(λ).
Now let a, b ∈ Aλ, and consider the diagram

L(λ) ι(a)L(λ) ι(a)ι(b)L(λ) ι(ab)L(λ).
θa

θab

ι(a)θb φa,b

This is not a commutative diagram. Rather, both θab and φa,b ◦ ι(a)θb ◦ θa are iso-
morphisms of simple G◦-modules, so they must be scalar multiples of one another.
Let α(a, b) ∈ k× be the scalar such that

φa,b
ι(a)θbθa = α(a, b) · θab.

Our assumptions on ι(1A) and θ1A imply that for all a ∈ A, we have

α(1A, a) = α(a, 1A) = 1.

Given three elements a, b, c ∈ Aλ, we can form the diagram shown in Figure 1.
The subdiagram consisting of straight arrows is commutative (by (2.4), (2.9) and
the definitions), whereas each curved arrow introduces a scalar factor. Comparing
the different scalars shows that

α(a, b)α(ab, c) = α(a, bc)α(b, c).



6 PRAMOD N. ACHAR, WILLIAM HARDESTY, AND SIMON RICHE

ι(ab)L(λ) ι(ab)ι(c)L(λ)

L(λ) ι(a)L(λ) ι(a)ι(b)L(λ) ι(abc)L(λ)

ι(a)ι(b)ι(c)L(λ) ι(a)ι(bc)L(λ)

θc

φab,c

θa

θab

θabc

θb

θbc

φa,b

θc

φb,c

ad(ι(c)−1)(γ(a,b))·(−)

φa,bc

Figure 1. Isomorphisms of L(λ) with ι(abc)L(λ)

In other words, α : Aλ ×Aλ → k× is a 2-cocycle.
Let A λ be the twisted group algebra ofAλ determined by this cocycle. Explicitly,

we define A λ to be the k-vector space spanned by symbols {ρa : a ∈ Aλ} with
multiplication given by

ρaρb = α(a, b)ρab.

This is a unital k-algebra, with unit ρ1A .
The algebra A λ can be described in more canonical terms as follows.

Proposition 2.6. There exists a canonical isomorphism of k-algebras

EndGλ
(
IndG

λ

G◦ (L(λ))
) ∼= (A λ)op.

Proof. We will work with the description of IndG
λ

G◦ (L(λ)) from Lemma 2.5 (applied
to the group Gλ): we identify it with k[Aλ]⊗L(λ), where the action of Gλ is given
by (2.6).

We begin by equipping k[Aλ]⊗L(λ) with the structure of a right A λ-module as
follows: given a, f ∈ Aλ and v ∈ L(λ), we put

(2.10) (f ⊗ v) · ρa := (fa)⊗ γ(f, a) · θa(v).

Let us check that this is indeed a right A λ-module structure:

((f ⊗ v) · ρa) · ρb = ((fa)⊗ γ(f, a) · θa(v)) · ρb
= (fab)⊗ γ(fa, b) · θb(γ(f, a) · θa(v))

= (fab)⊗ γ(fa, b)ad(ι(b)−1)(γ(f, a)) · θb(θa(v))

= (fab)⊗ γ(f, ab)γ(a, b) · θb(θa(v))

= (fab)⊗ α(a, b)(γ(f, ab) · θab(v))

= (f ⊗ v) · (α(a, b)ρab).
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(Here, the third equality relies on (2.9), and the fourth one on (2.4).) Next, we
check that the right action of A λ commutes with the left action of G:

ι(a)g · ((f ⊗ v) · ρb) = ι(a)g · ((fb)⊗ γ(f, b) · θb(v))

= (afb)⊗ γ(a, fb)ad(ι(fb)−1)(g)γ(f, b) · θb(v)

= (afb)⊗ γ(a, fb)γ(f, b)ad((ι(fb)γ(f, b))−1)(g) · θb(v)

= (afb)⊗ γ(af, b)ad(ι(b)−1)(γ(a, f))ad((ι(f)ι(b))−1)(g) · θb(v)

= (afb)⊗ γ(af, b)θb(γ(a, f)ad(ι(f)−1)(g) · v)

= ((af)⊗ γ(a, f)ad(ι(f)−1)(g) · v) · ρb
= (ι(a)g · (f ⊗ v)) · ρb.

As a consequence, the right A λ-action gives rise to an algebra homomorphism

ϕ : (A λ)op → EndGλ(k[Aλ]⊗ L(λ)).

For each a ∈ Aλ, the operator ϕ(ρa) permutes the direct summands kf ⊗ L(λ) ⊂
k[Aλ] ⊗ L(λ), as f runs over elements of Aλ. Moreover, distinct a’s give rise to
distinct permutations. It follows from this that the collection of linear operators
{ϕ(ρa) : a ∈ Aλ} is linearly independent. In other words, ϕ is injective.

On the other hand, by adjunction, we have

(2.11) dim EndGλ
(
IndG

λ

G◦ (L(λ))
)

= dim HomG◦
(
IndG

λ

G◦ (L(λ)), L(λ)
)
.

Now, (2.7) implies that as a G◦-module, IndG
λ

G◦ (L(λ)) is isomorphic to a direct sum
of |Aλ| copies of L(λ). So (2.11) shows that

dim EndGλ
(
IndG

λ

G◦ (L(λ))
)

= |Aλ| = dim A λ.

Since ϕ is an injective map between k-vector spaces of the same dimension, it is
also surjective, and hence an isomorphism. �

Remark 2.7. (1) The G◦-module L(λ) is defined only up to isomorphism. But

if L′(λ) is another choice for this module, then an isomorphism L(λ)
∼→

L′(λ) is unique up to scalar (and exists). Hence the induced isomorphism

EndGλ
(
IndG

λ

G◦ (L(λ))
) ∼→ EndGλ

(
IndG

λ

G◦ (L′(λ))
)

does not depend on the

choice of isomorphism. In other words, the algebra EndGλ
(
IndG

λ

G◦ (L(λ))
)

is
completely canonical, i.e. does not depend on any choice.

(2) Once the G◦-module L(λ) is fixed, our description of the k-algebra A λ,

and of its identification with EndGλ(IndG
λ

G◦ (L(λ)))op in Proposition 2.6,
depend on the choice of the isomorphisms θa for a ∈ Ar {1}. However, if
{θ′a : a ∈ Ar{1}} is another choice of such isomorphisms, and {ρ′a : a ∈ A}
is the basis of the corresponding algebra (A ′)λ, then for any a ∈ A there
exists a unique ta ∈ k× such that θ′a = taθa. It is easy to check that the

assignment ρ′a 7→ taρa defines an algebra isomorphism (A ′)λ
∼→ A λ which

commutes with the identifications provided by Proposition 2.6.

