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In this work, we provide the mathematical elements we think essential for a proper un-

derstanding of the calculus of the electrostatic energy of point-multipoles of arbitrary

order under periodic boundary conditions. The emphasis is put on the expressions of

the so-called self parts of the Ewald summation where different expressions can be

found in literature. Indeed, such expressions are of prime importance in the context of

new generation polarizable force field where the self field appears in the polarization

equations. We provide a general framework, where the idea of the Ewald splitting

is applied to the electric potential and subsequently, all other quantities such as the

electric field, the energy and the forces are derived consistently thereof. Mathemat-

ical well-posedness is shown for all these contributions for any order of multipolar

distribution.
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INTRODUCTION

The computation of physical quantities involving the Coulomb potential is a challenging

issue due to the slow decay of the interacting kernel as the inverse of the distance. This

long-range potential often prevents the use of simple techniques like cutoffs methods that

only take into account short-range interactions. This problem has been addressed with the

use of hierarchical methods (of order O(N) or O(N logN) complexity) that approximate

the long-range interactions and Fourier (of order O(N logN)) methods that compute part of

the Coulomb interaction in the dual space by considering the physical system under periodic

boundary conditions.

For molecular dynamics simulations of biological systems, the most widely used method

is a Fourier method, the particle-mesh Ewald1,2 — or shortly pme. This method is based

on the Ewald summation3, which gives a well-posed definition for the energy of the system.

This is indeed not granted at all, since the energy is not well defined due to the conditional

convergence of the involved series of the infinite periodic system if the (neutral) unit cell

has a non-zero dipolar moment. In this case, different orders of summation provide different

energies.

Background on the Ewald summation. The mathematical derivation of the Ewald

energy summation for point charges in three dimensions was carried out by Redlack and

Grindlay 4 , de Leeuw, Perram, and Smith 5 . With respect to the focus of this paper in-

volving multipoles of any order, Weenk and Harwig 6 and Smith 7 gave expressions for the

energy using Ewald summation for density of charges expressed as a sum of multipoles up

to quadrupoles. Those expressions have been used, for example, in the works of of Nymand

and Linse 8 , Toukmaji et al. 9 , Wang and Skeel 10 for dipoles and by Aguado and Madden 11

for quadrupoles.

However some expressions in the paper by Smith 7 are justified using physical insight,

and only the Ewald energies and forces are given. We think this is the reason why some

other authors use other (inconsistent) expressions. For example Nymand and Linse 8 give

an expression for the electric field that is different from the one by Toukmaji et al. 9 . This

difference was then discussed by Laino and Hutter 12 and corrected in Stenhammar, Trulsson,

and Linse 13 .
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Moreover all the terms (potential, field, energy, forces) for the Ewald summation are

in our knowledge never presented all together in one place consistently, and the derivation

is seldom explained. For example, Wang and Skeel 10 , Aguado and Madden 11 don’t give

expression for the field and Toukmaji et al. 9 give no expression for the potential. Stenham-

mar, Trulsson, and Linse 13 builds an exception, however, the proposed self-energy differs

for quadrupolar distributions as the work by Stenhammar, Trulsson, and Linse 13 does not

include a quadruple-quadrupol interaction whereas Aguado and Madden 11 does. The latter

is however with a different formula than what we propose later in this work. This may be

explained by a missing double factorial in Aguado and Madden 11 and Nymand and Linse 8

that was pointed out by Laino and Hutter 12 . As only the net expressions are provided, it

is difficult to trace back this difference. Recent developments have been made for efficient

PME calculations using spherical harmonic point multipoles in Giese et al. 14 and Simmonett

et al. 15 , where in particular the former also provides expressions for energies, potentials, and

forces using arbitrary order point multipoles.

Contribution. This paper should be seen as an extension of the work of Smith 7 . Al-

though not fully rigorous and lead by physical intuition, his reasoning for the expression of

the self-energy can be proven with the use of some mathematical arguments, which can then

be used to find the self-terms of any multipolar distribution. While we do not introduce a

new theory, model or mathematical expressions, we introduce here a coherent mathematical

framework to derive the self-terms of multipolar distributions of any order for the electric

potential and field as well as the associated energy and forces and confirm the results pro-

posed by Smith 7 . Further, we present proofs of the well-posedness of the self parts to the

energy, electric potential and field for multipolar distributions of any order.

Our derivation is different from what has been proposed in the past, and emphasizes that

the Ewald splitting should first be done on the potential or the field — and not directly on

the energy. We derive the self-potential and self-field from scratch using Ewald splitting and

deduce from those expressions the results for the self-energy and self-forces.