(3) If, instead of using Lemma 2.5 to describe the Gλ-module IndG
λ

G◦ (L(λ)),
we describe it in terms of algebraic functions φ : Gλ → L(λ) satisfying
φ(gh) = h−1 · φ(g) for h ∈ G◦, then the right action of A λ on this module
satisfies (φ · ρa)(g) = θa ◦ φ(gι(a)−1).
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2.5. Simple Gλ-modules whose restriction to G◦ is a direct sum of copies
of L(λ). We continue with the setting of §2.4, and in particular with our fixed
λ ∈ X+. If E is a finite-dimensional left A λ-module, we define a Gλ-action on the
k-vector space E ⊗ L(λ) by

(2.12) ι(a)g · (u⊗ v) = ρau⊗ θ−1
a (gv) for a ∈ Aλ and g ∈ G◦.

Lemma 2.8. The rule (2.12) defines a structure of Gλ-module on E ⊗ L(λ).

Proof. Note that

ι(a)gι(b)h = ι(a)ι(b)ad(ι(b)−1)(g)h = ι(ab)(γ(a, b)ad(ι(b)−1)(g)h).

We now have

ι(a)g · (ι(b)h · (u⊗ v)) = ι(a)g · (ρbu⊗ θ−1
b (hv))

= ρaρbu⊗ θ−1
a (gθ−1

b (hv))

= α(a, b)ρabu⊗ (θb ◦ θa)−1(ad(ι(b)−1)(g)hv)

= ρabu⊗ θ−1
ab (γ(a, b)ad(ι(b)−1)(g)hv)

= (ι(a)gι(b)h) · (u⊗ v),

proving the desired formula. �

Proposition 2.9. The assignment E 7→ E⊗L(λ) defines a bijection between the set
of isomorphism classes of simple A λ-modules and the set of isomorphism classes
of simple Gλ-modules whose restriction to G◦ is a direct sum of copies of L(λ).

Proof. We will show that if V is a finite dimensional Gλ-module whose restriction
to G◦ is a direct sum of copies of L(λ), and if we set E := HomG◦(L(λ), V ), then
E has a natural structure of a left A λ-module, and there exists an isomorphism of
Gλ-modules

ηλ,E : E ⊗ L(λ)
∼→ V.

We define the A λ-action on E by

(ρa · f)(x) = ι(a) · f(θa(x))

for f ∈ E = HomG◦(L(λ), V ) and x ∈ L(λ). (We leave it to the reader to check
that ρa ·f is a morphism of G◦-modules.) To justify that this defines an A λ-module
structure, we simply compute:

(ρa · (ρb · f))(x) = ι(a) · (ρb · f)(θa(x))

= ι(a) · ι(b) · f(θb ◦ θa(x))

= ι(ab) · γ(a, b) · f(θb ◦ θa(x))

= ι(ab) · f(γ(a, b) · θb ◦ θa(x))

= α(a, b) · ι(ab) · f(θab(x))

= ((α(a, b)ρab) · f)(x).

Now there exists a canonical isomorphism of G◦-modules

ηλ,E : E ⊗ L(λ) = HomG◦(L(λ), V )⊗ L(λ)
∼→ V,

defined by ηλ,E(f ⊗ v) = f(v). Let us check that this morphism also commutes
with the action of ι(A). By definition we have

ι(a) · (f ⊗ v) = (ρa · f)⊗ θ−1
a (v) = σ(ι(a)) ◦ f ◦ θa ⊗ θ−1

a (v),
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where σ : Gλ → GL(V ) is the morphism defining the Gλ-action. Hence

ηλ,E
(
ι(a) · (f ⊗ v)

)
= ι(a) · f(v) = ι(a) · ηλ,E(f ⊗ v),

proving that ηλ,E is an isomorphism of Gλ-modules.
It is clear that the assignments

−⊗ L(λ) : E 7→ E ⊗ L(λ) and HomG◦(L(λ),−) : V 7→ HomG◦(L(λ), V )

define functors from the category of finite-dimensional A λ-modules to the cate-
gory of finite-dimensional Gλ-modules whose restriction to G◦ are isomorphic to
a direct sum of copies of L(λ), and from the category of finite-dimensional Gλ-
modules whose restriction to G◦ are isomorphic to a direct sum of copies of L(λ) to
the category of finite-dimensional A λ-modules respectively. It is straightforward
to construct an isomorphism of functors HomG◦(L(λ),−) ◦ (− ⊗ L(λ))

∼→ id, as

well as an isomorphism (− ⊗ L(λ)) ◦ HomG◦(L(λ),−)
∼→ id defined by ηλ,−. Our

functors are thus equivalences of categories, quasi-inverse to each other; hence they
define bijections between the sets of isomorphism classes of simple objects in these
categories. �

Remark 2.10. As in Remark 2.7, it can be easily checked that the assignment
E 7→ E ⊗ L(λ) does not depend on the choice of the isomorphisms {θa : a ∈ A},
in the sense that if {θ′a : a ∈ A} is another choice of such isomorphisms, and if

(A ′)λ is the corresponding algebra, then the identification (A ′)λ
∼→ A λ considered

in Remark 2.7 defines a bijection between isomorphism classes of simple (A ′)λ-
modules and A λ-modules, which commutes with the operations − ⊗ L(λ). Of
course, these constructions do not depend on the choice of L(λ) in its isomorphism
class either.

2.6. Induction from Gλ to G. We continue with the setting of §§2.4–2.5. If E is
a finite-dimensional A λ-module, we now consider the G-module

L(λ,E) := IndGGλ(E ⊗ L(λ)).

Lemma 2.11. If E is a simple A λ-module, then L(λ,E) is a simple G-module.

Proof. Let V ⊂ L(λ,E) be a simple G-submodule. For any simple G◦-module L,
let [V : L]G◦ denote the multiplicity of L as a composition factor of V , regarded as
a G◦-module. The image of the embedding V ↪→ L(λ,E) under the isomorphism

HomG

(
V,L(λ,E)

)
= HomG

(
V, IndGGλ(E ⊗ L(λ))

) ∼= HomGλ(V,E ⊗ L(λ))

given by Frobenius reciprocity provides a nonzero morphism of Gλ-modules V →
E ⊗L(λ), which must be surjective since E ⊗L(λ) is simple by Proposition 2.9. It
follows that [V : L(λ)]G◦ ≥ dim(E). Now, as in (2.7), if g1, . . . , gr are representa-
tives in G of the cosets in G/Gλ, then as G◦-modules we have

L(λ,E) = IndGGλ(E ⊗ L(λ)) ∼=
r⊕
i=1

giL(λ)⊕ dim(E).

Since V is stable under the G-action, we have [V : L(λ)]G◦ = [V : giL(λ)]G◦ for all
i (see Lemma 2.3), and hence [V : giL(λ)]G◦ ≥ dim(E) for all i. This implies that

dim(V ) ≥ dim(IndGGλ(E ⊗ L(λ))), so in fact V = IndGGλ(E ⊗ L(λ)), as desired. �
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2.7. Simple G-modules. We come back to the general setting of §2.2. (In par-
ticular, the dominant weight λ is not fixed anymore.) We can now prove that the
procedure explained in §§2.4–2.6 allows us to construct all simple G-modules (up
to isomorphism).

Lemma 2.12. Let V be a simple G-module. Then there exists λ ∈ X+, a simple
A λ-module E, and an isomorphism of G-modules

V
∼→ L(λ,E).

Proof. Certainly there exists λ ∈ X+ and a surjection of G◦-modules V � L(λ). By
Frobenius reciprocity we deduce a nonzero (hence injective) morphism of G-modules

V ↪→ IndGG◦(L(λ)). So to conclude, it suffices to prove that all composition factors

of IndGG◦(L(λ)) are of the form L(λ,E) (with E a simple A λ-module). However,
we have

IndGG◦(L(λ)) ∼= IndGGλ
(
IndG

λ

G◦ (L(λ))
)
.

The restriction of IndG
λ

G◦ (L(λ)) to G◦ is a direct sum of copies of L(λ) by (2.7)
applied to Gλ. Therefore, all of its composition factors are of the form E ⊗ L(λ)

with E a simple A λ-module by Proposition 2.9. Since the functor IndGGλ is exact
(by Lemma 2.5, or by [Ja, Corollary I.5.13]) and sends simple Gλ-modules of the
form E ⊗ L(λ) to simple G-modules by Lemma 2.11, the claim follows. �

2.8. Conjugation. It now remains to understand when two modules of the form
L(λ,E) are isomorphic. For this, we need to analyze the relation between this
construction applied to a dominant weight, and to a twist of this dominant weight
by an element of A.

So, let λ ∈ X+, and a ∈ A. Then we have

A
aλ = aAλa−1, G

aλ = ι(a)Gλι(a)−1,

and we can choose as L(aλ) the module ι(a)L(λ), cf. (2.3).

Let us choose isomorphisms θb : L(λ)
∼→ ι(b)L(λ) for all b ∈ Aλ. Again for b ∈ Aλ,

we can consider the isomorphism

θ̃aba−1 : L(aλ) = ι(a)L(λ)
θb−→ ι(a)ι(b)L(λ) = ι(a)ι(b)ι(a)−1(ι(a)L(λ)

)
= ι(a)ι(b)ι(a)−1(

L(aλ)
) ι(aba−1)−1ι(a)ι(b)ι(a)−1·(−)−−−−−−−−−−−−−−−−−−−→

∼
ι(aba−1)L(aλ).

(Here, the last isomorphism means the action of ι(aba−1)−1ι(a)ι(b)ι(a)−1 on L(aλ),
or in other words the action of ι(a)−1ι(aba−1)−1ι(a)ι(b) on L(λ).)

The following claim can be checked directly from the definitions.

Lemma 2.13. For any b, c ∈ Aλ, we have

γ(aca−1, aba−1) ◦ θ̃aba−1 ◦ θ̃aca−1 = α(c, b) · θ̃acba−1

(where here γ(aca−1, aba−1) means the action of this element on L(aλ)).

If A λ and its basis {ρb : b ∈ Aλ} are defined in terms of the isomorphisms
{θb : b ∈ Aλ} and if A

aλ and its basis {ρ̃b : b ∈ Aaλ} are defined in terms of the

isomorphisms {θ̃a : a ∈ Aaλ}, then Lemma 2.13 allows us to compare the cocycles
that arise in the definitions of A λ and A

aλ. More precisely, this lemma shows that
the assignment ρb 7→ ρ̃aba−1 defines an algebra isomorphism ξaλ : A λ ∼→ A

aλ.
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The isomorphism ξaλ can be described more canonically as follows. Recall that
Proposition 2.6 provides canonical identifications

(A λ)op ∼→ EndGλ
(
IndG

λ

G◦ (L(λ))
)
, (A

aλ)op ∼→ EndGλ
(
IndG

λ

G◦ (L(aλ))
)
.

One can check that under these identifications, the automorphism ξaλ is given by
the isomorphism

EndGλ
(
IndG

λ

G◦ (L(λ))
)

= EndGaλ
(
ι(a) IndG

λ

G◦ (L(λ))
) ∼→ EndGaλ

(
IndG

aλ

G◦ (L(aλ))
)

(where we use the notation of Remark 2.2).
The properties of these isomorphisms that we will need below are summarized

in the following lemma.

Lemma 2.14. Let λ ∈ X+.

(1) If a, b ∈ A, then we have ξabλ = ξabλ ◦ ξ
b
λ.

(2) If a ∈ Aλ, then ξaλ is an inner automorphism of A λ.

Proof. (1) To simplify notation, we set µ := abλ. Note that the simple G◦-modules
of highest weight µ used in the definitions of ξabλ and ξabλ ◦ ξ

b
λ are different: for the

former we use the module L1(µ) := ι(ab)L(λ), while for the latter we use the module
L2(µ) := ι(a)ι(b)L(λ). There exists a canonical isomorphism

(2.13) L1(µ)
∼→ L2(µ),

given by the action of γ(a, b)−1 on L(λ) (i.e. the inverse of the isomorphism denoted
φa,b in §2.3).

Our algebras are all defined as endomorphisms of some induced module, which
can be described in terms of functions with values in the vector space underly-
ing the representation L(λ). From this point of view, ξabλ ◦ ξ

b
λ is conjugation by

the isomorphism of vector spaces IndG
λ

G◦ (L(λ))
∼→ IndG

µ

G◦ (L2(µ)) sending functions
Gλ → L(λ) to functions Gµ → L(λ) and given by φ 7→ φ(ι(b)−1ι(a)−1(−)ι(a)ι(b)),

while ξabλ is conjugation by the isomorphism IndG
λ

G◦ (L(λ))
∼→ IndG

µ

G◦ (L1(µ)) given
by φ 7→ φ(ι(ab)(−)ι(ab)−1). Taking into account the isomorphism (2.13), we have
to check that conjugation by the isomorphism given by

(2.14) φ 7→ γ(a, b) · φ(ι(b)−1ι(a)−1(−)ι(a)ι(b))

(where γ(a, b) · (−) means the action of γ(a, b) ∈ G◦ on L(λ)) coincides with con-
jugation by the isomorphism given by

(2.15) φ 7→ φ(ι(ab)(−)ι(ab)−1).

However, since γ(a, b) belongs to G◦, the functions φ we consider satisfy

γ(a, b) · φ(ι(b)−1ι(a)−1(−)ι(a)ι(b)) = φ(ι(b)−1ι(a)−1(−)ι(a)ι(b)γ(a, b)−1)

= φ(ι(b)−1ι(a)−1(−)ι(ab)) = φ(γ(a, b)−1ι(ab)−1(−)ι(ab)).