The purpose of the present article is to provide a coherent mathematically driven deriva-

tion of all self-terms, which, in consequence, provides a base for methodology developments of

force-fields. We present in the appendix of a complete and precise derivation of all self-terms

such that differences in expressions as highlighted above can be traced back. In particular,
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and this is our main motivation, a correct derivation of the self-field is indispensable for

polarizable force-fields. Indeed, to solve the polarization equation, the total field, and thus

the self-field, is required to compute the polarization field16. In practice, such terms are well

implemented in production codes like Tinker and Amber. However, other codes exist and

omitting these terms would result in highly different properties. Indeed, as shown in Fig-

ure 1, omitting the self-field in the computation of the polarization energy results in highly

different oxygen-oxygen radial distribution function. Therefore, it is of prime importance

for developers to have a robust justification of the expression to implement. This is in con-

trast to non-polarizable force-fields where only the energy and forces are needed to derive a

correct dynamics.

FIG. 1: Computational experiment performed with the Tinker-HP17 software and the

AMOEBA force field. Removing the self-field terms in the computation of the polarization

energy gives rise to strong differences in the oxygen-oxygen radial distribution function

compared to the correct Tinker-HP initial implementation. Simulation settings: 1ns NVT

simulation at 300K, 4000 water molecules within a 49.3233 Angstrom square box.

Outline. First, in Section I we introduce the notations that we use and review general

results about the Ewald summation. In Section II, Section III and Section IV we give,

respectively, a derivation for the potential, the field and the energy using Ewald summation.

Finally, in Section V we give explicit expressions of the self-terms and provide the proof that
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justifies the existence of the self-terms for any multipolar distribution.

I. EWALD SUMMATION FOR MULTIPOLES

In this article, we consider a system composed of a discrete distribution of N point mul-

tipoles in R3 under periodic boundary conditions. The system consists in an electronically

neutral primitive triclinic cell U with charges in form of multipoles located at ri ∈ U for

i ∈ {1, . . . , N}. The set of positions ri is represented by the global vector r{N} := (r1, . . . , rN).

The unit cell U is then duplicated in all directions and the system derived from r{N} is there-

fore composed of an infinity of charges.

The unit cell U is spanned by the three vectors (a1, a2, a3) which is called the basis of U .

We then introduce the lattice-indices n and m of the form

n =
∑

1≤γ≤3

nγ aγ and m =
∑

1≤γ≤3

mγ a
∗
γ, (1)

where nγ,mγ ∈ N and (a∗1, a
∗
2, a
∗
3) is the dual basis of (a1, a2, a3): that is a∗γ · aγ′ = δγγ′ (the

Kronecker symbol). We will also denote by V the volume of the primitive cell U and by U∗

the dual of the primitive cell.

Then, one can informally introduce “the” electrostatic interaction energy of r{N} up to

2p-poles, p ∈ N as

E(r{N}) :=
1

2

∑′

n
1≤i,j≤N

Li Lj
1

|rijn|
, (2)

where rijn := ri − rj + n, the sign ′ on the sum means that for i = j when n = 0 the

interaction is not counted (this avoids self-interaction of a point multipole with itself) and

the multipolar operator Li is defined as

Li :=
∑

0≤k≤p

Mk
i · Dk

i . (3)

Here, Mk
i is a k-dimensional array of dimension 3k describing moment of the point 2k-pole,

Dk
i is the matrix of k-order partial derivatives with respect to the variable ri and · is the

point-wise product which writes

(A · B)α = Aα Bα = Aα1,...,αk
Bα1,...,αk

,

for two arbitrary k-dimensional arrays A,B ∈ R3k and where α = (α1, . . . , αk), αi ∈ {1, 2, 3},
is a k-dimensional multi-index.
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For instance, k = 0 represents a point-charge of charge M0
i at ri and k = 1 a dipole where

D1
i is equivalent to the usual ∇ notation with respect to ri and M1

i denotes the dipolar

moment for each location ri. Next, k = 2 represents a quadrupole, D2
i denotes the Hessian

matrix and M2
i is a 3× 3 matrix that incorporates the quadrupolar moments.

We will see that the energy in (2) is actually not well defined: As in the case of single

point charges, it can be shown, by a Taylor expansion with respect to n, that the series in

equation (2) is what is called conditionally convergent. That implies that the result of the

energy E(r{N}) depends on the order of summation and is thus not uniquely defined.

The electrostatic energy can equivalently be stated in the following form

E(r{N}) =
1

2

∑
1≤i≤N

Liφ
i(ri) with φi(ri) :=

∑′

n
1≤j≤N

Lj
1

|rijn|
, (4)

so that φi(ri) denotes the potential at ri which is generated by all multipoles different than

the one located at ri. In consequence, equation (2) represents indeed the interaction energy

between every multipole i in the unit cell with the potential created by all other multipoles

(indexed by j and n) of the infinite lattice.

Let us make a subtle comment. While ri is the fixed position of the i-th multipole,

the multipole operator Li involves derivatives which requires to consider the potential φi

in a local neighborhood of ri. We denote therefore by r the variable belonging to a local

neighborhood of ri and write

Liφ
i(ri) = Mk

i ·
(
Dk

rφ
i(r)
)∣∣

r=ri
, (5)

since we have to consider the potential φi(r) and its derivatives ultimately evaluated at

r = ri.