Thus, the isomorphisms (2.14) and (2.15) do not coincide, but they differ only by

the action of an element of Gλ (which, in fact, even belongs to G◦) on IndG
λ

G◦ (L(λ)).
Therefore, conjugation by either (2.14) or (2.15) induces the same isomorphism of

algebras EndGλ(IndG
λ

G◦ (L(λ)))
∼→ EndGµ(IndG

µ

G◦ (L1(µ))).
(2) By the comments preceding the statement, ξaλ is conjugation by an isomor-

phism IndG
λ

G◦ (L(λ))
∼→ IndG

aλ

G◦ (L(aλ)). If a ∈ Aλ then this isomorphism defines an
invertible element of A λ, so that ξaλ is indeed an inner automorphism. �
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Given a ∈ A and λ ∈ X+, the isomorphism ξaλ defines a bijection between the set
of isomorphism classes of simple A λ-modules and the set of isomorphism classes of
simple A

aλ-modules. From Lemma 2.14(1) we see that this operation defines an
action of the group A on the set of pairs (λ,E) where λ ∈ X+ and E is a simple
A λ-module. Moreover, it follows from Lemma 2.14(2) that the induced action of
Aλ on the set of isomorphism classes of simple A λ-modules is trivial.

Lemma 2.15. Let λ ∈ X+, and let E be a simple A λ-module. Let a ∈ A, and let
E′ be the simple A

aλ-module deduced from E via the isomorphism ξaλ : A λ ∼→ A
aλ.

Then there exists an isomorphism of G-modules

L(λ,E)
∼→ L(aλ,E′).

Proof. As above we choose for our simple G◦-module of highest weight aλ the
module ι(a)L(λ). Then conjugation by ι(a) induces an isomorphism Gλ

∼→ G
aλ,

and using the notation of Remark 2.2 we have as G
aλ-modules

ι(a)(E ⊗ L(λ)) = E′ ⊗ L(aλ).

In view of Lemma 2.1 we deduce an isomorphism of G-modules

ι(a) IndGGλ(E ⊗ L(λ))
∼→ IndGGaλ(E′ ⊗ L(aλ)).

Now by Lemma 2.3 the left-hand side is isomorphic to L(λ,E), and the claim
follows. �

2.9. Classification of simple G-modules. We denote by Irr(G) the set of iso-
morphism classes of simple G-modules. Now we can finally state the main result of
this section.

Theorem 2.16. The assignment (λ,E) 7→ L(λ,E) induces a bijection{
(λ,E)

∣∣∣∣ λ ∈ X+ and E an isom. class
of simple left A λ-modules

}/
A←→ Irr(G).

Proof. From Lemma 2.11, we see that the assignment (λ,E) 7→ L(λ,E) defines
a map from the set of pairs (λ,E) as in the statement to the set Irr(G). By
Lemma 2.15 this map factors through a map{

(λ,E)

∣∣∣∣ λ ∈ X+ and E an isom. class
of simple left A λ-modules

}/
A→ Irr(G).

By Lemma 2.12, this latter map is surjective. Hence, all that remains is to prove
that it is injective.

Let (λ,E) and (λ′, E′) be pairs as above. Let V = L(λ,E) and V ′ = L(λ′, E′),
and assume that V ∼= V ′. As a G◦-representation, V is isomorphic to a direct
sum of twists of L(λ), and V ′ is isomorphic to a direct sum of twists of L(λ′) (see
the proof of Lemma 2.11). Hence L(λ) and L(λ′) are twists of each other, which
implies that λ and λ′ are in the same A-orbit. Therefore, we can (and shall) assume

that λ = λ′. Fix some isomorphism V
∼→ V ′, and consider the morphism of Gλ-

modules f : V → E′ ⊗ L(λ) deduced by Frobenius reciprocity. If g1, . . . , gr are
representatives of the cosets in G/Gλ, with g1 = 1G, then we have an isomorphism
of G◦-modules

IndGGλ(E ⊗ L(λ)) ∼=
r⊕
i=1

giL(λ)⊗ E.



REPRESENTATION THEORY OF DISCONNECTED REDUCTIVE GROUPS 13

If i 6= 1, then giL(λ) is not isomorphic to L(λ). Hence f is zero on the corresponding

summand of IndGGλ(E ⊗ L(λ)). We deduce that the composition

E ⊗ L(λ) ↪→ IndGGλ(E ⊗ L(λ))
f−→ E′ ⊗ L(λ),

where the first morphism is again deduced from Frobenius reciprocity, is nonzero.
But this morphism is a morphism of Gλ-modules. Since L(λ,E) and L(λ,E′) are
simple, it must be an isomorphism, and by Proposition 2.9 this implies that E ∼= E′

as A λ-modules. �

Remark 2.17. (1) As explained above Lemma 2.15, for any λ ∈ X+ the action
of Aλ on the set of isomorphism classes of irreducible A λ-modules is trivial.
Hence if Λ ⊂ X+ is a set of representatives of the A-orbits in X+, the
quotient considered in the statement of Theorem 2.16 can be described more
explicitly as the set of pairs (λ,E) where λ ∈ Λ and E is an isomorphism
class of simple A λ-modules.

(2) Assume that ι is a group morphism (so that G is isomorphic to the semi-
direct product A n G◦) and that moreover there exists a Borel subgroup
B ⊂ G◦ such that ι(a)Bι(a)−1 = B for any a ∈ A. Then if we define
the standard and costandard G◦-modules using this Borel subgroup, the
isomorphisms

ι(a)∆(λ) ∼= ∆(aλ), ι(a)∇(λ) ∼= ∇(aλ)

(see (2.3)) can be chosen in a canonical way. In fact, our assumptions imply
that there exist unique B-stable lines in ι(a)∆(λ) and ∆(aλ), and moreover
that these lines coincide. Hence there exists a unique isomorphism of G-
modules ι(a)∆(λ)

∼→ ∆(aλ) which restricts to the identity on these B-stable
lines. Similar comments apply to ι(a)∇(λ) and ∇(aλ).

In particular, the isomorphisms θa of §2.4 can be chosen in a canonical
way. Then the cocycle α will be trivial, so that in this case A λ is canonically
isomorphic to the group algebra k[Aλ].

2.10. Semisimplicity. We finish this section with a criterion ensuring that the
algebra A λ is semisimple unless p is small.

Lemma 2.18. Assume that p - |A|. If V is a simple G◦-module, then IndGG◦(V ) is
a semisimple G-module.

Proof. Let M be a G-submodule of IndGG◦(V ), and let N = IndGG◦(V )/M . We will

show that the image c of the exact sequence M ↪→ IndGG◦(V ) � N in Ext1
G(N,M)

vanishes.
First we remark that for any two algebraic G-modules X,Y , the forgetful functor

from Rep(G) to Rep(G◦) induces an isomorphism

HomG(X,Y )
∼→
(
HomG◦(X,Y )

)A
.

Under our assumptions the functor (−)A is exact. On the other hand, it is easily
checked that the restriction of any injective G-module to G◦ is injective. Hence
this isomorphism induces an isomorphism

ExtnG(X,Y )
∼→
(
ExtnG◦(X,Y )

)A
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for any n ≥ 0. We deduce in particular that the forgetful functor induces an
injection

Ext1
G(N,M) ↪→ Ext1

G◦(N,M).

Hence to prove that c = 0 it suffices to prove that the sequence M ↪→ IndGG◦(V ) �
N , considered as an exact sequence of G◦-modules, splits. This fact is clear since
IndGG◦(V ) is semisimple as a G◦-module, see (2.7). �

From this lemma (applied to the group Aλ) and Proposition 2.6 we deduce the
following.

Lemma 2.19. If p - |Aλ|, then the algebra A λ is semisimple (and in fact isomor-
phic to a product of matrix algebras).

3. Highest weight structure

Our goal in this section is to prove that if p - |A|, then the category Rep(G)
of finite-dimensional G-modules admits a natural structure of a highest weight
category.

For the beginning of the section, we continue with the setting of §2.2 (not im-
posing any further assumption).

3.1. The order. If (λ,E) is a pair as in Theorem 2.16, we denote by [λ,E] the
corresponding A-orbit. We define a relation < on the set of such orbits as follows:

(3.1) [λ,E] < [λ′, E′] if for some a ∈ A, we have aλ < λ′.

(Here, the order on X is the standard one, where λ ≤ µ iff µ−λ is a sum of positive
roots.)

Lemma 3.1. The relation < is a partial order.

Proof. Using the fact that for a ∈ A and λ, µ ∈ X such that λ ≤ µ we have aλ ≤ aµ
(because the A-action is linear and preserves positive roots), one can easily check
that this relation is transitive. What remains to be seen is that there cannot exist
classes [λ,E], [λ′, E′] such that

[λ,E] < [λ′, E′] < [λ,E].

However, in this case we have aλ < λ for some a ∈ A. Since a permutes the positive
coroots of G◦, then if we denote by 2ρ∨ the sum of these coroots we must have
〈aλ, 2ρ∨〉 = 〈λ, 2ρ∨〉, hence 〈λ − aλ, 2ρ∨〉 = 0. On the other hand, by assumption
λ−aλ is a nonzero sum of positive roots, so that its pairing with 2ρ∨ cannot vanish.
This provides the desired contradiction. �

3.2. Standard G-modules. Let λ ∈ X+. We will work in the setting of §§2.3–2.4,
including, in particular, fixing a G◦-module L(λ), and notation such as ι, γ, θ, and
α. We also fix a representative ∆(λ) for the Weyl module surjecting to L(λ), and
a surjection πλ : ∆(λ)→ L(λ).

Since EndG◦(∆(λ)) = k · id, from (2.3) we see that for each a ∈ Aλ, there

exists a unique isomorphism θ∆
a : ∆(λ)

∼→ ι(a)∆(λ) such that the following diagram
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commutes:

∆(λ) ι(a)∆(λ)

L(λ) ι(a)L(λ).

θ∆
a

θa

Moreover, this uniqueness implies that for any a, b ∈ Aλ, if we define φ∆
a,b : ∆(λ)→

∆(λ) as the action of γ(a, b), then we have

(3.2) φ∆
a,bθ

∆
b θ

∆
a = α(a, b)θ∆

ab.

Remark 3.2. These considerations show that the subgroup Aλ ⊂ A can be equiva-
lently defined as consisting of the elements a ∈ A such that ι(a)∆(λ) ∼= ∆(λ). The
twisted group algebra A λ can also be defined in terms of a choice of isomorphisms
(θ∆
a : a ∈ Aλ) instead of isomorphisms (θa : a ∈ Aλ).

Lemma 3.3. Let E be a simple left A λ-module. The following rule defines the
structure of a Gλ-module on the vector space E ⊗∆(λ):

ι(a)g · (u⊗ v) = ρau⊗ (θ∆
a )−1(gv) for any a ∈ Aλ and g ∈ G◦.

This Gλ-module has E ⊗ L(λ) as its unique irreducible quotient. Moreover, all the
G◦-composition factors of the kernel of the quotient map E⊗∆(λ)→ E⊗L(λ) are
of the form L(µ) with µ < λ.

Proof. We begin by noting that thanks to (3.2), the calculation from Lemma 2.8
can be repeated to show that the formula above does, indeed, define the structure
of a Gλ-module on E ⊗ ∆(λ). Moreover, the quotient map πλ : ∆(λ) → L(λ)
induces a surjective map of Gλ-modules

πλE := idE ⊗ π : E ⊗∆(λ)→ E ⊗ L(λ).

If we forget the Gλ-module structure and regard E⊗∆(λ) as just a G◦-module,
then it is clear that its unique maximal semisimple quotient can be identified with
E ⊗ L(λ), and that the highest weights of the kernel of πλE are < λ. Now, let M
be the head of E ⊗∆(λ) as a Gλ-module. Since M must remain semisimple as a
G◦-module (by Lemma 2.4), it cannot be larger than E ⊗ L(λ). In other words,
E ⊗ L(λ) is the unique simple quotient of E ⊗∆(λ). �

Proposition 3.4. Let E be a simple A λ-module. The G-module

∆(λ,E) := IndGGλ(E ⊗∆(λ))

admits L(λ,E) as its unique irreducible quotient. Moreover, all the composition
factors of the kernel of the quotient map ∆(λ,E)→ L(λ,E) are of the form L(µ,E′)
with [µ,E′] < [λ,E].

Proof. The surjection E ⊗∆(λ)→ E ⊗ L(λ) from Lemma 3.3 induces a surjection

∆(λ,E)→ L(λ,E) since the functor IndGGλ is exact (see the proof of Lemma 2.12).
If g1, · · · , gr are representatives of the cosets in G/Gλ, then as G◦-modules we have

(3.3) ∆(λ,E) ∼=
r⊕
i=1

E ⊗ gi∆(λ), L(λ,E) ∼=
r⊕
i=1

E ⊗ giL(λ).

Therefore, as in the proof of Lemma 2.12, L(λ,E) is the head of ∆(λ,E) as a
G◦-module, hence also as a G-module.
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If L(µ,E′) is a G-composition factor of the kernel of the surjection ∆(λ,E) →
L(λ,E), then some twist of L(µ) must be a G◦-composition factor of the surjection
gi∆(λ) → giL(λ) for some i. Therefore µ is smaller than some twist of λ, and we
deduce that [µ,E′] < [λ,E]. �

3.3. Ext1-vanishing. The same proof as for Lemma 2.15 shows that, up to iso-
morphism, ∆(λ,E) only depends on the orbit [λ,E]. The following lemma shows
that this module is a “partial projective cover” of L(λ,E) (under the assumption
that p - |A|).