As anticipated above, equations (2) and (4) are not well-defined and hence the need to

use a definition of an expression for the energy that is well defined. One possible remedy is

the introduction of the Ewald energy to give a unique meaning of this expression by

EEwald(r{N}) :=
1

2

∑′

n
1≤i,j≤N

Li Lj

(
erfc(α1/2|rijn|)

|rijn|

)

+
1

2πV

∑
m 6=0

exp(−π2m2/α)

m2
S(m)S(−m) + Eself(r{N}), (6)
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where α is a positive real number,

S(m) :=
∑

1≤j≤N

F(Lj)(m) exp(2πim · rj) (7)

is the structure factor and F is the discrete Fourier transform of the operator Lj. For

example for a point-multipoles up to order p = 2 (quadrupoles), F reads

F(Lj)(m) = M0
j + 2πiM1

j ·m− (2π)2M2
j ·M,

with Mγγ′ = mγmγ′ . The third term in (6) is commonly referred to as the self-energy. In

the realm of polarizable force-fields, the commonly used definition of the self-energy is the

one from Smith 7 .

The fundamental property of the Ewald energy is that it is independent on the order of

summation due of the absolute convergence of the involved sums.

It can be shown5,18 that the interaction energy (2) of the system is related to the Ewald

energy through the relation

E(r{N}) = EEwald + J(D,M), (8)

where the surface term J(D,M) depends on the dipolar moment D =
∑

1≤i≤N M0
i ri and the

sum of dipoles M =
∑

1≤i≤N M1
i of the primitive cell U . Only this term is responsible for

the order of summation in equation (2), it reflects the macroscopic shape of the system (see

the upcoming Remark 1 for a discussion on the notion of macroscopic shape). The order

of summation of the conditionally convergent series is therefore a factor to choose in order

to specify the exact value of the interaction energy E(r{N}) and is often supposed to be

spherical (by shells of n such that |n| is increasing).
By supposing that the macroscopic system is surrounded by a continuum dielectric with

some dielectric permittivity ε, the interaction of the microscopic system with the continuum

can be taken into account and explicitly dealt with for spherical summation orders. Further,

in the limiting case of a perfect conductor ε =∞ as surrounding environment (and still with

spherical summation order), it can be proven that the surface term vanishes18,19. This model

is called the tinfoil model. In consequence, this implies that the energy of the system is in

this case the Ewald energy.

In this paper, we do not longer comment on the convergence issues, which will be subject

of a forthcoming paper, and concentrate on the proper definition of the self-energy Eself(r{N}),
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which requires some subtle development if general multipoles are considered that go beyond

the results for point charges.

More precisely, there are two aspects that we address in the work. First, we investigate

a mathematically clean derivation of the self-potential (and thus of the energy thanks to

equation (4)) and self-field when general multipoles are considered and not only point-

charges. We then deduce thereof the expression of the self-energy. Second, we present the

proofs which demonstrates that these quantities are mathematically well-defined.

II. DERIVATION OF THE POTENTIAL

First, we revisit the derivation of the Ewald summation for the potential generated by

the multipoles. The conditionally convergent series in (4) defining the potential φj is given

a precise meaning by considering the limit

lim
k→∞

∑′

n∈Ω(P,k)
1≤i≤N

Li
1

|ri − rj + n| ,

for some domain P in R3 containing the origin that represents the macroscopic shape of the

system (see Remark 1) and where

Ω(P, k) :=

{
n =

∑
1≤γ≤3

nγaγ

∣∣∣∣∣ (nγ)1≤γ≤3 ∈ Z3,
n

k
∈ P

}
. (9)

At the base of the derivation of the potential is the splitting

1

|r| =
erfc(α1/2|r|)

|r| +
1

π

∑
m

∫
U∗

exp
(
−π2|v + m|2/α

)
|v + m|2

exp(−2iπ(v + m) · r) d3v, (10)

for any positive α and which can be deduced18 from the integral expression of the gamma

function at the point 1
2
for all r but at the origin.

Using the present splitting and following the arguments presented in Darden 18 (Sections

3.5.2.3.2 and 3.5.2.3.1), one can define

ζk(r) =
∑

n∈Ω(P,k)

erfc(α1/2|r + n|)
|r + n| +

1

πV

∑
m 6=0

exp(−π2|m|2/α)

|m|2 exp(−2iπm · r)

− π

αV
+Hk(r),

(11)
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such that ∑
n∈Ω(P,k)

1

|r + n| = ζk(r) + o(1),

as k →∞ and which consists of potential at r that is generated by unit point charges located

at the vertices of the lattice indexed by n such that n ∈ Ω(P, k). For sake of completeness,

we outline this step in Appendix A where we also give the definition of Hk(r) in Eqn. (A2).

Based on ζk, we now introduce the function

Φk(r) :=
∑

1≤j≤N

Ljζk(r− rj), (12)

defined everywhere but at the location of the point multipoles located in U . The function

r 7→ Φk(r) represents the potential at r ∈ U generated by all the multipoles and their images

contained in periodic lattice cells indexed by n such that n ∈ Ω(P, k).