Lemma 3.5. Assume that p - |A|. For any two pairs (λ,E) and (µ,E′), we have

Ext1
G

(
∆(λ,E), L(µ,E′)

)
6= 0 ⇒ [µ,E′] > [λ,E].

Proof. As in the proof of Lemma 2.18, we have a canonical isomorphism

Ext1
G

(
∆(λ,E), L(µ,E′)

) ∼= (Ext1
G◦
(
∆(λ,E), L(µ,E′)

))A
.

If we assume that Ext1
G

(
∆(λ,E), L(µ,E′)

)
6= 0, then this isomorphism shows that

we must also have Ext1
G◦
(
∆(λ,E), L(µ,E′)

)
6= 0. Using (3.3), we deduce that for

some g, h ∈ G we have
Ext1

G◦(
g∆(λ), hL(µ)) 6= 0.

This implies that $(h)µ > $(g)λ, hence that [µ,E′] > [λ,E]. �

3.4. Costandard G-modules. Fix again λ ∈ X+ and a simple A λ-module E.
Then after fixing a costandard module ∇(λ) with socle L(λ) and an embedding
L(λ) ↪→ ∇(λ), as in §3.2 the isomorphisms θa can be “lifted” to isomorphisms

θ∇a : ∇(λ)
∼→ ι(a)∇(λ), which satisfy the appropriate analogue of (3.2). Using these

isomorphisms one can define a Gλ-module structure on E ⊗ ∇(λ) by the same
procedure as in Lemma 3.3. Then the same arguments as for Proposition 3.4 show
that ∇(λ,E) := IndGGλ(E ⊗∇(λ)) admits L(λ,E) as its unique simple submodule,
and that all the composition factors of the injection L(λ,E) ↪→ ∇(λ,E) are of the
form L(µ,E′) with [µ,E′] < [λ,E]. Moreover, as in Lemma 3.5, if p - |A| we have

Ext1
G

(
L(µ,E′),∇(λ,E)

)
6= 0 ⇒ [µ,E′] > [λ,E].

Lemma 3.6. Assume that p - |A|, and let (λ,E) and (µ,E′) be pairs as above.
Then for any i > 0 we have

ExtiG(∆(λ,E),∇(µ,E′)) = 0.

Moreover
HomG(∆(λ,E),∇(µ,E′)) = 0

unless [λ,E] = [µ,E′], in which case this space is 1-dimensional.

Proof. As in the proof of Lemma 2.18, for any i > 0 we have

ExtiG(∆(λ,E),∇(µ,E′)) ∼=
(
ExtiG◦(∆(λ,E),∇(µ,E′))

)A
.

AsG◦-modules ∆(λ,E) is isomorphic to a direct sum of Weyl modules, and∇(µ,E′)
is isomorphic to a direct sum of induced modules. Hence, the right-hand side
vanishes unless i = 0, which proves the first claim.

For the second claim we remark that if HomG(∆(λ,E),∇(µ,E′)) 6= 0, then
L(λ,E) is a composition factor of ∇(µ,E′), so that [λ,E] ≤ [µ,E′], and L(µ,E′) is
a composition factor of ∆(λ,E), so that [µ,E′] ≤ [λ,E]. We deduce that [µ,E′] =
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[λ,E]. Moreover, in this case any nonzero morphism in this space must be a multiple
of the composition

∆(λ,E) � L(λ,E) ↪→ ∇(λ,E),

which concludes the proof. �

3.5. Highest weight structure. Let C be a finite-length k-linear abelian category
such that HomC (M,N) is finite-dimensional for any M , N in C . Let S be the
set of isomorphism classes of irreducible objects of C . Assume that S is equipped
with a partial order ≤, and that for each s ∈ S we have a fixed representative of
the simple object Ls. Assume also we are given, for any s ∈ S , objects ∆s and
∇s, and morphisms ∆s → Ls and Ls → ∇s. For T ⊂ S , we denote by CT the
Serre subcategory of C generated by the objects Lt for t ∈ T . We write C≤s for
C{t∈S |t≤s}, and similarly for C<s. Finally, recall that an ideal of S is a subset
T ⊂ S such that if t ∈ T and s ∈ S are such that s ≤ t, then s ∈ T .

Recall that the category C (together with the above data) is said to be a highest
weight category if the following conditions hold:

(1) for any s ∈ S , the set {t ∈ S | t ≤ s} is finite;
(2) for each s ∈ S , we have EndC (Ls) = k;
(3) for any s ∈ S and any ideal T ⊂ S such that s ∈ T is maximal, ∆s → Ls

is a projective cover in CT and Ls → ∇s is an injective envelope in CT ;
(4) the kernel of ∆s → Ls and the cokernel of Ls → ∇s belong to C<s;
(5) we have Ext2

C (∆s,∇t) = 0 for all s, t ∈ S .

In this case, the poset (S ,≤) is called the weight poset of C .
See [Ri, §7] for the basic properties of highest weight categories (following Cline–

Parshall–Scott and Bĕılinson–Ginzburg–Soergel).
We can finally state the main result of this section.

Theorem 3.7. Assume that p - |A|. The category Rep(G), equipped with the poset{
(λ,E)

∣∣∣∣ λ ∈ X+ and E an isom. class
of simple A λ-modules

}/
A

(with the order defined in (3.1)) and the objects ∆(λ,E), L(λ,E), ∇(λ,E), is a
highest weight category.

Proof. The desired properties are verified in Theorem 2.16, Proposition 3.4 and
Lemma 3.5, their variants for costandard objects (see §3.4), and Lemma 3.6. �

4. Grothendieck groups

Our goal in this section is to prove a generalization of a result of Serre [Se]
providing a description of the Grothendieck group of any split connected reductive
group over a complete discrete valuation ring. (In [Se], the author considers more
general coefficients, but we will restrict to the setting we need for the application
in [AHR].)

4.1. Setting. We will denote by O a complete discrete valuation ring, with alge-
braically closed residue field F. We also denote by K the fraction field of O, and by
K an algebraic closure of K. We will assume that K has characteristic 0, and that
F has characteristic p > 0.
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We will consider an affine O-group scheme G, a closed normal subgroup G◦ ⊂ G,
and we will denote by A the factor group of G by G◦ in the sense of [Ja, §I.6.1]
(i.e. of [DG, III, §3, n. 3]). We will make the following assumptions:

(1) G◦ is a reductive group scheme over O (in the sense of [SGA3.3]);
(2) A is the constant group scheme associated with a finite group A, and more-

over char(F) does not divide |A|.
We will now note a few consequences of these assumptions. We begin with the

following observation.