In consequence, the limit as r tends to any point multipole rj is not finite. Note that this

has been handled above with the ′ sign after the sum since only the interaction energy is

considered. Instead, if one considers the potential at position r generated by all multipoles

except the multipole located at ri, then one has to substract the contribution for n = 0 in

equation (11) for ζk(r− ri) to get

φik(r) =

(
Φk(r)− Li

1

|r− ri|

)
, (13)

with finite limit at ri given by

φik(ri) = lim
r→ri

φik(r) = lim
r→ri

(
Φk(r)− Li

1

|r− ri|

)
. (14)

The function r 7→ φik(r) denotes the potential at an arbitrary position r generated by all

multipoles contained in periodic lattice cells indexed by n such that n ∈ Ω(P, k) except

multipole i in the unit cell (n = 0).

Hence, using the splitting introduced in equation (11) combined with (12) and (13), it

follows that

φik(r) =
∑′

n∈Ω(P,k)
1≤j≤N

Lj
erfc(α1/2|rjn|)

|rjn|
+

1

πV

∑
m 6=0

exp(−π2|m|2/α)

|m|2 exp(−2πim · r)S(m)

−
(
Li

erf(α1/2|r− ri|)
|r− ri|

)
+
∑

1≤j≤N

LjHk(r− rj), (15)

9



with rjn := |r− rj + n| and where S(m) was defined in equation (7).

We have therefore introduced the splitting (precisely defined in the listing below)

φik(r) = φi0,k(r) + φiself(r) + φik,surf(r), (16)

where each individual term is defined and discussed in the following.

The absolutely converging part of the potential: Due to their quick convergence in

k →∞ the first two terms in equation (15), denoted by φi0,k in equation (16), do not

depend on the order of summation. The first term is called the direct potential and

the second the reciprocal potential.

The self-potential: The third term in equation (15) is what we call the self potential

φiself(r) in (16) and does not depend on the other nuclear position ri, i 6= j, and k,

and is non-constant in r around ri. This term being independent on the other nuclear

positions can by no means model the interaction potential, hence the name.

From the derivation it becomes clear that in the limit r→ ri, φiself(ri) is the quantity

to be subtracted from the reciprocal potential in order that the potential at r = ri

is the potential created by all other multipoles except multipole i. Note that the

contribution in the direct space has already been taken into account in equation (15)

since the sign ′ appears on the first sum.

We will provide in Section V explicit values of this terms in limit r→ ri for arbitrary

multipolar distributions.

The surface-potential: The fourth term (15), denoted by φik,surf in equation (16), is the

surface potential which will be well-defined only if the sum converges as k tends to

infinity. It is intimately linked with the order of summation and is related to subtle

questions. We want to focus in this article to the self-terms and are therefore assuming

convergence in k here.

Remark 1. It is not very intuitive to understand what is meant by the macroscopic shape

of the system and its environment, and how this is mathematically accounted for. From

the microscopic viewpoint, the sequence of shapes (Ω(P, k))k∈N should be seen as the scaling

of one macroscopic shape P , i.e. Ω(P, k) = kP . Then, the sequence Ω(P, k) covers larger
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and larger parts of the microscopic space R3 as k increases. We would like to advocate also

the viewpoint of introducing a change of variables from the microscopic variable n to the

macroscopic variable n̂ = n/k that can be used to rewrite sums of the form

∑
n∈Ω(P,k)∩Z3

f(n) as
∑

n̂∈P∩(Z3/k)

f̂(n̂), with f̂(n̂) := f(kn̂). (17)

This means that the microscopic space contracts more and more within the macroscopic

shape P , see Figure 2 for an illustration. The role of the macroscopic shape P becomes

visible and the exterior of P is then the surrounding environment to P .

h fixed

kP, k → ∞

(a) Microscopic space

P fixed

h = 1
k → 0

k → ∞

macroscopic environment

(b) Macroscopic space

FIG. 2: The limiting process k →∞ observed in the microscopic and macroscopic space

In the following, we introduce

φi0(r) = lim
k→∞

φi0,k(r), φisurf(r) = lim
k→∞

φik,surf(r), (18)

where we have assumed that the second term converges as we want to study the self-terms.

Thus

φi(r) = φi0(r) + φiself(r) + φisurf(r), (19)

denotes the potential at position r generated by all multipoles except multipole i in the

unit cell. Recall that the term φisurf(r) depends on the order of summation represented by a

particular shape P , whereas the other terms φi0,k(r) and φiself(r) do not.
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III. DERIVATION OF THE FIELD

The derivation we have given for the potential gives a straightforward one for the field.

It is based on the splitting of φik(r) developed in the previous section and uses the fact that

the electric field is minus the gradient of the electric potential. Indeed, taking the derivative

Dr (thus with respect to r) in equation (15) yields

Ei
k(r) = −Drφ

i
k(r)

= −
∑′

n∈Ω(P,k)
1≤j≤N

DrLj
erfc(α1/2|rjn|)

|rjn|
− 1

πV

∑
m 6=0

exp(−π2m2/α)

m2
S(m)Drexp(−2πim · r)

+ DrLi
erf(α1/2|r− ri|)
|r− ri|

−
∑

1≤j≤N

DrLjHk(r− rj).

(20)

Therefore, Ei
k(r) denotes the electric field at a general position r generated by all multipoles

in a cell belonging to Ω(P, k) except multipole i in the unit cell.

In consequence, we define each term individually as for the potential:

Ei
0,k(r) = −

∑′

n∈Ω(P,k)
1≤j≤N

DrLj
erfc(α1/2|rjn|)

|rjn|

− 1

πV

∑
m 6=0

exp(−π2m2/α)

m2
S(m)Drexp(−2πim · r),

(21a)

Ei
self(r) = DrLi

erf(α1/2|r− ri|)
|r− ri|

, (21b)

Ei
surf,k(r) = −

∑
1≤j≤N

DrLjHk(r− rj). (21c)

In particular, we defined the self electric field Ei
self(r) as the third term in (20), which will

be shown in Section V to be well-defined, in particular at ri, and give explicit expressions.

Evaluating Ei
k(r) at r = ri then yields

Ei
k(ri) = Ei

0,k(ri) + Ei
self(ri) + Ei

k,surf(ri). (22)

Using classical results from convergence of series, we obtain that as soon as the surface-

potential converges (in the limit k → ∞) and the surface-field converges uniformly in r

in a neighborhood of ri, the gradient of the limit of the surface-potential is exactly the
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surface-field:

Ei
surf(r) = − lim

k→∞

∑
1≤j≤N

DrLjHk(r− rj) = −Dr

(
lim
k→∞

∑
1≤j≤N

LjHk(r− rj)

)
= −Dr

(
φisurf(r)

)
.

(23)

Again, this is a subtle question related to the convergence in k that will be addressed in an

upcoming work. The focus of this article is shed on the self-terms.

IV. DERIVATION OF THE ENERGY

Recalling equation (5) combined with the splitting (19) of the potential into different

parts, we define the following energy contributions

E0(r{N}) =
1

2

∑
1≤i≤N

∑
0≤k≤p

Mk
i ·
(
Dk

rφ
i
0(r)

)∣∣
r=ri

, (24a)

Eself(r{N}) =
1

2

∑
1≤i≤N

∑
0≤k≤p

Mk
i ·
(
Dk

rφ
i
self(r)

)∣∣
r=ri

, (24b)

Esurf(r{N}) =
1

2

∑
1≤i≤N

∑
0≤k≤p

Mk
i ·
(
Dk

rφ
i
surf(r)

)∣∣
r=ri

. (24c)

Note that the self-potential is non-constant in a neighborhood of ri so that the higher

multipolar moments, i.e. the derivatives, act on the self-potential φiself . Further, notice that

E0(r{N}) can be written as

E0(r{N}) =
1

2

∑
1≤i≤N

Liφ
i
0(ri) =

1

2

∑′

n
1≤i,j≤N

LiLj
erfc(α1/2|rijn|)

|rijn|

+
1

2πV

∑
m 6=0

exp(−π2m2/α)

m2
S(m)S(−m), (25)

and in consequence, we write

E(r{N}) = E0(r{N}) + Eself(r{N})︸ ︷︷ ︸
EEwald(r{N})

+ Esurf(r{N})︸ ︷︷ ︸
J(D,M)

= EEwald(r{N}) + J(D,M). (26)

Note that we confirm with this derivation equation (8) and that the Ewald energy and the

self-energy do not depend on the order of summation whereas the surface energy does.

The corresponding force-terms then naturally result from differentiating the different

energies with respect to the nuclear coordinates. In particular, as we will see further below,

13



the self-energy is independent on any nuclear coordinate and the self-energy therefore doesn’t

induce any force term. However, the correct term of the self-field is mandatory in the context

of polarizable force-fields.16

V. WELL-POSEDNESS OF THE SELF-TERMS

In this part, we outline the proofs that the self-potential, field and (24b) are well-defined

in the limit r→ rj and in consequence also the self-energy. As done by Smith 7 , we introduce

recursively the functions Bn for any n ∈ N and all r ∈ R+ \ {0} by

B0(r) := −erf(α1/2r)

r

Bn(r) :=
1

r2

(
(2n− 1)Bn−1(r) +

(2α)n√
απ

exp
(
−αr2

))
.

(27)

Then, the following result holds.

Theorem 1. For any n ∈ N, there holds that

lim
r→0

Bn(r) = Bn(0) = −α
n+1/2

√
π

2n+1

2n+ 1
, (28)

and
dBn

dr
(r) = −rBn+1(r). (29)

The proof of Theorem 1 is presented in Appendix B.