Lemma 4.1. Any reductive group scheme over O (in particular, G◦) is split.

Proof. This result follows from the arguments in the proof of [McN, Corollary 2.1.2].
Namely, let H be a reductive group scheme over O, and let K be a split O-torus
such that there exists a closed embedding Spec(F)×Spec(O)K → Spec(F)×Spec(O)H.
By [SGA3.2, Exp. XI, Corollaire 4.2] and [EGA4.4, Théorème 18.5.17], there exists
an O-group scheme morphism f : K → H which lifts this embedding. If we let K
act on itself by left multiplication, and on H by left multiplication via f , then f is
K-equivariant. Hence so is the induced morphism

(4.1) O(H)→ O(K).

In other words (see [Ja, §I.2.11]), both O(H) and O(K) admit gradings by char-
acters of K, and (4.1) is a graded morphism. Now each graded piece of O(K) has
finite rank over O (in fact, these pieces are free of rank 1), and the image of this
morphism under the functor F⊗O − is surjective by the construction of f . By the
Nakayama lemma, we deduce that (4.1) itself is surjective, i.e. that f is a closed
embedding.

Finally, it follows from [SGA3.3, Exp. XIX, Théorème 2.5] that the rank of
the K-group Spec(K)×Spec(O) H coincides with that of Spec(F)×Spec(O) H, so that

Spec(K)×Spec(O)K is a maximal torus in Spec(K)×Spec(O)H. We have thus proved
that K is a maximal torus in H, and hence that the latter group is split. �

Next, from [Ja, §I.5.7] (or from [DG, III, §3, Proposition 2.5]) we deduce that the
quotient morphism $ : G → A is flat, and hence that G is a flat O-group scheme
(since A is flat by assumption). If k is one of F, K or K, we set

Gk := Spec(k)×Spec(O) G, G◦k := Spec(k)×Spec(O) G
◦.

Then Gk is an extension of the constant (hence smooth) k-group scheme associated
with A by the smooth group scheme G◦k, so it is smooth by [Mi, Proposition 8.1].
From this we deduce that G itself is smooth (see [SP, Tag 01V8]).

In particular, the groups GF and GK are algebraic groups (over F and K) in
the usual “naive” sense. Since G◦F is connected and A is finite, the latter group
identifies with the group of components of GF. Similarly, A also identifies with the
group of components of GK.

Lemma 4.2. The morphism G(O)→ A induced by $ is surjective.

Proof. We consider the commutative diagram

G(O) A(O)

G(F) A(F)
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where the horizontal maps are induced by $ and the vertical ones by the quotient
morphism O→ F. Here the lower arrow is surjective, and the right vertical arrow is
an isomorphism. On the other hand the left vertical arrow is surjective by [EGA4.4,
Théorème 18.5.17]. We deduce that the upper arrow is surjective, as desired. �

Thanks to Lemma 4.2, we can (and will) choose a section ι : A → G(O) of the
projection induced by $. (Of course, we do not assume that ι is a group morphism.)
We will assume that ι(1) = 1. For simplicity, we will also denote by ι : A → G
the morphism of O-group schemes defined by ι: for any O-algebra R, the induced

morphism on R-points is the composition A(R) = A
ι−→ G(O)→ G(R).

Lemma 4.3. The morphism

A×G◦ → G

defined by (a, g) 7→ ι(a) · g is an isomorphism of O-schemes.

Proof. Consider the algebra morphism ϕ : O(G) →
∏
a∈AO(G◦) induced by our

morphism. From the remarks above, we know that the algebra morphism F⊗Oϕ is
an isomorphism. Here

∏
a∈AO(G◦) is finitely generated as an O(G)-module, since

O(G◦) is. Hence, by (a variant for discrete valuation rings of) [BR, Lemma 1.4.1],
we deduce that ϕ is an isomorphism. �

4.2. Statement. Let us consider the Grothendieck groups

K(G), K(GK), K(GF)

of the categories of (algebraic) G-modules of finite type over O, of finite-dimensional
(algebraic) GK-modules, and of finite-dimensional (algebraic) GF-modules, respec-
tively. We will also denote by Kpr(G) the Grothendieck group of the exact category
of G-modules which are free of finite rank over O. Following [Se] we consider the
natural morphisms of abelian groups

(4.2)

Kpr(G) K(G) K(GK)

K(GF)

∼

dG

Here, on the upper line, the left horizontal map (which is induced by the natural in-
clusion of categories) is an isomorphism by [Se, Proposition 4]. The right horizontal
map (induced by the exact functor K⊗O (−)) is surjective by [Se, Théorème 1]. The
map from the top left-hand corner to the group on the bottom line is induced by
the (exact) functor F⊗O (−). Finally, the map dG is the “decomposition” morphism
from [Se, Théorème 2].

The main result of this section is the following.

Theorem 4.4. All the maps in (4.2) are isomorphisms.

According to [Se, Théorème 3], if dG is surjective, then the right-hand morphism
on the upper line is automatically an isomorphism. Thus, to prove Theorem 4.4,
it is enough to prove that dG is an isomorphism. This will be accomplished in §4.5
below.
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4.3. Lattices. Our starting point will be the main result of [Se], which is applicable
here thanks to Lemma 4.1. This result asserts that if we consider the diagram

(4.3)

Kpr(G
◦) K(G◦) K(G◦K)

K(G◦F)

∼

dG◦

similar to (4.2) but for the group G◦, then the decomposition morphism dG◦ is an
isomorphism, so that all the maps in (4.3) are isomorphisms.

More precisely, let us a fix a split torus T ⊂ G◦ and set X := X∗(T ). Choosing a
system of positive roots in the root system of (G◦, T ), we obtain a Borel subgroup
B ⊂ G◦ containing T (chosen such that B is the negative Borel subgroup), and a
subset X+ ⊂ X of dominant weights.

By the well known representation theory of connected reductive groups over
algebraically closed fields, both the set of isomorphism classes of simple G◦K-modules

and the set of isomorphism classes of simple G◦F-modules are in bijection with X+.
More concretely, if λ ∈ X+ and if LK(λ) is a simple G◦K-module of highest weight

λ, then there exists a simple G◦K-module LK(λ) and an isomorphism K ⊗K VK ∼=
VK (see e.g. [Se, §4.6] or [Ja, Corollary II.2.9] for details). If VO ⊂ VK is a G◦-
stable O-lattice, then the class of F⊗O VO in K(G◦F) coincides with the class of the
Weyl module ∆F(λ) of highest weight λ (because LK(λ) and ∆F(λ) have the same
characters). In fact, it is well known that the lattice VO can be chosen in such a
way that F ⊗O VO ∼= ∆F(λ) as G◦F-modules. For each λ we will fix such a lattice,
and denote it by LO(λ).