In order to give explicit formulae for the self-terms, we first note that from (29) follows

D1
iBn(|r− ri|) = (r− ri)Bn+1(|r− ri|). (30)

Since we have derived the values of Bn(0) in (28), we can give explicit formulae for the

self-potential, the self-field and the self-energy in consequence.

For sake of a simple presentation, we consider a multipolar charge distribution up to

quadrupoles in the following. Intrinsically, the quadrupolar moments M2
i are symmetric

matrices with zero trace.

The self-potential: Therefore, the i-th self-potential φself at an arbitrary point r in a

14



neighborhood of ri writes as

φiself(r) = −Li
erf(α1/2|r− ri|)
|r− ri|

= LiB0(|r− ri|) (31a)

= M0
i B0(|r− ri|) + M1

i · D1
i B0(|r− ri|) + M2

i · D2
i B0(|r− ri|) (31b)

= M0
i B0(|r− ri|) +B1(|r− ri|)M1

i · (r− ri)

+B2(|r− ri|)M2
i ·
(
(r− ri)

>(r− ri)
)
.

(31c)

Then, the evaluation of the i-th self-potential at r = ri is given by

φiself(ri) = lim
r→ri

φiself(r) = M0
i B0(0) = −M0

i 2

√
α

π
, (32)

which does no longer depend on ri, only depends on the charge M0
i and is well-defined.

This formula is of course valid for any kind of multipolar distribution and not restricted

to orders to up to quadrupoles only. Note that the self-potential is not constant in a

neighborhood of ri in this derivation.

The self-field: We want to stress that in contrast to what is presented in Nymand and

Linse 8 , there is indeed a non-zero self-contribution to the electric field. The i-th part

of the self-field at r = ri is defined by

Ei
self(r) = − lim

r→ri

(
Drφ

i
self(r)

)
= −M1

i B1(0) = M1
i

√
α

π

4α

3
, (33)

which only depends on the dipole moment at site i and is also valid for any kind of

multipolar distribution.

The self-energy: Finally, the self energy as defined above writes as

Eself(r{N}) =
1

2

∑
1≤i≤N

∑
0≤k≤2

Mk
j ·
(
Dk

rφ
i
self(r)

)∣∣
r=ri

, (34)

=
1

2

∑
1≤i≤N

(
M0
i ·M0

i B0(0) + M1
i ·M1

i B1(0) + 2M2
i ·M2

i B2(0)
)

(35)

= −
√
α

π

∑
1≤i≤N

(
M0
i ·M0

i +
2α

3
M1
i ·M1

i +
8α2

5
M2
i ·M2

i

)
. (36)

We recognize the current practice that for relative energies and forces, the correct term

of the self-energy is not needed since a constant misfit cancels out in energy differences.

However, for sake of having a complete theory based on a rigorous development, we

think that it is important to state the self-energy as well.
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VI. CONCLUSION

In that paper, we proposed a new mathematically clean and coherent derivation of the

Ewald summation for a system consisting ofN -body electrostatic interaction with multipolar

charges of any order. The existing results in the literature differ between different authors

and no common development of all quantities can be found. The essential differences lie

in the self-term expressions. We presented a clean derivation and confirm the expressions

proposed by Smith 7 for which we proved well-posedness. Our model is derived from a clean

application of the Ewald splitting to the electric potential and the subsequent quantities such

as the electric field, the energy and the forces are derived thereof. A complete derivation of

all these quantities is mandatory in the context of next generation polararizable force-fields

where in particular the self-field is required and needs to be consistent with the theory.

Overall, the new model which is mathematically sound maintains the use of the tinfoil

model and provides simpler expressions for the self-energy that are closer to the original

idea of Ewald to work on the potential and not on the energy.
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APPENDIX A

Essentially, for sake of a complete presentation we present here the derivation of (11)

in a compact way following the arguments presented in Darden 18 , see also20,21. As briefly

mentioned in Section II, we start with the following splitting

1

|r| =
erfc(α1/2|r|)

|r| +
1

π

∑
m

∫
U∗

exp
(
−π2|v + m|2/α

)
|v + m|2

exp(−2πi(v + m) · r) d3v, (A1)

see Eq. (3.5.2.16) in Darden 18 . Then, one can write

∑
n∈Ω(P,k)

1

|r + n| =
∑

n∈Ω(P,k)

erfc(α1/2|r + n|)
|r + n| +

∑
n∈Ω(P,k)

∑
m

∫
U∗
hm,r(v) exp(−2πiv · n) d3v

with

hm,r(v) =
exp
(
−π2|v + m|2/α

)
π|v + m|2

exp(−2πi(v + m) · r),

and where we used that

exp(−2πi(v + m) · n) = exp(−2πiv · n)

since m · n ∈ N.

Case m 6= 0: We first recognize that

1

V
ĥm,r(n) =

∫
U∗
hm,r(v) exp(−2πiv · n) d3v

where ĥm,r denotes the Fourier coefficient of hm,r and we recall that V = 1
|U∗| . Then, there

holds that ∑
n

ĥm,r(n) = hm,r(0) =
exp
(
−π2|m|2/α

)
π|m|2

exp(−2πim · r)

and thus ∑
n∈Ω(P,k)

ĥm,r(n) = hm,r(0) + o(1),

as k →∞.

18
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Case m = 0: As visible from above, this development does not hold for m = 0 and is more

subtle. We have that

hm,r(v) =
exp
(
−π2|v|2/α

)
π|v|2

exp(−2πiv · r)

and the combination of two Taylor expansions yields

hm,r(v) =
1

π|v|2
(

1− π2

α
|v|2 +O(|v|4)

)(
1− 2πiv · r− 2π2|v · r|2 +O(|v|3)

)
=

1− 2πiv · r− 2π2|v · r|2

π|v|2
− π

α
+O(|v|).

This motivates the definition

Hk(r) =
∑

n∈Ω(P,k)

∫
U∗

1− 2πiv · r− 2π2|v · r|2

|v|2
exp(−2πiv · n) d3v, (A2)

and note that

−π
α

∑
n

∫
U∗

1 exp(−2πiv · n) d3v = − π

αV

∑
n

1̂(n) = − π

αV
.

Then

−π
α

∑
n∈Ω(P,k)

∫
U∗

exp(−2πiv · n) d3v = − π

αV
+ o(1),

as k →∞. Further there holds

∑
n∈Ω(P,k)

∫
U∗
O(|v|) exp(−2πiv · n) d3v = o(1),

so that combining all terms yields

ζk(r) =
∑

n∈Ω(P,k)

erfc(α1/2|r + n|)
|r + n| +

1

πV

∑
m 6=0

exp
(
−π2|m|2/α

)
|m|2

exp(−2πim · r)

− π

αV
+

1

V
Hk(r) + o(k),

as k → ∞. Note that we do not shed emphasis on the different arguments that guarantee

existence of the different limits but put rather emphasis on the compact development to

derive (11).
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APPENDIX B: MATHEMATICAL PROOFS

Before we really tackle the proof of Theorem 1, we first prove some auxiliary results.

Lemma 1. For any integer n, the function Bn is explicitly given by

Bn(r) =
exp(−αr2)√

απr2

n−1∑
k=0

(2α)n−k

r2k

(2n− 1)!!

(2(n− k)− 1)!!
− (2n− 1)!!

erf(α1/2r)

r2n+1
, (B1)

where (2n−1)!! := (2n−1)×· · ·×3×1 with the convention that for any non-positive integer

k, k!! = 1 and that a sum from 0 to −1 is zero.

Proof. The proof follows by induction. For n = 0 we see that the proposition holds by

inspection. Now, let us assume that (B1) holds for a given n. Inserting (B1) into the

definition of Bn+1 in (27) implies

r2Bn+1(r) = (2n+ 1)Bn(r) +
(2α)n+1

√
απ

exp
(
−αr2

)
= (2n+ 1)

(
exp(−αr2)√

απr2

n−1∑
k=0

(2α)n−k

r2k

(2n− 1)!!

(2(n− k)− 1)!!
− (2n− 1)!!

erf(α1/2r)

r2n+1

)

+
(2α)n+1

√
απ

exp
(
−αr2

)
=

exp(−αr2)√
απ

(
(2α)n+1 +

n∑
k=1

(2α)n+1−k

r2k

(2n+ 1)!!

(2(n+ 1− k)− 1)!!

)
− (2n+ 1)!!

erf(α1/2r)

r2n+1

=
exp(−αr2)√

απ

n∑
k=0

(2α)n+1−k

r2k

(2n+ 1)!!

(2(n+ 1− k)− 1)!!
− (2n+ 1)!!

erf(α1/2r)

r2n+1

Lemma 2. The functions Bn can be rewritten for all positive r as

Bn(r) =
1√
απ

∞∑
`=0

n−1∑
k=0

(−1)`α
`+n−k

2n−k(2n− 1)!!

`!(2(n− k)− 1)!!
r2(`−k−1)

− 2(2n− 1)!!

√
α

π

∞∑
`=0

(−α)`

(2`+ 1)`!
r2(`−n). (B2)

Proof. The result is obtained by inserting the expression of the error and exponential func-

tions as a power series, i.e.,

exp
(
−αr2

)
=
∞∑
`=0

(−α)`r2`

`!
and erf(α1/2r) = 2

√
α

π

∞∑
`=0

(−α)`r2`+1

(2`+ 1)`!
,

in equation (B1).
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We now need to prepare some result that is used in a later proof.

Lemma 3. For any n ∈ N0, there holds

n+1∑
k=1

(−2)k

(n− k + 1)!(2k − 1)!!
+

2

(2n+ 1)n!
= 0.

Proof. We denote by Γ the usual gamma-function. Introduce as well the double-factorial for

even numbers (2n)!! = 2n× (2n− 2)× . . .× 2 and observe that the following identities hold

(2k)!! = 2k k! = 2k Γ(k + 1),

(2k + 1)!! =
(2k + 2)!