In the present setting, A is the group of components both of GF and of GK.
Identifying TF and TK with the universal maximal tori of G◦F and G◦K respectively

(via the choice of Borel subgroups obtained from B by base change), we obtain two
actions of A on X = X∗(TF) = X∗(TK), see §2.2. The description of this action
involves the property that Borel subgroups are conjugate, which is not true over O;
so it is not clear from the definition that they must coincide. In the next lemma
we will show that they do at least coincide on X+.

Lemma 4.5. The two actions of A on X agree on X+.

Proof. Let us provisionally denote the two actions of A on X by ·F and ·K. Since A
acts by algebraic group automorphisms on G◦, this group acts on all the Grothen-
dieck groups in (4.3), and all the maps in this diagram are obviously A-equivariant.
Now for λ ∈ X+ we have a · [LK(λ)] = [LK(a ·K λ)]. Hence

dG◦(a · [LK(λ)]) = [∆F(a ·K λ)].

On the other hand, since dG◦ is A-equivariant we have

dG◦(a · [LK(λ)]) = a · [∆F(λ)] = [∆F(a ·F λ)]

(see (2.3)). We deduce that [∆F(a ·Kλ)] = [∆F(a ·Fλ)], hence that a ·Kλ = a ·Fλ. �

From now on we fix λ ∈ X+. It follows in particular from Lemma 4.5 that the
two possible definitions of the subgroup Aλ ⊂ A (see §2.4) coincide.

Lemma 4.6. (1) We have EndG◦(LO(λ)) = O.
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(2) For any a ∈ Aλ, there exists an isomorphism of G◦-modules

ι(a)LO(λ) ∼= LO(λ).

Proof. We only explain the proof of (2); the proof of (1) is similar. Consider the
object

RHomG◦(LO(λ), ι(a)LO(λ))

of the derived category of O-modules. By [Ja, Lemma II.B.5 and its proof], this
complex has bounded cohomology, and each of its cohomology objects is finitely
generated. This implies that it is isomorphic (in the derived category) to a finite
direct sum of shifts of finitely generated O-modules.

It follows from [MR, Proposition A.6 and Proposition A.8] that we have

F
L
⊗O RHomG◦(LO(λ), ι(a)LO(λ)) ∼= RHomG◦F

(∆F(λ),∆F(λ)),

K
L
⊗O RHomG◦(LO(λ), ι(a)LO(λ)) ∼= RHomG◦

K
(LK(λ), LK(λ)).

Now we have RHomG◦
K
(LK(λ), LK(λ)) ∼= K, so that HomG◦(LO(λ), ι(a)LO(λ)) is

a sum of O and a torsion module. But since HomG◦F
(∆F(λ),∆F(λ)) = F, this

torsion module is zero; in other words we have HomG◦(LO(λ), ι(a)LO(λ)) ∼= O. If

f : LO(λ) → ι(a)LO(λ) is a generator of this rank-1 O-module, the GF-module
morphism F⊗O f is an isomorphism, so that f is also an isomorphism. �

4.4. Comparison of twisted group algebras. We continue with the setting
of §4.3 (and in particular with our fixed λ ∈ X+).

By Lemma 4.6 we can choose, for any a ∈ Aλ, an isomorphism θa : LO(λ)
∼→

ι(a)LO(λ). Then K ⊗O θa is an isomorphism from LK(λ) to ι(a)LK(λ), and for

a, b ∈ Aλ the scalar α(a, b) ∈ K defined in §2.4 using these isomorphisms in fact
belongs to O×. In particular, if A λ

K is the associated twisted group algebra (over

K), then the O-lattice A λ
O :=

⊕
a∈Aλ O ·ρa is an O-subalgebra in A λ

K . On the other

hand, F⊗O θa is an isomorphism from ∆F(λ) to ι(a)∆F(λ), and by Remark 3.2 the
algebra A λ

F from §2.4 (now for the group GF and its simple module LF(λ)) can be
described as the twisted group algebra of Aλ defined by the cocyle sending (a, b)
to the image of α(a, b) in F.

Summarizing, we have obtained an O-algebra A λ
O which is free over O and such

that

K⊗O A λ
O
∼= A λ

K , F⊗O A λ
O
∼= A λ

F .

From Lemma 2.19 we know that A λ
F and A λ

K are products of matrix algebras (over

F and K respectively). In fact, the same arguments show that A λ
K := K ⊗O A λ

O
is also a product of matrix algebras (over K). Hence we are in the setting of Tits’
deformation theorem (see e.g. [GP, Theorem 7.4.6]), and we deduce that we have a
canonical bijection between the sets of isomorphism classes of simple A λ

K -modules
and isomorphism classes of simple A λ

F -modules, which sends a simple module M
to F⊗O MO, where MO is any A λ

O -stable O-lattice in M .

Let now E be a simple A λ
K -module. The same procedure as in §2.5 allows us to

define a GλK-module structure on E⊗K LK(λ), where GλK is the inverse image of Aλ

under the map GK → A induced by $.
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Lemma 4.7. Let Ẽ be the simple A λ
F -module corresponding to E under the bijec-

tion above. Then we have

dG([IndGK
GλK

(E ⊗ LK(λ))]) = [∆F(λ, Ẽ)],

where GλF is the inverse image of Aλ under the map GF → A induced by $.

Proof. If EO ⊂ E is an A λ
O -stable lattice in E, then EO ⊗O LO(λ) has a natural

structure of Gλ-module (where Gλ = $−1(Aλ)), and is a Gλ-stable lattice in

E ⊗ LK(λ). Inducing to G, we deduce that IndGGλ(EO ⊗O LO(λ)) is a G-stable

lattice in IndGK
GλK

(E ⊗ LK(λ)), whose modular reduction is ∆F(λ, Ẽ). �

4.5. Invertibility of dG. We can now prove that dG is an isomorphism, which will
finish the proof of Theorem 4.4.

In fact, for any λ ∈ X+, since A λ
K is a product of matrix algebras the assignment

E 7→ K⊗KE induces induces a bijection between the sets of isomorphism classes of
simple modules for the algebras A λ

K and A λ
K from §4.4. Then, using Theorem 2.16

and arguing as in [Se, §3.6], we see that the similar operation induces a bijection
between the sets of isomorphism classes of simple GK-modules and of simple GK-
modules.

Let us now fix a subset Λ ⊂ X+ of representatives for the A-orbits on X+.
By the remarks above, the classes of the modules IndGK

GλK
(E ⊗ LK(λ)), where (λ,E)

runs over the pairs consisting of an element λ ∈ Λ and a simple A λ
K -modules, form

a basis of K(GK) (see in particular Remark 2.17(1)). In view of Lemma 4.7 and
Theorem 3.7, the image of this basis under dG is a basis of K(GF). Hence, dG is
indeed an isomorphism.
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