(2k + 2)!!
=

(2k + 2)!

2k+1(k + 1)!
= 2−k−1 Γ(2k + 3)

Γ(k + 2)
.

In consequence, there holds

(2k)!!

(2k + 1)!!
= 22k+1 Γ(k + 1)Γ(k + 2)

Γ(2k + 3)
= 22k+1B(k+ 1, k+ 2) = 22k+1

∫ 1

0

tk+1(1− t)kdt, (B3)

where B(·, ·) denotes the beta-function. Next, we observe that

2

∫ 1

0

t
(
tk(1− t)k

)
dt =

∫ 1

0

tk(1− t)kdt, (B4)

by exploiting the change of variable s = 1− t and the fact that t(1− t) = s(1− s). Further
using the identity 4t(1− t) = 1− (2t− 1)2 and another change of variable s = 2t− 1 yields

4k
∫ 1

0

tk(1− t)kdt =

∫ 1

0

(
1− (2t− 1)2

)k
dt =

1

2

∫ 1

−1

(
1− s2

)k
ds =

∫ 1

0

(
1− s2

)k
ds. (B5)

Combining (B3)–(B5) then yields

(2k)!!

(2k + 1)!!
=

∫ 1

0

(
1− t2

)k
dt. (B6)

Now, we use (B6) in combination with the the binomial coefficient theorem as follows

n∑
k=0

(−1)k(2k)!!

(2k + 1)!!

n!

(n− k)!k!
=

∫ 1

0

n∑
k=0

n!

(n− k)!k!

(
t2 − 1

)k
dt =

∫ 1

0

t2ndt =
1

2n+ 1
. (B7)

Then replacing the double factorial (2k)!! = 2kk! and shifting the index k by one yields the

desired result.

The first claim of Theorem 1 is formulated in the following lemma.
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Lemma 4. For any n ∈ N, there holds that

lim
r→0

Bn(r) = Bn(0) = −α
n+1/2

√
π

2n+1

2n+ 1
. (B8)

Proof. It remains only to study the limit as r tends to zero in (B2) of the terms where `−n
and `− k − 1 are nonpositive, as positive powers of r will converge to zero.

In order to have a clear picture, we first reorder the sums over ` and k of the first term

in (B2) by introducing the following change of indices ` = q− s+ 1 and k = n− s as follows
∞∑
`=0

n−1∑
k=0

S(`, k) =
∞∑
q=0

min(n,q+1)∑
s=1

S(q − s+ 1, n− s)

=
n−1∑
q=0

q+1∑
s=1

S(q − s+ 1, n− s) +
∞∑
q=n

n∑
s=1

S(q − s+ 1, n− s)

where S(`, k) denotes the summand of the first term in (B2). The second term in (B2) is

modified by the change of indices ` = q − s + 1 and k = n − s resulting in the following

expression

Bn(r) =
1√
απ

∞∑
q=0

min(n,q+1)∑
s=1

(−1)q−s+1α
q+1

2s(2n− 1)!!

(q − s+ 1)!(2s− 1)!!
r2(q−n)

− 2(2n− 1)!!

√
α

π

∞∑
q=0

(−α)q

(2q + 1)q!
r2(q−n)

= −(2n− 1)!!

√
α

π

∞∑
q=0

(−α)q

min(n,q+1)∑
s=1

(−2)s

(q − s+ 1)!(2s− 1)!!
+

2

(2q + 1)q!

 r2(q−n). (B9)

As outlined in the beginning of the proof, we focus on the non-negative powers of r, thus

for non-negative q − n. The coefficient for such a non-negative power q − n of r is given by
q+1∑
s=1

(−2)s

(q − s+ 1)!(2s− 1)!!
+

2

(2q + 1)q!

which vanishes by Lemma 3. This proves well-posedness of the limit r → 0 and the limit is

given by the coefficient of the zero-th power in r, i.e. for q = n. Note that min(n, q + 1) =

n = q − 1 and we apply once again Lemma 3 to obtain the desired limit.

The second claim of Theorem 1 is formulated in the following lemma.

Lemma 5. For any n ∈ N0, there holds that

dBn

dr
(r) = −rBn+1(r). (B10)
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Proof. This proof follows by induction. For n = 0, the claim can easily be proven by

inspection using the definition (27). Consider now the recursive definition of Bn+1 in (27)

and deriving the expression with respect to r yields

dBn+1

dr
(r) = −2

r
Bn+1 +

1

r2

(
(2n+ 1)

dBn

dr
(r)− r (2α)n+2

√
απ

exp
(
−αr2

))
.

Assuming that (B10) holds for n and applying once again the definition (27) of Bn+2 implies

dBn+1

dr
(r) = −(2n+ 1)

r
Bn+1 −

1

r

(2α)n+1

√
απ

exp
(
−αr2

)
= −rBn+2(r)

which completes the proof by induction.
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